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Abstract—Time series classification (TSC) has been one of the
most fundamental problems of time series data. Time series
shapelets (or simply, shapelets) are discriminative subsequences
that have been recently found both effective and interpretable for
solving TSC. However, shapelet discovery is known to be com-
putationally costly. Meanwhile, matrix profile has been recently
proposed for efficient motif discovery and anomaly detection.
Our preliminary experiment shows that a direct adoption of
the matrix profile on TSC does not bring superior classification
accuracy. We have identified two main issues of such an adoption:
1) discords as “shapelets”, and 2) lack of shapelet diversity. In
response to these issues, we propose instance profile for shapelets,
called IPS, for shapelet discovery for TSC. The main challenge is
to utilize the instance profile (IP) to capture the characteristics of
shapelets in a robust manner and then to discover high-quality
shapelets efficiently. First, we use our IP to generate abundant
shapelet candidates. We next efficiently prune candidates that
do not align with the definition of shapelets using a novel
distribution-aware bloom filter (DABF). Three utility functions
are proposed to measure the shapelet candidates and DABF is
used to efficiently compute the functions. We have conducted
comprehensive experiments on IPS with 12 competitive state-of-
the-art methods using UCR Archive datasets. The efficiency is
on average 25 times faster than that of BSPCOVER (the current
state-of-the-art method). The accuracy of IPS is comparable to
or higher than that of existing work. Furthermore, we select one
case study to illustrate the interpretability of the shapelets.

Index Terms—Time series classification, Instance profile,
Distribution-aware bloom filter, Efficiency, Accuracy

I. INTRODUCTION

Time series classification (TSC) is one of the most fun-
damental analyses of time series data. TSC has attracted
substantial research attention, such as [2], [12], [13], [21],
[31], [33]. The traditional approaches to solving the TSC
problem can be classified into four categories, namely, whole
series-based, intervals-based, dictionary-based, and model-
based [2]. Raw data analysis, feature extraction, frequency of
subsequences’ repetition, and generative model, among other
detailed methods, have been employed in these approaches.
Recently, Ye et al. [35] have proposed shapelets, which can
be intuitively considered as discriminative subsequences that
maximally represent classes of the time series. Shapelet-based
methods (e.g., [11], [16], [23], [26], [35]) have repeatedly
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Fig. 1. Concatenations of time series (TA and TB) of two classes (namely,
class A and class B) taken from the ArrowHead dataset of UCR Archive [9]

Shapelet Shapelet

Fig. 2. Two shapelets of Class A for ArrowHead [9] in Figure 1, which exist
in Class A but not in Class B. S1 and S2 correspond to the shapelets at the
bottom of the arrow.

found superior in solving TSC. Interested readers may refer
to an excellent survey on TSC [2].

Shapelets are discriminative time series subsequences orig-
inally proposed for TSC [35]. Shapelets can be readily inter-
preted by humans as they are subsequences themselves. We
illustrate an example of a popular time series dataset, called
ArrowHead [9]. The left-hand side of Figure 1 shows the
raw data, whereas Figure 2 shows two shapelets of Class A.
A key step of shapelet-based methods is to discover high-
quality shapelets for TSC. Lines et al. [26] propose shapelet
transformation for discovering shapelets to represent the orig-
inal time series into a new space. Some classic classification
methods, such as Nearest Neighbor, Naive Bayes, and SVM,
then can be applied to the transformed data to do classification.
Grabocka et al. [16] introduce a logistic regression function
to learn near-to-optimal time series shapelets for TSC, called
LTS. The classification accuracy of the UCR Archive [9],
a well-known benchmark of time series datasets, is thus
significantly increased. Li et al. propose ShapeNet, a neural-
network approach for discovering shapelets on multivariate
TSC [24]. However, the efficiency of shapelet discovery has
not been the main focus of these previous works. The number
of shapelet candidates is large, and a few parameters, such as
shapelet number and length, are explored manually for TSC.
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Fig. 3. The matrix profiles of (TA, TB) and (TA, TA) of Figure 1, denoted
as PAB and PAA
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Top-5 shapelet indicators of the MP baseline method [37]

Fig. 4. The difference between the matrix profile PAB and PAA of Figure 3
denoted as diff(PAB , PAA)

Recently, matrix profile (MP), a data structure to annotate
time series, has been proposed for computing the time series
motifs and discords. One strength of matrix profile is to
discover the time series motifs and discords both efficiently and
accurately [1], [8], [36], [37]. However, few matrix profile-
based shapelet methods for TSC have been proposed. Yeh
et al. [37] sketched a baseline method, concatenating all the
time series instances of each class (e.g., Class A and B
in Figure 1), and then computing the corresponding matrix
profile, as shown in Figure 3. It has been argued [37] that the
large differences (in Figure 4) of the matrix profiles can be
indicators of high-quality shapelet candidates. The intuition is
that a discriminative pattern presenting in, say, Class A, but
not Class B, results in a big gap in the values between the
matrix profiles.

There are however two main issues of such a method for
discovering shapelets, which can yield detrimental effects on
the quality of the shapelets (to be detailed in Section II-B). In
a nutshell, the indicator may identify a discord of both Class A
and Class B as a shapelet (1st issue, discords as “shapelets”),
which is possible to have a large difference between the matrix
profiles. This situation contradicts the definition of shapelets,
which are generally close to one class but far away from
the other classes [35]. Previous work [37] concatenates all
time series instances into one long instance, which reduces
the diversity of shapelets (the 2nd issue, lack of shapelet
diversity), although this could be mitigated by picking top-
k shapelets [37]. However, the top-k shapelets can be similar
to each other and the 2nd issue still exists.

Contributions. This is the first work to take the advantage
of both shapelet and matrix profile for TSC, called instance
profile for shapelets, namely IPS, which addresses the above-
mentioned issues. An overview of IPS is presented in Figure 5.

First, we propose the instance profile (IP) on the time series
instances generated from a sampling method [5], which is
different from the previous work [37] (the MP baseline) to
concatenate all the time series instances into one. In particular,
some time series instances are randomly selected from the
training set to concatenate into one long time series for the

shapelet candidates, which is more robust than the MP baseline
in each sample of instances. We calculate the initial motif and
discord candidates. Since the candidates are voluminous, we
propose distribution-aware bloom filter (DABF) to prune them
in O(N), where N is the length of time series. DABF can
efficiently prune similar candidates via using LSH [14] and the
distribution of the time series subsequences in the codomain.
It is worth mentioning that the MP baseline method [37] can
be viewed as an extreme case of our IPS to concatenate all
the time series instances in one sample without the DABF for
optimizing the efficiency.

Second, we propose three utility functions to score the
shapelet candidates from three different perspectives derived
from the definition of shapelets, namely the intra class, inter
class, and time series instances from the same class. As the
name suggests, the intra class utility quantifies the distance
of motif candidates from the same class. The motifs and
discords from the inter classes are utilized to eliminate the
shapelet candidates with low quality. The time series instances
from the same class can furtherly contribute to the quality
of the final shapelets. We further propose two optimization
techniques, namely distribution transformation (DT) and com-
putation reuse (CR), which exploit DABF for efficiency. For
self-containedness, we adopt shapelet transformation rather
than directly use shapelets to do the classification [16], [23].

Finally, we conduct extensive experiments on the UCR time
series archive [9]. The comparison with the MP baseline and
the current state-of-the-art BSPCOVER proves the efficiency
superiority of IPS. We show the efficiency of the DABF and
two optimization techniques. We note that IPS performs the
best accuracy in 9 datasets out of 46 datasets. IPS is ranked
4th on accuracy among all the 13 state-of-the-art methods.
We illustrate one case study to use the discovered shapelets to
interpret the classification results.
Organization. The rest of this paper is organized as follows.
Section II presents some terminologies and investigates two
issues with the MP baseline method. The details of our
IPS method are introduced in Section III. Section IV reports
the experimental results on efficiency and accuracy. Section V
reviews the related work. Section VI concludes the paper.

II. PRELIMINARIES

In this section, we introduce some background, problem
statement, and the analysis of two issues with the MP baseline
method for TSC.

A. Terminologies and Notations

In this subsection, we present some terminologies and
summarize the notations and their meanings in Table I.

Definition 1: Time series T . A time series T is an ordered-
value sequence T = (t1, t2, · · · , ti, · · · , tN ), where N is the
length of T , ti ∈ R, i ∈ [1, · · · , N ]. �

Definition 2: Time series dataset D. A time series dataset
D is a set of time series. Tj is a time series. Cj is the class
label of Tj , where Cj ∈ C, j ∈ [1,M ]. C = {1, 2, · · · , |C|},
and |C| denotes the number of classes. �



with DT & CR
utility functions51

shapelet
raw time

standard
shapelets

e.g. SVMtransformation[26]
series

classification

IPrandom
sampling

2

candidates generation
(Sec. III.A)

bloom filter (DABF)

(Sec. III.B & C)

distribution-aware

candidates pruning4

3 motif pool

discord pool

top-k

(Sec. III.D & E) 
motifs/

discords

IPS

Fig. 5. The overview of IPS for TSC. From 1© the multiple samples randomly selected from all the time series instances, we employ the motifs calculated
by 2© the instance profile (IP) as the initial shapelet candidates. The motifs are the frequent time series subsequences, which meet the part of shapelets’
definition, widely existing in a dataset. However, the motifs may not only exist in one class. We then discover the motifs existing in one class through 3© the
distribution-aware bloom filter (DABF) to 4© prune similar candidates from the inter (other) classes. We propose 5© three utility functions (from intra class
motifs, inter classes motifs/discords, and intra class time series instances) to score the shapelet candidates for computing the final top-k shapelets with two
optimization techniques (DT & CR) based on DABF.

TABLE I
SUMMARY OF FREQUENTLY USED NOTATIONS

Notation Meaning
T a time series (t1, t2, · · · , ti, · · · , tN ),

where ti is the i-th value in T and N is the length of T
Ta,b a subsequence Ta,b of T , (ta, · · · , tb),

where 1 ≤ a ≤ b ≤ N ,
a and b, the beginning and ending positions of the subsequence

D a time series dataset (T1, T2, · · · , TM ),
where M is the number of time series in D

C the label set, a.k.a class {1, 2, · · · , |C|}
DC C is the label in C; and

for all T ∈ DC , the label of T is C
TC concatenating all time series instances from class C

into one longer time series (e.g., TA, TB in Figure 1)
MP the matrix profile (value)
S set of shapelets

diff the difference between matrix profiles
dist the ED distance between time series (subsequences)
label the label of time series

Definition 3: Subsequence Ta,b. Given a time series T , a
subsequence Ta,b of T is (ta, · · · , tb), where 1 ≤ a ≤ b ≤ N ,
a and b are, respectively, the beginning and ending positions
of the subsequence in T . �

Definition 4: Distance between two time series [11]. The
distance of the sequence Tp of the length |Tp| and Tq of the
length |Tq| is denoted as (w.l.o.g. assuming |Tq| ≥ |Tp|),

dist(Tp, Tq) = min
j=1,··· ,|Tq|−|Tp|+1

1

|Tp|

|Tp|∑
l=1

(tqj+l−1 − tpl)2
,

(1)
where tqi and tpi are the i-th value of Tp and Tq , respectively.
�

Definition 5: Matrix profile. Given a time series T with
a length N and a specific subsequence length L, the matrix
profile is a data structure to annotate T ,

MP (T, L) = (mp1,mp2, · · · ,mpi, · · · ,mpN−L+1) (2)

where mpi, i ∈ [1, N−L+1] is the nearest neighbor distance
of the subsequence Ti,i+L−1 among the other subsequences
with length L in T .1 �

1Since the subsequences located near Ti,i+L−1 may have small distance
from Ti,i+L−1, those subsequences are excluded from finding mpi.

Definition 6: Shapelet S [35]. A shapelet S of the length
|S| of class Cj , where Cj ∈ C, is a time series subsequence,
which represents class Cj and discriminates Cj from other
classes, i.e., C \ {Cj}. That is, for all Tj having the label
Cj , dist(Tj , S) is smaller than dist(Ti, S), where Ti is time
series having a label in C \ {Cj}. �

According to Formula 1, we can define the distance between
the j-th time series Tj and a shapelet candidate Si of the length
|Si| as follows:

dj,i = dist(Tj ,Si) (3)

Definition 7: Shapelet transformation [26]. Shapelet trans-
formation is a method to transform a time series Tj into an
embedding in new data space (dj,1,· · · ,dj,|S|) by calculating
the distances with a set of discovered shapelets S for TSC,
where dj,i = dist(Tj , Si) and Si ∈ S. �

Problem statement. Given a time series dataset D, this paper
investigates an efficient shapelet discovery method for time
series classification. �

B. Two issues of the MP baseline method

In this subsection, we analyze two inherent issues of the
MP baseline method in detail.
Baseline. We introduce the main idea of the baseline method
of directly using MP to determine shapelets [37]. The baseline
selects the time series subsequence at the location of the
largest difference in the MP as the final shapelet for Class
A (indicated in Figure 4). Specifically, Formula 4 shows how
is the subsequence selected by the baseline method. It finds a
time series subsequence S as the “shapelet” with the largest
difference between the distances of S and the concatenated
time series TA and TB , respectively.

arg max(diff(PAB ,PAA)) =

arg max
S

label(TB)6=label(TA)

||dist(S, TB)− dist(S, TA)||, (4)

where S is from Class A of length L, starting from i ∈ [0, N−
L+ 1].

The idea above can be easily extended to discover the top-
k shapelets by using the top-k largest differences. We then
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Fig. 6. An example of matrix profiles and the difference to show the 1st issue
Discords as “shapelets” [37]. We observe the largest difference in the below
part. The value in the PAB (the above part) is the largest one, the value in
the PAA (the above part) is however the largest one (the second scenario).
That value in PAA shows that the subsequence is a discord in the TA, which
contradicts that the subsequence should present widely in Class A [35].

illustrate two issues of the baseline method with an example
of the dataset ArrowHead in Figure 1.

1st issue: Discords as “shapelets”. The first issue is that
the largest difference indicator only considers the differ-
ence of distances between dist(S, TB) and dist(S, TA), i.e.,
||dist(S, TB) − dist(S, TA)|| is the largest. There are two
possible scenarios in the following and an example in Figure 6.
• One scenario is the larger dist(S, TB) (discord in TB)

and the smaller dist(S, TA) (motif in TA). S appears in
TA but not in TB , which shows S can be a shapelet of
high quality.

• Another scenario is that S is a discord in both TA and
TB , where dist(S, TA) and dist(S, TB) are both large.
If the distances can be large, their difference can still be
large. This does not necessarily indicate S can distinguish
Class A from B but there is simply no subsequence in
both classes that is similar to S.

Assume another two scenarios are with the same difference
between PAA and PAB value, and they are both the largest
difference, which causes the shapelets classification error.

Example 1: One scenario is both the discord in Class B
and Class A, the other is a discord in Class B and a motif in
Class A. We formalize the scenario in the following.

||dist(S1, TB)− dist(S1, TA)||︸ ︷︷ ︸
S1 is a discord both in TB , TA

= ||dist(S2, TB)− dist(S2, TA)||︸ ︷︷ ︸
S2 is a discord in TB , but motif in TA

Although the shapelet candidate in the second case (namely,
S2) is better than S1 under the intuition of the shapelet, it
is difficult for the MP baseline method to determine the final
top-1 shapelet through Formula 4. �

2nd issue: Lack of shapelet diversity. The second issue is
that the MP baseline method concatenates the time series of a
class into one long time series (shown in Figure 1). The MP is
built on the concatenated time series and the baseline method
does not necessarily find shapelets that represent the whole
class. When such shapelets are used for classification, they
could not yield high accuracy. There are two specific issues
about lack of diversity.

2.1: Classification ineffectiveness. This issue of the MP

TABLE II
THE ACCURACY OF THE DIFFERENT TOP-k SHAPELETS ON MP BASELINE,

1NN-ED, AND 1NN-DTW ON FOUR DATASETS FROM UCR ARCHIVE

The k in top-k 1 2 5 10 20 50 100 ED DTW
ArrowHead 61.71 64 61.14 65.14 61.28 65.71 61.71 80 70.29
MoteStrain 69.88 77.47 77.08 78.59 77.02 77.39 78.19 87.79 83.47
ShapeletSim 52.23 55.56 54.44 58.33 60.56 57.77 56.11 53.89 65
ToeSegmentation1 66.66 67.1 70.18 68.86 71.49 72.36 71.93 67.98 77.19

baseline method is that the discovered shapelets may only
separate few time series instances. The baseline method con-
catenates all the time series instances into one long time series
instance (e.g., TA, TB), which shrinks the number of correctly
classified instances for the final shapelets. From Formula 4,
we can further investigate that TA/TB (Figure 1) is one long
concatenated time series instance, which means the discovered
shapelets are only aimed at the long time series instance
TA/TB . However, the shapelets should classify all the time
series instances from dataset DC . For example, the top-1
shapelet can only classify some of the time series instances,
even though the shapelet is the motif in Class A and the
discord in Class B. We can realize that the accuracy of top-
1 on the MP baseline method is much lower than those of
1NN-ED [9] and 1NN-DTW [9] in Table II.

2.2: Similar subsequences as shapelets. In practice, the
shapelet diversity cannot be alleviated by simply selecting
the top-k shapelets because there can be high similar shapelet
candidates. It can be observed from Figure 1, Figure 3, and
Figure 4. The top-5 shapelet indicators refer to similar subse-
quences in TA, which limits its classification effectiveness.

To investigate the possibility of two issues, we study that
the accuracies of the baseline’s top-k shapelets by tuning k
from 1 to 100. The results are reported in Table II. It can
be observed that the baseline method of various ks has lower
accuracies when compared to simple methods such as 1NN-
ED [9] and 1NN-DTW [9]. On the contrary, the shapelets
cannot distinguish on average 33% of time series from Class
A and Class B even when k = 100. In all, two issues affect
the quality of the discovered shapelets.

III. INSTANCE PROFILE FOR SHAPELETS (IPS)

In this section, we propose a novel shapelet discovery
approach, called instance profile for shapelets (IPS), to address
the two issues. We develop the essence of shapelet discovery
in the following.

arg max
S

∑
T ′,T∈D

label(T ′)6=label(T )

||dist(S, T ′)− dist(S, T )|| (5)

We consider all the original time series instances from D
in Formula 5 for supporting the robustness and improving
the diversity of candidates, rather than one concatenated time
series in Formula 4.

A. Overview of Instance Profile

We define instance profile (IP) formally and then present
the shapelet candidate generation process with IP.



A time series dataset D = {D1, D2, · · · , DC , · · · , D|C|}
is with M time series instances Tm of class label Cm,m ∈
[1,M ] of each instance length N . Specifically, time series
instances from one class in D is DC = {T1, T2, · · · , T|DC |},
which can be concatenated into one long instance TC , namely,
TC = concatenate(T1, T2, · · · , T|DC |).

Definition 8: Instance profile. Given a time series dataset
D and a specific subsequence length L (≤ N ), the instance
profile is a data structure to annotate D, which consists of
IP (DC , L), the instance profile of DC , specifically,

IP (DC , L) = IP (TC , L) =

(ip1, ip2, · · · , ipi, · · · , ip|DC |·(N−L+1)) (6)

where ipi is the minimum of the nearest neighbor distance
of the subsequence T i,i+L−1

m among the other subsequences.
Thus,

IP (D,L) =(
IP (D1, L), · · · , IP (DC , L), · · · , IP (D|C|, L)

)
(7)

Definition 9: Subsequence Samples for IP. The subse-
quences set SL

C for T i,i+L−1
m , to calculate its ipi for the

instance profile IP (DC , L), is generated from QS time series
instances randomly selected of DC , namely,

SL
C =

QS⋃
m′=1

T i′,i′+L−1
m′ (8)

where m′ 6= m, i′ ∈ [0, N − L+ 1], QS ≤ |DC |.
Thus,

ipi = min(dist(T i,i+L−1
m , T i′,i′+L−1

m′ )) (9)

where T i′,i′+L−1
m′ ∈ SL

C . �
We further introduce the details of shapelet candidate gen-

eration in Algorithm 1. The empty set is initialized for each
class to store the candidates (Line 2) and QN samples (Line 3)
are generated for each class (a.k.a in a bagging way [5]). Each
sample contains QS time series instances, which are randomly
selected from DC , to generate QC (Line 4). The instances
are then concatenated into one long time series TQC

(Line
5). For the different lengths of the subsequences in φ (Line
6), we utilize the Definition 8 and Definition 9 to calculate
instance profile then deduce the motifs and discords (Lines
7-8). Finally, the motif and discord are added into ΦC (Lines
9-10).

Complexity analysis. The time complexity of Algorithm 1 is
O(|C| ·QN · |φ| ·N2), namely N2, where N is the length of
time series.

We select the motifs as final shapelet candidates for the
1st issue. The diversity of the candidates (2nd issue) is
also significantly increased in Algorithm 1. However, it can
computationally cost to discover high-quality shapelets from a
large number of candidates. Let us use the ArrowHead dataset
as an example. The class label, training set, and length are 3,
36, and 251, respectively. We set the sample number QN to
20, and use 5 different lengths of candidates. To discover top-k

Algorithm 1: Shapelet candidate generation with IP
Input: Dataset D, the class labels C of D, sample number

QN , sample size QS , candidate lengths
φ = {l1, · · · , l|φ|}

Output: Candidate pool Φ
1 foreach C ∈ C do
2 initialize ΦC = ∅ ;
3 for i = 0; i ≤ QN ; i+ + do
4 QC = getsample(DC , QS) ; // random sampling
5 TQC = concatenate(QC) ;
6 for j = 0; j ≤ |φ|; j + + do
7 ΦmotifC = min

(
IP(TQC , lj)

)
;

 Def.8 &
Def.9

8 ΦdiscordC = max
(
IP(TQC , lj)

)
;

9 ΦC = ΦC∪ {(ΦmotifC , ΦdiscordC )} ;
10 Φ = Φ ∪ ΦC ;
11 return Φ

shapelets in ArrowHead requires 3×20×5×2512 ≈ 1.89×107

combination trials using the naive method. We therefore pro-
pose the distribution-aware bloom filter (DABF) for pruning
shapelet candidates and propose three utility functions for
generating top-k shapelets efficiently.

B. Distribution-aware bloom filter (DABF)

In this subsection, we first introduce the insight of
distribution-aware bloom filter (DABF), which returns whether
a query is close to most elements in the set. The bloom
filter [4], [6] is a space-efficient index to test whether a query
is in the set. The answer will be either “possibly in the set”
or “definitely not in the set”. The distance-sensitive bloom
filter [15] is proposed to answer whether a query is close to
an element in the set. Similar to the bloom filter [4], [6], the
distance-sensitive bloom filter answer is either “possibly close
to an element” or “definitely not close”. However, the two
previous filters are not specifically designed for our case to
check whether a subsequence is close to most elements in Φ.

The intuitions of the solution are to determine two param-
eters, one for defining time series that are close to each other,
and the other for quantifying the intuition of most elements.
We then calculate the distance between the query and each
element in the set. All the distances are compared with the
parameters for determining whether the query is close to most
elements in the set. The time complexity is however quadratic
O(N2) for this naive method.

We next present the distribution-aware bloom filter (DABF)
to solve the query in O(N). A DABF is a data structure, which
is used to test whether a query is close to most elements
in a set. DABF of a dataset D is composed of DABFC for
each class, which consists of a set of locality-sensitive hashing
(LSH) functions and the distance distribution of the time series
subsequences, denoted as DABFC = (LSHC ,DistributionC).
The DABF construction process is illustrated in Figure 7.

The LSH functions are utilized to hash the whole time series
subsequences, after candidate generation, into the buckets (also
regarded as clustering), which are ranked by the distance
between the center of each bucket (cluster) and the original.



1 2 3

subsequences

NormalizeLSH

Time series

Rank

Best fit
distribution

Buckets

Fig. 7. The construction of distribution-aware bloom filter (DABF) for Class
A. The locality-sensitive hashing (LSH) functions 1© hash similar time series
subsequences into the same bucket with a high probability. We then 2© rank
each bucket according to the distance between the bucket center and the
original. The 3© z-normalization of the distance is calculated for the histogram
to generate the best fit distribution.

TABLE III
THE BEST FIT DISTRIBUTION OF TEN UCR DATASETS ON

DABF CONSTRUCTION UNDER NMSE

Dataset Best fit distribution NMSE Dataset Best fit distribution NMSE
ArrowHead Norm 0.073 GunPoint Norm 0.208
BeelteFly Norm 0.041 ItalyPower. Norm 0.037
Coffee Norm 0.085 Meat Gamma 0.425
ECG200 Norm 0.019 Symbols Norm 0.069
FordA Norm 0.027 ToeSeg.1 Norm 0.179

Definition 10: Locality-sensitive hashing (LSH) fam-
ily [14]. Let (X,M) be a metric space. Let the threshold and
approximation factor be r > 0 and c > 1. An LSH family
H = h : X → U is called (r, cr, p1, p2)-sensitive, ∀x, y ∈ X ,
• if M(x, y) ≤ r, then Prh∼H[h(x) = h(y)] ≥ p1

• if M(x, y) ≥ cr, then Prh∼H[h(x) = h(y)] ≤ p2

where the probability p1 > p2. �
We utilize the LSH scheme under L2 norm, based on p-
stable distribution [7]. The experiments on other polular
LSH schemes are presented in Table VII. The LSH is con-
sidered as a linear map preserving the distance similarity
between two time series subsequences [29], stated in the
Johnson–Lindenstrauss lemma [22]. The z-normalization of
the distance is calculated for fitting the distribution efficiently
(Formula 10).

arg min
DistributionC

∑
Bi∈B

||DistributionC .̄i−Bi||22 (10)

where B = (B1, B2, · · · , B|B|) = histogram(LSHC(Ta,b)),
Ta,b ∈ DC . The x-axis of DistributionC can be divided into
|B| segments. DistributionC .̄i is the average of the values in
the ith segment of DistributionC . Table III shows the best
fit distribution of 10 datasets on DABF construction under
normalized mean square error (NMSE). It shows that 9 out
of 10 datasets fit normal distribution and 7 datasets have an
NMSE smaller than 10%. Hence, in practice, a distribution of
the hashed time series subsequences do exists. The details of
the DABF construction are in Algorithm 2.

Algorithm 2: Construction of DABF

Input: Candidate pool Φ
Output: Distribution-aware bloom filter DABF

1 initialize DABF = ∅ ;
2 foreach C ∈ C do
3 initialize LSHC ; // LSH for each class
4 foreach e ∈ ΦmotifC or ΦdiscordC do
5 LSHC .add(e) ; // Buckets inserting
6 B = LSHC .getbuckets() ;
7 rank B by dist(B.center,0), B ∈ B ;
8 foreach B in B do
9 B = B−B.µ

B.σ ; // Normalize
10 DistributionC = fit B into distribution ; // (10)
11 DABFC = (LSHC ,DistributionC) ;
12 DABF = DABF.add(DABFC) ;
13 return DABF

Algorithm 2 details the DABF construction. We initialize
LSH functions (Line 3) for each class C (Line 2). For the
subsequences in ΦC , we add them into the different buckets
using the LSH (Lines 4-5). The buckets are stored in B
(Line 6). The distance between each bucket center and the
original is computed for ranking the buckets (Line 7). The
z-normalization of each bucket (Lines 8-9) is calculated for
generating the histogram, then fitting the distribution fur-
ther (Line 10). The DABF is constructed with the LSH and
Distribution (Lines 11-12).
Complexity analysis. The time complexity of DABF construc-
tion is O(|C| · |ΦC | ·N), where |C| is the label number, |ΦC |
is the number of candidates in class C, and N is the length
of time series.

Since it is inefficient to discover final shapelets using the
naive method from a large number of candidates generated
by Algorithm 1, we exploit DABF to filter the candidates
efficiently in Section III-C.

C. Shapelet candidate pruning with DABF

In this subsection, we introduce how to prune some can-
didates that do not fit the definition of shapelets with DABF.
In our circumstance, we want to query whether a candidate
is close to most elements in the set. Thus, it is important to
define “most elements”. Chebyshev’s inequality states at least
(1 − 1

z2 )% within z standard deviations (namely zσ) for a
broad range of different probability distributions.

P (µ− zσ ≤ X ≤ µ+ zσ) ≥ 1− 1

z2
(11)

We apply the widely adopted 3σ-rule [28] from Chebyshev’s
inequality on the generated distribution to test whether the
query is close to most elements, specifically, P (|X − µ| ≤
3σ) ≥ 1 − 1

32 ≈ 88.89%. The results are “possibly close
to most elements” to prune the candidates and “definitely not
close to most elements” to determine the candidates for final
shapelets. The major steps of applying the DABF is illustrated
with Figure 8.

We further elaborate on the details of shapelet candidate
pruning with DABF in Algorithm 3. We initialize a 3σ-rule
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Fig. 8. Distribution-aware bloom filter (DABF) structure for pruning shapelet
candidates. We generate a DABF for each class with Algorithm 2 (shown in
1©) and take one candidate e from ΦA as the query for the other two DABFs

generated by ΦB and ΦC in 2© and 4©. Two operations are shown in 6©. If
the candidate can pass DABF, it may have a high discriminative power and
can be maintained. Otherwise, the candidate is removed. Then, we continue
the next candidate until all candidates in ΦA are processed and carry out the
same operation for candidates from ΦB and ΦC .

threshold θ (Line 1) for the DABF.Distribution to define “most
elements”. We then query the candidate e to test whether it
is close to most elements from the DABF of other classes
C̄ ∈ C \ {C} (Line 4). The candidate e is hashed to calculate
the Euclidean distance dist(LSHC̄(e),0), which is normalized
by the mean µ and the standard deviation σ of DistributionC̄ .
The normalized distance is utilized to test whether it is within
the 3σ of the µ in the DistributionC̄ . From our experiments
(Table VII), this calculation only leads to a slight drop in
classification accuracies in practice. If the query result is
”Yes”, namely candidate within µ±3σ, it means that the motif
candidate e is close to most elements at least in one of the other
classes from C̄, we then remove e (Line 6) and update the
motif set Φmotif (Line 7). The same operations are performed
for the discord candidates (Lines 9-10). Otherwise, the DABFs
return ”No”, which indicates this candidate is definitely not
close to most elements in other classes, namely a good quality
for the candidate to be the final shapelet.

Complexity analysis. The time complexity of Algorithm 3,
shapelet candidate pruning with DABF, is O(|C| · |ΦC | ·N).

It takes linear time O(N) to query a candidate with the
DABF, however, quadratic time O(N2) for the naive method.
The DABF prunes candidates efficiently with high similarities,
and does not reduce the diversity of the shapelet candidates,
further the quality of candidates, finally increasing the perfor-
mance.

D. Top-k shapelet selection

From the candidates not filtered by DABF, we score candi-
dates and then select top-k, which are similar to the candidates

Algorithm 3: Shapelet candidate pruning with DABF

Input: Candidate pool Φ, DABF
Output: Pruned candidate Φ

1 initialize θ = 3σ ; // 3σ-rule threshold
2 foreach C ∈ C do
3 foreach e ∈ ΦC and ΦC ∈ Φ do
4 if

∨
C̄∈C\{C}

(
DABFC̄ .DistributionC̄ .query(e, θ,≤)

)
then

5 if e ∈ ΦmotifC then
6 ΦmotifC .remove(e) ;
7 ΦC .update(Φ

motif
C );

8 else
9 ΦdiscordC .remove(e) ;

10 ΦC .update(Φ
discord
C );

11 return Φ

of its class (small intra class distance) and dissimilar to
the candidates of other classes (large inter class distance).
In addition to the candidates’ perspective, we consider the
time series instances from the intra class to further avoid the
scenario in Example 1.

We propose three utility functions for scoring the candidates
from the intra class, inter classes, and time series instances,
respectively. We explain the details of selecting shapelets for
class C. The motif candidates in class C are scored by intra-
class utility (Definition 11), which means the total distance
between one of the motif candidates and other candidates.
When the total distance of the candidate is small, it indicates
that the motif candidate can represent other motif candidates
in class C (one shapelets’ attribute of widely existing in
intra class). The smaller the total distance among the motif
candidate is, the more likely the candidate is a final shapelet.

Definition 11: Intra-class utility. The intra-class utility is
the distance between the motif candidate Cani and other motif

candidates
|ΦC |∑
j=1

Canj is denoted as,

Uintra(Cani) =
1

1 + e
−

|ΦC |∑
j=1

dist(Cani,Canj)

(12)

where both Cani and Canj are from intra class C. �
We then employ the motifs/discords from the inter classes
{C \ C} to score motif candidates (from class C) by inter-
class utility (Definition 12). The large value computed by
Formula 13 implies that the motif candidate (from class C) has
a large distance with motifs/discords (from {C \ C}), which
signifies another shapelets’ attribute, far away from the other
classes.

Definition 12: Inter-class utility. The inter-class utility is
the distance between the motif candidate Cani and other
motif/discord candidates Canj is denoted as,

Uinter(Cani) =
1

1 + e
−

|Φ{C\C}|∑
j=1

dist(Cani,Canj)

(13)



where Cani from class C and Canj from {C \ C}. �
We next incorporate the distance between motif candidates

and the raw time series instances also from class C into the
score. Intra-instance utility (Definition 13) is designed for the
characteristics of shapelets that the time series instances in the
same class should be closer to the shapelet.

Definition 13: Intra-instance utility. The utility is the
distance between the motif candidate Cani and time series
Tj is denoted as,

UDC
(Cani) =

1

1 + e
−

|DC |∑
j=1

dist(Cani,Tj)

(14)

where both Cani and Tj are from class C. �

Brute force method. To calculate each utility and sum the
three utilities for each motif candidate, then sort the scores
for selecting the final top-k candidates, is however time-
consuming O(|C| · |ΦC | ·N2).

E. Optimization of utility computation

We propose the following two techniques, namely distri-
bution transformation (DT) and computation reuse (CR), for
computing the final candidates efficiently.

1) Distribution transformation (DT): We transform the
raw subsequences/candidates distance calculation, namely
dist(Cani, Canj), into a lower bound for Euclidean space [7]
through DABF.

We employ the intra-class utility (Definition 11) to clarify
it in detail. The hash of Cani and Canj is calculated in the
DABF.Distribution. The dist(Cani, Canj) is then transformed
into the distance in the Distribution space.

dist(Cani, Canj) ≥
||LSH(Cani)− LSH(Canj)||

(1 + ε)

>
||LSH(Cani)− LSH(Canj)||

2
(15)

= |Bi −Bj |

where 0 < ε < 1 and we use Bi to simplify the formula.
The original intra-class utility is reformulated as follows,

Uintra(Cani) > Ũintra(Cani) =
1

1 + e
−

|ΦC |∑
j=1
|Bi−Bj |

(16)

The similar transformation can be employed for the inter-class
utility (Formula 13) and intra-instance utility (Formula 14).

Analysis. If two candidates from the same class are hashed
into the same bucket. Then, the final score, namely the sum
of Uintra, Uinter, and UDC

of candidates, is the same. The
error of the distance between two candidates is less than the
width of the bucket. As a result, the time complexity of the
calculation is reduced from O(N2) to O(N).

Algorithm 4: Top-k shapelet generation with optimiza-
tion

Input: Dataset D, pruned candidate Φ, DABF, shapelet
number k

Output: Final shapelets S
1 for C ∈ C do
2 initialize SC = ∅ ;
3 initialize Q = ∅ ; // Priority queue
4 for e ∈ ΦC do
5 initialize u = 0 ;
6 u = Ũintra(e)− Ũinter(e) + ŨDC (e) ; // DT&CR
7 Q.add(u) ;
8 for i = 0; i < k; i+ + do
9 j = Q.poll() ;

10 SC = SC
⋃
{ΦmotifC [j]} ;

11 S = S
⋃
SC ;

12 return S

2) Computation reuse (CR): One reason for inefficient
computation is the numerous repeated utility calculation. For
example, when we calculate the intra-class utility (Formula 12)
for one candidate, the distance between candidate and other
candidates will be computed again for the intra-class utility
of other candidates. Thus, we reuse the computation results
for improving efficiency. We calculate the distances between
every two candidates, then combine the distances for each
candidate’s utility, which reduces the computation time in half.
We also observe the similar repeated computation in inter-class
utility (Formula 13).

Putting this together. Algorithm 4 is the pseudo-code for
determining top-k shapelets. First, we initialize the set of
shapelets S (Line 2). For each class C, we also initialize
the priority queue, Q, to store the utilities (Line 3). For each
candidate in ΦC , the three utilities are calculated and added
into Q (Lines 4-7). We then poll Q for generating the final
top-k shapelets (Lines 8-11).

Complexity analysis. The time complexity of Algorithm 4 is
O(|C| · |ΦC | ·N · log(|ΦC |)), close to O(|ΦC | ·N). The full
complexity is O

(
|C| · [|ΦC | ·N · log(|ΦC |) + k]

)
.

Remarks. The final shapelets are then employed to transform
the original time series [3], [24], [26] for learning a classifica-
tion model. In this paper, we adopt SVM with a linear kernel
for the classification.

IV. EXPERIMENTAL EVALUATION

In this section, we report the experiments of IPS with 12
related methods on the widely-used UCR datasets [9]. The
setup used in the previous works [2], [23] have been followed.
We report the overall efficiency and accuracy of IPS on the
46 datasets 2. Due to the space restriction, we highlight the
results of some datasets and interpret the discovered shapelets
with one case study.

2These datasets are reported in the experiments of other papers [2], [23].
The full results of UCR datasets [9] can be found in a technical report [25],
which is publicly available at the project website https://www.comp.hkbu.edu.
hk/∼csgzli/ips/.

https://www.comp.hkbu.edu.hk/~csgzli/ips/
https://www.comp.hkbu.edu.hk/~csgzli/ips/


A. Experimental Settings

Environment. We have implemented the proposed method in
PYTHON. All the experiments were conducted on a machine
with a Xeon E5-2630 v4 @ 2.2GHz (2S/10C) / 256GB RAM
/ 128GB SWAP, running on CentOS 7.6 (64-bit). The storage
is a HDD, and its capacity is 1.8TB.

Compared methods. The 12 compared methods are, namely,
Rotation Forest [2] and 1NN-DTW [32], and many other
shapelet-based methods, including ST [26], LTS [16], Fast
shapelets [30], SD [17], ELIS [11], COTE (a meta-ensemble
method combined with 35 different classifiers [3]), ResNet
(one of the best deep learning methods [34]), BSPCOVER(the
current state-of-the-art efficient method [23]), COTE-IPS
(COTE augmented by IPS) and BASE (the MP baseline
method [37]). Due to space limitations, we omit the details
of each method in this paper. Interested readers may refer to
the original papers for details.

Parameter setting. Some parameters adopted in the experi-
ments are listed as follows. For fairness, we set the shapelet
number to 5 in both BASE and IPS. The lengths of shapelet
candidates are given as a ratio of the subsequence length to
the length of the original time series. It ranges among these
values {0.1, 0.2, 0.3, 0.4, 0.5}. (e.g., 0.2 means that the sub-
sequence’s length is 20% of the original time series’ length.)
The sample number QN and sample size QS are selected from
{10, 20, 50, 100} and {2, 3, 4, 5, 10}, respectively.

B. Experiments on Efficiency

From the previous work, we observe that COTE and ST
are clearly slower than LTS [2], and the efficiency of ELIS is
about two orders of magnitude faster than that of LTS [11], and
BSPCOVER is 70x faster than ELIS [23]. Thus, we compare
the efficiency of BASE and BSPCOVER with that of IPS.

Comparison with BASE and BSPCOVER. The total running
time of BASE, BSPCOVER, and IPS, and the improvement of
BASE over IPS and that of IPS over BSPCOVER, reported in
Table IV (The unit of the numbers is seconds).

IPS is consistently faster than BSPCOVER on these 46
datasets. It is on average about 25× faster, in terms of the
total running time. The total running time of BASE is only
slightly faster than that of IPS (1.22× on average), however,
as we shall see its accuracy is lower in 41 out of 46 datasets
(Table VI). Hence, IPS discovers high-quality shapelets to
enhance the final accuracy with an efficiency similar to BASE.

Efficiency performance breakdown of the three main steps
of IPS. Table V shows the running time of the candidate
generation, pruning with/without DABF, and top-k selection
with/without optimization techniques. We can observe that the
time of candidate generation takes 4%-20% of the overall time.
The DABF and DT & CR optimization techniques save at least
50% running time when compared with the naive method for
pruning and using raw time series data for discovering the
top-k shapelet.

Efficiency by varying the shapelet number k. Figure 9

TABLE IV
EFFICIENCY OF IPS AND RELATED METHODS ON UCR ARCHIVE (SECOND

AS UNIT) AND THE SPEEDUP

Dataset BASE(s) BSPCOVER(s) IPS(s) Speedup
BASE
vs IPS

Speedup
IPS vs
BSP-
COVER

ArrowHead 7.65 55.57 10.57 1.38 5.26
Beef 10.56 131.17 15.42 1.46 8.51
BeetleFly 16.19 42.92 16.46 1.02 2.61
CBF 4.53 16.43 4.85 1.07 3.39
ChlorineConcentration 29.17 173.86 29.66 1.02 5.86
Coffee 5.15 10.96 6.33 1.23 1.73
Computers 103.63 1049.52 104.99 1.01 10.00
CricketZ 641.89 20993.38 756.90 1.18 27.74
DiatomSizeReduction 11.87 30.04 13.04 1.10 2.30
DistalPhalanxOutlineCorrect 12.67 52.39 16.76 1.32 3.13
Earthquakes 178.06 2957.36 179.97 1.01 16.43
ECG200 9.17 48.34 13.49 1.47 3.58
ECG5000 30.01 600.37 38.35 1.28 15.65
ECGFiveDays 1.06 1.38 1.11 1.04 1.25
ElectricDevices 202.86 20851.50 251.53 1.24 82.90
FaceAll 108.63 1541.80 122.38 1.13 12.60
FaceFour 9.59 32.67 9.83 1.02 3.33
FacesUCR 5.19 1265.71 7.04 1.36 179.80
FordA 236.45 37481.21 255.09 1.08 146.94
GunPoint 2.28 8.97 3.05 1.34 2.94
Ham 11.49 126.13 21.91 1.91 5.76
HandOutlines 607.26 4340.86 623.87 1.03 6.96
Haptics 504.48 11523.26 590.07 1.17 19.53
InlineSkate 993.56 15060.30 989.82 1.00 15.22
InsectWingbeatSound 169.25 646.49 172.25 1.02 3.75
ItalyPowerDemand 0.45 2.91 0.67 1.49 4.34
LargeKitchenAppliances 412.52 13974.8 488.02 1.18 28.64
Mallat 135.05 2896.15 159.36 1.18 18.17
Meat 8.85 44.02 9.37 1.06 4.70
NonInvasiveFatalECGThorax1 15385.63 40125.42 15806.39 1.03 2.54
OSULeaf 99.48 6753.46 110.42 1.11 61.16
Phoneme 3586.33 45767.83 3812.99 1.06 12.00
RefrigerationDevices 1258.35 8871.13 1563.59 1.24 5.67
ShapeletSim 30.08 455.23 39.26 1.31 11.60
SonyAIBORobotSurface1 2.39 4.19 2.89 1.21 1.45
SonyAIBORobotSurface2 1.65 3.78 2.59 1.57 1.46
Strawberry 15.64 235.17 18.87 1.21 12.46
Symbols 10.11 90.43 15.85 1.57 5.70
SyntheticControl 5.36 249.29 6.01 1.12 41.47
ToeSegmentation1 1.62 19.91 2.71 1.67 7.36
TwoLeadECG 8.27 20.32 8.98 1.09 2.26
TwoPatterns 149.16 17891.24 152.13 1.02 117.60
UWaveGestureLibraryY 956.34 193667.30 998.26 1.04 194.00
Wafer 50.49 825.96 56.88 1.13 14.52
WormsTwoClass 305.49 1124.08 321.57 1.05 3.50
Yoga 207.58 10593.18 227.35 1.10 46.59
Average 1.20 25.74

TABLE V
THE EFFICIENCY OF THREE PARTS ON FOUR DATASETS FROM UCR

ARCHIVE (SECOND AS UNIT)

Datasets Candidate
generation

Pruning
without DABF

Pruning
with DABF

Without
DT+CR

With
DT+CR

ArrowHead 0.71 0.57 0.13 2.07 0.11
Computers 3.28 25.32 5.35 13.82 3.55
ShapeletSim 1.23 8.25 3.01 3.74 1.52
UWaveG.Y 12.76 209.47 22.68 39.97 10.26

shows the total running time (line chart) and the accuracy
(bar chart) with the increase of the shapelet number k on two
datasets (BeetleFly and TwoLeadECG), and three methods,
namely BASE, IPS, and BSPCOVER.

The accuracy of BASE on both two datasets is significantly
lower than that of IPS. The accuracy of IPS is similar
to BSPCOVER. The number of shapelets contributes to the
accuracy at the beginning and then the accuracies stabilize.
For the efficiency on BeetleFly, IPS and BASE maintain an
approximately linear relationship with k. The runtime of BSP-
COVER is larger than the two methods, whereas the differences
between the runtimes of BASE and IPS are not significant.
Regarding TwoLeadECG, a similar trend can be observed
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Fig. 9. Efficiency vs Top-k (shapelet number) of BASE, IPS, BSP-
COVER methods on BeetleFly and TwoLeadECG, respectively
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Fig. 10. (a) Efficiency with and without DABF for candidates pruning on
the UCR datasets. (b) Efficiency and (c) accuracy with and without the
optimization techniques (LT & CR) on UCR datasets

when k ≤ 10 among the three methods. Nevertheless, the total
time stabilizes when k > 10 in BSPCOVER and still grows
rapidly in BASE, IPS. All the shapelet candidates have been
determined when k = 10 in BSPCOVER [23].

Efficiency evaluation with and without DABF. We compare
DABF with the naive methods on the efficiency of candidates
pruning. Figure 10(a) reports the running time of DABF con-
struction and pruning process and that of the naive method in
log space. We can observe that all the points (datasets) are
in the upper triangle, which indicates that it takes more time
for pruning without DABF. DABF speeds up the naive method
from 2 to 10 times.

Efficiency and accuracy with and without the optimization
techniques (DT & CR). The DT and CR optimization tech-
niques in Section III-E are compared from the efficiency and
accuracy. Figure 10(b) illustrates the running time with and
without DT & CR techniques for the top-k shapelet selection.
We can observe that all the points (datasets) are in the upper
triangle. The optimization techniques save 50% to 90% of the
shapelet discovery time. Meanwhile, the accuracy with and
without the two optimization techniques is similarly shown in
Figure 10(c). From the results, we can see that IPS has taken
advantages of the efficiency of DABF for shapelet discovery.

C. Experiments on Accuracy

The experiment accuracy results of 10 methods (with the
exception of COTE-IPS and BASE) are all taken from the pa-
pers [2], [12], [23]. The results of IPS, COTE-IPS, and BASE
are the mean values of 5 runs and the standard deviations of
all the datasets are less than 0.01. Due to space limitations, we
provide some highlights of accuracy results with some selected
datasets of different types, e.g., Image, Sensor, Simulated, and

1 2 3 4 5 6 7 8 9 10 11 12 13

COTE-IPS
COTE

ResNet
IPS
ST

BSPCOVER
LTS

RotF
DTW_Rn_1NN
ELIS
FS
SD
BASE

CD

Fig. 11. Critical difference diagram of the pairwise statistical comparison
of 13 methods on the UCR Archive. A thick horizontal line groups a set of
classifiers that are not significantly different.

Motion. The full results of UCR datasets [9] can be found in
a technical report [25].

Comparison with other methods. The overall accuracy re-
sults for 46 datasets are presented in Table VI. We can observe
that the overall accuracy of IPS is ranked the 4th among
all methods, where the 1st is not surprisingly the ensemble
method COTE-IPS. Furthermore, IPS performs the best in 9
datasets (ranked 3rd), only lower than the ensemble method,
COTE-IPS and COTE, but much higher than DTW Rn 1NN,
LTS, FS, SD, ELIS, and BASE. IPS achieves much higher
accuracies in some datasets, such as RefrigerationDevices
and SonyAIBORobotSurface1. The 1-to-1-Losses datasets on
accuracy are marginally lower than ST (e.g., CricketZ and
FaceAll) and BSPCOVER (e.g., Haptics and InlineSkate). The
accuracy of BASE is much lower than that of IPS.

Friedman test and Wilcoxon test. The Friedman test [10], a
non-parametric statistical test, and Wilcoxon-signed rank test
with Holm’s α (5%) [19] are taken for all methods.

The Friedman test is to detect the differences among 46
datasets across 13 methods. The statistical significance p-value
is 0.00, which is smaller than α = 0.05. Thus, we reject the
null hypothesis and a significant difference among all methods.

We then conduct the post-hoc analysis among all the meth-
ods. The results are visualized by a critical difference diagram
in Figure 11. We observe that IPS significantly outperforms
other approaches except for COTE, COTE-IPS, ResNet, ST,
and BSPCOVER. The cd-diagram in Figure 11 further validates
that the accuracy of BASE is poor.

Accuracy by varying three LSH functions, Hamming,
Cosine, and L2. We investigate the accuracy performance on
a different kinds of LSH functions, such as Hamming, consine,
and L2 in table VII. We can observe that the accuracy of L2

is much better than that of other two functions. The accuracy
of Hamming is the lowest, which shows that the Hamming
distance is not suitable for time series. The accuracy of consine
function is slightly lower than that of L2, which indicates that
it can catch the distance among time series.

Accuracy by varying the shapelet numbers k. We investi-
gate the performance on different numbers of shapelets from
{1, 2, 5, 10, 20}. The impact of different shapelet numbers
on the final accuracy of IPS on four datasets, Arrowhead,
MoteStrain, ShapeltSim, and ToeSegmentation1.



TABLE VI
ACCURACY (%) OF IPS AND RELATED METHODS ON UCR ARCHIVE

Dataset RotF DTW Rn 1NN ST LTS FS SD ELIS BSPCOVER ResNet COTE COTE-IPS BASE IPS
ArrowHead 73.71 80 73.71 84.57 59.43 65.7 81.43 80.57 84.5 81.14 84 61.14 85.14
Beef 86.67 66.67 90 86.67 56.67 50.7 63.33 73.33 75.3 86.67 90 50 73.33
BeetleFly 90 65 90 80 70 75 85 90 85 80 90 75 90
CBF 92.89 99.44 97.44 99.11 94 97.5 90.44 99.67 99.5 99.56 99.78 68 99.78
ChlorineConcentration 84.74 65 69.97 59.24 54.64 55.3 27.39 61.22 84.4 72.71 70.5 54.66 63.41
Coffee 100 100 96.43 100 92.86 96.1 96.43 100 100 100 100 95.14 100
Computers 70 62.4 73.6 58.4 50 58.8 50 67.2 81.5 74 74 66.8 74
CricketZ 65.64 73.59 78.72 74.1 46.41 67.3 78.95 74.1 81.2 81.54 81.54 37.44 78.46
DiatomSizeReduction 87.25 93.46 92.48 98.04 86.6 89.6 89.86 87.25 30.1 92.81 92.81 89.2 88.89
DistalPhalanxOutlineCorrect 75.72 72.46 77.54 77.9 75 71.7 57.83 83.17 71.7 76.09 80.17 78.83 83.67
Earthquakes 74.82 72.66 74.1 74.1 70.5 63.6 77.64 81.68 71.2 74.82 78.99 81.99 81.99
ECG200 85 88 83 88 81 81.8 80 92 87.4 88 88 88 88
ECG5000 94.58 92.51 94.38 93.22 92.27 92.4 72.69 94.44 93.4 94.6 94.44 92.34 94.44
ECGFiveDays 90.82 79.67 98.37 100 99.77 95.3 95.45 100 97.5 99.88 99.88 77.82 99.88
ElectricDevices 78.58 63.08 74.7 58.75 57.9 59.3 8.65 24.24 72.9 71.33 70.6 53.99 55.47
FaceAll 91.12 80.77 77.87 74.85 62.6 71.4 75.56 76.33 83.9 91.78 85.6 70.18 76.36
FaceFour 81.82 89.77 85.23 96.59 90.91 82 95.46 96.59 95.5 89.77 91.58 81.82 92.78
FacesUCR 80.29 90.78 90.59 93.9 70.59 84.7 63.63 78.29 95.5 94.24 93.9 67.61 80.58
FordA 84.47 66.52 97.12 95.68 78.71 77.6 67.6 96.31 92 95.68 94.12 63.32 84.78
GunPoint 92 91.33 100 100 94.67 93.1 97.57 100 99.1 100 100 82.67 100
Ham 71.43 60 68.57 66.67 64.76 61.9 63.81 76.19 75.7 64.76 69.68 68.57 72.38
HandOutlines 91.08 87.84 93.24 48.11 81.08 79.9 / 86.7 91.1 91.89 90.62 73.8 89.9
Haptics 43.83 41.56 52.27 46.75 39.29 35.6 41.56 45.13 51.9 52.27 52.27 30.19 43.51
InlineSkate 37.09 38.73 37.27 43.82 18.91 38.5 35.46 38.73 37.3 49.45 48.75 21.27 43.82
InsectWingbeatSound 63.64 57.37 62.68 60.61 48.94 44.1 59.55 57.42 50.7 65.25 63.55 17.63 56.52
ItalyPowerDemand 97.28 95.53 94.75 96.02 91.74 92 96.57 96.5 96.3 96.11 96.11 92.63 96.6
LargeKitchenAppliances 60.8 79.47 85.87 70.13 56 57.1 33.33 86.13 90 84.53 84.53 57.6 85.34
Mallat 94.93 91.43 96.42 95.01 97.61 92.6 81.58 76.8 97.2 95.39 95.39 90.54 94.69
Meat 96.67 93.33 85 73.33 83.33 93.3 55 75 96.8 91.67 92.88 93.33 93.33
NonInvasiveFatalECGThorax1 90.53 82.9 94.96 25.9 71.04 81.4 / 91.47 94.5 93.13 93.13 56.74 92.06
OSULeaf 57.02 59.92 96.69 77.69 67.77 56.6 76.45 83.88 97.9 96.69 95.45 57.44 71.49
Phoneme 12.97 22.68 32.07 21.84 17.35 15.8 15.19 20.73 33.4 34.92 33.58 18.41 28.43
RefrigerationDevices 56.53 44 58.13 51.47 33.33 46.1 40 54.67 52.5 54.67 58.67 49.87 78.33
ShapeletSim 41.11 69.44 95.56 95 100 67.2 100 84.44 77.9 96.11 96.67 54.44 84.33
SonyAIBORobotSurface1 80.87 69.55 84.36 81.03 68.55 85 87.85 88.35 95.8 84.53 92.4 87.35 98.5
SonyAIBORobotSurface2 80.8 85.94 93.39 87.51 79.01 78 93.17 93.49 97.8 95.17 93.84 82.78 91.71
Strawberry 97.3 94.59 96.22 91.08 90.27 88.4 83.85 94.29 98.1 95.14 96.9 87.6 96.72
Symbols 79.3 93.77 88.24 93.17 93.37 90.1 78.29 93.37 90.6 96.38 96.38 69.45 94.1
SyntheticControl 97.33 98.33 98.33 99.67 91 98.3 99.33 99.67 99.8 100 100 94.67 99.67
ToeSegmentation1 53.07 75 96.49 93.42 95.61 88.2 98.24 96.49 96.3 97.37 97.37 70.18 96.49
TwoLeadECG 97.01 86.83 99.74 99.65 92.45 86.7 99.82 99.65 100 99.3 99.3 88.85 97.1
TwoPatterns 92.8 99.85 95.5 99.33 90.83 98.1 99.75 99.8 100 100 100 91.5 99.05
UWaveGestureLibraryY 71.44 70.18 73.03 70.3 59.58 67.1 69.32 64.01 67 75.85 75.85 53.81 65.21
Wafer 99.45 99.59 100 99.61 99.68 99.3 99.43 99.81 99.9 99.98 99.98 96.24 99.51
WormsTwoClass 68.83 58.44 83.12 72.73 72.73 64.1 71.82 74.59 74.7 80.52 80.52 42.54 73.48
Yoga 82.43 84.3 81.77 83.43 69.5 62.5 83.9 88.2 87 87.67 87.67 70.53 85.73
Total best acc 5 1 9 5 2 0 2 8 9 14 11 1 9
IPS 1-to-1 Wins 30 34 20 26 42 42 35 23 18 13 10 41 -
IPS 1-to-1 Draws 2 3 3 5 0 0 0 7 1 4 8 2 -
IPS 1-to-1 Losses 14 9 23 15 4 4 11 16 27 29 28 3 -

TABLE VII
JUSTIFICATION OF THREE LSH FUNCTIONS, HAMMING, COSINE, L2 ON

ACCURACY (%) OF TEN UCR DATASETS

Dataset LSH Accuracy Dataset LSH Accuracy

ArrowHead
Hamming

Cosine
L2

78.22
84.31
85.14

GunPoint
Hamming

Cosine
L2

91.33
97.28
100

BeelteFly
Hamming

Cosine
L2

80
85
90

ItalyPower.
Hamming

Cosine
L2

92.8
94.7
96.6

Coffee
Hamming

Cosine
L2

95.69
96.1
100

Meat
Hamming

Cosine
L2

83.33
93.33
93.33

ECG200
Hamming

Cosine
L2

80
88
88

Symbols
Hamming

Cosine
L2

70.82
89.07
94.1

FordA
Hamming

Cosine
L2

79.72
80.82
84.78

ToeSeg.1
Hamming

Cosine
L2

76.54
82.91
96.49

Figure 12 shows the accuracy by varying the shapelet
numbers. Four different datasets show different trends, which
reveal the appropriate shapelet number of the dataset. For
example, the accuracy stabilizes in ToeSegmentation1 through
all the shapelet numbers and peaks at 5. Thus, the shapelet
number of ToeSegmentation1 is 5. The accuracy rises rapidly
with the increase of the shapelet number from 1 to 5 on
MoteStrain and then remains stable. Therefore, its shapelet
number is set to 5.

D. Experiments on Interpretability

We further investigate a strength of shapelets, the inter-
pretability. We compare the shapelet discovered by IPS and
BSPCOVER in the following on ItalyPowerDemand.

We use ItalyPowerDemand3 as it can be concisely explained

3http://www.timeseriesclassification.com/description.php?Dataset=
ItalyPowerDemand

http://www.timeseriesclassification.com/description.php?Dataset=ItalyPowerDemand
http://www.timeseriesclassification.com/description.php?Dataset=ItalyPowerDemand
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Fig. 12. Accuracy by varying 5 numbers of shapelets on four datasets
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Fig. 13. Different shapelets (green) from IPS and BSPCOVER of ItalyPow-
erDemand highlighting the morning heating demand difference of summer
(red) and winter (blue) months

to non-domain experts. As the name indicates, ItalyPowerDe-
mand describes the power demand classified by summer and
winter in Italy.

From the two left subfigures of Figure 13, the shapelet S
(green color) demonstrates the difference between two classes,
which are similar to the shapelet learned by BSPCOVER (two
right subfigures in Figure 13). Specifically, both shapelets
can indicate the power demand in winter (Class 2) is higher
corresponding to the heating. The difference between the
shapelets discovered by IPS and BSPCOVER is minor but IPS
is 4 times faster than BSPCOVER.

V. RELATED WORK

Readers who are interested in a general overview of the
methods for time series classification may refer to an excellent
review paper [2]. In this section, we focus on the matrix profile
and shapelet-based methods.

A. Matrix Profile (MP) for motif/discord mining

Recently, MP methods (e.g., [1], [8], [36]), applied to time
series motif discovery and anomaly detection, are both efficient
and effective. MP [37] is an annotation series, where each
element is the nearest neighbor distance of the subsequences.
GPU-STOMP [38] is combined with a high-performance GPU
to improve the scalability of motif/discord discovery signifi-
cantly. Alaee et al. [1] present the first efficient, scalable and

exact method to find motifs under DTW. This method auto-
matically performs the best trade-off of time-to-compute ver-
sus tightness-of-lower-bounds for a novel hierarchy of lower
bounds. He et al. [18] demonstrated the essence of MP, 1-
NN based nonparametric density estimation of subsequences.
An ensemble framework, called neighbor profile (NP) [18],
was developed to robustly estimate the subsequence density
with kNN in a bagging way. The method for discovering
shapelets from NP is not presented. We follow the description
of MP [37] to implement the MP baseline method (BASE).

B. Shapelet-based methods for TSC

Shapelets were originally introduced for time series mining
with the interpretability in [35]. There have been follow-up
studies on shapelets, including logical shapelets [27], shapelet
transformation [26], learning shapelets [16], efficient learning
shapelets [20], and efficient shapelet discovery [23]. Grabocka
et al. provide a fast shapelet discovery method [17] with
a distance-based clustering technique for similar shapelets
pruning and an incremental NN classifier. Rakthanmanon
et al. propose fast shapelets [30], which utilizes a random
masking strategy on SAX words of raw subsequences to effi-
ciently discover shapelets. The time complexity is significantly
reduced from O(M2N3) to O(MN2) when compared to [35],
but the accuracy is often lower than in some recent work [2].

There have been recent studies on employing neural net-
works to solve the time series classification problem (e.g., an
excellent survey of deep learning methods for TSC [12]). An
extensive empirical study [12] shows that ResNet [34] is one
of best the deep learning methods for TSC. As motivated, this
paper undertakes the matrix profile-based shapelet approach
by taking the advantage of the efficiency of matrix profile,
and the accuracy and interpretability of shapelets.

VI. CONCLUSION

This paper has presented a study of an efficient shapelet
discovery for TSC. We start with an efficient primitive for
time series analysis called matrix profile (MP). We analyze the
inherent two issues of the MP baseline method [37]. To address
the issues, we propose IPS, a novel efficient instance profile-
based shapelet approach for TSC. We obtain the motifs with
the instance profile (IP) from time series instances in a sample
way, which allows a large quantity of diverse shapelet candi-
dates. The distribution-aware bloom filter (DABF) structure is
proposed for pruning a large number of similar candidates. We
then propose two optimization techniques (namely, DT & CR)
with our DABF to efficiently score candidates for determining
the final shapelets. The experimental results demonstrate that
IPS has successfully taken the superior efficiency of MP and
proposes highly effective shapelets for TSC. We employ the
ItalyPowerDemand dataset to illustrate the interpretability of
shapelets. With the rapid growth of the time series data, we
plan to investigate a distributed shapelet discovery version of
IPS and apply the IPS for multivairate TSC in the future.
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