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Tags associated with social images are valuable infor-
mation source for superior image search and retrieval
experiences. Although various heuristics are valuable to
boost tag-based search for images, there is a lack of gen-
eral framework to study the impact of these heuristics.
Specifically, the task of ranking images matching a given
tag query based on their associated tags in descend-
ing order of relevance has not been well studied. In this
article, we take the first step to propose a generic, flex-
ible, and extensible framework for this task and exploit
it for a systematic and comprehensive empirical eval-
uation of various methods for ranking images. To this
end, we identified five orthogonal dimensions to quan-
tify the matching score between a tagged image and a
tag query. These five dimensions are: (i) tag relatedness
to measure the degree of effectiveness of a tag describ-
ing the tagged image; (ii) tag discrimination to quantify
the degree of discrimination of a tag with respect to the
entire tagged image collection; (iii) tag length normaliza-
tion analogous to document length normalization in web
search; (iv) tag-query matching model for the matching
score computation between an image tag and a query
tag; and (v) query model for tag query rewriting. For each
dimension, we identify a few implementations and eval-
uate their impact on NUS-WIDE dataset, the largest human-
annotated dataset consisting of more than 269K tagged
images from Flickr. We evaluated 81 single-tag queries
and 443 multi-tag queries over 288 search methods and
systematically compare their performances using stan-
dard metrics including Precision at top-K, Mean Aver-
age Precision (MAP), Recall, and Normalized Discounted
Cumulative Gain (NDCG).

Introduction

The prevalence of digital photography devices (e.g., digital
cameras, mobile phones) has led to over 200 billion images
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accessible online and the number is continuously growing
(Yahoo!, 2010). Owing to increasing popularity of tagging
activities in social media sharing platforms (e.g., Flickr),
many of these services enable users to annotate images with
tags. The availability of such tags as metadata has given
rise to opportunities to build novel and superior tag-based
techniques to enhance significantly our ability to understand
social images and to retrieve them effectively and efficiently
(Goh, Ang, Lee, & Chua, 2011; Jain & Sinha, 2010).

Image retrieval has been widely studied from two
paradigms: content-based and annotation-based image
retrieval (Carneiro, Chan, Moreno, & Vasconcelos, 2007;
Datta, Joshi, Li, & Wang, 2008). The former requires
users to formulate a query using an example image. The
retrieval system then returns the set of images that best
matches the given example based on visual content, i.e., low-
level features such as color and texture. Annotation-based
image retrieval, on the other hand, enables users to formu-
late naturally semantic queries using textual keywords. In
order to support this retrieval paradigm, many automatic
image annotation techniques have been proposed, which
assign a few relevant keywords to an unannotated image to
describe its visual content for image indexing and retrieval
(Feng, Manmatha, & Lavrenko, 2004; Guillaumin, Mensink,
Verbeek, & Schmid, 2009; Jeon, Lavrenko, & Manmatha,
2003; Makadia, Pavlovic, & Kumar, 2008; Yanai, Shirahatti,
Gabbur, & Barnard, 2005). The keywords are often derived
from a well-annotated image collection and the number of
keywords is often limited to a few hundred.

Compared with these carefully selected keywords in image
annotation, social tags are free-form keywords assigned by
users for various purposes and not drawn from any controlled
vocabulary (detailed in Tagging Motivation and Tag/Query
Types). Particularly, tags annotated to an image may not
necessarily describe its visual content. For example, tags
assigned to images may describe the time (e.g., 2008) and
location (e.g., Asia, UK) where the photos are taken, as
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well as camera brands/models (e.g., Canon, 60D). As a
result, social tags are noisier than keywords selected for
image annotation. For instance, more than 420K distinct
tags have been used to annotate 269K images in nus-wide
dataset, many of these tags do not describe the visual con-
tent of these images (Sun & Bhowmick, 2010). Furthermore,
in contrast to annotation-based image retrieval techniques,
the number of tags assigned to one social image may dif-
fer significantly from another image. Consequently, most
state-of-the-art efforts in the area of social image tagging
have focused primarily on tag recommendation, disambigua-
tion, and de-noising (Chua et al., 2009; Sigurbjörnsson &
van Zwol, 2008; Tang, Yan, Hong, Qi, & Chua, 2009; Wein-
berger, Slaney, & van Zwol, 2008; Wu, Yang, Yu, & Hua,
2009). Although these studies suggest that recommending
(or completing), disambiguating, and de-noising tags lead to
superior social image retrieval experiences, the task of rank-
ing images matching a given tag query in descending order
of relevance has not been systematically studied. We refer to
this task as Tag-based Image Retrieval (TagIR).

At first glance, the lack of study may seem to reflect the
assessment that TagIR is less challenging. As long as the
images are tagged, many techniques developed in the IR com-
munity can be easily applied for the TagIR problem because
tags are nothing but textual terms (Manning, Raghavan, &
Schtze, 2008; Salton & Buckley, 1988; Zobel & Moffat,
1998). However, a key difference between traditional IR and
TagIR is that a textual document typically has much redun-
dancy of words to convey its semantics, whereas an image is
annotated with many fewer words (i.e., tags) with no or min-
imal redundancy. Moreover, as mentioned above, tags are
assigned by different users having different motivations for
tagging, different understandings of relatedness between tags
and images, or even different interpretations of the meaning
of tags arising from knowledge or cultural diversity. Conse-
quently, some of the basic settings commonly accepted in
the traditional IR, such as word frequency weighting and
document length normalization, demand a revisit.

In this article, we take the first step to propose a generic,
flexible, and extensible framework for TagIR and under-
take a systematic and comprehensive empirical evaluation
of various methods for ranking images using this framework.
Our framework consists of five orthogonal dimensions that
play pivotal roles in social image tagging, namely, tag relat-
edness for measuring the degree of effectiveness of a tag
describing the tagged image, tag discrimination for quanti-
fying the degree of discrimination of a tag with respect to
the entire tagged image collection, tag length normalization
analogous to document length normalization in web search,
tag-query matching model for computing a matching score
between an image tag and a query tag, and query model for
rewriting tag queries. Because each dimension may be real-
ized by several alternative formulations, we propose several
formulations for each of the five dimensions. For instance,
tag relatedness is formulated based on unit relatedness, tag
position, or user/neighbor voting (Li, Snoek, & Worring,
2008). Observe that such a framework enables us to describe

and compare various formulations associated with each
dimension.

We have exhaustively evaluated the impact of these dimen-
sions on nus-wide dataset (Chua et al., 2009), the largest
human-annotated dataset consisting of more than 269K
images from Flickr, with 81 single-tag queries and 443 multi-
tag queries. We evaluated 288 search methods in total and
systematically compared their performances using Precision
at top-K, MeanAverage Precision (map), Recall, and Normal-
ized Discounted Cumulative Gain (ndcg). Our experimental
results suggest that for single-tag queries, tag relatedness,
tag-query matching model, and query model are the most
crucial dimensions for superior TagIR experiences. How-
ever, for multi-tag queries, where the information need is
much more specifically defined, all these dimensions become
significantly less important. The presence of all tags match-
ing a multi-tag query largely guarantees a very good ranking
of search results. More complicated formulations over these
dimensions typically lead to degradation of search results
ranking. In summary, the major contributions of this work
are as follows:

• In the third section, we present the TagIR framework con-
sisting of five orthogonal dimensions and discuss several
formulations for each dimension. Particularly, we categorize
the works reviewed in Related Work to their corresponding
dimensions.

• In the fourth, fifth, and sixth sections, we conduct a systematic
and comprehensive empirical evaluation of methods repre-
senting different formulations under the aforementioned five
dimensions. Specifically, we evaluate 81 single-tag queries
on 288 methods and 443 multi-tag queries on 72 methods.
We report detailed analysis of the impact of the five dimen-
sions and formulations for answering single-tag and multi-tag
queries. The observations made in our experiments serve as
a concrete reference to which dimensions need to be further
improved for superior TagIR.

Related Work

Most germane to this work are efforts in the traditional IR
environment that rank documents matching a given query in
descending order of relevance. Many models and relevance
measures have been proposed and studied in the literature
(Manning et al., 2008; Salton & Buckley, 1988; Zobel &
Moffat, 1998). To explore these relevance measures system-
atically, Zobel and Moffat (1998) proposed a framework
with eight dimensions to describe different components in
a relevance measure. Example dimensions are term weight
(e.g., inverse document frequency), document-term weight
(e.g., term frequency), and document length normalization.
Each dimension may be realized by many alternative for-
mulations. For instance, more than eight formulations for
document length normalization are enumerated by Zobel and
Moffat (1998). Owing to the large number of combinations
of alternative formulations, a subset of relevance measures
was evaluated on the trec dataset.

In this work, we share a similar objective to explore
and evaluate systematically the relevance measures between

JOURNAL OF THE AMERICAN SOCIETY FOR INFORMATION SCIENCE AND TECHNOLOGY—December 2011 2365
DOI: 10.1002/asi



tag queries and tagged social images. The major difference
between our work and aforementioned efforts is that a textual
document contains much redundancy of words to conveys its
semantic whereas images are usually associated with only
few tags. Furthermore, redundancy of tags is minimal in
many social image tagging systems. Particularly, in Flickr,
a tag cannot be assigned more than once to the same image.
Moreover, the tags are assigned by different users with dif-
ferent motivations and different criteria for determining the
degree of relatedness of a tag to an image. All these dif-
ferences demand systematic investigation of the impact of
different formulations on image search ranking.

In the following, we first distinguish TagIR from auto-
matic image annotation. Next, we address related work from
a number of recent research efforts toward understanding
image tagging, including: motivations for tagging (Ames &
Naaman, 2007; Marlow, Naaman, Boyd, & Davis, 2006;
Zollers, 2007), tagging systems (Golder & Huberman, 2006;
Marlow et al., 2006), and tag types (Bischoff, Firan, Nejdl, &
Paiu, 2008; Overell, Sigurbjörnsson, & van Zwol, 2009;
Sigurbjörnsson & van Zwol, 2008, 2010); and tag relatedness
(Li, Snoek, & Worring, 2009, 2010; Liu, Hua,Yang, Wang, &
Zhang, 2009; Zhu, Yan, & Ma, 2010) and tag representative-
ness (Lu, Zhang, Tian, & Ma, 2008; Sun & Bhowmick, 2009,
2010).

Image Annotation and Retrieval

Automatic image annotation refers to the task of assigning
a few relevant keywords to an unannotated image to describe
its visual content; the keywords are then indexed and used to
retrieve images (Feng et al., 2004; Guillaumin et al., 2009;
Jeon et al., 2003; Makadia et al., 2008; Yanai et al., 2005).
These keywords are often derived from a well-annotated
image collection, and the latter serves as training examples
for automatic image annotation. Jeon et al. (2003) assume that
regions in an image can be described using a small vocabulary
of blobs. Blobs are generated from low-level image features
through clustering. The joint probability distribution of tex-
tual keywords and blobs is learned from the annotated image
collection to compute the probabilities of keywords associat-
ing with a test image. A family of image annotation methods,
built on nearest neighbor hypothesis (i.e., visually similar
images likely share keywords), are proposed and evaluated
by Makadia et al. (2008). Given a query image, the k-nearest
neighbors are retrieved and their associated keywords are
transferred to the query image. The accuracy of image annota-
tion can be evaluated based on the correctness of the assigned
keywords (Makadia et al., 2008) or through image retrieval
by using the assigned annotations (Guillaumin et al., 2009).

Although image retrieval is often used to evaluate image
annotation methods, the key focus of image annotation is
to assign images with keywords. The dimensions in match-
ing a textual query with the keyword-annotated images have
not been systematically evaluated. In this work, our focus
is to evaluate the TagIR methods, where annotations in
the form of user-assigned tags are provided. Moreover,

in image annotation research, the keywords are carefully
selected and the number of keywords is often very small. For
instance, the number of keywords selected in the commonly
used image annotation datasets, such as Corel5K, iarp tc12,
and esp game datasets, ranges from 100 to 500 (Guillaumin
et al., 2009; Jeon et al., 2003; Makadia et al., 2008;Yanai et al.,
2005). The two larger datasets Corel30K and psu, contain-
ing 31K and 60K images, are annotated with 5,587 and 442
keywords, respectively (Carneiro et al., 2007). On the other
hand, social tags are keywords assigned by users not from
any controlled vocabulary. For the nus-wide dataset used in
this work, consisting of 269K tagged images, there are more
than 420K distinct tags.

Tagging Motivation and Tag/Query Types

Motivations for tagging is one of the main factors deter-
mining the nature and types of tags, which subsequently affect
TagIR experiences. Using data from Delicious,2 Golder and
Huberman (2006) identified seven functions that tags per-
form, including identifying what or who it is about, what it
is, who owns it, refine categories, and self-reference. These
functions are largely applicable to Flickr as well (Stvilia &
Jörgensen, 2010). Zollers (2007) links the seven functions
with possible tagging motivations extrapolated from work
by Marlow et al. (2006). These motivations are organiza-
tional, attract attention, contribution and sharing, express
opinion, and self-presentation. Interviews with participants
who annotated their Flickr photos revealed that most par-
ticipants generally had one or two primary motivations
for tagging (Ames & Naaman, 2007). The authors further
developed a taxonomy of motivations for tagging consist-
ing of two dimensions, namely, sociality (whether the tag’s
intended usage is for self or others) and function (whether
the tag’s intended use is for organization or communication).
Their interviews suggest that organization for the general
public (photo pools, search, self-promotion) is the primary
motivation for tagging, whereas secondary motivations are
self-organization (adding tags for later retrieval) and social
communication (adding context for friends, family, and the
public).

Design of tagging systems also implicitly affects the
resultant tags. Marlow et al. (2006) propose a taxonomy
with seven dimensions to describe a tagging system design.
Example dimensions include tagging right (e.g., self-tagging,
permission-based, free-for-all), tagging support (e.g., blind,
suggested), and aggregation model (e.g., bag, set). For
instance, bag aggregation model is used in Delicious where
the number of times a tag is used to annotate a url can
be used for more objective view of the url from users. On
the other hand, the set model employed in Flickr prevents
repetition of tags for a given photo. This leads to a chal-
lenging research problem of quantifying the relatedness of a
tag to its annotated image, which we review later. Another

2http://www.delicious.com/
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important dimension is the type of tagging object (i.e., tex-
tual and non-textual). Images and videos are examples of
non-textual object types; news articles and blog posts are
examples of textual object type. For textual data, the query
keywords literally appear in the content of the data. Hence,
the matching between the query keywords and the content
of textual object to be retrieved remains a key role in the
retrieval. The tags are considered as additional information
over the content (Berendt & Hanser, 2007). However, for
non-textual data such as image, the query keywords do not
appear in the content of the data to be retrieved. Further, the
low-level features extracted from the content and the tags are
from two different feature spaces. The match between query
keywords and tags, and the relatedness of tags to the tagging
objects, are hence expected to affect the tag-based retrieval
experience.

Different motivations for tagging naturally lead to tag type
categorization (Rorissa, 2010). Bischoff et al. (2008) pro-
posed a tag categorization taxonomy with eight categories,
including topic, time, location, and author/owner, that can
be applied for different tagged resources including pictures,
web pages, and music. For photos in Flickr, topic (e.g.,
people, flowers) and location tags are the most frequently
used tag types followed by time, type (e.g., portrait, land-
scape), and opinions/qualities. Based on aol query logs, the
authors further observed that topic and location were the most
searched tag types where topic accounted for about 50% of
the searches. Although aol query logs are for web search,
similar observations are made in the TagExplorer system, a
tool for faceted browsing of Flickr photos (Sigurbjörnsson &
van Zwol, 2010). In TagExplorer, a slightly simplified tax-
onomy is adopted to classify tags/queries into three main
categories, namely, “where” (locations), “when” (time and
activities), and “what” (subjects and names). It is observed
that for browsing and searching images, “what” is the most
used type (53%), followed by “where” (28%) and “when”
(19%). There are also works on classifying tags into tag
types automatically and using tags for social data integra-
tion (Bischoff, Firan, Kadar, Nejdl, & Paiu, 2009; Ding et al.,
2010; Overell et al., 2009).

Tag Relatedness and Representativeness

Categorization of tags and queries paves the way to more
effective answering of queries of specific type(s). How-
ever, in general social image search, the quantification of
degree of relatedness of a specific tag to a specific image
remains poorly understood. (Li et al. 2008, 2009) proposed
a neighbor-voting framework to quantify tag relatedness. It
is based on the intuition that if different persons use the
same tags to label visually similar images, then these tags
are likely to reflect the visual contents of the annotated
images. Given an image d, its k-nearest neighbors, denoted
by Nk(d), are first obtained based on visual features (e.g.,
color, edge, texture). The tag relatedness of a tag t ∈ d is
then computed by the probability of t used to annotate the

neighborhood images Nk(d) (P(t|Nk(d))) offset by its a pri-
ori probability of being used in the entire collection P(t),
i.e., P(t|Nk(d)) – P(t). Their experiments on 20 queries each
with 1,000 labeled examples showed that voting-based tag
relatedness can significantly improve image search accuracy
(Li et al., 2009). More recently, Li et al. (2010) compared
tag relatedness methods using visual similarity defined by
multiple types of visual features and concluded that a uni-
form combination of neighborhood images based on multiple
visual features yield results comparable to those based on
more complicated supervised or unsupervised combination
methods. Their experiments used 20 and 33 queries, respec-
tively, on two datasets. Using neighbor voting as the first
step, Liu et al. (2009) applied random walk to further refine
tag relatedness by taking pair-wise similarity between tags
into consideration. Their main task, however, was to re-rank
the tags of a tagged image such that the most relevant tags
appear in top positions. Evaluated using 10 popular tags as
queries, their re-ranking method achieved better image search
results than using original tag positions. Tag relatedness is
also related to tag refinement where user-assigned tags (e.g.,
tags for self-reference) may be removed and suggestions
for tags that describe image content are provided (Liu, Hua,
Wang, & Zhang, 2010; Zhu et al., 2010).

Because both tag relatedness and refinement are based
on image visual similarity, they are applicable mainly to
“content related” tags, but not tags of other types. How-
ever, identifying tags that describe the visual content of
images itself is a non-trivial problem. Most existing efforts
take a simplistic approach by filtering tags based on fre-
quency or WordNet entries (Chua et al., 2009; Liu et al.,
2010; Wu, Hua, Yu, Ma, & Li, 2008; Zhu et al., 2010). Sun
and Bhowmick (2009) propose visual-representativeness to
quantify the effectiveness of a tag in describing the common
visual content of its annotated images. For instance, sunset
and tiger are visual-representative tags because they describe
the visual content of their annotated images effectively. In
contrast, most time-related, location-related, or self-reference
tags are not visually representative. In their recent work (Sun
& Bhowmick, 2010), multiple measures were proposed and
evaluated using various visual features of images.

The visual-representative tags can be considered as high-
level concepts with small semantic gaps with respect to the
image representation in visual space (Lu et al., 2008). To find
these tags, Lu et al. derived a confidence score for each image
based on the coherence degree of its nearest neighbors in
both visual and textual spaces, assuming that each image
is surrounded by textual descriptions (e.g., comments). The
high-level concepts are then derived through clustering these
images with high confidence scores. Similar approach was
adopted by Tang et al. (2009).

Discussion

The knowledge of tag types facilitates the search engine’s
hints generation related to the types of images expected by
the searcher based on the types of query tags. An image

JOURNAL OF THE AMERICAN SOCIETY FOR INFORMATION SCIENCE AND TECHNOLOGY—December 2011 2367
DOI: 10.1002/asi



search system may therefore choose an appropriate ranking
method and/or present the matched images in a way to address
the search intention effectively. To the best of our knowl-
edge, there is no existing study on detecting all tag types and
adjusting the ranking or presentation methods accordingly.

Several recent research have focused on process-
ing location-based tags (“where”) and queries (Crandall,
Backstrom, Huttenlocher, & Kleinberg, 2009; Kennedy &
Naaman, 2008; Serdyukov, Murdock, & van Zwol, 2009).
The temporal dimension of the tag (“when”) has also been
studied recently in the context of event detection in Flickr
(Becker, Naaman, & Gravano, 2010; Chen & Roy, 2009).
Very recently, Taneva, Kacimi, and Weikum (2010) pro-
posed a weighting and ranking method for searching photos
of specific named entities (scientist, politician, building,
and mountain), which relates to a very small portion of
topic/subject tags (“what”). Recall that topic/subject tags
account for more than half of the searches in tag-based
image searching and browsing. Hence, effective support for
“what”-tag queries is crucial in TagIR.

Studies on tag relatedness mainly focus on content-related
tags with the assumption that relevant tags are assigned to
visually similar images; tag visual-representativeness aims at
quantifying the effectiveness of a tag on representing the com-
mon visual content among its annotated images. Both may
therefore improve the search accuracy for content-related tags
(Li et al., 2009, 2010; Liu et al., 2009; Zhu et al., 2010).
However, the existing studies lack a framework as well as
systematic evaluation of a variety of different aspects of
TagIR.

Framework

In this section, we present the TagIR framework in detail.
The notations used in this article are summarized in Table 1.

Figure 1 depicts the architecture of our TagIR framework.
A tagged image consists of two orthogonal components,
namely, visual content and a bag of tags, associated with
the image. For simplicity, we model a tagged image d by
its tags only, i.e., d = 〈t1, t2, . . ., t|d|〉, where |d| defines the
number of tags3 associated with d, which is also known as
tag length. Note that the visual content is not explicitly mod-
eled in our TagIR framework. In particular, the visual content
of the images may be used to derive several measures and
properties associated with the tags (e.g., tag relatedness, tag
visual-representativeness), which can be pre-computed while
indexing the images.

Inspired by the IR relevance space described in Zobel and
Moffat (1998), we identify five dimensions for tag-based
image search, namely, tag relatedness, tag discrimination,
tag length normalization, tag-query matching model, and
query model. With reference to the default relevance score

3In Flickr, no duplicate tags can be assigned to the same image. The total
number of tags of an image is therefore the same as its number of distinct
tags.

TABLE 1. Symbols and semantics.

Symbol Semantic

D The tagged image collection
d A tagged image, d ∈ D
|d| Number of tags associated with image d

t ∈ d A tag t associated with image d

Dt The set of images tagged by tag t

f(t) Number of images tagged by tag t, f(t) = |Dt |
P(t) A priori probability of observing t in D, P(t) = f(t)/|D|
Nk(d) The k-nearest neighbors of d based on visual content
tq ∈ Q A query tag in query Q consisting of one or more tags

FIG. 1. The TagIR framework.

implemented in Lucene,4 a widely used Java package for
text search, we propose to use Eq. (1) as the scoring func-
tion for an image d and a tag query Q, where rel(t, d), dis(t),
len(d), and mat(t, tq) denote the first four dimensions, respec-
tively, and wq denotes the weight assigned to a query tag
tq ∈ Q (see Figure 1 for illustration). Here, a tag query con-
sists of multiple query tags Q = 〈t1, t2, . . . , t|Q|〉 and their
corresponding weights wq = 〈w1, w2, . . ., w|Q|〉
Score(d,Q)=

∑

tq∈Q,t∈d

wq×rel(t, d)×dis(t)×len(d)×mat(t, tq)

(1)

Observe that query rewriting (e.g., query expansion) is not
explicitly modeled in the scoring function because it is
implicitly represented by the query model dimension in the
framework. Also, the aforementioned scoring function has
a similar flavor to the inner product function in Zobel and
Maffat’s work (1998) except that the former is computed
based on tags associated with an image rather than terms
in a textual document. Owing to its closeness to textual doc-
ument search, the proposed scoring function can be easily
implemented on top of an existing textual search system (e.g.,
Lucene).

Note that the proposed framework returns matched
images with their relevance scores. Identifying representa-
tive images, diversifying search results, and their presentation
are beyond the scope of the proposed framework; as these
issues can be handled at the post-processing phase after
the relevant images are retrieved (Crandall et al., 2009;
Kennedy & Naaman, 2008; van Leuken, Garcia, Olivares, &

4http://lucene.apache.org/. The relevance score is known as similarity
score in Lucene.
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van Zwol, 2009). In the following subsections, we discuss
the formulations in each dimension.

Tag Relatedness

Recall that in social image search, there is little common
understanding on the issue of quantifying the degree of relat-
edness between tags and images. Therefore, we evaluate the
following three tag relatedness implementations:

rel(t, d) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

1.0 Unit relatedness
|d| − pos(t, d)

|d| Tag position

α + (1 − α)
ν(t, d)

max
t′∈ d

ν(t′, d)
Neighbor-voting

(2)

Unit Relatedness.A simple approach is to consider all tags
equally relevant to their tagged images, i.e., rel(t,d) = 1.0.

Tag Position. Another approach for formulating tag relat-
edness is to consider the first few tags assigned to an image
as a better reflection of the creator/viewer’s perception about
the image compared with tags assigned later. Tag related-
ness is then determined by the tag position, shown in Eq. (2),
where pos(t, d) denotes the position of a tag t among all tags
assigned to image d and 0 ≤ pos(t, d) < |d|. Here, |d| is the
number of tags annotated to the image.

User/Neighbor Voting. Tags voted by more users to a par-
ticular resource are believed to be more relevant than tags
chosen by very few user (e.g., Delicious). When such a user
voting is not available (e.g., Flickr), a tag can be considered as
more relevant to an image if the tag is used to annotate other
visually similar images (Li et al., 2008; Makadia et al., 2008).
Specifically, a voting score ν(t, d) is computed for each tag
t ∈ d using Eq. (3), where Nk(d) is the k-nearest neighbors
of d based on visual similarity; P(t|Nk(d)) and P(t) are the
probabilities of observing tag t among images in Nk(d) and
collection D, respectively

ν(t, d) = max(P(t|Nk(d)) − P(t), 0) (3)

The neighbor-voting implementation computes tag related-
ness by exploiting visual similarity between images. Hence,
content-based tags are likely to receive higher voting scores
than tags of other types (e.g., time, location, opinion). In
Eq. (2), a parameter α ∈ [0,1] is used to adjust the contribu-
tion of the normalized neighbor voting, which is set to 0.5 in
our evaluation. Note that efficient search of k-nearest neigh-
bors of a given image based on visual similarity is beyond
the scope of this work.

Tag Discrimination

Analogous to the idf component in TF×IDF weighting
scheme, the tag discrimination dimension, denoted by dis(t),
is used to quantify the discriminating power of a tag t with

respect to the image collection D. We evaluate the following
three tag discrimination implementations:

dis(t) =

⎧
⎪⎪⎨

⎪⎪⎩

1.0 discrimination

1.0 + log
|D|

1.0 + f(t)
IDF discrimination

visual(t) Visual-representativeness
(4)

Unit Discrimination. In this formulation, dis(t) = 1.0 for
any tag appearing in the image collection.

Inverse Document Frequency (IDF). As idf has played a
pivotal role in various IR tasks, we also consider a variant
of it for our evaluation. Here, a document refers to an image
in the tagged image collection. Among many variants of idf
definitions, we evaluate the one defined in Lucene, shown
in Eq. (4), where f(t) is the number of images annotated by
tag t.

Visual-Representativeness. Recall that about half of tag
queries are “what” type, related to visual content of images.
Hence, visual-representativeness is evaluated as an imple-
mentation of tag discrimination, which assigns greater weight
to visually representative tags and smaller weight to other
tags. A tag is visually representative if its annotated images
are visually similar to each other, containing a common
visual concept such as an object or a scene. The visual-
representativeness is computed using a clarity-based measure
(Sun & Bhowmick, 2009, 2010) where the visual content of
images is represented using bag of visual-words. A visual-
word is a codeword rather than a unit of language. The
clarity measure reflects the difference in the visual-word dis-
tributions between the set of images assigned a given tag
t against the entire image collection. Specifically, the clar-
ity of a tag is the kl-divergence between the tag language
model P(w|Dt) and the collection language model P(w|D)

given below and the language models are estimated from
visual-word distributions

Clarity(t) =
∑

w

P(w|Dt) log2
P(w|Dt)

P(w|D)
(5)

Let µ(t′) and σ(t′) be the expected tag clarity score and stan-
dard deviation derived from dummy tag t′ randomly assigned
to the similar number of images as t (i.e., f(t) = f(t′)).
The visual-representativeness of tag t is given by the zero-
mean normalization in Eq. (6). Owing to space constraints,
the reader may refer to Sun and Bhowmick (2009, 2010)
for the motivation behind zero-mean normalization and the
estimations of P(w|Dt) and P(w|D)

Visual(t) = Clarity(t) − µ(t′)
σ(t′)

(6)

In our experiments, Visual(t) is further normalized using
a sigmoid function such that the most and least visu-
ally representative tags have Visual(t) approaching 1.0 and
0, respectively. For a rarely used tag, whose number of
annotated images is not large enough to compute visual-
representativeness, its Visual(t) is set to 0.5.
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Tag Length Normalization

Length normalization is used to reflect the impact of the
number of tags assigned to social images. Note that tag length
normalization is to normalize the number of tags an image
has, but not the length of each individual tag. We evaluate two
formulations as shown in Eq. (7) below. The unit normaliza-
tion represents the baseline formulation where the number of
tags is not considered in computing Score(d,Q). The square-
root normalization favors images with fewer tags, which is
also the default normalization formulation used in Lucene

len(d) =
⎧
⎨

⎩

1.0 Unit normalization
1√|d| Square-root normalization (7)

Tag-Query Matching Model

Tag-query matching enables us to quantify the matching
score between a tag t ∈ d and the query tag tq. We consider
two types of matching detailed below

mat(t, tq) =

⎧
⎪⎨

⎪⎩

1.0 If t = tq

0 Exact match if t �= tq

assoc(t, tq) Match-by-association if t �= tq
(8)

Exact Match. If there is an exact match between t and tq,
then mat(t, tq) = 1.0; otherwise, mat(t, tq) = 0.

Match-by-Association. Given the limited number of tags
assigned to most images, exact match is relatively restrictive.
Hence, match-by-association is introduced to enhance flexi-
bility of matching. In this case, mat(t, tq) = 1.0 if t matches tq
literally. Otherwise, the association score between t and tq is
used to quantify the matching. For instance, in Figure 1, the
dotted line between tags beach and sky indicates match-by-
association. The associations between tags can be computed
based on tag co-occurrence, Google distance (Cilibrasi &
Vitanyi, 2007) or Flickr distance (Wu et al., 2008). In our
experiments, we evaluate three associations, namely, Jaccard
coefficient, co-occurrence probability, and interest measure,
as defined in Equation (9). In this equation, f(t ∧ tq) denotes
the number of images tagged by both t and tq; P(t|tq) is the
conditional probability of being tagged by t among the images
tagged by tq

assoc(t, tq) =

⎧
⎪⎪⎨

⎪⎪⎩

f(t ∧ tq)

f(t) + f(tq) − f(t ∧ tq)
Jaccard

P(t|tq) Co-occurrence
max(P(t|tq) − P(t), 0) Interest

(9)

Observe that in match-by-association an image d may receive
a good matching score with a query tag tq even if tq does not
literally match any of d’s tags. The computation of a matching
score therefore requires one complete scan of all searchable
images, which is not feasible for real-time search when the
underlying image collection is large. To reduce the search
response time and also benefit from the existing indexing

techniques (e.g., inverted indexing), we limit the computation
of the matching score to only those images that are tagged by
at least one query tag tq ∈ Q. Obviously, such constraint limits
the recall of the search. One possible solution to address this
issue is to perform tag query expansion, which we discuss
next.

Query Model

The purpose of query model dimension is to rewrite a
given query so as to achieve superior search experience. As
reported in the recent Multimedia Grand Challenge, people
search for images for various reasons and type on average
2.2 tags for each search (Yahoo!, 2010). In fact, the widely
adopted tag-cloud depiction of tags makes the problem even
more challenging because clicking any tag in a tag-cloud
leads to a single-tag query. Tags appearing in a tag-cloud
are often extremely popular tags, so each tag leads to a large
number of matching images that need to be ranked. Therefore,
we focus on query expansion techniques, which have been a
long-standing research topic in IR (Xu & Croft, 1996). For
clarity, in the following discussion on query expansion we
assume that the given query is a single-tag query. Note that
the formulations can be easily extended to handle other forms
of queries if necessary.

Expansion-by-Association. In this formulation, a single-
tag query is expanded by including its top-K most associated
tags. In our experiments, we set K = 5. We evaluate expan-
sions using the three association measures described in
Equation (9).The weights of the expanded tags are their corre-
sponding associations with the given query tag having weight
of 1.0.

Concept-Based Expansion. The simple top-K expansion
ignores the associations among the expanded tags. For exam-
ple, the top-5 tags associated with tag rock by Jaccard are:
cliff, rocks, concert, music, and band. Clearly, the first two
tags are related to rock stone, whereas the last three are related
to rock music. Figure 2 depicts the tag relationship graph
(trg) of the query tag rock. Each node in the trg is labeled
with a tag and the label of an edge is the association score
of the connected tag pair (e.g., by Jaccard). Observe that
the graph structure clearly depicts the two different concepts
(rock stone and rock music) on the left- and right-hand sides
of the rock node, respectively. We evaluate concept-based
tag expansion by exploiting the concepts extracted from the
trgs.

The concept detection can be achieved with a commu-
nity detection or graph cut algorithm. We adopted Modularity
Clustering in our experiments (Newman, 2006). In the fol-
lowing, we briefly describe the construction of trg, followed
by concept detection using modularity clustering. A more
detailed description is provided by Sun, Bhowmick, and
Chong (2011). For a given tag tq, the trg is constructed
based on an association measure in Equation (9). The top-
K most associated tags with tq are included as the first-hop
tags in the graph (K = 8 in Figure 2). Then, from the top-K
most associated tags of each first-hop tag, we select those
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FIG. 2. Tag relationship graph for tag rock.

Rock → rock:1.0 wave:0.049 cliff:0.082 rocks:0.073 stone:0.061
Rock → rock:1.0 concer t:0.068 band:0.064 music:0.067 live:0.048
Sunset → sunset:1.0 clouds:0.123 sun:0.148 sky:0.121 silhouette :0.091
Sunset → sunset:1.0 beach:0.088 sea:0.093 ocean:0.078 water:0.082

FIG. 3. Expanded queries for tags rock and sunset, respectively.

tags that are associated with at least two first-hop tags and
add them in the trg as second-hop tags. For example, in Fig-
ure 2 stones is a second-hop tag (depicted by blue-colored
border in the trg) as it is one of the top-8 most associated
tags of stone as well as of rocks (stones is associated with
two first-hop tags rocks and stone). We detect concepts by
first removing the node representing the query tag tq from
the trg and then applying modularity clustering to the resul-
tant graph. The removal of tq is to ensure that tq does not
affect the detection of concepts because it is related to all
concepts, but tags in one concept may not be strongly asso-
ciated with tags in another concept. For instance, removal of
the node representing rock leads to two disconnected com-
ponents in Figure 2 where each component naturally forms
a concept. For each component, a concept-based expanded
query is generated by adding to tq the first-hop tags in the
component. For example, the expanded queries for tags rock
and sunset with K = 8 are given in Figure 3, where the val-
ues following “:” are Jaccard coefficients. Note that the two
expanded queries for tag sunset show two different aspects
of the sunset scenes, namely, landscape and seascape. In
our experiments, we set K = 10 and on average each query
tag leads to 3.1 concept-based expanded queries and each
expanded query consists of 4.2 tags. However, it is unreason-
able to make assumptions on the specific concept that best
matches a user’s search intent. Hence, in our evaluation we
first compute the score of a matching image with each of
the expanded queries of a given query tag and consider only
the largest score as the matching score. This ensures that the
number of expanded tags considered in the score computa-
tion using concept-based expansion is comparable to that of
in expansion-by-association with K = 5.

Combinations of Formulations

We have identified five dimensions in TagIR and dis-
cussed a few alternative formulations for each dimension.

Nevertheless, the formulations discussed above are far from
exhaustive and many other formulations can be adopted. For
instance, more than eight document length normalization
formulations are listed by Zobel and Moffat (1998), which
can all be adopted for tag length normalization. However,
realistically a complete evaluation of all possible combi-
nations would take years even if each combination takes a
few minutes to evaluate. Zobel and Moffat also highlight
this practical imitation. Hence, we limit our experimental
evaluation on the combinations of the aforementioned formu-
lations. This leads us to 72 methods without query expansion.
A method here refers to a combination of different formula-
tions under each dimension. With query expansion, we add
an additional constraint that if the query is expanded based
on an association measure in Equation (9) (e.g., Jaccard),
then match-by-association must also be based on the same
association measure. This leads to 216 methods with query
expansion for evaluation.

Experimental Setup

Ideally, the evaluation should be conducted on a large
dataset with queries and their corresponding matching images
manually labeled (i.e., ground truth), as are the trec datasets
widely used in IR. Unfortunately, to the best of our knowl-
edge, there does not exist such a benchmark dataset for
TagIR. Hence, we chose nus-wide dataset,5 containing
269,648 images from Flickr, for our experimental study.
Although the number of images seems not very large, this is
the largest publicly available web image dataset with manual
ground-truth labeling (Chua et al., 2009). In the next section,
we give a brief overview of the dataset and justify its use in
TagIR evaluation.

Dataset

All tags provided in the dataset are used in our experiments
without filtering. More than 90% of the images in nus-wide
dataset are socially tagged with 5–50 tags. The tags are mostly
in English and some are in other languages. Each image in
the dataset is manually assigned with zero, one, or more

5http://lms.comp.nus.edu.sg/research/NUS-WIDE.htm
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FIG. 4. Distribution of the ground-truth and tagged images.

concepts from a predefined set of 81 concepts. As Chua et al.
(2009), stated, the 81 concepts were carefully selected such
that they (i) correspond to some tags in Flickr; (ii) cover both
general concepts like “animal” and specific ones like “dog”
and “flowers”; and (iii) belong to different genres including
scene (e.g., airport and beach), object (e.g., tiger, car), event
(e.g., earthquake, wedding), program (e.g., sports), people
(e.g., police, military), and graphics ( e.g., map). Among
them, scene and object are the two largest genres; each has
33 concepts.

Queries and Ground-Truth. In TagIR, images are queried
by their social tags and each query may consist of one or
multiple tags. Naturally, each of the 81 concepts (which also
correspond to tags) can be used as a single-tag query and the
corresponding manually labeled images serve as the ground-
truth for TagIR evaluation. Note that all these 81 queries are
“what” queries. The distribution of the number of ground-
truth images and the number of images tagged by the concepts
is shown in Figure 4 with a few example concepts labeled
along the x-axis. Observe that the tag sky has more than 74K
ground-truth images and map has 60. Their tagged images
are 18.9 K and 372, respectively, representing the most and
least popular tags.

Because the dataset does not provide ground-truth label-
ing for multi-tag queries, we derive multi-tag queries by
combining the concepts and their ground-truth labelings. For
instance, 〈buildings, garden, sky〉 form a 3-tag query. To
ensure that a derived multi-tag query leads to sufficient num-
ber of ground-truth images that fully match all tags in the
query, we do not consider those combinations with fewer
than 200 images fully matching the query. Further, we do not
evaluate a multi-tag query (e.g., 〈buildings, sky〉) if there
is another more specific query (e.g., 〈buildings, garden,
sky〉) to be evaluated where the latter contains all query tags
from the former. Based on these two conditions, we derived
443 multi-tag queries ranging from 2-tag to 5-tag queries
(Table 2).

Low-Level Visual Content Features. The dataset provides
six types of low-level features to describe the visual con-
tents of images, including global features such as color,
edge, texture, and local feature known as bag of visual-
words. We use the 500-D bag of visual-words to compute
the visual-representativeness (see Tag Discrimination). Two

TABLE 2. Distribution of the derived multi-tag queries.

Query length 2-Tag 3-Tag 4-Tag 5-Tag All queries

No. of queries 75 121 91 156 443

similarity definitions as suggested by Li et al. (2010) are used
to compute the nearest neighbors for neighbor voting (see
Tag Relatedness). Specifically (i) Euclidian distance on three
types of global features (64-D color histogram, 73-D edge
direction histogram, and 128-D wavelet texture features) are
used to obtain 100 nearest neighbors; (ii) cosine similarity
on 500-D bag of visual-words is used to obtain another 100
nearest neighbors where the images are processed very much
like textual documents and TF×IDF weighting is adopted
for 500-D visual-words. Both visual-representativeness and
tag relatedness are pre-computed before indexing images by
their tags.

Naming of Methods

We use the notations listed in Table 3 to identify uniquely
the 288 methods (recall from Combinations of Formula-
tions). For instance, QSRUDULUME refers to the method
using single-tag query (QS) without query expansion, unit
relatedness (RU), unit discrimination (DU), unit length nor-
malization (LU), and exact matching (ME). For clarity, when
the same method is evaluated on multi-tag queries, we use
QMRUDULUME to denote the method. This method is also
known as the baseline method in our experiments. It assigns
the same matching score of 1.0 to any image matching a
single-tag query. For multi-tag queries, the method assigns
an image a matching score equal to the number of query tags
matched by the image.

Evaluation Metrics

For a single-tag query, the ground-truth labels whether
an image matches the query. In other words, for a given
single-tag query, the ground-truth does not provide a list of
images ranked according to their relevance to the query. In the
absence of ground-truth on degree of relevance, we adopt
map, Precision@K, and Recall, in our evaluation. For a multi-
tag query, the degree of relevance of an image can be defined
based on the number of matching query tags. For instance,
an image matching only two query tags of a 3-tag query is
considered less relevant than an image matching all the three
query tags, but more relevant than an image matching any
one of the three tags. We therefore adopt ndcg for evaluating
multi-tag queries. In the following, we briefly describe the
four metrics.

Mean Average Precision (map). For a given query,Average
Precision (ap) is the average of the precision values obtained
when each relevant image is retrieved for that query; if a rele-
vant image is not retrieved at all, its corresponding precision
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TABLE 3. Dimensions and formulation notations.

Dimension Notations

Relatedness RU, RP, and RV for unit, position, and voting
Discrimination DU, DF, and DV for unit, IDF, and visual-rep
Length norm LU and LS for unit and square-root normalization
Matching model ME, MJ, MC, and MT for exact match, match-by-Jaccard, co-occurrence, and inTerest
Query model Q for query without expansion. For clarity, single-tag and multi-tag queries are further

distinguished by QS and QM. EX and CX, respectively, denote expansion-by-association
and concept-based expansion, where X ∈ {J, C, T } for Jaccard, co-occurrence, and in Terest

is 0 (Manning et al., 2008). Hence, ap emphasizes that rel-
evant images be ranked higher and is capped by the recall.
map is the mean of aps for a set of queries.

Precision@K (or simply P@K). It is the ratio of the rel-
evant images among the top-K retrieved images for a given
query. In this article, P@K refers to the macro-average of
P@K values for the evaluated queries. In our experiments,
K ∈ {25, 50, 100, 200, 400}.

Recall for a query is the ratio of the retrieved relevant
images among all relevant images. Similarly, it refers to the
macro-average of recall values of the queries evaluated for
each method.

Normalized Discounted Cumulative Gain@K (or
NDCG@K) is given in the following equation, where r is the
ranking position (1 ≤ r ≤ K); rel(r) is the degree of relevance
of the image at rank position r, defined to be the number of
matching tags against the given n-tag query (0 ≤ rel(r) ≤ n).
Z is a normalization factor such that a perfect ranking (i.e.,
ground-truth) gives NDCG@K = 1. Similar to P@K, in our
experiments, K ∈ {25, 50, 100, 200, 400} for NDCG@K

NDCG@K = 1

Z

K∑

r=1

2rel(r) − 1

log2(r + 1)
(10)

Among the four metrics, map, P@K, and NDCG@K evalu-
ate the ranking of the retrieved images. However, the images
retrieved by the search methods may be scored equally (e.g.,
two images annotated by the same set of tags). Hence, for
each query, the computation of map, P@K, and NDCG@K

involves shuffling and sorting of the retrieved images 50 times
using standard Java api. The ap, P@K, and NDCG@K for
each query is the average over the 50 evaluations in order to
minimize the impact of images being equally scored. Note
that recall is not affected because it does not rely on the
ranking of the retrieved images.

Single-tag Query Evaluation

In this section, we begin by giving a performance overview
of the 288 methods evaluated on 81 single-tag queries.
Next, we list the best and worst performing methods based
on map and P@100. Lastly, we analyze the impact of
the five dimensions and their formulations to the retrieval
performance.
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FIG. 5. Performance overview of 288 methods. Methods are ranked by
the respective measures on 81 tag queries. The vertical bars in the top two
figures indicate the position of the baseline method.

Performance Overview

MAP. Figure 5(a) plots the maps against ranks of the 288
methods. They are computed for all 81 single-tag queries,
the 33 single-tag queries from object genre, and the 33 from
scene genre. The vertical bar in the figure indicates the rank-
ing position of the baseline method. Observe that the best
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TABLE 4. Recall of single-tag queries for different query models.

Model QS EJ EC ET CJ CC CT

Recall 0.535 0.691 0.743 0.739 0.736 0.801 0.790
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FIG. 6. Method ranked by P@100 on 81 queries.

performing method among all 81 queries achieve map of
0.438, which is more than 51% of increase over the base-
line with map of 0.2898 (ranked at 260th position) and an
increase of 131% against the worst performing method hav-
ing map equal to 0.1895. It indicates that different methods
may lead to significantly different search experiences.

Consider the maps of the two types of queries. It is clear
that object queries enjoy higher maps compared with scene
queries. The higher maps for object queries can be attributed
to both higher precision and higher recall of such queries as
depicted in Figures 5(b) and 5(c), respectively. Owing to page
constraints, in Figure 5(b) we plot only P@100 values. How-
ever, the same observation holds for P@{25, 50, 200, 400}.
One possible reason is that users typically tag an image with
the objects observable from the image more often and accu-
rately than the scenes in it. Furthermore, observe that if one
method performs well on object queries, very likely it also
performs well on scene queries, and vice versa. Specifi-
cally, Pearson’s correlation coefficient for map values over
all methods for object and scene queries is 0.982. Simi-
lar observation holds for P@100 with correlation coefficient
0.908. Hence, in the next section, we do not discuss the results
of different types of queries separately.

Recall. Recall from Tag-Query Matching Model and
Query Model, an image is scored only if it is tagged by at
least one query tag. The recall of a method therefore depends
solely on the query but not on the ranking model. For the same
query, methods with different ranking models achieve the
same recall. For instance, the last 72 methods in Figure 5(c)
refer to the 72 methods without query expansion. They have
the same recall value (0.535) averaged overall 81 single-tag
queries. The figure also illustrates that query expansion can
improve the average recall over the 81 queries from 0.535 to
0.801 (Table 4).

P@100. Figure 6 plots the methods ranked by P@100 on
all 81 queries along with their map, P@25, and P@400 val-
ues. The vertical bar indicates the rank of baseline method.
For clarity, we do not plot P@50 and P@200. Observe that
all P@K measures are highly correlated. Pearson’s correla-
tion coefficients between P@100 and P@{25, 50, 200, 400}
are 0.959, 0.972, 0.988, and 0.984, respectively, for values
over all methods. Owing to this high correlation, we ana-
lyze the performances of the methods using P@100 only
instead of all P@K values. Interestingly, the correlation coef-
ficient between P@100 and map is 0.85, indicating that some
methods may achieve better maps but not necessarily better
P@100s and vice versa. Recall that P@100 and map reflect
the search accuracy of a method based on the top-100 images
and all retrieved images, respectively. In the next section,
we shall analyze the methods using both P@100 and map
measures.

Best and Worst Performing Methods

72 Methods without Query Expansion. Table 5(a) lists the
10 best and worst performing methods among the 72 meth-
ods (without query expansion) ranked by map and P@100.
It is not surprising that the baseline method, indicated by∏

in the table, is among the worst performing methods for
both measures. Notice that the best performing methods,
QSRVDFLSMC and QSRVDULSMC, achieve an increase of
24% in map and 30% in P@100 against their corresponding
worst performing methods. Interestingly, some methods even
delivered poorer P@100 than the baseline method, although
by a tiny margin and the results are not statistically signifi-
cant. In summary, we can make the following observations.
It is clear that RV play a critical role in ranking because
all the best performing methods use RV and almost all the
worst performing methods engage RU. Second, MJ seems to
be a better tag-query matching formulation than others for
map. Third, LS is the dominant length normalization choice
for methods that achieve best P@100s, but not necessarily
for the best maps. Lastly, there is no clear pattern related to
the tag discrimination dimension.

All 288 Methods. Table 5(b) reports the 10 best and worst
performing methods for all 288 methods. It is interesting to
observe that for both map and P@100 the best and worst
performing methods involve query expansion. That is, query
expansion may not always lead to better search performance
and it can perform poorer than the baseline method (ranked at
260th position). On the other hand, the best performing meth-
ods achieve 51 and 33% increase in their maps and P@100
measures, respectively, over the baseline method. In sum-
mary, RV is the dominant tag relatedness formulation for
better map and P@100. Further, most best performing meth-
ods based on map expanded the corresponding queries using
CJ. Most best performing methods also use exact match ME

and all the worst performing methods use MC coupled with
EC or CC.

Interestingly, the last point suggests that two-hop match-
ing by co-occurrence probability between a query tag and an
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TABLE 5. The 10 best and worst performing methods among the 72 methods without query expansion and all 288 methods, where
∏

indicates the baseline
method; +/− indicates the values are significantly better/worse than baseline by paired t-test.

Rank Method MAP Method P@100 Rank Method MAP Method P@100

1 QSRVDFLSMC 0.3588+ QSRVDULSMC 0.7104+ 1 CJRVDFLUME 0.4380+ CTRVDFLUME 0.7321+
2 QSRVDFLSMT 0.3579+ QSRVDFLSMC 0.7065+ 2 CJRVDULUME 0.4354+ CTRVDULUME 0.7298+
3 QSRVDULSMC 0.3575+ QSRVDFLSMT 0.7031+ 3 CJRVDFLSMJ 0.4317+ ECRVDFLUME 0.7283+
4 QSRVDULSMT 0.3570+ QSRVDULSMT 0.7024+ 4 CJRVDULSMJ 0.4308+ CCRVDFLUME 0.7269+
5 QSRVDFLSMJ 0.3554+ QSRVDVLSMC 0.7009+ 5 CTRVDFLUME 0.4305+ CJRVDFLUME 0.7269+
6 QSRVDVLUMJ 0.3553+ QSRVDVLSMT 0.6998+ 6 CJRVDFLSME 0.4279+ ETRVDFLUME 0.7262+
7 QSRVDFLUMJ 0.3552+ QSRVDFLSMJ 0.6996+ 7 CCRVDFLUME 0.4268+ CCRVDULUME 0.7257+
8 QSRVDVLSMT 0.3551+ QSRVDULSMJ 0.6967+ 8 CJRVDVLUME 0.4258+ ECRVDULUME 0.7245+
9 QSRVDULUMJ 0.3551+ QSRVDVLSMJ 0.6922+ 9 CJRVDULSME 0.4254+ EJRVDFLUME 0.7242+
10 QSRVDULSMJ 0.3549+ QSRVDVLUMJ 0.6890+ 10 EJRVDFLUME 0.4235+ ETRVDULUME 0.7240+
63 QSRPDULUMC 0.3132+ QSRUDULUMT 0.5635 279 ECRVDULUMC 0.2295− CCRPDULUMC 0.4568−
64 QSRUDFLSME 0.3128+ QSRPDFLUMC 0.5630 280 ECRPDULUMC 0.2255− CCRVDVLUMC 0.4480−
65 QSRUDULSME 0.3128+ QSRPDULUMC 0.5625 281 CCRUDULUMC 0.2217− ECRPDULUMC 0.4474−
66 QSRUDVLSME 0.3128+ QSRUDFLUME 0.5610 282 ECRUDULUMC 0.2120− ECRVDVLUMC 0.4372−
67 QSRUDFLUMC 0.3126+ QSRUDVLUME 0.5506 283 CCRVDVLUMC 0.2097− CCRUDULUMC 0.4371−
68 QSRUDVLUMC 0.3103+ QSRUDULUME

∏
0.5503 284 CCRPDVLUMC 0.2096− ECRUDULUMC 0.4245−

69 QSRUDULUMC 0.3100+ QSRUDFLUME 0.5502 285 ECRVDVLUMC 0.2040− CCRPDVLUMC 0.4127−
70 QSRUDVLUME 0.2900 QSRUDVLUMC 0.5492 286 MCRPDULUMC 0.2033− ECRPDVLUMC 0.4049−
71 QSRUDFLUME 0.2898 QSRUDULUMC 0.5456 287 CCRUDVLUMC 0.1941− CCRUDVLUMC 0.3945−
72 QSRUDULUME

∏
0.2898 QSRUDFLUMC 0.5452 288 ECRUDVLUMC 0.1895− ECRUDVLUMC 0.3910−

image may significantly hurt the searching results. Suppose
ta is expanded from the original query tag tq by co-occurrence
probability; suppose an image has a tag tb which is associ-
ated with ta by co-occurrence probability (but may not be
associated with tq). Then the associations between tq and ta
and between ta and tb are both counted in the scoring. That
is, it counts the two-hop tag association between tq and tb.
Consequently, this results in poor performance.

Impact of Dimensions

We now present a set of experiments that analyzes the
impact of the dimensions in detail. We partition the meth-
ods into three groups, namely, Good, Average, and Poor, and
then quantify the discriminative power of each dimension.
For instance, consider the 72 methods without query expan-
sion. Let µm and σm be the mean and standard deviation
of the map values (resp. P@100) of these methods, respec-
tively. The methods whose map (resp. P@100) values are
larger than µm + σm and smaller than µm − σm are grouped
under Good and Poor, respectively. The remaining methods
are classified as Average. Table 6 reports the number of Good,
Average, and Poor methods among the 72 methods without
query expansion and the 216 methods with query expansion.

We now test the discriminative power of each dimension
using the existing feature selection techniques (Sebastiani,
2002). We adopt Information Gain in this work and use
Weka6 to perform the analysis. The results for the 72 meth-
ods without query expansion are reported in the left upper
part of Table 7(a). Observe that the two most discriminative
dimensions based on map are tag relatedness and matching

6http://www.cs.waikato.ac.nz/ml/weka/

TABLE 6. Distribution of Good/Average/Poor methods.

Without query expansion With query expansion
Method
Group MAP P@100 MAP P@100

Good 12 10 13 19
Average 46 49 167 166
Poor 14 13 36 31

model having information gain of 0.41 and 0.31, respec-
tively. In contrast, tag relatedness and length normalization
are the most discriminative dimensions for P@100 measure.
To have a better understanding of which formulations under
these dimensions lead to Good/Average/Poor methods, rules
are learned from these methods using the ripper algorithm
(Cohen, 1995) (Weka’s JRip implementation).

The lower part of Table 7(a) highlights the learned rules.
In total, 6 (resp. 4) rules are learned from the grouping of
72 methods without query expansion based on map (resp.
P@100). The first rule7 based on map states that: IF a method
uses neighbor voting RV for tag relatedness AND square-root
LS for length normalization, THEN the method achieves good
map. The numbers in the parenthesis indicate the number of
methods covered by the rule and the number of false positives
(e.g., three methods covered by the first rule in fact belong
to Average group and not the Good group). The second rule
implies that the neighbor-voting tag relatedness (RV) and
Jaccard-based match-by-association (MJ) also lead to good
map. Note that methods that are not covered by the first five
rules are addressed by the last rule. Similarly, RV and LS also

7We modified the rule presentation format slightly from the Weka output
for concise presentation.

JOURNAL OF THE AMERICAN SOCIETY FOR INFORMATION SCIENCE AND TECHNOLOGY—December 2011 2375
DOI: 10.1002/asi



TABLE 7. Discriminative power of the dimensions, and rules.

MAP P@100

Dimension InfoGain Dimension InfoGain

(a) Methods without query expansion
1 Relatedness 0.4056 Relatedness 0.3849
2 Matching model 0.3073 Length norm 0.2594
3 Length norm 0.0810 Matching model 0.1054
4 Discrimination 0.0019 Discrimination 0.0089
1 RV ∧ LS ⇒ Good(12/3) RV ∧ LS ⇒ Good(12/3)
2 RV ∧ MJ ⇒ Good(3/0) RU ∧ LU ⇒ Poor(12/2)
3 ME ∧ RU ⇒ Poor(6/0) MC ∧ RP ∧ LU ⇒ Poor(3/0)
4 LU ∧ MC ∧ RU ⇒ Poor(3/0) ⇒ Average(45/1)
5 ME ∧ RP ∧ LU ⇒ Poor(3/0)
6 ⇒ Average(45/2)

(b) Methods with query expansion
1 Matching model 0.2042 Matching model 0.1939
2 Query model 0.1861 Length norm 0.1555
3 Relatedness 0.1030 Relatedness 0.1531
4 Length norm 0.0426 Query model 0.1120
5 Discrimination 0.0426 Discrimination 0.0102
1 RV ∧ CJ ⇒ Good(12/5) RV ∧ LU ∧ ME ⇒ Good(18/1)
2 RV ∧ DF ∧ ME ∧ CI ⇒ Good(2/0) LU ∧ MA ∧ CC ⇒ Good(9/0)
3 MA ∧ CC ∧ LU ⇒ Poor(9/0) EC ∧ MA ∧ LU ⇒ Poor(9/0)
4 MA ∧ EC ⇒ Poor(18/4) LU ∧ MA ∧ EI ⇒ Poor(9/3)
5 MA ∧ CC ∧ DV ⇒ Poor(3/0) ⇒ Average(171/9)
6 MA ∧ LU ∧ DV ∧ EI ⇒ (3/0)
7 MA ∧ CI ∧ LU ∧ DV ⇒ Poor(3/0)
8 ⇒ Average(166/8)

lead to good P@100. In summary, neighbor-voting-based tag
relatedness is one of the key factors to achieve better image
search accuracy, whereas tag discrimination seems to have
very little impact on the search results.

Table 7(b) reports the discriminative power analysis and
the rules learned from the groupings of 216 methods with
query expansion. Observe that tag-query matching model and
query model are the two most influential dimensions for both
map and P@100. Recall from Combinations of Formula-
tions, we impose the constraint that if the query is expanded
based on an association measure (e.g., Jaccard), then match-
by-association must also be based on the same association
measure. Hence, we describe the methods with two alter-
native matching models, ME for exact match and MA for
match-by-association. We use six query models, EX and CX

for expansion-by-association and concept-based expansion,
respectively, where X ∈ {J, C, T } denotes the three associa-
tion measures. Our results demonstrate that RV ∧ CJ leads
to good map regardless of the formulations of other dimen-
sions. For P@100, RV ∧LU ∧ME ensures a good precision.
However, methods involving match-by-association MA (i.e.,
rules 2, 3, and 4) all perform poorly.

Impact of Formulations

Tag Relatedness. Consider the 72 methods without query
expansion. These methods are placed into three groups such
that the 24 methods in one group use the same tag relatedness
formulation, i.e., RU, RP, or RV. Table 8 (first row and first
column) reports the averaged maps and P@100 values for

these three groups denoted by RU, RP, and RV, respectively.
Clearly, the 24 methods using RV achieve the best map and
P@100 (highlighted in bold). We also conduct statistical sig-
nificance tests on the three tag relatedness formulations by
considering each method as a sample and the tag relatedness
as the variable. The significance test results are summarized
in Table 9. The paired t-test shows that RV 
 RP 
 RU based
on either map or P@100 measure (
 denotes significantly
better than with p-value <0.01). The test results are consis-
tent with our earlier observations that all the best performing
methods use RV for tag relatedness, whereas most worst per-
forming methods use RU. Similar results are also obtained
for the 216 methods with query expansion where each group
consists of 72 methods.

Tag Discrimination and Length Normalization. Similarly,
the impact of tag discrimination formulations (i.e., DU, DF,
and DV) is summarized in Tables 8 and 9. In Table 9, ≈
denotes comparable or statistically not significant. DF and
DV achieve better map and P@100, respectively, for meth-
ods without query expansion. On the other hand, DF is a
clear winner with relatively large margins of improvement
on both map and P@100 for methods with query expansion.
Lastly, LS is clearly a better choice than LU for tag length
normalization.

Tag-Query Matching Model. For methods without query
expansion, the four tag-query matching formulations (i.e.,
exact match ME and match-by-associations MJ, MC, and
MT), were each used in 18 methods. MJ and ME are the
best and worst matching models, respectively, for both map
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TABLE 8. Averaged map and P@100 for different formulations.

Without query expansion With query expansion
Method
Dimension MAP P@100 MAP P@100

Relatedness RU 0.3218 0.6040 RU 0.3572 0.6150
RP 0.3284 0.6258 RP 0.3608 0.6284
RV 0.3480 0.6737 RV 0.3729 0.6606

Discrimination DU 0.3324 0.6322 DU 0.3650 0.6377
DF 0.3337 0.6327 DF 0.3844 0.6513
DV 0.3321 0.6387 DV 0.3415 0.6150

Length norm LU 0.3253 0.6062 LU 0.3528 0.6163
LS 0.3402 0.6628 LS 0.3745 0.6530

Matching model ME 0.3202 0.6163 ME 0.3932 0.6688
MJ 0.3407 0.6471 MA 0.3341 0.6005
MC 0.3333 0.6312 EJ 0.3979 0.6627
MT 0.3368 0.6435 EC 0.3230 0.6016

Query model – – – ET 0.3572 0.6400
CJ 0.4072 0.6595
CC 0.3324 0.6054
CT 0.3641 0.6388

TABLE 9. Paired t-test for single-tag query evaluation; “>>”, “>”, and “≈”’ indicate p-value <0.01, <0.05, and >0.05, respectively.

Method without query expansion Method with query expansion
Method
Dimension MAP P@100 MAP P@100

Relatedness RV >> RP >> RU RV >> RP >> RU RV >> RP >> RU RV >> RP >> RU

Discrimination DF >> DV ≈ DU DV >> DF ≈ DU DF >> DU >> DV DF >> DU >> DV

Length norm LS >> LU LS >> LU LS >> LU LS >> LU

Matching model MJ >> MT >> MJ >> MT >> ME >> MA ME >> MA

MC >> ME MC >> ME

Query model – – CJ >> EJ >> ET >> ET >> CC >> EC EJ >> CJ >> ET >> CT >> CC >> EC
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FIG. 7. Methods ranked by NDCG@100 on all queries.

and P@100 (“>” denotes significantly better than with
p-value <0.05). MT is also a good matching model, which
is comparable to MJ for P@100. Methods with ME outper-
form methods with MA by a large margin for both map and
P@100 for methods with query expansion. This agrees with
our earlier observation that two-hop association matching
hurts search accuracy.

Query Model. The 216 methods with query expansion are
first partitioned into two equal groups representing meth-
ods for expansion-by-association (EX) and concept-based
expansion (CX). The paired t-test shows that: CX 
 EX for

map and CX ≈ EX for P@100. Next, we partition the 216
methods into six groups based on the association measures
in EX and CX. As shown in Tables 8 and 9, CJ and EJ are
the winners for map and P@100, respectively. In general,
the Jaccard coefficient is a better association measure than
interest and co-occurrence probability.

Multi-tag Query Evaluation

In this section, we report the evaluation using the 443
multi-tag queries. Note that because more than 55% of the
443 queries each contains 4 or 5 tags (Table 2); therefore,
we do not further expand these queries. In the next section,
we first give a performance overview of these 72 meth-
ods without query expansion and then analyze the impact
of the dimensions and their formulations to the retrieval
performance.

Performance Overview

Figure 7 plots the NDCG@{25, 50, 100, 200, 400} for all
the 72 methods evaluated, ranked by NDCG@100. Sim-
ilar to our earlier findings, all these values are highly
correlated. Hence, we conduct our following analysis based
on NDCG@100.
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TABLE 10. The best/worst performing methods by NDCG@100, where
∏

indicates the baseline method; +/− indicates that the values are significantly
better/worse than baseline by paired t-test.

Rank Method N@100 Rank Method N@100

1 QMRVDFLUME 0.4663+ 63 QMRPDVLSME 0.3004−
2 QMRVDULUME 0.4613+ 64 QMRVDULSME 0.3002−
3 QMRVDVLUME 0.4469+ 65 QMRVDULUMC 0.2974−
4 QMRUDFLUME 0.4462+ 66 QMRPDVLUMC 0.2925−
5 QMRPDFLUME 0.4449+ 67 QMRVDVLSME 0.2907−
6 QMRPDULUME 0.4384+ 68 QMRPDFLUMC 0.2840−
7 QMRUDULUME

∏
0.4318 69 QMRUDVLUMC 0.2772−

8 QMRPDVLUME 0.4284 70 QMRPDULUMC 0.2754−
9 QMRUDVLUME 0.4283− 71 QMRUDFLUMC 0.2751−
10 QMRUDFLSMJ 0.4230− 72 QMRUDULUMC 0.2677−

TABLE 11. Discriminative power of the dimensions, and rules.

Dimension InfoGain Rules

1 Matching model 0.3542 MC ∧ LU ⇒ Poor(9/2)
2 Length norm 0.0529 ME ∧ LU ⇒ Good(9/0)
3 Discrimination 0.0335 DF ∧ RU ∧ LS ⇒ Good(4/1)
4 Relatedness 0.0154 ⇒ Average

TABLE 12. Averaged NDCG@100 for different formulations.

Dimension Query: 2-Tag 3-Tag 4-Tag 5-Tag All

Relatedness RU 0.3642 0.3514 0.3474 0.3607 0.3560
RP 0.3613 0.3477 0.3406 0.3620 0.3536
RV 0.3664 0.3388 0.3329 0.3548 0.3479

Discrimination DU 0.3662 0.3456 0.3361 0.3518 0.3493
DF 0.3755 0.3654 0.3573 0.3700 0.3671
DV 0.3502 0.3268 0.3276 0.3557 0.3411

Length norm LU 0.3526 0.3438 0.3452 0.3526 0.3487
LS 0.3754 0.3481 0.3355 0.3657 0.3563

Matching model ME 0.3906 0.3759 0.3730 0.3930 0.3838
MJ 0.3683 0.3451 0.3325 0.3535 0.3494
MC 0.3356 0.3152 0.3151 0.3363 0.3261
MT 0.3614 0.3476 0.3406 0.3538 0.3507

The best and worst 10 performing methods by
NDCG@100 for multi-tag queries are listed in Table 10.
Observe that the best performing method outperforms the
worst by 74%. Among the best performing methods, there
is no clear pattern observed from dimensions of tag related-
ness and tag discrimination; however, most of these methods
use unit length normalization and exact match (i.e., LUME),
including the baseline method QMRUDULUME (ranked
at the seventh position). Most worst performing methods
use unit normalization and match-by-association with co-
occurrence (i.e., LUMC). In the following, we conduct
more detailed analysis on the impact of the dimensions and
formulations.

Impact of Dimensions and Formulations

We partition the methods into 13 Good, 49 Average, and 10
Poor methods (see Impact of Dimensions). Table 11 reports
the discriminative powers of the dimensions and the rules

learned. Clearly, matching model is the most discriminative
dimension followed by length normalization. Exact match
and unit normalization (MELU) lead to 9 out of the 13 good
methods. This is consistent with our observations made from
Table 10. It also partially explains the seventh ranking of the
baseline method.

As in Impact of Formulations, the average NDCG@100
of the methods using the same formulation is reported in
Table 12 with the best values highlighted in bold. To under-
stand the methods better, we compute the averages according
to the query length and their corresponding statistical signif-
icant test (Table 13).

• RV is a better choice for 2-tag queries and RU is better for
most longer queries for tag relatedness. However, as shown in
Table 13, the choices of tag relatedness formulations do not
lead to significant differences in performance.

• DF performs significantly better than either DU or DV statis-
tically when tag discrimination is considered. However, the
absolute amount of improvement is marginal (Table 12).
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TABLE 13. Paired t-test for multi-tag query evaluation; “>>”, “>”, and “≈” ’ indicate p-value <0.01, <0.05, and >0.05, respectively.

Dimension 2-Tag queries 3-Tag queries 4-Tag queries 5-Tag queries All multi-tag queries

Relatedness RV ≈ RU ≈ RP RU ≈ RP > RV RU > RP ≈ RV RU ≈ RP ≈ RV RU ≈ RP ≈ RV

Discrimination DF >> DU >> DV DF >> DU >> DV DF >> DU >> DV DF >> DV ≈ DU DF >> DU ≈ DV

Length norm LS>LU LS ≈ LU LU ≈ LS LS ≈ LU LS ≈ LU

Matching model ME ≈ MJ ≈ MT >> MC ME ≈ MT ≈ MJ >> MC ME>MT>MJ >> MC ME>MT ≈ MJ >> MC ME>MT ≈ MJ >> MC

• Unit length LU is comparable with LS except on short queries
(i.e., 2-tag), where LS > LU is observed.

• Exact match outperforms all other formulations by a large
margin for longer queries with 4 or more tags. In fact, consid-
ering all multi-tag queries, the improvement of exact match
remains statistically significant as shown in the last column
in Table 13.

Discussion

Interestingly, compared with the findings from the eval-
uation of single-tag queries, we observe very different or
even orthogonal findings for multi-tag queries as summarized
below.

Tag Relatedness. Tag relatedness is the most discrimina-
tive dimension for single-tag queries without query expansion
and neighbor-voting-based tag relatedness plays a key role
in achieving better image search accuracy. However, when
evaluated on multi-tag queries for the same 72 methods, tag
relatedness became the least discriminative dimension and
neighbor voting is comparable to other formulations such as
unit relatedness.

Tag-Query Matching. This is the second most discrimina-
tive dimension (by map) for the 72 methods without query
expansion for single-tag queries. Particularly, the results
show that match-by-association is superior to the exact
match for these methods. Matching model is the most dis-
criminative dimension when evaluated on multi-tag queries
(for the same set of methods). However, interestingly exact
match significantly outperforms its counterpart. Recall that
when evaluating single-tag queries using the 216 methods
with query expansion, either match-by-association or query
expansion may significantly improve the search accuracy but
putting them together adversely affects the result. That is,
exact match is a better choice when a query consists of mul-
tiple tags, regardless of whether the query is formulated as a
multi-tag query or expanded from a single-tag query.

Tag Discrimination. The widely adopted idf weighting
often outperforms other formulations for tag discrimina-
tion for both single-tag and multi-tag queries. However,
the improvement is marginal and overall tag discrimination
seems to have relatively very little impact on the search results
for both single-tag and multi-tag queries.

Length Normalization. Methods using square-root nor-
malization achieve best P@100s on single-tag queries.
However, tag length normalization is not a very discrimi-
native dimension when we consider all evaluations with both
single-tag and multi-tag queries.

One possible reason for such different observations
made on single-tag and multi-tag queries is the expressive
power of the queries. A single-tag query is usually much
more general having a large number of potential match-
ing images. Hence, tag relatedness and match-by-association
both improve the estimation of the matching score between a
tagged image and the query. A multi-tag query, on the other
hand, expresses a much more specific information need. The
presence of all query tags in a tagged image matching
the query largely guarantees a superior match.

Conclusions

In this article, we propose a framework for a systematic
empirical evaluation of various methods to rank matched
images based on their associated tags in the context of tag-
based social image retrieval. Our framework consists of
five orthogonal dimensions that play pivotal roles in social
image tagging, namely, tag relatedness, tag discrimination,
tag length normalization, tag-query matching model, and
query model. For each dimension, we discuss several for-
mulation strategies to compute them. A major focus of this
work has been on evaluating an array of methods representing
various combinations of the proposed dimensions and formu-
lations on nus-wide dataset, the largest human-annotated
dataset consisting of more than 269 K images from Flickr.

Our experimental evaluation revealed several interesting
findings that play pivotal roles in designing superior social
image tagging systems. We observed that single-tag queries
and multi-tag queries are best handled separately using dif-
ferent relevance measures. Specifically, tag relatedness is
the most important dimension for producing superior quality
results for single-tag queries but less important for multi-
tag queries. Similarly, relatively more advanced tag-query
matching models are imperative for answering single-tag
queries but not multi-tag queries. Because a large portion
of queries are single-tag queries, tag relatedness and tag-
query matching model remain important research areas. Our
study also showed that neighbor voting is the most effec-
tive implementation for tag relatedness. However, it is also
a computationally expensive method because of the neigh-
borhood search based on low-level content features. This
calls for a more effective and efficient alternative for tag
relatedness computation. It is worth mentioning that the com-
putation cost can be reduced if a social tagging system adopts
a bag aggregation model and stores the number of times a tag
is assigned to an image by multiple users. Our experimen-
tal results also demonstrate that either query expansion or
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match-by-association improves search accuracy for single-
tag queries; but the two together result in poorer performance.
The issue of which one is better in terms of effectiveness, effi-
ciency, and scalability in large social image retrieval systems
remains an open research problem that needs to be explored.
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