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Abstract. The web is a sensor of the real world. Often, content of web
pages correspond to real world objects or events whereas the web us-
age data reflect users’ opinions and actions to the corresponding events.
Moreover, the evolution patterns of the web usage data may reflect the
evolution of the corresponding events over time. In this paper, we present
two variants of iWed(Integrated Web Event Detector) algorithms to
extract events from website data by integrating author-centric data and
visitor-centric data. We model the website related data as a multigraph,
where each vertex represents a web page and each edge represent the
relationship between the connected web pages in terms of structure, se-
mantic, and usage pattern. Then, the problem of event detection is to
extract strongly connected subgraphs from the multigraph to represent
real world events. We solve this problem by adopting the normalized
graph cut algorithm. Experiments show that the usage patterns play an
important role in iWed algorithms and can produce high quality results.

1 Introduction

The web has invaded our lives. In some sense, the web is a sensor of
the real world. Specifically, it has been observed that events and objects
are often represented by a set of web pages but not as individual web
pages [4, 8]. Consequently, a large body of literature has focused on ex-
tracting real world events or objects from web data [4, 5, 8, 11, 12]. These
approaches can be classified into two groups: structure-based extraction
and content-based extraction. In the structure-based approaches, the web-
site structures, hyperlink structures, and URLs are used to extract sets
of web pages corresponding to events and objects [8, 4]. In the content-
based extraction, content of web pages are segmented and categorized into
subgroups that correspond to different topics, events, and stories using
techniques such as natural language processing and probability models [1,
11, 12]. At the same time, such extraction results have been proved useful
in many applications such as organizing the website structure [8], restruc-
turing the web search results [4], terrorism event detection [9], and Photo
Story and Chronicle [5].
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(c): usage evolution

Fig. 1. Web data representation

Data associated with a set of web pages in a web site can be classified
into two types: author-centric and visitor-centric. Author-centric data
refers to a set of hyperlinked web pages that describes certain object
or event, while visitor-centric data refers to the web access sequences of
these pages and describes how the web pages are accessed in the history.
Observe that author-centric data describes authors’ point of view while
visitor-centric data reflect the web visitors’ point of view.

We observed that existing event and object extraction approaches only
analyze the author-centric data. These techniques ignore visitor-centric
data. However, often it may not be possible to distinguish different events
related to the same topic by using the author-centric data only. This is
because events belonging to the same topic often share a set of keywords
and the pages containing these different events often are connected by
hyperlinks. For example, web pages talking about different car accidents
tend to share keywords like car, accidents, and crash. Also, these pages
may be connected as they belong to the same topic (car accident). Hence,
it is difficult to distinguish one car accident from another based on only
keywords and hyperlink structure.

In this paper, we consider visitor-centric data along with author-centric
data to detect real-world events. In other words, we integrate visitor-
centric and author-centric data to distinguish different events under the
same topic. The major differences between our event detection approach
and the related research [1, 11, 12, 5, 4, 2] are twofold. First, all the above
works focus on either the author-centric or the visitor-centric data, while
our approach incorporates the visitor-centric data along with the author-
centric data. Second, the temporal property of the visitor-centric data is
utilized in our approach to improve the event detection accuracy.

For example, suppose Figure 1(a) shows a subset of hyperlinked web
pages; Figure 1(b) shows the implicit links extracted from the correspond-
ing usage data; and Figure 1(c) shows the evolution pattern of web usage
data (the y-axis shows the frequency of a web page being accessed over
the time intervals shown in the x -axis ). Here, there is an implicit link



between two web pages if and only if they were accessed consecutively in
the web access sequences [10]. The evolution pattern of web usage data
refers to how the web pages changed in the history in terms of their
supports [13].

It can be observed that from only Figure 1(a), it is difficult to distin-
guish sibling pages such as e and f even if they correspond to different
events. However, with the evolution of web usage data as shown in Fig-
ure 1(c), connected web pages with similar content but corresponding to
different events can be distinguished. For example, in Figure 1(c), pages
e and g have similar evolution pattern while pages e and f have differ-
ent evolution pattern. At the same, web pages that are not connected by
hyperlinks but corresponding to the same event can be identified using
implicit links in Figure 1(b), since they are expected to be accessed to-
gether. As shown in Figure 1(b), the implicit link between web pages b
and g, which are not connected by hyperlink in Figure 1(a), implies that
b and g have a possibility to represent the same event. In this paper, we
focus on detecting events in a specific website as it is extremely difficult to
gather web usage data of the entire web. The contributions of this paper
are as follows.

• To the best of our knowledge, this is the first approach that detects
website level events by integrating web structure, web content, and
web usage data and its evolution patterns.

• A multigraph is proposed to model website related data in terms of
structure, semantics, and usage patterns by integrating the author-
centric and visitor-centric data.

• We present two variants of iWed algorithms, called fusion-base graph
cut and level-wise graph cut, to detect events from the multigraph.
These algorithms are inspired by the normalized graph cut algorithm
widely used in image and video object extraction [6]. Experiment re-
sults show that the iWed event detection algorithms can produce
high quality results.

2 Website Data Representation and Problem Statement

In this section, we first discuss how to represent web structure, web con-
tent, and web usage data of a web site using structure graph, content
graph, and usage graph, respectively. Then, we present how these three
types of graphs are integrated using a multigraph, followed by the problem
statement of website-based event detection.



2.1 Structure Graph

The web structure data here refers to the set of web pages and hyperlinks
between them. It can be modelled as a structure graph, Gs = 〈Vs, Es〉,
where each vertex in Vs is a web page and each edge in Es represents the
structure similarity (will be defined later) between the two pages that
are connected by this edge. Note that the structure similarity is defined
to reflect the similarity between web pages in terms of structure. The
intuition is “two web pages are structurally similar if they are linked
with similar web pages” [3]. As the base case, we consider a web page
maximally similar to itself, to which we can assign a structure similarity
score of 1. With this intuition, given two web pages i and j in Vs, the
structure similarity is defined as:

Ss(i, j) =
C

|D(i)| ∗ |D(j)|
|D(i)|∑

m=1

|D(j)|∑

n=1

Ss(Dm(i), Dn(j))

Here C is a constant between 0 and 1, |D(i)| is the degree of vertex i in
the graph and Dm(i) is the mth neighbor of vertex i. It is obvious that this
similarity is an iterative function where similarities between web pages
are propagated through recursions. That is, the value of Ss(i, j) in the
tth iteration, denoted as Sst , is based on the values of the t-1th iteration.
More over it has been proved that this recursive function is nondecreasing
and it will converge eventually [3]. We initialize the recursions with Ss0 :
if i=j, then Ss0(i, j)=1; otherwise Ss0(i, j)=0.

2.2 Content Graph

The web content data refers to the content of each web page. The web
content data is modelled as a content graph, Gc = 〈Vc, Ec〉, where each
vertex in Vc is a web page and each edge in Ec represents the semantic
similarity between two pages. It has been experimentally proven that
cosine measure is one of the best measures for web content clustering [7].
Hence, we use the cosine measure to quantify semantic similarity between
two pages. Given a web page i, using some stemming algorithm, it will
be represented as a vector, −→Xi, which correspond to the TF.IDF of the
keywords after stemming [7]. Then, the semantic similarity between two
web pages i and j, denoted as Sc(i, j), is defined as:

Sc(i, j) =
(−→Xi • −→Xj)
||−→Xi|| · ||−→Xj ||

where (−→Xi • −→Xj) is the dot product of the two vectors and ||−→Xj || denote
the length of vector −→Xj .



2.3 Usage Graph

The usage data refers to the access log of the web pages. It also can be
modelled as a graph, called usage graph, Gu = 〈Vu, Eu〉, where each vertex
in Vu is a web page and each edge in Eu represents the usage pattern-based
similarity between two pages. Firstly, we review some of the literature in
web usage mining.

In general, web usage data record the interactions between web users
and the web server. A web access sequence (WAS) is an ordered list of
pages accessed by a user, i.e., A = 〈(p1, t1), (p2, t2), . . . , (pn, tn)〉, where
pi is a web page, ti is the time when pi was accessed and ti ≤ ti+1 ∀
i = 1, 2, 3, . . . , n − 1. Similar to [13], the WASs can be represented as a
sequences ofWAS group based on the user-defined time interval. AWAS
group (denoted as G) is a bag of WASs that occurred during a specific
time period. Let ts and te be the start and end times of a period. Then,
G = [A1, A2, . . ., Ak] where pi is included in WAS Aj for 1 < j ≤ k and
pi was visited between te and ts. As a result, the historical web log data
is divided into a sequence of WAS groups. Let HG = 〈 G1, G2, G3, . . .,
Gk 〉 be a sequence of k WAS groups generated from the historical web
log data. Given a web page i, let Hi = 〈 Φ1(i), Φ2(i), Φ3(i), . . ., Φk(i) 〉
be the sequence of support values of i in HG. Note that, for 1 ≤ t ≤ k,
Φt(i) = N

|Gt| , where N is the number of WASs that contain i.
Given two web pages, i and j, with the corresponding web usage data,

the usage pattern-based similarity, denoted as Su(i, j), is defined as:

Su(i, j) = λ× e−D + (1− λ)×
∑k

t=1(Φt(〈i, j〉) + Φt(〈j, i〉))∑k
t=1(Φt(i) ∪ Φt(j))

,

where D =
√∑k

t=1 |Φt(i)− Φt(j)|2.
Note that, the usage pattern-based similarity is a linear combination of

the evolution pattern-based similarity and the implicit link-based similar-
ity. The evolution pattern-based similarity is denoted as e−D, where D is
the Euclidian distance between the support sequences H(i) and H(j). The
implicit link-based similarity is represented as the percentage of WASs
that contain i and j consecutively against the total number of WASs
that contain at least one of i and j . Here, λ and 1−λ are the weights of
evolution pattern-based similarity and the implicit link-based similarity.
It is obvious that both the evolution pattern-based similarity and implicit
link-based similarity are within the range between 0 and 1. Similarly, the
usage pattern-based similarity is between 0 and 1.



(a): structure graph (b): content graph (c): usage graph (d): multigraph

Fig. 2. Web data representation

2.4 Multigraph

We merge the above three graphs using a multigraph, which includes web
structure, web content, and web usage data in a website. A multigraph is
a graph whose edges are unordered pairs of vertices, and the same pair of
vertexes can be connected by multiple edges. In this case, there are three
edges for each pair of vertexes. These three edges represent the edges of
structure graph, content graph, and usage graph.

Definition 1. [Multigraph] A multigraph is represented as a 3-tuple
M = 〈 V, E, f 〉, where V is a set vertexes , E a set of edges, and f is a
function f (ei) = {{u,v}|u, v ∈ V ; u 6= v } that takes an edge ei ∈ E and
returns the set of web pages u and v that are connected by ei. Two edges
ei and ej are called parallel or multiple edges if f (ei) = f (ej).

An example of the multigraph representation of website data is shown
in Figure 2 with the corresponding structure graph, content graph, and
usage graph. Note that, the similarities between disconnected web pages
are 0 and the weights of the edges represent the corresponding similarity
values.
Website-based Event Detection Problem: Based on the multigraph
representation of the website related data, each real world event corre-
sponds to a strongly connected subgraph in the multigraph. That is, a
real world event can be represented as a set of structurally and seman-
tically strongly connected web pages with similar usage patterns in the
multigraph. The website based event detection problem is to extract such
subgraphs from the multigraph representation.

3 iWed Algorithms

In this section, we present the iWed event detection algorithms based on
the multigraph representation of the website data. To extract the strongly
connected subgraphs from a graph, different graph cut algorithms have
been proposed. In this paper, we adopt the normalized graph cut algo-
rithm, which is widely used in object extraction from image data and
frame segmentation of video data [6].



The three similarity measures, Ss, Sc, and Su, introduced in Section 2
can be classified into two categories: topic similarity and evolution simi-
larity. Topic similarity is the combination of the structure similarity (Ss)
and the semantic similarity (Sc), while evolution similarity is the usage
pattern-based similarity (Su). Based on these two categories, we propose
two variants of iWed algorithms for cutting the multigraph. The first
approach, called the fusion approach, fuses the two types of similarity
measures together and cut the graph by treating the multiedges between
two vertexes as a single edge. The second approach, called the level-wise
approach, cuts the graph with the topic and evolution similarity measure
separately. We now elaborate on these two approaches.

Fusion Approach: The fusion approach, denoted as FUS, integrates
the three similarity measures together using linear combination with dif-
ferent weights. Such kind of fusion has been extensively used in combining
different types of similarity measures in web content analysis [3]. In the
fusion approach, a new similarity S is proposed as: S = αSs +βSc +γSu,
where α, β, γ are the weights for the corresponding similarity measure,
and α+β+γ=1. Then, the multigraph is transformed to a normal graph,
where the weight of each edge is represented by S. The graph is then cut
using the normalized graph cut algorithm.

Level-wise Approach: In the level-wise approach, the topic similarity
and the evolution similarity are used to cut the multigraph separately.
Note that, the topic similarity, denoted as ST , defined as the fusion of
structure similarity and semantic similarity. There are two alternative
level-wise approaches. In the first approach, denoted as LTF (Level-wise
Topic First), the multigraph is cut based on the topic similarity, which
corresponds to only two types of edges in the multigraph, and the result,
CT , is returned. Then, each subgraph in CT is cut again based on the
evolution similarity and the final result, CF , is returned. In the second
approach, denoted as LEF (Level-wise Evolution First), the multigraph
is first cut based on the evolution similarity and the result, CE , is re-
turned. Then, each subgraph in CE is cut again using the topic similarity
and the result CF is returned. The underlying intuition is that, in the
first approach, web pages are clustered into semantic topics before they
are clustered into events as each event is expected to be a set of seman-
tically similar web pages that have similar usage patterns. In the second
approach, firstly web pages that correspond to similar types of events are
gathered together and then clustered based on their semantic relation-
ships.



For both the fusion approach and the level-wise approach, we present
the clustering results with a hierarchical structure. That is, at the first
recursion of the 2-way graph cut algorithm, there are two partitions.
After that each partition is further cut into two child partitions and so
on. However, not all the subgraphs correspond to real world events. To
identify real world events and exclude outliers, we propose an intra-cluster
similarity measure, Sintra(G′), for any subgraph G′:

Sintra(G′) =
2

∑|G′|
i S(i, j)

|G′| × (|G′| − 1)
, where i 6= j and i, j ∈ G′. Based on this similarity measure, a threshold τ
in the range of [0, 1], is proposed to distinguish the event-based subgraph
and the non-event-based subgraph. A subgraph, G′ in the cut results
corresponds to a real world event if and only if Sintra(G′) ≥ τ .

4 Performance Evaluation

In this section, the experimental results are presented to show the perfor-
mance of our proposed event detection approaches. The three approaches,
FUS, LTF , and LEF , are implemented and compared to the baseline
approach, Bl, which only takes the structure and content of web pages
using the corresponding similarity measures proposed in Section 2.

In our experiments, a synthetic e-commerce website dataset is used.
Even though there are some real web usage datasets available, but due
to privacy issue the original URLs and web pages are not available and
cannot be used in our experiments. The synthetic dataset we generated
consists of 300 products and 2000 unique web pages. The 300 products
belong to 5 categories, where the content of the web pages are gener-
ated according the attributes of products in different categories (we use
the schema extracted from http://www.bargaincity.com.sg, which is the
one of the biggest e-commerce websites in Singapore). The usage data
are generated in three steps. Firstly, the web access sequences are gener-
ated using uniform random generation. Then, we synthesized a list of 100
events (20 burst events such as one day only promotion and release of new
products, 40 periodic events such as weekend promotion and new semester
promotion, 20 increasing events such as price of a popular product keeps
decreasing, 20 decreasing events such as some products are fading out of
the market). Lastly, some noise access sequences are randomly inserted
into the web usage data to mimic the real life usage data. In total, there
are 10,000,000 unique page request in the synthetic web usage data, which
are partitioned into 100 access groups.



4.1 Evaluation Measures

As the event detection results are set of events, which consist of sets of web
pages, it is different from existing classification algorithms. Although, we
have the set of labelled events with corresponding web pages, the precision
and recall measures in our event detection approach are different for the
following reasons. Since an event consists of many web pages, the event
may be detected but the corresponding web pages may not be accurate.
That is, some pages may be missed and some non-related pages may be
included. For example, given a real world event E = {P1, P2, P3, P4, P5},
there may be one corresponding event E′ = {P1, P3, P4, P7, P8} in the
detection results. Moreover, for one real world event, there may be more
than two corresponding events in the results. For example, given a real
world event E = {P1, P2, P3, P4, P5}, there may be two corresponding
events E′ = {P1, P3, P4, P7, P8} and E′′ = {P2, P5, P9} in the detection
results. We propose precision/recall measure for event detection based on
the commonly-used precision/recall from IR.

Let E = {E1, E2, · · · , En} be the set of detected events based on
our proposed approach and E ′ = {E′

1, E
′
2, · · · , E′

m} be the set of labelled
events in the dataset, where each event Ei consists of a set of web pages
{Pi1, Pi2, · · · , Pik}. For each Ei, the corresponding real event E′

j with the
largest value of |Ei ∩E′

j | is selected, |Ei| is the number of pages included
in that event while |Ei ∩ E′

j | is the number of common pages included
in both Ei and E′

j . Also, for each real world event E′
j , the corresponding

event Ei with the largest value of |Ei ∩ E′
j | is selected from the results.

Moreover, for different events in the real world, their corresponding events
in the results should be different and vise versa. Then, the precision and
recall are defined as:

Pr =

∑|E|
i

|Ei∩E′j |
|Ei|

|E| Re =

∑|E ′|
j

|Ei∩E′j |
|E′j |

|E ′|.

4.2 Experimental Results

Two sets of experiments have been conducted to evaluate our proposed
event detection approaches. Firstly, comparison of our proposed event
detection approaches with the baseline approach is presented. Secondly,
we show the effects of intra-similarity threshold τ on the quality of the
detected events. Within each set of results, both the overall performance
and the performance for each type of events are presented. Lastly, we
discuss about how to set the fusion parameters in the FUS approach.



(a) All events

Alg Pr Re F1

Bl 0.376 0.108 0.168
FUS 0.729 0.696 0.712
LTF 0.591 0.412 0.486
LEF 0.684 0.625 0.653

(b) Burst events

Alg Pr Re F1

Bl 0.531 0.192 0.282
FUS 0.892 0.751 0.815
LTF 0.674 0.582 0.625
LEF 0.873 0.749 0.806

(c) Periodic events

Alg Pr Re F1

Bl 0.227 0.098 0.137
FUS 0.678 0.622 0.649
LTF 0.535 0.491 0.512
LEF 0.647 0.562 0.602

(d) In/Decreasing events

Alg Pr Re F1

Bl 0.483 0.298 0.364
FUS 0.912 0.895 0.904
LTF 0.692 0.769 0.728
LEF 0.875 0.864 0.869

(e) FUS

τ Pr Re F1

0.1 0.314 0.452 0.371
0.3 0.729 0.696 0.712
0.5 0.758 0.712 0.734
0.7 0.841 0.709 0.769
0.9 0.413 0.422 0.417

(f) LEF

τ Pr Re F1

0.1 0.279 0.354 0.312
0.3 0.591 0.412 0.486
0.5 0.681 0.527 0.594
0.7 0.748 0.699 0.723
0.9 0.324 0.435 0.371

Table 1. Event Detection Results

Note that, the λ value in the usage pattern-based similarity is set to 0.5
for the following experiments.

Table 1(a) shows the performance of the four approaches with the
precision, recall, and F1 measure1. It can be observed that the LEF ,
FUS, and LTF approaches outperform the baseline approach, Bl, which
shows the improvement of integrating the usage data and their evolution
patterns. Among our proposed approaches, the LEF and FUS archive
better performances than the LTF approach. However, the FUS and
LEF approaches can discover them as a single event. This is because
some of the synthetic events in our dataset usually cover more than one
semantic topic. Tables 1(b), (c), and (d) show the performance of our
approaches with respect to different types of events.

In the above experiments, weights of the three similarity measures
are set to 0.31, 0.20, and 0.49, which are experimentally proved to be the
optimal values for our dataset. The threshold for intra-cluster similarity
is set to 0.6. Tables 1(e) and (f) show the quality of the event detection
results of the FUS and LEF approaches by varying the corresponding
τ values. The results are for all types of events. Observe that the effects
of threshold τ are similar for the three types of events. When the value
of τ increases from 0.3 to 0.7, the quality of the event detection results
becomes better; when the value of τ increases from 0.7 to 0.9, the quality
of the event detection results becomes worse. This is because when the
threshold for intra-cluster similarity is too small/large, the number of
events detected may be too many/few. While the number of real world

1 The F1 measure is computed as F1 = 2∗Pr∗Re
Pr+Re



event is fixed, the performance of the approaches decreases when the
threshold is close to the two extremes.

From the results shown in Table 1, it is evident that the FUS approach
performs relatively better than other approaches in most cases. This is
because, in the FUS approach, the weights of different types of similarities
can be tuned. In our experiments, we show the average results of the
FUS approach. It can be observed that the usage pattern-based similarity
significantly improves the clustering results. Moreover, we observed that
the structure similarity is less important than the usage pattern-based
similarity but more important than the content similarity.

5 Conclusions

This work is motivated by the fact that existing event and object detection
approaches only analyze the content and structure data of a website. In
this paper, we integrate the author-centric and visitor-centric data to
detect real-world events. Experimental results show that our proposed
approaches can produce promising results.
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