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Abstract—Subgraph queries have been a fundamental query
for retrieving patterns from graph data. Due to the well known
NP hardness of subgraph queries, those queries may sometimes
take a long time to complete. Our recent investigation on real-
world datasets revealed that the performance of queries on
graphs generally varies greatly. In other words, query clients
may occasionally encounter “unexpectedly” long execution from
a subgraph query processor. This paper aims to demonstrate
a tool that alleviates the problem by monitoring subgraph
query progress. Specifically, we present a novel subgraph query
progress indicator called PIGEON that exploits query-time in-
formation to report to users accurate estimated query progress.
In the demonstration, users may interact with PIGEON to gain
insights on the query evaluation, which include the following:
Users are enabled to (i) monitor query progress; (ii) analyze
the causes of long query times; and (iii) abort queries that run
abnormally long, which may sometimes contain human errors.

I. INTRODUCTION

Graphs are powerful tools for a wide range of real ap-

plications, including chemical and biological databases, so-

cial networks and information networks. Subgraph queries

have known to be a fundamental and powerful query for

retrieving patterns from such networks. Recently, a large body

of techniques has been proposed to enhance performances

of subgraph queries (e.g ., [1]). However, due to the well

known NP-hardness of subgraph queries, their optimizations

are necessarily heuristic. As a result, not surprisingly, the

runtimes of seemingly similar queries may vary significantly.

For example, we experimented the runtime performances

of randomly generated 100 queries of size 4 (using DFS)

using our implementation of the Ullmann’s algorithm [2] on

the Youtube, Amazon, and DBLP datasets. Interestingly, the

runtimes of the queries that can be completed within ten

minutes exhibit huge standard deviations (SD) as reported in

Table I, not to mention those did not finish in ten minutes.

In particular, for the Youtube dataset, the average runtime is

16.2s, whereas the SD is 78.7. However, users may wait for at

least 252s (i .e., +3SD) for 5% of the time. Another example

is that users may draw some similar queries to explore a

network but their runtimes can be completely different (Fig. 1).

At first glance, it may seem that this phenomenon is due to

our implementation of the Ullmann’s algorithm. However, we

studied other subgraph algorithms [3] and observe a similar

phenomena on other algorithms. For instance, we ran an

optimized VF2 implementation on Youtube for similar queries

of size 4 and the average runtime is 822ms and the SD is 506.

TABLE I
PRELIMINARY EXPERIMENTS ON REAL GRAPHS (QUERY SIZE = 4)

Dataset Avg. runtimes stddev Timeout % (runtime > 10mins)

Youtube 16.2s 78.7 9.1%

DBLP 4.0s 24.7 2.2%

Amazon 25.7s 75.4 10%
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Fig. 1. Example similar subgraph queries and their runtimes (Amazon)

Such variability in query runtimes may adversely impact

users’ experience and frustrate them to use the subgraph

query processor. This is more so nowadays as users attention

span are arguably shortening. For another application example,

the web interface of PubChem [4] informs users to refresh

the page few minutes later to check if the subgraph query

answers are returned. Further, interactive exploratory searches

have a renewed interest in the context of chemical databases

[5] and few unexpectedly long-running queries may ruin the

exploration. Hence, it is desirable to have an accurate query

progress indicator so that users are continuously informed

about the progress made by the underlying query processor.

Few progress indicators have been proposed in the lit-

erature. Chaudhuri et al. [6] propose a progress indicator

for SQL queries. It exploits an execution plan for a given

query and estimates the progress based on their GetNext

model. However, there is no such model for subgraph queries.

Recently, Kristi et al. [7] propose a time-remaining indicator

for declarative queries in the MapReduce environment. A

critical-path-based progress-estimation approach is proposed

to estimate the MapReduce jobs expressed in DAGs. In the

context of graph databases, existing research prototypes for

subgraph queries do not give progress estimates to users

(e.g ., our recent work on visual subgraph queries [8], [9]).

To the best of our knowledge, there have not been tools that

continually report query progress for subgraph queries.

Demonstration attendees may observe at least three techni-

cal challenges for estimating the progress. (i) Real data graphs

often contain diverse structures (e.g ., [10]). Thereby, the work

done in evaluating subgraph queries – in particular, enumerat-

ing the isomorphic mappings between the query graph and the

data subgraphs – differ greatly among subgraphs. Therefore,
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it is a daunting task to derive a tight bound and/or cost model

of the total work to be done in static time. (ii) There have

been a wide variety of querying techniques in the literature

for subgraph queries. Intuitively, the progress indicator may

capture the core exponential computation embedded in these

techniques. Further, the progress estimation may reflect the ef-

fectiveness of optimization techniques that prunes unnecessary

computation. (iii) The progress estimation should be accurate

and have little effect on query performance.

In this demonstration, we take the first step to provide a

light-weight and accurate progress indicator called PIGEON

(Progress Indicator for SubGraph QuEry EvaluatiON) for

subgraph queries. We present our system with the seminal Ull-

mann’s algorithm, which consists of a mapping enumeration

step of subgraph queries that captures the computation that

runs in exponential time to the sizes of data graphs/queries

in worst case. The structure of the Ullmann’s algorithm is

simple and its enumeration (and its variants) gives rise in

all subgraph query algorithms. Our main idea is to extend

the algorithm to continuously generate runtime information

for progress estimation. We define the unit of works of the

enumeration called node mapping (NM). Based on these, the

progress indicator computes the estimated total amount of

work and obtains the real work done so far. To tamper the

variations discussed, we implement an estimation refinement

module to refine estimation as the query is being run.

II. PROTOTYPE OVERVIEW

The system architecture of PIGEON is sketched in Figure 2.

The graphs of this demonstration are stored as adjacent lists on

a file system. The query user interface is a simple text editor.

The query processor is our implementation of the Ullmann’s

algorithm, extended with a writer of progress messages (the

bold rectangle). The prototype does not assume any spe-

cific indexes. We remark that we have not made technical

assumptions on these modules, which aim to maintain a

high portability. The most technically-involved are the notion

of progress, the progress messages, the progress estimation

module and the progress refinement module, whose main ideas

are highlighted in Sections III and IV.

III. PROGRESS OF SUBGRAPH QUERIES

Graph and subgraph query. A graph G = (V,E,Σ, l) is a

4-ary tuple, where V , E, Σ and l are the set of nodes, edges,

labels and the function that returns the label of a node/edge.

Given a query graph q, a data graph G and a subgraph

isomorphism algorithm A, A(q,G) is to apply the algorithm

on q and G and output the subgraph isomorphism relations

from q to subgraphs G. Given two graphs G = (V,E,Σ, l)

and G′ = (V ′, E′,Σ′, l′), a subgraph isomorphic relation or

valid subgraph mapping from G to G′ is an injective relation

S: V (G) → V (G′) such that

• ∀v ∈ V (G), S(v) ∈ V (G′), l(v) = l′(S(v)); and

• ∀(v, v′) ∈ E(G), (S(v), S(v′)) ∈ E(G′), l(v, v′) =

l′(S(v), S(v′)).

For simplicity, we may often call S a subgraph mapping and

we call a binary tuple (v, u) ∈ S a node mapping (NM).

A subgraph query q on a graph G is to determine all sub-

graph mappings from q to G. Subgraph query algorithms (e.g .,

[2], [1]) typically generate the subgraph mapping tuple by tu-

ple. When the mapping is being constructed, these algorithms

often localize their processing in candidate subgraphs instead

of the original graph. Such subgraphs can be formalized as

follows. Let A be a subgraph isomorphism algorithm and

A(q,G) be the query answers. A candidate subgraph (CS)

of G is a subgraph of G such that A(q,CS(G)) ⊆ A(q,G).
To obtain all answers, A is run on all candidate graphs:

A(q,G) =
n⋃

j=1

A(q,CSj), n is the number of CSs on G. That

is, since it is well known that the worst case complexity of

subgraph queries is exponential to the graph size, it is more

efficient to enumerate the mappings from smaller subgraphs. It

is worth noting that our techniques do not make any technical

assumptions on the algorithms for generating the CSs.

Query progress. We now present the unit of work of subgraph

isomorphism algorithms. At the core of those algorithms is

an enumeration of possibly exponentially-many isomorphic

relations between the query and the data graph. The finest unit

of work is to determine a node mapping (i .e., NM), which is

a binary tuple containing a query node and the graph node it

is mapped to1.

A valid subgraph mapping always contains |V (q)| node

mappings. In other words, the total work to be done for enu-

merating a subgraph mapping is |V (q)|. An invalid mapping

is smaller than |V (q)|. When a partial mapping S′ is being

processed, the work completed so far is |S′|. Then, the query

progress is defined as the ratio of (a) the total number of

completed NMs (denoted as K) to (b) the estimated total NMs

of all candidate subgraphs (denoted as N ) 2.

IV. THE PROGRESS ESTIMATION MODULE

The section presents the main techniques implemented in

the progress estimation module (sketched in Figure 3). Given

a query q, the candidate subgraphs (CSs) can be easily located

from the data graph. Each CS contains one or more possible

subgraph mappings. We employ a generic procedure for locat-

ing all CSs and omit specific optimization that minimizes the

CSs. Specifically, we first (randomly) choose a start node vs
of q and then locate from the data graph G the candidates that

1There are algorithm specific details such as function calls, backtracking and mainte-

nance of data structures that are not included. Instead, we assume that such computation

costs are uniformly distributed among the tasks of determining node mappings.
2It might appear that when very few mappings were valid, they ed to discrete

progresses, with abrupt progress increments. We remark that in such cases, the queries

finish almost instantly and the users may not monitor their progresses.
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Fig. 3. Progress estimation in PIGEON.

can be mapped to vs. We then perform a breadth first search

on q and each of the candidates simultaneously to obtain a CS

from G, until all the edges of q are visited.

At query time, the CSs can be exhaustively categorized

into the following (shown in grey at the top of Figure 3):

1) completed its processing; 2) currently being processed; and

3) not yet started its processing.

The number K of completed NMs. The number of completed

NMs by CSj (denoted as Kj) are computed as follows:

1) For a completed CSj , Kj is known, which equals to the

number of NMs determined from CSj ;

2) For the currently being processed CSj , the completed

number of NMs Kj is updated as Kj = Kj+1 whenever

an NM is determined; and

3) For a CSj that is not yet started, Kj is obviously 0.

The estimated number N of NMs. The estimated number of

NMs by CSj (denoted as Nj) are computed as follows:

1) For a completed CSj , Nj is known, where, Nj = Kj ;

2) For the currently being processed CSj , suppose vi is the

i-th node in q being mapped. Denote the node set that

vi is mapped as CSj(vi), e.g., in Figure 3, CSj(v2) =

{u2,u3}. The estimated number of NMs related to vi is

denoted as Cj,i, where

Cj,i =
∏i

k=1
|CSj(vk)|. (1)

For instance, Cj,2 = |{u1}| × |{u2, u3}| = 2. Thus, the

estimated number of NMs of CSj for all query nodes is:

Ñj =
∑|V (q)|

i=1
Cj,i; (2)

3) For a CSj that is not yet started, we estimate Nj by the

average N value of the completed CSs, denoted as N̂j .

Putting these together, the progress P is estimated as follows:

P =
K

N
(3)

where K =
∑n

j=1
Kj is the total number of completed NMs,

and N is the estimated total NMs, computed as:

N =
∑j−1

i=1
Ni + Ñj +

∑n

i=j+1
N̂i, (4)

where CSj is the CS being processed.

V. THE PROGRESS REFINEMENT MODULE

As NMs are being enumerated, runtime information are

used by the progress refinement module to continuously adjust

the estimated number of NMs Ñj on processed CSj . In this

section, we summarize the techniques of the module.

Again, consider the candidate subgraph CSj being pro-

cessed. This module determines if vi can be mapped to u,

u ∈ CSj(vi). There are three possible cases:

1) vi can be mapped to u;

2) vi cannot be mapped to u under the current partial

subgraph mapping while u may still be mapped to vi
under other mappings in the future; or

3) vi cannot be mapped to u under the current partial

mapping and u is impossible to be mapped to vi in any

possible mappings in the future.

For the first case, the algorithm adds 1 to Kj and continue

to map to vi+1. The second and third cases can be a result of

pruning optimizations, which lead to less work to be done. For

the second case, the algorithm backtracks and maps vi with

other data nodes. Then, we refine Ñj to reflect that vi+1,...

v|V (q)| do not need to be enumerated at all.

1) Update Cj,k, i ≤ k ≤ |V (q)| as:

Cj,k = Cj,k −Dk, (5)

where Dk is the number of NMs skipped after the

backtracking, defined as:

Dk =

{
1 k = i

Dk−1 × |CSj(vk)| i < k ≤ |V (q)|
(6)

In particular, as vi cannot map to u, we first substract

1 from Cj,i. For Cj,k where i < k ≤ |V (q)|, Dk is

subtracted from Cj,k since the algorithm skips those

NMs from vk; and

2) Recompute Ñj according to Eq. (2).

For the third case, we have known that all NMs involving

u are not enumerated and this is reflected to Ñj as follows:

1) Update CSj(vi) as:

CSj(vi) = CSj(vi)\{u} (7)

2) Update Cj,k, where i ≤ k ≤ |V (q)| using Eq. (5).

Suppose that vi−1 maps to the m-th node in CSj(vi−1),
where 1 ≤ m ≤ |CSj(vi−1)|. Dk is computed as:

Dk =





1 k = 1

|(CSj(vk−1)| −m+ 1)× Cj,k−2 k = i 6= 1

Dk−1 × |CSj(vk)| i < k ≤ |V (q)|

(8)

For k = 1 and i < k ≤ |V (q)|, the refinement is the

same to Eq. (6). For k = i 6= 1, since u is no longer

valid when the algorithm backtracks to the remaining

nodes in CSj(vi−1), those corresponding NMs skipped

are subtracted. Hence, we substract Di from Cj,i, where

Di = (|CSj(vi−1)| −m+ 1)× Cj,i−2.

3) Recompute Ñj according to Eq. (2).

VI. RELATED WORK & NOVELTY

In addition to the related work on progress indication

discussed in Section I, there is considerable work on selectivity

estimation of graph/twig queries on graph/tree data, e.g ., [11],

among many others. Selectivities are estimated at static time,

typically for query optimizers. In comparison, progress is

estimated and refined during query time for users. In addition,
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Fig. 4. [Best viewed in color]. The GUI of PIGEON.

there is a host of work on distributed graph processing

frameworks (e.g ., Pregel [12]). Such frameworks do not yet

provide a tool for progress indication of individual tasks. There

is also a related continual effort on making graph databases

more usable and efficient by providing structural search with

GUIs [8], [9]. These techniques are orthogonal to PIGEON

as they address interleaving visual query formulation and

query performance to improve the system response time. Such

interleaving action does not report any monitoring of query

performance during visual query formulation. In summary,

to the best of our knowledge, PIGEON is the first system to

demonstrate query progress for subgraph queries.

VII. DEMONSTRATION DESCRIPTION

Prototype. We have implemented a demonstration prototype

of PIGEON using JAVA. The GUI of PIGEON is shown in

Fig. 4. The demonstration consists of datasets that are popular

in the literature of graph databases such as PubChem, AIDS,

Youtube and other networks from Stanford Network Analysis

Project (SNAP). A set of example queries will be presented.

Attendees may also generate massive random queries using

DFS or BFS methods. Moreover, attendees may edit and run

their ad-hoc queries. A video of this demonstration can be

found in http://youtu.be/rOb5dw26Yvg.

Interactive experience of the progress indicator. The atten-

dees may observe how real progress and estimated progress

match (and sometimes, differ) during the query runtime, as

shown in the middle of Fig. 4. For demonstration purposes,

we obtain the real progress by running the queries prior to

the progress estimation. Then, attendees may click the RUN

button with the progress indicator. Attendees may pause the

query execution at anytime to display the partial query-data

graph mapping, as shown by the red dots on the left hand side

of Fig. 4. The software also visualizes the matrix that encodes

all possible mappings to be enumerated, indicated by the black

dots of the same window. From the demonstration, attendees

may locate subgraphs that may cause long query runtimes,

where the region of the matrix that contains many black dots;

inaccurate progress estimation by pausing the query; and/or

the significant runtime discrepancies of similar queries by

comparing the black dots in their matrices. Further, attendees

can observe interactively the refinement of estimated progress

during runtime. That is, attendees can experience how is a

dynamic estimation superior to a static estimation.

Experience of the impact of graph query runtimes with

high deviations. Despite an ample body of research on

optimization techniques on graph queries, our preliminary

study finds that the runtimes of some techniques varied greatly

(e.g ., [13]), where the average runtime reflects a partial picture

of the performance. Attendees may examine a set of sample

queries that are structurally similar whose runtimes differ

greatly. Attendees may modify the queries to observe how

small changes in subgraph queries may cause great impact on

query runtimes and how ad-hoc such changes are.

Applications. Finally, we present two scenarios in the demo.

Scenario 1. Consider a chemist who explores a database of

molecules. He/she may start with a small substructure (e.g .,

a benzene ring) that he/she is familiar and refines it to form

more specific queries. The initial query may run long and its

progress may be small. The progress reminds the chemist that

in order to complete the query, much computation is needed.

One reason is that the query is too common and many CSs are

identified and enumerated. Hence, he/she may submit a more

specific initial query.

Scenario 2. The Amazon network contains co-purchase product

data. In Fig. 1, q1 shows a purchase pattern of products 1-4.

With the help of the progress indicator, an attendee is informed

that q1 will not finish interactively (say, in 10s). By clicking

the Pause button, the user may know there are again too many

CSs. He/she may modify q1 to q2 and q3 and retrieve some

results. However, the results are relatively few. He/she may

further formulate q4. This shows how attendees may interact

with PIGEON to analyze the network.
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