
VRules: An Effective Association-based Classifier for
Videos

Ling Chen, Sourav S. Bhowmick and Liang-Tien Chia
Center for Multimedia and Network Technology

School of Computer Engineering
Nanyang Technological University, Singapore 639798

{pg02322722, assourav, asltchia}@ntu.edu.sg

ABSTRACT
Video classification is an important step towards multime-
dia understanding. Most state-of-art approaches which ap-
ply HMM to capture the temporal information of videos
have the limitation by assuming that the current state of a
video depends only on the immediate previous state. Never-
theless, this assumption may not hold for videos of various
categories. In this paper, we present an effective video clas-
sifier which employs the association rule mining technique to
discover the actual dependence relationship between video
states. The discriminatory state transition patterns mined
from different video categories are then used to perform clas-
sification. Besides capturing the association between states
in the time space, we also capture the association between
low-level features in spatial dimension to further distinguish
the semantics of videos. Experimental results show that the
performance of our association rule based classifier is quite
promising.

1. INTRODUCTION
With the ever-growing digital libraries and video databases,

it is increasingly important to understand multimedia data
automatically. Video classification is the first step toward
multimedia content understanding [3]. Typical applications
of video classification are efficient video database indexing
and retrieval. Different methods have been proposed in the
literature for classifying videos into predefined categories.
Existing works on video classification can be roughly divided
into two groups, one considers only the spatial information of
videos [10] and the other takes both the spatial and tempo-
ral information of videos into account [2][5]. The advantage
of the former method is that they work simply and gener-
ate classifiers that can be understood directly, whereas the
latter succeeds in capturing the temporal dynamic charac-
teristics of videos, which is a critical cue in understanding
video content. Due to its capability in grasping the tempo-
ral statistical properties of stochastic processes, the Hidden

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 2002 ACM X-XXXXX-XX-X/XX/XX ... $5.00.

Markov Model (HMM) was frequently applied by the ap-
proaches of the second group. Without complicating the
model, most of the approaches used the first-order HMM
theory, which assumes that the current state of a video de-
pends only on the previous state. However, this assumption
may not hold for videos of various categories, which results
in certain limitations. For example, consider the video of a
basketball game. From a state of the middle court, it might
move into a state of the right court or a close-up of a player.
The previous state before the middle court may affect which
state it enters into. For instance, if the previous state of the
middle court state is a left break up, it probably enters into
a state of the right court. Whereas, if the previous state
is a left dunk, it possibly enters into a close up. In this
case, being the current state depends on the previous two
states. Unfortunately, it is unknown beforehand which n-
order HMM is appropriate for videos of different categories.
The dependency relationship between the sequential states
of videos can only be decided correctly by mining the video
datasets. Hence, in this paper, we consider building an as-
sociation rule based classifier which uses mined associations
between video states to perform classification task.

Since a single feature may not provide sufficient informa-
tion, multiple features are usually considered for accurate
classification. Basically, existing works on video classifica-
tion utilized multiple features in two manners. One is to
concatenate low-level features directly to form a long feature
vector [7]. The other is to create classifiers for each feature
and then combine the classifiers to make a final decision [6].
The former is straightforward but has the “curse of dimen-
sionality” problem when many features are involved. The
latter will suffer from inappropriate combination strategies.
In this paper, we consider multiple features in a way differ-
ent from both of the above approaches. As observed in [1],
the association between low-level features can help discrim-
inate the image contents very well, which is also applicable
to videos. Hence, we take advantage of multiple features by
capturing the association between them in sequential video
states to further distinguish the semantics of videos.

As an overview, our association rule based classifier, which
is referred as VRules, is built as follows. In the first place, we
preprocess the set of training videos. Each training video se-
quence is partitioned into shots which are modelled as states.
Two low-level features, color and motion, are then extracted
from each state. We cluster the color and motion features
separately and assigned symbols to states according to their
feature values. Thus, each training video is transformed into

a sequence of state symbols. Next, we mine frequent state
transition patterns from the transformed training videos,
namely, the set of state symbol sequences. Association rules
relating the discovered state transition patterns with video
class labels are generated subsequently. For example, an as-
sociation rule with the form <s3, s5> ⇒ C2 indicates that
a video very likely belongs to class C2 if it frequently moves
into the state s5 from s3. Note that the association between
low-level features are considered implicitly as each state rep-
resents a pair of color and motion values. Finally, we test
the accuracy of the constructed classifier by predicting the
class labels for unknown videos based on VRules.

Main contributions of the paper are summarized as fol-
lows. First, an association rule based classification model is
proposed, which captures the temporal information of videos
as the HMM-based approaches do, but avoids making any
Markov assumption. Second, not only the association be-
tween sequential video states but also the association be-
tween low-level features are utilized together to improve the
accuracy of the classifier. Furthermore, wild card operators
are introduced into the set of symbols to tolerate some un-
certain video states, which improve the robustness of the
classifier (the details will be discussed in Section 2).

The rest of the paper is organized as follows. In Section 2,
we discuss the preprocessing of training videos. Section 3
presents the association rules and its mining techniques. We
explain the tasks in the training and testing phases of the
classification model respectively in Section 4. Experimental
results of classifying videos into four predefined categories,
basketball, football, news and sitcom, are given in Section 5.
We discuss related research work in Section 6 and draw some
conclusions in Section 7.

2. VIDEO PREPROCESSING
In this section, we discuss preprocessing the set of training

videos to transform them into the state symbol sequences.
Basically, the following three steps are involved. First, we
model each video process in the time space consisting of a
sequence of states. Second, the color and motion features
are extracted from the videos based on states. In order
to reduce the combination possibilities of different feature
values, similar features are then clustered. Third, the video
states are assigned symbols according to the clusters that
their features belong to.

2.1 State Modelling
Most HMM-based video classification approaches do not

need to find out the states explicitly as the states are hid-
den. On the contrary, the states should be defined specif-
ically in our approach before any frequent patterns can be
mined. When deciding how to appropriately model a video
as a sequence of states, we are motivated by the following
consideration. Different types of videos have different pat-
terns and certain patterns occur repeatedly. For example,
the newsreader appear in regular interval in news videos.
In soccer videos, the penalty area, the middle field and the
close up appear again and again. Therefore, with the pur-
pose of capturing these patterns in videos, it is advisable
to model the shots or scenes of a video as states. Shot is
the physical boundary of the video and it is relatively easier
to be detected than scene, which is the semantic boundary
of the video. Thus, we model the shots of videos as states
(our experimental results show that the shots suffice to find

interesting patterns).
We modified a published algorithm [8] which used the

motion prediction information in MPEG videos to detect
the shot boundaries. Basically, a Frame Dissimilarity Ratio
(FDR) is defined to compute the dissimilarity between the
I-, P- and B-frames based on the number of macroblocks
(MB) of different types. In [8], the definition of FDR was
not distinguished for I- and P-frames and both are defined
as the ratio of the number of forward predicted MBs to the
number of bi-directionally predicted MBs in its previous B-
frame. Actually, if the shot occurs in a P frame, it can be
identified as its majority of MBs will be intracoded. In ad-
dition, [8] defined the FDR for B-frames as the maximum
value of Fwn

Bin
and Bkn

Bin
, where Fwn, Bkn and Bin repre-

sent the number of forward predicted, backward predicted
and bi-directionally predicted MBs respectively in the n-th
frame. Thus, it would erroneously identify a B-frame as a
shot boundary if both the values of Fwn and the Bkn are
large while the value of Bin is small. Therefore, we modify
the definition of FDR as follows to improve the accuracy of
shot boundary detection.

FDRn =

Fwn−1
Bin−1

for I-frame
Inn
Fwn

for P-frame

|Fwn−Bkn|
Bin

for B-frame

Where the notation of Inn represents the number of intra-
coded MBs in the n-th frame. Consequently, frames with
their FDRs greater than some threshold will be detected as
the shot boundaries (interested readers can refer to [8] for
the selection of threshold). After segmenting each video into
a sequence of shots, we model each shot as a state.

2.2 Feature Extraction and Clustering
Now we extract features from videos based on states. We

consider two important low-level features for videos: color
and motion. A color feature similar to the one used in [5],
which is insensitive to lighting change, is applied. Specif-
ically, we extract the color feature from the intracoded I-
frames in each state. For each I-frame, the DC image is
formed by the DC coefficients of all the 8×8 blocks over the
I-frame. An average DC image is computed for all I-frames
in the state and then it is converted into the RGB space.
Lighting is discounted by normalization with the equation,
{r, g}={R, G}/(R+G+B). We compress the color histogram
by quantizing each r and g into 16 levels. A 16×16 DCT is
carried out subsequently to improve the energy compaction.
After applying zigzag scan, we get the first 21 coefficient
as the feature vector. Motion feature is extracted from the
P-frames in every state. First, we calculate the mean mag-
nitudes of the motion vectors for each P-frame. Then we
choose the median value of all mean magnitudes of P-frames
in the state.

After feature extraction, each state has a pair of color and
motion feature values. Since few states share the exactly
same feature values, we should group similar features into
clusters first. In order to capture the association between
low-level features, we cluster the color and motion separately
rather than concatenating them and clustering together. We
used an agglomerative hierarchical clustering approach as it
is good at controlling the distortion of clusters. By distor-
tion, we mean the maximal Euclidean distance between any
two points in a cluster. Initially, each feature value is taken

as a cluster. Clusters that are close in distance are then
merged step-by-step according to the criteria that the dis-
tortion of clusters are minimized. The merging process stops
if the number of specified clusters are reached. Basically, the
number of clusters should be far less than the total number
of states in the set of training videos. Note that, the clus-
tering process is simplified because the entropy of clusters
has not been addressed here. By entropy, we mean the car-
dinality of the clusters. Actually, we consider the entropy of
clusters when assigning symbols to states in the next stage.
We will revisit this point in the next subsection.

2.3 Symbol Assignment
After clustering, each state of a video can be denoted as S

= (Cp, Mq), which means that the color of the state belongs
to a color group Cp and the motion of the state belongs to a
motion group Mq. For example, the upper-left matrix in the
Figure 1 shows the combination of color and motion groups.
Each video state corresponds to a cell in the matrix. Recall
that the entropy of clusters has not been addressed in the
clustering process, some color/motion groups may contain
very few states so they are too trivial to be interesting. In
order to further reduce the combination possibilities of color
and motion groups, we only assign state symbols to inter-
esting combinations (cells). In particular, we consider a cell
(Cp, Mq) interesting if it satisfies the following conditions.
Let |T | be the total number of states in the training videos,
|T1| and |T2| be the number of clusters for color and mo-
tion features respectively. Let count(X) be a function which
computes the number of states belonging to the group X,

1. count(Cp)≥ |T|/T1;

2. count(Mq)≥ |T|/T2;

3. count((Cp, Mq))≥ |T|/(T1×T2).

That is, a cell is interesting if the number of states in the cor-
responding row (column) is greater than the average number
of states in each row (column) and the number of states in
the cell is greater than the average number of states in each
cell.

Then, states corresponding to interesting cells are assigned
state symbols. States corresponding to the same cell are as-
signed the same symbols. For example, the two state Si and
Si+1 in Figure 1 are assigned the same symbol because they
have the same pair of color and motion groups. For states
corresponding to any uninteresting cell, we do not distin-
guish them and assign a wildcard operator “?” to represent
them all. For example, the state Si+2 in Figure 1 is as-
signed the symbol “?” because either C1(the first column)
or M1(the first row) contains less than the average number
of states, or the pair (C1, M1)(the left-most cell in the first
row) contains less than the average number of states.

The wildcard operator “?” indicates that the state can
be any unspecific state. By introducing “?” as a unique
symbol, we are allowed to discover state transition patterns
between not only specific states, i.e.<s18, s2>, but also spe-
cific and unspecific states, i.e.<s18, ?>. The latter is useful
for videos because the content of video varies extensively.
For example, consider the news videos. The state contain-
ing the newsreader is probably assigned a specific symbol
because it occurs frequently, while the states between two
occurrences of the newsreader may be quite uncertain so
that they are probably assigned the symbol “?”. Thus, we
have the chance to discover a frequent state transition pat-
tern between specific and unspecific states for news videos.

...

...

T1 color groups

T
2

m
ot

io
n

gr
ou

ps

Cp Mq
�

1 1 ?
1 2 s1
1 3 s2
1 4 ?
...
4 3 s18

Symbol Table

...

Vi Si+1
... Vi={..., s18,s18,?,...}

(C4,M3)

Si

(C4,M3)

Si+2
...

(C1,M1)

Figure 1: Symbol Assignment

In addition, for continuous specific states assigned the
same symbol, we are not interested in the specific times
the state occurs continuously. Rarely do two videos share a
common state transition sequence with a symbol occurring
continuously for exactly the same times, even if the videos
belong to a same category. Hence, we replace the continu-
ous occurrence of a symbol with a symbol appended with a
“?”, which implies that the symbol occurs multiple times.
The symbol “?” can help to find, for a particular video type,
whether a state usually transit to itself. However, for con-
tinuous unspecific states in a video, we use only one “?”
in stead of “?,?” because the transition between uncertain
states does not make any sense. That is, a “?” only follows
a specific state.

Let < be the complete set of symbols, containing k state
symbols and two unique symbols “?” and “?”, < ={s1, s2,
... sk, ?, ?} (The number k depends on the number of inter-
esting pairs of color and motion groups in training videos).
Each video V in the training database D, V∈ D, can be
transformed into a state symbol sequence V = <v1, v2,...,
vn>, vi ∈ < (1≤i≤n).

3. RULE DISCOVERY
In this section, we first define the state transition pat-

terns and the association rules relating the state transition
patterns to video class labels. Then, we present the rule
discovery process.

3.1 Patterns and Rules
Given a training video database D, let < be the complete

set of symbols, let C = {C1, ..., Cl} be the l class labels for
videos in D. For each video V, let C(V) be the class label
of video V. Then, ∀ V ∈ D, V = <v1, v2,..., vn>, vi ∈
< (1≤i≤n) and C(V) ∈ C. For example, Table 1 shows an
example database containing 5 video state symbol sequences
from 3 classes. < ={s1, s2, s3, s4, ?, ?}.

Consider the database of transformed video state symbol
sequences, we are interested in the state transition patterns
contained in the sequences, which are defined as follows.

Definition 1. (State Transition Pattern) Given a set of
state symbols < ={s1, s2, ... sk, ?, ?}, P = <p1, p2, ...,
pm> is a state transition pattern if 1) ∀ i ∈ [1,m], pi ∈ <,
2) ∀ i,j ∈ [1,m], if pi 6= ? and pj 6= ?, then pi 6= pj .

From the definition of state transition pattern, we can ob-
serve that,

ID Symbol Sequence Class Label
V1 < s3, s2, ?, s4 > C1

V2 < ?, s3, s1, s3, s2 > C3

V3 < s3, s1, ? > C2

V4 < ?, s3, s2 > C1

V5 < s3, ?, s1, ?, s3, s1 > C2

Table 1: An Example Database of Video State Sym-
bol Sequences

• It captures the transitions between more than two states.
For example, consider the first video state symbol se-
quence in Table 1. If the first-order HMM is applied,
it takes into account the following transitions: s3→s2,
s2→ ?, ?→ s4. However, it fails to capture the transi-
tions such as s3→s2→?→s4.

• It captures the transitions between distinct states and
the transitions between a state and itself. Since we are
interested in the frequent transitions between states
rather than the common sequences shared by videos,
we require that a state transition pattern contain no
duplicate states except when they occur continuously,
which means the state frequently transits to itself. For
example, consider the last video in Table 1. It contains
5 state transition patterns: <s3, ?, s1, ?>, <s3, s1,
?>, <s1, ?, s3>, <s1, s3> and <s3, s1>.

Obviously, given a video state symbol sequence V, the
number of state transition patterns it contains is (|V |-1).
For example, consider the second video in Table 1. The
length of the sequence is 5, so it contains 4 state transition
patterns, <?, s3, s1>, <s3, s1>, <s1, s3, s2>, <s3, s2>.
Before defining the support of a state transition pattern in a
video sequence, we define the support relationship between
two state transition patterns as follows. Given two state
transition patterns P = <p1, p2, ..., pm> and Q = <q1, q2,
..., qn>, we say P is supported by Q , denoted as P ¹ Q,
if m ≤ n, and p1= q1, ..., pm= qm. In other words, P is
supported by Q only if P is a prefix of Q.

Then, given a video sequence V, let S(V) be the set of
state transition patterns contained in V (|S(V)|=|V |-1), we
define the absolute support of a state transition pattern P in
V, denoted as σA(P, V), as the number of state transition
patterns contained in V supporting P. That is, σA(P, V) =
|{Q∈S(V) | P¹Q}|. For example, suppose P=<s3, s1>,
the absolute support of P in the second video in the Table 1,
σA(P, V2) is 1 because there is only one state transition
patterns in V2 supporting P.

Definition 2. (Support of State Transition Pattern) Given
a training database D which consists of |D | videos, the sup-
port of a state transition pattern P in D, denoted as σ(P,
D), is defined as the fraction of state transition patterns
contained in videos in D which support P.

σ(P,D) =

∑|D|
i=1 σA(P, Vi)∑|D|
i=1(|S(Vi)|)

P is a frequent state transition pattern with respect to D
if σ(P, D) ≥ σmin, where σmin is a user-defined minimum
support. For example, suppose the user-defined σmin is 10%,
the state transition pattern P = <s3, s1> is frequent as σ(P,
D)=25%≥ σmin (the support is 25% because P is supported

four times by the total 16 state transition patterns contained
in the videos in D).

The goal of our association rule is to relate frequent state
transition patterns to video class labels. Hence, the rules
have the form as P ⇒ Cl, where P is a frequent state tran-
sition pattern and Cl is a video class label. Such an associa-
tion rule implies that if an unknown video contains any state
transition pattern which supports P, it probably belongs to
class Cl.

Similar to the definition of the support of a state transition
pattern, the support of an association rule can be defined as
follows.

Definition 3. (Support of Association Rule) The sup-
port of an association rule P ⇒ Cl is the fraction of state
transition patterns which are contained in videos belonging
to class Cl in training database D and support P.

σ(P ⇒ Cl) =

∑
C(Vi)=Cl

σA(P, Vi)
∑|D|

i=1(|S(Vi)|)
σ(P ⇒ Cl) can take values between [0, 1]. The higher the
support, the more statistically meaningful the rule. For ex-
ample, consider the database in Table 1, σ(<s3, s1>⇒C2)=
3/16 = 18.75% while σ(<s3, s1>⇒C3)= 1/16 = 6.25%.

Besides support, another metric confidence is commonly
used in association rule mining to measure the strength of
an association rule. It can be defined here correspondingly
as follows.

ρ(P ⇒ Cl) =

∑
C(Vi)=Cl

σA(P, Vi)∑
Vi∈D σA(P, Vi)

That is, the confidence of the rule reflects the conditional
probability that a video belongs to class Cl if its state tran-
sition patterns support P. However, in a database with un-
evenly distributed classes, the parameter is biased in favor of
dominant class. Therefore, we use another metric weighted
confidence, defined in [9], which weighs the absolute support
of a pattern in a class with the class probability.

Definition 4. (Weighted Confidence of Association Rule)
Let Dl be the set of videos in D which belong to class Cl, let
Dl be the remaining videos in D. The weighted confidence
of the rule P ⇒ Cl, denoted as ρw(P ⇒ Cl), is,

ρw(P ⇒ Cl) =
σ(P, Dl)

σ(P, Dl) + σ(P, Dl)

Then the value of ρw lies in [0, 1] as well. The higher
the ρw, the stronger the rule. For example, consider the
rule <s3,s1>⇒C3 with respect to the database in Table 1.
ρ(<s3,s1> ⇒ C3) = 1/4 = 25% while ρw(<s3,s1> ⇒ C3)

= 1/4
1/4+3/12

= 50%. Obviously, the strength of a rule related

with a minority class is improved by weighted confidence.
Therefore, given a training video database D, our goal is

to learn a set of state transition rules. Each rule has the
form P ⇒ Cl, [σ, ρw]. Both the support and strength of the
rule should be no less than some user-defined thresholds,
that is, σ ≥ σmin and ρw ≥ ρmin.

3.2 Mining Process
Now, we discuss the process of association rule mining.

We take the database of transformed video state symbol
sequences as input, we aim to discover all rules with their
support and weighted confidence no less than some user-
defined thresholds.

3.2.1 Data Structure
In order to find all association rules efficiently, we con-

struct a trie-like data structure, unique prefix tree (UP-tree),
to register all state transition patterns contained in training
videos. Simply, state transition patterns sharing a common
prefix hang off a common node.

Definition 5. (Unique Prefix Tree) A unique prefix tree
(UP-tree) is a tree structure T, which consists of a root
node and a set of unique prefix subtrees as the children of
the root. Each root of unique prefix subtree has a symbol
label to indicate the state the node stands for. Each node
in the unique prefix subtree consists of two fields: symbol
label and count array. Symbol label registers which state
this node represents. Count array is an array of counts
which respectively records the number of state transition
patterns contained in videos of different classes supporting
the state transition pattern represented by the portion of
the path reaching this node. Additionally, the root of the
UP-tree also maintains a count array which records the total
number of state transition patterns contained in videos of
different categories.

Based on the definition, a UP-tree can be constructed
intuitively by scanning the database of transformed video
state symbol sequences once. First, we create the root of a
UP-tree, T, and initialize its count array. For each video se-
quence V in D, we update the count array of the root node
according to the length and the class label of the video. For
example, consider the video V5 in Table 1, <s3, ?, s1, ?, s3,
s1>. Since its length is 6 and it belongs to the class C2, we
increment the second element of the root’s count array by 5.
Then we need to find the state transition patterns in each
video. This can be done by finding the n-th state transition
pattern from the n-th symbol in the video sequence. For
example, consider the video V5 again. From the first sym-
bol, we find the state transition pattern <s3, ?, s1, ?> and
from the second symbol, we find the state transition pattern
<s3, s1, ?> and so on and so forth. For each found state
transition pattern, we update the UP-tree with it. For ex-
ample, consider the first state transition pattern contained
in video V5: <s3, ?, s1, ?>. We first search whether the
root of the UP-tree has a child with its symbol label as s3. If
yes, we go on handling the left symbols in the pattern from
this node; otherwise, we need to create a new node labelled
as s3. If the node is not a root of a unique prefix subtree, we
further update its count array according to the class label
of current video sequence. For example, since the video V5

belongs to class C2, the second element in the count array of
the current node is incremented by 1. Finally, the UP-tree
constructed for the training database in Table 1 is shown in
Figure 2.

3.2.2 Rule Extraction
Obviously, the UP-tree registers the complete information

of state transition patterns and the information for calculat-
ing the support and confidence of association rules. Hence,
qualified association rules can be extracted from the con-
structed UP-tree without referring to the training database
D any more.

All association rule can be mined from the UP-tree by em-
ploying a depth-first traversal. The rule mining process is
described in Algorithm 1, we explain it with the constructed
UP-tree in Figure 2. Suppose the user-defined threshold of

s3 s2 ?

s4

s1 *s2

?

?

s4

s4 s3

s1

s1

s3

s2

*

root

[2,0,1]

[1,0,0]

[1,0,0]

[0,2,1]
[0,1,0] [1,0,0]

[1,0,0]

[1,0,0] [1,0,1]

[1,0,0] [0,0,1]

[0,1,1]
[0,2,0]

s2

[0,0,1]

*
[0,2,0]

s1

*

[0,1,0]

[0,1,0]
s3

[0,1,0]

[5,7,4]

Figure 2: Unique Prefix Tree

σmin and ρmin are 10% and 75% respectively. Consider
the left-most path of the UP-tree in Figure 2 first. When
the depth-first traversal reaches the node labelled as s2, we
get the state transition pattern <s3,s2>. Then, for each
element of the node’s count array, we compute the sup-
port and weighted confidence of the corresponding associ-
ation rule. For example, the count array of s2 is [2,0,1],
we calculate the support and weighted confidence for rule
<s3,s2>⇒C1 by considering the first element in the array.
Then, σ(<s3,s2>⇒C1)=2/16=12.5% ≥ σmin; ρw(<s3,s2

>⇒C1)=
2/5

2/5+1/11
=81.5%≥ ρmin (the information of 16, 5

and 11 comes from the count array of the root node). Hence,
<s3,s2>⇒C1 is a qualified state transition rule which will
be returned as a result. The support and weighted confi-
dence of rules <s3,s2>⇒C2 and <s3,s2> ⇒C3 can be com-
puted similarly. However, the two rules will be discarded as
their support is not great enough. Since a qualified rule
is found for node s2, we continue the depth-first traversal
and obtain the state transition sequence <s3, s2, ?> (Line
9 of function DFSMine). No qualified rules will be discov-
ered for the node ?, where the current depth-first traversal
can be terminated. The complete set of association rules
can be mined in the similar way by recursively traverse the
remaining tree.

4. VRULES CLASSIFIER
In this section, we discuss the two phases for classification

task, training phase and testing phase.

4.1 Training Phase
The training phase takes the training database of videos

with known class variables as input. The goal is to learn a
classification model, which is a set of association rules in our
case. Basically, there are four steps involved in this phase.

• First, we need to preprocess the training videos such as
modelling the videos in time space as state sequences,
extracting features from videos based on states, clus-
tering features and assigning symbols to states. The
output of this step is the database of transformed video
state symbol sequences.

• Given the database of transformed video state symbol
sequences, this step aims to mine discriminatory asso-
ciation rules, which relate the frequent state transition
patterns to video class labels. The output of this step
is the set of association rules satisfying the user-defined
threshold of support and weighted confidence.

Algorithm 1 RuleExtraction

Input:
A UP-tree T , user-defined minimum support σmin and
strength ρmin

Output:
All state transition rules R

Description:
1: for all child node C of the root of the UP-tree T do
2: R=DFSMine(C, σmin, ρmin, R)
3: end for
4: return R

1: function DFSMine(N , σmin, ρmin,R)
2: for each child node C of N do
3: Get the sequence P represented by this portion of

the path reaching C
4: for each count C.count[l] do
5: if σ(P , l)≥ σmin && ρ(P , l)≥ ρmin then
6: add rule P⇒class l to R
7: end if
8: end for
9: if C is not a leaf node && a rule is found at C

then
10: DFSMine(C, σmin, ρmin,R)
11: end if
12: end for
13: end function

• Once the set of association rules are discovered, we
need an ordering scheme to arrange the rules in de-
scending order of their predictive power. To make the
classifier concise, rules with weak discrimination will
be pruned.

• Finally, a default class label should be decided to make
the classifier complete. That is, a classifier should
cover all possible testing videos. When no matching
rule can be used to predicate a testing video, it will be
classified into the default class.

Since the first two steps are discussed in details in Section 2
and 3, we focus on the last two steps in this section.

4.1.1 Ordering Rules
To ensure that only rules with high predictive power are

chosen as the classifier, we impose a total order on the com-
plete set of discovered association rules. We decide the
precedence relationship between rules using a method simi-
lar to the one proposed in [4].

Given two association rules ri and rj , ri precedes rj , de-
noted as ri ≺ rj , if

• The weighted confidence of ri is greater than that of
rj , or

• if the two rules have the same weighted confidence,
then the support of ri is greater than that of rj , or

• if the two rules have the same support, ri has a shorter
state transition pattern than rj , or

• if the length of the state transition patterns of the two
rules are same, the symbols in state transition pattern
of ri lexicographically precede the symbols in that of
rj .

After ordering the set of association rules, we prune those
with weak predictive power or those that cannot improve
the classification accuracy. For example, we can iteratively
add a rule to the classifier, decide a default class for the
remaining videos which cannot be covered by the classifier
and count the error cases caused by current classifier and
default class. The first rule that causes the least number of
error cases is the cutoff rule. That is, rules after this cutoff
rule will not be added into the classifier because these rules
cannot improve the accuracy of the classifier. However, the
process requires to scan the database multiple times to iden-
tify which cases are uncovered and which cases are wrongly
classified. In order to make our learning process efficient,
we simply discard rules which cannot distinguish between
class Cl and Cl. Thus, rules with their weighted confidence
greater than 0.5 will be included in our classifier.

4.1.2 Deciding the Default Class
To make our classifier complete, we are required to decide

on the default class. That is, if the state transition patterns
contained in a testing video does not support any state tran-
sition pattern in the set of rules of the classifier, the testing
video will be predicted to be the default class.

Usually, the default class can be defined differently ac-
cording to different classification cost models. We assume
that the classification for each class is equally weighted, then
the default class can be defined as follows. Let R be set of
rules in current classifier, where each ri∈ R has the form
P i ⇒ Ci

l . Let Φ be the set of state transition patterns con-
tained in training videos but not covered by rules in the
classifier, Φ = {Q | Q∈S(V) ∧V∈D ∧(@ri∈R ∧ P i¹Q)}.
Let Φl be the set of uncovered state transition patterns con-
tained in videos belonging to class Cl, Φl={Q∈ Φ|Q∈ S(V)
∧ C (V)=Cl}. We then select the majority class in Φ, that
is, default class = argmaxcl{|Φl|}. Actually, to moderate the
influence of videos containing more state transition patterns,
we normalize Φl with the total number of state transition
patterns contained in videos belonging to class Cl. Thus,
we select the default class as follows,

default class = argmaxcl{
|Φl|∑

C(Vi)=Cl
|S(Vi)| }

At the end of the training phase, our learned classification
models is the set VRules R: <r1, r2, ..., rn, default class>,
where ri≺ ri+1 (1≤i<n).

4.2 Testing phase
The testing phase takes the learned classifier VRules and

testing videos as input, it aims to predict the class label for
testing videos based on the classifier.

In order to predict the classes for testing videos, we first
need to transform testing videos in symbol sequences as well.
The clustering results for training videos should be used
as the basis for the testing video transformation. That is,
the color/motion feature of each state of the testing videos
should be clustered to a group whose average value is the
nearest one to the feature value of the state. Then, each
state of the testing videos is assigned a symbol according to
the same symbol assigning scheme for training videos. After
that, each testing video can be represented as a sequence of
state symbols.

For each testing video Vt which is transformed to be a se-
quence of state symbols, we retrieve the set of VRules R(Vt)

Basketball Football News Sitcom
Training set 4 4 4 4
Testing set 5 5 6 6

Table 2: Videos of the training and testing set

which can be used to predict its class label. That is, R(Vt)=
{ri∈ R| Pi¹ Q ∧ Q∈S(Vt)}, where ri has the form Pi⇒Ci

l.
Obviously, if R(Vt)= ∅, we directly classify the testing video
as the default class. Otherwise, we compute the average
weighted confidence respectively for rules predicting Vt to
different classes. Let Rl(Vt) be the set of rules predicting the
testing video Vt as class Cl, Rl(Vt) ={ri∈ R(Vt)|Ci

l=Cl}.
Let σA(ri,Vt) be the absolute support of the state transi-
tions pattern P i of rule ri in the testing video Vt. Then the
average weighted confidence for the rule set Rl(Vt), denoted
as ρ(Rl(Vt)), can be computed as follows,

ρ(Rl(Vt)) =

∑
ri∈Rl

(ρi × σA(ri, Vt))∑
ri∈Rl

σA(ri, Vt)

where ρi is the weighted confidence of each ri. As a result,
the class label Cl will be selected as the label for the test-
ing video Vt if the average weighted confidence for rules in
Rl(Vt) has the highest value.

5. PERFORMANCE STUDY
We evaluate our association rule based classifier VRules

by classifying videos of four categories: basketball game,
football game, news and sitcom.

5.1 Setup and Data sets
We implement the classification model with Matlab and

Java. Experiments are performed on a Pentium IV 2.8GHz
PC with 512 MB memory. The operating system is Windows
2000 professional.

The total data sets consists of 38 video clips, which are
collected from MPEG-7 test set. Each video clip lasts one
minute and belongs to a class of the four categories: basket-
ball game, football game, news and sitcom. We randomly
separate the set of videos into the training set and testing
set. The size of the two sets is shown by Table 2.

5.2 Results and Analysis
We use two metrics, precision and recall, to evaluate the

performance of our classifiers. In the context of video classi-
fication, the precision and recall can be calculated as follows.

Precision: the ratio of the testing videos correctly classi-
fied to a class over all testing videos classified to the class.

precision =
|{correct} ∩ {classified}|

|{classified}|
Recall: the ratio of the testing videos correctly classified to
a class over all testing videos belonging to the class.

recall =
|{correct} ∩ {classified}|

|{correct}|
We conducted the experiments by varying the user-defined
minimum support σmin for VRules (as discussed in Sec-
tion 4, the threshold for ρw is set as 50%).

Table 3 shows the classification results when the σmin is
set as 3%. The result is quite promising, the classifier can

Basketball Football News Sitcom
Precision 83.3% 100% 100% 100%
Recall 100% 100% 83.3% 100%

Table 3: Precision and Recall (σmin= 3%)

Antecedence Consequence σ ρ
<?, s1, ?> C2 16.67% 100%
<s4, ?> C2 16.67% 100%
<s8, ?> C1 13.51% 100%

<s7, ?, s8> C1 8.1% 100%
<s2, ?, ?, s3, ?> C4 6.25% 100%

<s6, s8, s4> C3 3.22% 100%
<s7, s4, s5, s6, ?> C3 3.22% 100%

Table 4: Part of the VRules (σmin= 3%)

predict all testing videos belonging to football and sitcom
correctly. It only misclassified one news video to basket-
ball. The complete set of VRules contains 36 association
rules whose state transition pattern contains two symbols,
32 rules with their state transition pattern containing three
symbols, 10 rules have 4 symbols and 2 rules have 5 symbols
in their state transition patterns. Some of the VRules are
shown in Table 4 (class C1, C2, C3 and C4 correspond to
basketball, football, news and sitcom respectively). From
the set of VRules, we can observe that,

• There are frequent state transition patterns between
more than two states, which cannot be captured by
first-order HMM based video classification approaches.

• Videos of different categories can share some common
states, however, they can be distinguished by the dif-
ferent transition pattern between states. For example,
from Table 4 we note that both C1 and C3 have the
states s7, s8. But their transition patterns are differ-
ent.

When the σmin is set as 2%, the results are same. Table 5
shows the results when the σmin is set to be 4%. The perfor-
mance of classifying football game and news videos degrades
because of the following reasons. There are matching rules
which predicate these videos correctly. However, these rules
are ordered lower. When the threshold for support is set
higher, they are excluded from the classifier. Hence, some
testing football/news videos cannot be correctly classified.

We compared our approach with an HMM-based video
classification method [5] by conducting experiments with
their approach on the same set of training and testing videos.
Table 6 shows the results of their approach when the number
of hidden states is selected as 2. We observe that our ap-
proach can work better than their approach when the num-
ber of hidden states is selected as 2 or 4. Our performance
is comparable to theirs when the number of hidden states is
set as 3. However, their approach needs some learning pro-
cess before deciding the appropriate number of states for the
set of training videos while we mine the knowledge directly
from the videos.

6. RELATED WORK
We briefly review some related work in the section.
Video classification is a necessary tool for efficient access,

understanding and retrieval of video. Different methods

Basketball Football News Sitcom
Precision 83.3% 100% 66.7% 100%
Recall 100% 60% 66.7% 100%

Table 5: Precision and Recall (σmin= 4%)

Basketball Football News Sitcom
Precision 100% 83.3% 85.7% 100%
Recall 60% 100% 100% 100%

Table 6: Performance of HMM-based Classification

have been proposed in the literature for video program clas-
sification into predefined categories [5]. For example, an
inductive decision tree is learned from low-level features in
[10], and then a set of if-then rules are generated as clas-
sifiers. However, as observed by [5], video data contains
not only spatial features, but also temporal information.
The temporal dynamic characteristics should be taken into
account in understanding video content. Therefore, recent
work on video classification applied Hidden Markov Model
(HMM) since it has the good capability to grasp tempo-
ral statistical properties of stochastic processes. For ex-
ample, in [6], face and text trajectories are used to form
the HMM and the learned model is used to classify videos
from four categories of TV programs. Rather than consider-
ing visual features only, [2] constructs the HMM framework
with both audio and image features. The combination of
audio and visual feature really improves the classification
accuracy. However, it suffers from the system complication
and computational intractability. To address the efficiency
of classification, [5] forms the HMM on summarized videos
where only the chromaticity of key frames are considered.

Association rule mining have been proved to be useful in
multimedia area by many proposals before. [1] argued that
the semantic of images can be captured by mining hidden
association between basic features. Then the authors pro-
posed to use the associations between features to discrimi-
nate image repositories. Their observation on the associa-
tion between features can be utilized in video classification
as well. However, the association rules they discovered can-
not indicate directly how probable an association is related
to an image class. While our classifier address the problem
by relating state transition patterns with video class labels.
Recently, an association-based video summarization scheme
is proposed in [11]. Frequent sequential patterns are mined
from a video and they are selected as representative frames
of the video summary. Since we have different objectives,
our frameworks are different. Furthermore, their sequential
patterns do not require the frames be consecutive because
they are interested in representative frames. Whereas we
capture the temporal information of videos in terms of the
state transitions, which requires the states to be consecutive.

7. CONCLUSIONS
In this paper, we proposed an association-based classi-

fier, which is called VRules, for performing classification on
videos. This classification model mines frequent state tran-
sition patterns to discriminate video categories. The state
transition patterns capture not only the temporal associa-
tion between video states, but also the semantic association
between features. Rules relating state transition patterns

to class labels are prioritized and selected as the classifier
according to their predictive power. We implemented the
classification model and conducted experiments to verify
its performance. The experimental results show that the
association-based classifier has comparable performance on
video classification.

Acknowledgements. Thanks to Mr Yi Haoran at Nanyang
Technological University, Singapore for providing the source
codes of their HMM-based video classification approach and
offering a lot of help.

8. REFERENCES
[1] C. Djeraba. Association and content-based retrieval.

In IEEE Transactions on Knowledge and Data
Engineering, vol.15, No.1, 2003.

[2] J. Huang, Z. Liu, and Y. Wang. Joint video scene
segmentation and classification based on hidden
markov model. In Proceedings of Advances in Digital
Libraries Conference, Santa Barbara, CA, 1998.

[3] W. Lin and A. Hauptmann. News video classification
using svm-based multimodal classifiers and
combination stragegies. In Proceedings of SIGMM,
2002.

[4] B. Liu, W. Hsu, and Y.Ma. Integrating classification
and association rule mining. In Proceedings of
SIGKDD, 1998.

[5] C. Lu, M. Drew, and J. Au. An automatic video
classification system based on combination of hmm
and video summarization. In International Journal of
Smart Engineering System Design, vol.5, no.1, 2003.

[6] G. Wei, L. Agnihotri, and N. Dimitrova. Tv program
classification based on face and text processing. In
Proceedings of IEEE multimedia and Expo, New York,
2000.

[7] H. Yi, D. Rajan, and L. Chia. An efficient video
classification system based on hmm in compressed
domain. In Proceedings of 4th PCM, 2003.

[8] H. Yi, D. Rajan, and L. Chia. A unified approach to
detection of shot boundaries and subshots in
compressed video. In Proceedings of IEEE ICIP, 2003.

[9] M. J. Zaki and C. C. Aggarwal. Xrules: an effective
structural classifier for xml data. In Proceedings of
SIG KDD, Wasington, DC, USA, 2003.

[10] W. Zhou, A. Vellaikal, and C. JayKuo. Rule-based
video classification system for basketball video
indexing. In Proceedings of ACM multimedia
workshop, 2000.

[11] X. Zhu and X. Wu. Sequential association mining for
video summarization. In Proceedings of IEEE ICME,
2003.

