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Abstract—Although exploratory search has received significant
attention recently in the context of structured data, scant atten-
tion has been paid for graph-structured data. In this paper, we
present two novel index structures called VACCINE and ADVISE
to efficiently support exploratory subgraph search in a visual
environment (VESS). VACCINE is an offline, feature-based index
that stores rich information related to frequent and infrequent
subgraphs in the underlying graph database and how they can
be transformed from one subgraph to another. ADVISE, on the
other hand, is an adaptive, compact, on-the-fly index instantiated
during iterative visual formulation/reformulation of a subgraph
query for exploratory search and records relevant information
to efficiently support its repeated evaluation. These indexes
engender more efficient and scalable visual exploratory subgraph
search framework compared to a state-of-the-art technique.

Index Terms—exploratory search, graph database, visual in-
terface, indexing

I. INTRODUCTION

Exploratory search [7], [11] has received increasing atten-
tion in recent times. In the database community, a growing
number of efforts have focused on building search and ex-
ploration frameworks for structured data (e.g., relational) [5].
However, there is a dearth of work for realizing such search
paradigm on graph-structured data [4], [9], [12]. Exploratory
graph search entails ways to formulate, reformulate, and pro-
cess a query graph where multiple and iterative query formu-
lation and execution are necessary. This guides users to learn
about the underlying graph data and identify possible search
directions beyond the initial query graph. Consequently, the
initial query graph may often grow in size during exploration
as users become familiar with the underlying data space.

We advocate that it is paramount to provide a visual
interface (a.k.a GUI) for exploratory search in order to make
it accessible to non-programmers. Since the query graph size
may become large during exploration, it is desirable for such
a GUI to expose template patterns (i.e., small connected
subgraphs) for efficient formulation of query components.

PICASSO [4] is the first tool to crystallize visual exploratory
subgraph search (VESS) on graph databases centered around a
collection of small- or medium-sized data graphs. It leverages
the visual subgraph query processing framework of [6] to eval-
uate each formulation/reformulation incrementally by blending
(i.e., interleaving) visual query construction and processing.
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Fig. 1. Examples of node and edge transformers.

Our initial investigation, however, revealed that the visual
subgraph query processor [6] of PICASSO is not efficient
and scalable to support iterative query evaluation in a VESS
environment as it was originally designed for look-up (i.e.,
“one-shot”) queries. Specifically, this is due to the following
two scenarios that are prevalent in a VESS environment:
(a) the initial query graph evolves to a large query during
exploration and (b) template patterns may be leveraged during
query formulation/reformulation. These scenarios make the
construction and maintenance costs of the online index de-
ployed in PICASSO prohibitively expensive. Note that PICASSO
constructs an online index called SPIG [6] for each newly
constructed edge at each formulation step within the available
GUI latency (i.e., time to construct a query edge visually). That
is, a query graph with n edges creates n SPIGs in PICASSO.
Although this is effective in a look-up querying environment
where query graphs are typically small in practice [1], the
VESS environment demands efficient blending of a larger set of
edges (e.g., template patterns) to support larger query graphs.
In particular, the time cost of creating and maintaining n
SPIGs corresponding to a template pattern can be significantly
higher than the available GUI latency, rendering the blending
inefficient in PICASSO. Hence, it is important to design novel
indexes that can efficiently support the VESS paradigm.

In this paper, we present two novel indexing schemes,
VACCINE and ADVISE, for a VESS framework to address the
aforementioned challenges. VACCINE is an offline, feature-
based index structure. It stores rich information related to
frequent and infrequent subgraphs (i.e., fragments) in the
underlying graph database and how they can be transformed
from one fragment to another during visual query formula-
tion. ADVISE, on the other hand, is an adaptive on-the-fly
index designed to support incremental evaluation of subgraph
queries in a VESS environment. It is instantiated during visual
formulation/reformulation of a subgraph query by utilizing the



VACCINE index. In contrast to a set of SPIGs in PICASSO, only
one instance of ADVISE is necessary to support VESS. Here
we present an overview of our indexing framework. Details
on various aspects of this framework are available at [10].

II. BACKGROUND

We denote a graph as G = (V,E), where V is a set of
nodes and E ⊆ V × V is a set of (directed or undirected)
edges. A node/vertex in G has an identifier j and is referred
to as vj ∈ V . Nodes and edges can have labels as attributes.
We assume that G is a connected graph with at least one edge.
The size of G is defined as |G| = |E|. For ease of presentation,
we present data graphs and visual subgraph queries using
undirected simple graphs with labeled nodes.

A graph G is a subgraph of graph G′ if there exists a
subgraph isomorphism from G to G′, denoted by G ⊆ G′. In
other words, G′ is a supergraph of G (G′ ⊇ G). We may also
simply say that G′ contains G. G is called a proper subgraph
of G′, denoted as G ⊂ G′, iff G ⊆ G′ and G + G′.

Given a graph database D, we assign a unique identifier (i.e.,
id) to each data graph in D. A data graph G with id i is denoted
as Gi. Let g be a subgraph of Gi ∈ D (0 < i ≤ |D|) that has
at least one edge. Then, g is a fragment in D. Informally, we
use the term fragment to refer to a small subgraph in a data
graph or a query graph. Given a fragment g ⊆ G and G ∈ D,
G is referred to as the fragment support graph (FSG) of g [6].
We denote the set of FSGs of g as Dg . We refer to |Dg| as
(absolute) support, denoted by sup(g). We denote the set of
identifiers of the data graphs in Dg as fsgIds(g).

A fragment g ∈ D is frequent if sup(g) ≥ α|D| where α is
the minimum support threshold. We denote the set of frequent
fragments in D as F . We refer to a frequent fragment g as
frequent edge if |g| = 1. On the other hand, if sup(g) < α|D|
then g is an infrequent fragment. Specifically, we classify
infrequent fragments into two types, discriminative and non-
discriminative [6]. Given g ∈ I, let sub(g) be the set of all
subgraphs of g. If sub(g) ⊂ F or |g| = 1, then g is a discrimi-
native infrequent fragment (DIF) in D. We denote a set of DIFs
in D as Id. Likewise, we refer to an infrequent fragment that
is not a DIF as non-discriminative infrequent fragment (NIF).
Note that if one of the subgraphs of g is a DIF, then g is an
infrequent fragment [6].

Lastly, we introduce the following set of GUI actions (ac-
tions for brevity) that a user takes to formulate an exploratory
subgraph search query in any VESS interface: (a) add(q,g):
The add action denotes a user adding a query fragment (an
edge or a template pattern) or a node g to an existing query q,
and returns the augmented query. (b) modify(q,g): This action
denotes that a user revokes (deletes) a query fragment or a
node g, and returns the modified query. (c) run(q): The run
action models the execution of a query fragment by clicking
on the Run icon (or equivalent of Run) in the GUI.

We refer to a sequence of such GUI actions taken by a
user as exploration action sequence (EAS). Observe that the
add and modify actions precede a run action and are used to
construct a query graph. We refer to this sequence of add and

modify actions preceding a run action or between a pair of
run actions as query formulation sequence (QFS).

Remark. We do not model low level actions (e.g., mouse
click, mouse hover, drag-and-drop) as different GUIs may
follow different sequences of low level actions to realize
the aforementioned actions. Consequently, this enables us to
design a visual exploratory subgraph search framework that
underpins any GUI.

III. THE VESS PROBLEM

Intuitively, in a VESS environment, a user typically under-
takes EAS involving multiple runs. After each run(q) a user
may browse and explore the results of q before modifying it
again. A core challenge in realizing such a VESS framework
is to devise efficient and scalable techniques for evaluating
run(q) to facilitate real-time exploration of results of q. In
this paper, we focus on devising indexing schemes to efficiently
support this iterative run(q).

At each run(q), it is imperative for our framework to support
fast subgraph containment or subgraph similarity search [13]
of q. In particular, similar to [4], [6], we adopt maximum
connected common subgraphs (MCCS)-based subgraph simi-
larity distance, denoted as dist(G,Q), to measure similarity
between a data graph G and a query graph Q.

Definition 1: Let A be an EAS undertaken by a user on
a visual interface for exploring a graph database D =
{g1, g2, . . . , gn}. Then the goal of visual exploratory sub-
graph search (VESS) problem is to retrieve all the graphs
gi ∈ D with dist(gi, q) ≤ δ for each run(q) ∈ A where δ is
the subgraph similarity distance threshold.

We utilize the visual interface of PICASSO [4] for VESS.
Similar to PICASSO, we interleave (i.e., blend) the visual
formulation and processing of a query fragment so that it
does not need to evaluate each run(q) action from scratch.
To this end, we present novel offline and online indexes to
facilitate efficient evaluation of run(q). Note that the indexing
framework is not tightly coupled to any specific VESS GUI.
Any superior GUI can be used on top of our indexes.

IV. VACCINE INDEX

In this section, we briefly describe our offline index called
VACCINE (Visual ACtion-Conscious INtegrated fEature in-
dex). We begin by introducing two primitive transformers that
we shall be using for constructing the VACCINE index.

A primitive transformer (transformer for brevity) transforms
a frequent fragment or a DIF g to another fragment g′ by
adding a new node or an edge such that |g′| − |g| = 1.
Specifically, we use two types of transformer, namely, node
and edge transformers. Given a fragment g = (V,E), the node
transformer, denoted as Ψg(i, `), transforms g to a new graph
g′ = (V ′, E′) by adding a frequent edge from vi ∈ V to a
new node vnew /∈ V with label `. That is, (v, vnew) ∈ E′.
On the other hand, the edge transformer, denoted as Φg(i, j),
transforms g to g′ by adding an edge between two non-
adjacent nodes vi ∈ V and vj ∈ V . That is, (vi, vj) /∈ E
but (vi, vj) ∈ E′.



Fig. 2. VACCINE index. For clarity, we do not show the CAM code and
Lg associated with each vertex.

Example 1: Consider the graphs f1 and f4 in Figure 1(a).
Assume that these fragments are frequent or DIF. Then f4
is generated from f1 by utilizing Ψf1(0,C). Specifically, we
add a new frequent edge (v0, v2) (shown in bold) in f1 to
transform it to f4. Now consider the fragments f3 and d1 in
Figure 1(b). In this case, d1 is generated from f3 by utilizing
the edge transformer Φf3(1, 2), which adds an edge between
two non-adjacent nodes v1 and v2 in f3 (shown in bold).

Observe that these transformations can be used to simulate
the way a new edge in a query graph can be constructed during
visual query formulation. That is, they capture the add(q,g)
action taken by a user in a QFS where g is an edge.

Given D and a minimum support threshold α, the VACCINE
index is a directed acyclic graph GI = (VI , EI). Each vertex
n ∈ VI represents a frequent fragment or a DIF g in D (i.e.,
g ∈ F or g ∈ Id). We refer to the fragment represented by
n as n.g (n when the context is clear). Each n ∈ VI is a 4-
tuple v = (id, c, cam(g),Lg), where id is its unique identifier,
c is its category (i.e., frequent or DIF), cam(g) is the CAM
code [3] of g, and Lg is a set of identifiers of the data graphs
which are subgraph isomorphic to g (i.e., ∀g′i ∈ Lg, g ⊆ g′i).
The edges between vertices, EI , model the relationships
between fragments represented by these vertices using the
primitive transformers. Specifically, an edge (n1, n2) ∈ EI

is labeled with a set of 2-tuple (τ, C) elements, denoted by
T1,2 = {(τ1, C1), (τ2, C2) . . . (τk, Ck)} (T when the context
is clear), where τ ∈ {Ψ,Φ} represents the node or edge
transformer to transform the fragment n1.g to n2.g and C is
the canonical labeling [8] from n1.g to n2.g. Consider the two
3-nodes graphs in Figure 1(a). The canonical labeling from the
middle graph to f4 (in bottom) is (0,2,1) (i.e., 0, 1, and 2
in the middle graph are mapped to nodes 0, 2, and 1 in f4,
respectively). Observe that there can be more than one way to
transform n1.g to n2.g by utilizing the transformers. Hence,
for each edge (n1, n2), T captures all transformations that can
generate n2.g from n1.g. Furthermore, |n2.g|−|n1.g| = 1 and
n1.g ⊂ n2.g. We refer to n1 (resp. n2) as the parent (resp.
child) of n2 (resp. n1). We also refer a vertex in VACCINE as
a leaf if it has no outgoing edges.

Example 2: Reconsider the fragments f1 and f4 in Fig-
ure 1(a). We index them in the VACCINE index with two
vertices, n1 (representing f1) and n2 (representing f4), and an
edge (n1, n2). In this case, T1,2 = {(Ψf1(0,C),(0,2,1))},
where Ψf1(·) is the node transformer for transforming f1 to
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Fig. 3. Example of ADVISE index construction for add action. The
bottom row shows the ADVISE index for a set of add actions (top row).
The node id is shown in rectangular box and its Eq is shown in square
brackets. The vertices representing DIFs are colored in gray.

f4 and (0,2,1) is the canonical labeling. Similarly, for
the frequent fragment f3 and DIF d1 in Figure 1(b), two
vertices, n3 and n4, are created for them, respectively. In
this case, T3,4 = {(Φf3(1, 2),(0,1,2))}, where Φ(·) is the
edge transformer and (0,1,2) is the canonical labeling. An
instance of the VACCINE index is shown in Figure 2. Observe
that an edge can be labeled with more than one (τ, C) pairs.

V. ADVISE INDEX

We introduce a novel data structure called ADVISE
(ADaptive VIsual Subgraph Exploration) index, which is
progressively generated and maintained on-the-fly during add
and modify actions in an EAS by utilizing VACCINE.

The goal of ADVISE index is to progressively keep track of
the candidate data graphs of an evolving visual query fragment
q efficiently by concisely storing information related to all
frequent fragments and DIFs contained in q at any point of time
during exploration. Let q = (Vq, Eq) be a visual graph query
fragment on D and contains ` edges with ids 1, 2, . . . `. Let
GI = (VI , EI) be the VACCINE index on D. Then, the ADVISE
index of q is a directed graph GA = (VA, EA) that satisfies
the following conditions: (a) For each m ∈ VA, ∃ an injective
function, f(m): m → fg s.t. fg ⊆ q and ∃n ∈ VI , n.g = fg .
We refer to n as the matching vertex and denote its identifier as
id(nm) = n.id. (b) By slightly abusing the notations of trees,
each (m′,m) ∈ EA represents the parent-child relationship
between two vertices m′ and m where m is the child of m′

iff f(m′) ⊂ f(m) and |f(m)| = |f(m′)|+1. (c) Each m ∈ VA
is a 2-tuple m = (id(nm),Eq) where Eq is a set of edge id
sets in q that matches the edges in f(m).

We describe the construction of the ADVISE index due to
add actions with an example in Figure 3. Its maintenance
strategy due to modify actions is given in [10]. Since a user
may add an edge or a template pattern during an add action,
we consider the latter as an edge stream (a collection of
edges). Consequently, a single new edge (referred to as seed)
is processed iteratively to construct the index. Suppose we use
the VACCINE index in Figure 2 for the construction. The user
first adds the edge C-C (id 1), which is the seed. Then the
ADVISE construction process first searches the VACCINE index
based on the CAM code of the edge. Since it matches the f2
fragment in vertex 2 (i.e., n2 is the matching vertex) of the
VACCINE index, a new vertex is added in the ADVISE index



corresponding to n2 as shown in the bottom row. Hence, the
id of this vertex is set to 2 and Eq(m2) = {{1}}.

Next, the user adds the edge C-Cl (id 2), which is the
new seed. Now the algorithm retrieves the identifier (i.e., 1)
of the vertex in VACCINE that matches the new edge (i.e.,
f1). Consequently, another vertex is created in ADVISE whose
id is 1 and Eq(m1) = {{2}}. Next, it utilizes the primitive
transformer information T encoded in the outbound edges of
the vertex n1 in VACCINE to find other vertices representing
fragments that can be constructed using these two edges in the
query (e.g., C-C-Cl). Hence, the frequent fragment C-C-Cl
(id 5) is retrieved (using Ψf2(0,Cl)) and is added as a vertex
in ADVISE with id = 5 and Eq(m5) = {{1, 2}}. Since f2
and f1 are parents of f5 in VACCINE, the vertices 2 and 1
should link to 5 in ADVISE. Hence, edges (2, 5) and (1, 5) are
constructed in ADVISE.

The user once again adds an edge C-C (id 3) as a seed to
the query graph. Similar to the above step, it is first matched
to the vertex with id = 2 in VACCINE. Observe that the
vertex to represent this edge has already been created in
ADVISE earlier. Hence the set of edge sets of this vertex is
updated to {{1}, {3}} (i.e., Eq(m2) = {{1}, {3}}). Next, the
remaining labels in the query graph (i.e., C, Cl) are added
to this seed and searched in the VACCINE index by utilizing
the primitive transformers associated with the edges of n2 in
this index. For instance, the label C is added to C-C resulting
in the fragment C-C-C, which is processed by leveraging the
transformer Ψf2(0,C) in VACCINE. Finally, the whole query
fragment (i.e., C-C-C-Cl) is processed. Since it is a DIF,
it is stored in VACCINE (vertex n10). Hence, a vertex with
id 10 is added to ADVISE. Following this, edges (5, 10) and
(3, 10) are created in ADVISE to indicate that the fragments
represented by vertices 3 and 5 are subgraphs of the fragment
in 10. Next, an edge (id 4) is added to connect nodes 3 and
1. Consequently, we update ADVISE by following the above
strategy. Note that fragments represented by vertices 8 and 10
are DIFs. Hence, we do not add any children to these vertices
as it will create a NIF, which is not indexed in VACCINE.

Lastly, the user adds the benzene ring pattern. Each edge in
this pattern is added sequentially into the query automatically
and is processed by following the aforementioned strategy.
Observe that we create only one instance of ADVISE.

VI. SUPPORTING RUN ACTION

Since q for each run action can be either a subgraph
containment or subgraph similarity search [4], [13] we briefly
discuss how they can be realized by leveraging the indexes.
Our strategy follows the PICASSO approach [4] but replaces its
indexing schemes with more efficient VACCINE and ADVISE.
For subgraph containment search, if a query graph is a frequent
fragment or a DIF, then its matches can be directly retrieved
from the indexes without any verification. On the other hand,
if the query graph is a NIF, then additional verification is
performed on the candidate data graphs by utilizing the VF2
algorithm [2]. On the other hand, given δ, the key intuition
followed by PICASSO for subgraph similarity search is to iter-

atively modify the formulated query graph by removing edges
according to δ and then invoke the subgraph containment
search procedure for all modified queries whose distance from
the query fragment is less than δ [4], [6]. In our framework,
we utilize our more efficient ADVISE index instead of SPIGs.

VII. SUMMARY OF PERFORMANCE STUDY

We have investigated the performance of our indexes in the
VESS environment with real-world datasets containing up to
1.3 million data graphs. The key results are as follows.
• The run action on our framework can be up to 4 orders

of magnitude faster than PICASSO on large datasets.
Furthermore, it is not significantly impacted by a specific
mode of query formulation (i.e., template pattern-based
or edge-based) or the choice of QFS.

• We investigated the construction cost of ADVISE index
as it influences the performance of the add action.
It is significantly faster than PICASSO and can finish
within a second (i.e., less than the available GUI latency).
Particularly, it can be more than 200X faster than the SPIG
set construction. It is also not significantly impacted by
different QFS. Furthermore, the memory consumption of
ADVISE is significantly smaller than SPIGs (up to 8X).

• The cost of updating the ADVISE index (i.e., modify
action) is cognitively negligible.

• Although the size of VACCINE is up to 2.2X than the
offline index in PICASSO, it consumes less than 3GB for
the largest dataset, which can easily fit in the main mem-
ory of modern machines. Importantly, the gap between
the size of VACCINE and existing indexing techniques
reduces with increasing dataset size.
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