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Abstract—Due to the complexity of graph query languages,
the need for visual query interfaces that can reduce the burden
of query formulation is fundamental to the spreading of graph
data management tools to a wider community. Despite the
significant progress towards building such query interfaces to
simplify visual subgraph query formulation task, construction of
current generation visual interfaces is not data-driven. That is,
it does not exploit the underlying data graphs to automatically
generate the contents of various panels in the interface. Such
data-driven construction has several benefits such as superior
support for subgraph query formulation and portability of the
interface across different graph databases. In this demonstration,
we present a novel data-driven visual subgraph query interface
construction engine called DaVinci. Specifically, it automatically
generates from the underlying database two key components of
the visual interface to aid subgraph query formulation, namely
canned patterns and node labels.

I. Introduction

Formulation of a textual query using a database query
language (e.g., sql, sparql) often demands considerable cog-
nitive effort from end users. A popular approach to tackle this
challenge is to improve the user-friendliness of the task by
providing a visual query interface to replace data retrieval
aspects of a query language. As many important real-world
applications are centered on graph data, there is a growing
need to build such user-friendly visual framework (e.g., [1],
[4], [7]) on top of any state-of-the-art graph query processing
engine (e.g., [5]) to enable easy formulation of subgraph
search queries. Such queries retrieve a set of data graphs, each
containing subgraph(s) that exactly or approximately match a
user-specified query graph1.

Typically, a visual interface for subgraph query formulation
is composed of several panels such as a panel to display
the set of labels of nodes or edges of the underlying data
graphs, a panel to construct a subgraph query graphically,
a panel containing canned patterns (small graph-structured
patterns) to aid query formulation, and a results panel. For
example, Figure 1 depicts the screenshot of a visual interface
provided by PubChem2 for substructure or subgraph search
on chemical compounds. Specifically, Panel 3 provides a list

1In this demonstration, we focus on subgraph queries that are processed on a large
number of small or medium-sized graphs.

2http://pubchem.ncbi.nlm.nih.gov/edit2/index.html?cnt=0
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Fig. 1. gui for substructure search in PubChem.

of chemical symbols that a user can choose from to assign
labels to nodes of a query graph. Panel 2 lists a set of canned
patterns (e.g., benzene ring) which a user may drag and drop in
Panel 4 during query construction. Note that the availability
of such patterns greatly improves usability of the interface
by enabling users to quickly construct a query graph with
fewer clicks compared to constructing it in an “edge-at-a-
time” mode. For instance, the query graph in Panel 4 can
be constructed by dragging and dropping two such canned
patterns from Panel 2 instead of taking the tedious route of
constructing 9 edges iteratively. Particularly, Panel 2 is useful
if (a) there is sufficiently diverse collection of patterns that can
aid a user to formulate most of her queries; and (b) a user can
quickly absorb and find relevant patterns from the collection.

Such user-friendly visual query interface is typically built by
leveraging decades of research (by the hci community) related
to various theoretical models of visual tasks, menu design, and
human factors. Unfortunately, despite the significant progress
this community brought towards constructing user-friendly
query interfaces, such approach suffers from at least two
key drawbacks. First, the contents of several key components
(e.g., Panels 2 and 3) are often created manually based on
domain knowledge rather than by automatic generation from
the underlying database. For instance, the patterns in Panel
2 are manually selected and added to the gui. An immediate
aftermath of such manual selection is that the set of canned
patterns may not be sufficiently diverse enough to support a
wide range of subgraph queries as it is unrealistic to expect
a domain expert to have comprehensive knowledge of the
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topology of the entire graph dataset. Consequently, an end
user may not find the canned patterns in Panel 2 useful in
formulating certain query graphs. Similar problem may also
arise in Panel 3 where the labels of nodes may be manually
added instead of automatically generated from the underlying
data. Second, such visual interface lacks of portability as the
same interface cannot be seamlessly integrated on a graph
database in a different application domain (e.g., computer vi-
sion). As the contents of Panels 2 and 3 are domain-dependent
and manually created, the gui needs to be reconstructed from
scratch when the domain changes in order to accommodate
new domain-specific canned patterns and labels.

There is one common theme that runs through the afore-
mentioned limitations: the visual query interface construction
is not data-driven. Specifically, the gui does not analyse the un-
derlying data graphs to automatically generate the contents of
various panels. In this demonstration, we present a novel data-
driven visual subgraph query interface construction framework
called DaVinci (DAta-driven Visual INterface Construction
EngIne) that, to the best of our knowledge, is world’s first
endeavor in the context of graph search. While the unique
set of labels of nodes or edges of the data graphs (Panel
3) can be easily generated by traversing the underlying data
graphs, automatically generating the set of canned patterns
is computationally challenging. These patterns should not
only be able to maximally cover the underlying data graphs
but should also minimize topological similarity (redundancy)
among themselves so that a diverse set of canned patterns
is available to the user. Note that there can be prohibitively
large number of such patterns. Hence, the size of the pattern
set should not be too large due to limited display space on the
gui as well as users’ inability to absorb too many displayed
patterns for query formulation.

II. System Overview

Figure 2 shows the system architecture of DaVinci. The
Node Label Generator module traverses the underlying data
graphs to generate the set of unique labels in the database D,
which are then displayed on the gui. Since this is a straight-
forward technique, we do not elaborate on it further. The
Cluster Generator module constructs clusters of data graphs
from D where the similarity among data graphs in the same
cluster is high while it is low for graphs in different clusters.
The Closure Graph Set Computation module combines all
the data graphs in each cluster into a single graph called
the closure graph based on their topological similarities. The
Canned Pattern Generator module then extracts a collection
of canned patterns from the set of closure graphs3. These
canned patterns are then displayed on the gui grouped by
their size. Note that the canned patterns are typically generated
offline as they remain invariant for a given database instance.
The Query Processor and the Results Visualizer modules are
used to evaluate the formulated query and display the query
results, respectively. Although we add these two modules

3The current version of DaVinci does not assume the existence of query logs to
generate canned patterns, which can be easily accommodated in the future.
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Fig. 2. Architecture of DaVinci.
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Fig. 3. The DaVinci gui.

in the architecture for the sake of completeness, they are
orthogonal to this demonstration as any state-of-the-art graph
query processing and results visualization techniques can be
plugged into here. Hence, we do not elaborate on them further.

The GUI module: Figure 3 depicts the screenshot of the
visual interface of DaVinci. A user begins formulating a query
by choosing a database as the query target and creating a
new query canvas using Panel 1. Panel 2 displays the unique
labels of nodes that appear in the dataset in lexicographic order
(generated by the Node Label Generator module). In the query
formulation process, the user may choose labels from Panel 2
to create the nodes in the query graph. Panel 3 displays the
set of canned patterns grouped by their size (generated by the
Canned Pattern Generator module). Panel 4 depicts the area
for formulating subgraph queries by dragging and dropping
labels and/or patterns from Panels 2 and 3. An edge between
two nodes in a query graph can be created by left and right
clicking on them. Panel 5 displays the results.

The Cluster Generator module: Given the set of data
graphs in D, this module partitions D into a set of clusters
of data graphs. Let SimScore(g1, g2) denotes the similarity
score between a graph pair (g1, g2). Here, we use maximum
connected common subgraphs (mccs) [5] to compute similarity
between a pair of graphs. First, it randomly chooses a data
graph g1 from D and then chooses another data graph g2 that is
least similar to g1. The pair of (g1, g2) becomes the two pivots
for partitioning. For all remaining data graphs gi ∈ D, it sorts
them based on Simscore(gi, g1)−Simscore(gi, g2) in ascending
order. Then the data graphs in the first half of the list are asso-
ciated with g1 and the rest with g2. This partitioning strategy
is invoked recursively until the size of the cluster is below the
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Fig. 4. A set of data graphs.

threshold Cluster size, a parameter that is adjusted according
to the characteristics of the underlying database. Note that
computing similarity scores of all pairs of data graphs for
cluster formation can be prohibitively expensive. Hence, here
we exploit certain topological feature-based similarity bounds
of the data graph pairs (wherever possible) to allocate them in
the correct cluster without computing the scores.

The Closure Graph Set Computation module: Given the
set of data graph clusters, the goal of this module is to generate
a closure graph for each cluster that “summarizes” the content
of each cluster. The intuition behind this step is that since
each cluster represents topologically similar data graphs, it is
convenient to generate a concise and accurate closure graph to
represent them in contrast to attempting to find such closure
graphs directly from D. Observe that the closure graph set
covers D effectively. We extend the idea of graph closure
in [2] to compute them.

First, given a cluster Ci, it creates a mapping between a pair
of data graphs (g1, g2) in Ci by extending each data graph with
dummy vertices and edges such that each vertex and edge in g1

has a corresponding mapping in g2. This subsequently enables
us to build the closure graph of data graphs even if they have
different size. A dummy vertex or edge is assigned the label ε .
Furthermore, each non-dummy vertex and edge is annotated
with the identifier4 of the original data graph it belongs to. For
example, consider the data graphs g1 and g2 in Figure 4. The
extended graph of g1 is shown in Figure 5(a). Notice that the
dummy vertex and edge are added to accommodate the vertex
S in g2.

A mapping between two extended data graphs g′1(V ′
1 ,E ′

1)
and g′2(V ′

2 ,E ′
2) is given as φ : g′1 → g′2, where (a) ∀v ∈

V ′
1 , φ (v) ∈ V ′

2 and at least one of v and φ (v) is not dummy;
furthermore, if both v and φ (v) are not dummy, then the labels
of v and φ (v) should be the same and (b) ∀e = (v1, v2) ∈
E ′

1, φ (e) = (φ (v1), φ (v2)) ∈ E ′
2 and at least one of e or φ (e)

is not dummy. Figure 5(b) shows a mapping of the extended
graphs of g1 and g2. It is easy to see that there are many ways
to map a pair of data graphs. The one that uses least number
of dummy vertices and edges is chosen here.

Given two extended graphs g′1(V ′
1 ,E ′

1) and g′2(V ′
2 ,E ′

2) and a
mapping φ between them, the closure graph of g′1 and g′2 is a
graph gc(Vc,Ec) where Vc is a set of vertex closures of V ′

1 and
V ′

2 and Ec is a set of edge closures of E ′
1 and E ′

2. A vertex (resp.
edge) closure in gc is a vertex (resp. edge) whose attribute is
a union of the attributes of the corresponding mapped vertices

4We assume each data graph in D is assigned a unique identifier.
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Fig. 5. An example of canned pattern generation.

(resp. edges) of g′1 and g′2. Furthermore, each vertex (resp.
edge) in gc is annotated with an idSet which is the union

of the graph identifiers of the corresponding mapped vertex
(resp. edge) pairs. Note that the dummy labels are removed
from the closure graph as well as some compression technique
is employed to make the idSet space-efficient. For example,
Figure 5(c) shows three closure graphs of data graph pairs
(g1, g2), (g3, g4), and (g5, g6). Note that during construction
of the closure graph of a pair of extended data graphs, all
the matchings between the vertices and edges are established
by computing the similarity between each pair of vertices
using the Neighbor Biased Mapping (NBM) [2], which bias
the matching towards neighbors of already matched vertices.
The final closure graph to represent the set of data graphs
in a cluster is built recursively from the data graphs and the
closure graphs. For example, the final closure graph of all the
six data graphs is shown in Figure 5(d), which is constructed
recursively using the above closure graphs.

The Canned Pattern Set Generator module: Given the set
of closure graphs, this module generates the canned patterns
to be displayed on the gui by traversing these closure graphs
in a breath-first search fashion. It consists of two key steps,
namely, candidate pattern set generation and canned pattern
set selection. Let g be a subgraph in a closure graph where
|g| = |E | is the size of g and Cov(g) be the coverage of g5. Then,
in the first step, we use |g|Cov(g) as the objective function
and find candidate patterns (subgraphs) in the closure graph
that maximize it. We illustrate this with an example. Consider
Figure 5(d). The idSet of the edge (O,C) is largest, so the
traversal begins from this edge. Specifically, since idSet =
{1, 2, 3, 4, 5, 6}, so the value of the objective function is 1∗6 =
6. The edges that are adjacent to (O,C) along with the sizes of
their idSets (((C,N), 4), ((C, S), 5), ((O, S), 2), and ((O,N), 3))
are added into a priority queue which stores them in decreasing
order of their idSet size. As (C, S) has the largest value, it is
traversed next. Since the idSet of (C, S) is {2, 3, 4, 5, 6}, the
current idSet is updated to {2, 3, 4, 5, 6} (intersection of current
idSet and the edge’s idSet) and the value of the objective
function becomes 2 ∗ 5 = 10. Similarly, (C,N) is traversed
next and the idSet is updated (idSet = {2, 4, 5}). Since the
value of the objective function is now reduced to 3 ∗ 3 = 9

5The coverage of g is the number of data graphs that contain g.

(pattern size is 3), the pattern in Figure 5(e) is generated, which
is added to the candidate pattern set. Next, the idSet of this
pattern is removed from the closure graph as well as from
the priority queue. Consequently, the value of the objective
function will now be reset to 0. This process continues until

3



no pattern can be generated or the closure graph is empty. The
candidate pattern sets from all closure graphs are aggregated
by removing duplicate patterns and aggregating their coverage.

Although the pattern set generated by the above step covers
D maximally, it may be too large to fit in the limited space
of the visual interface in its entirety. Hence, it is important to
select a subset of these patterns as canned patterns for the gui.
Recall that one of the characteristics of the canned patterns
is that they should be diverse (i.e., the similarity between
them should be minimal). Hence given a gui constraint I6,
the canned pattern set selection step selects a subset of
these candidate patterns that maximizes an objective function
consisting of maximizing coverage and minimizing similarities
among them. Note that this can be modeled as a constrained
optimization problem which is NP-hard. Hence, we select
the canned patterns greedily. First, the candidate patterns are
grouped by their size and within each group the pattern p
with the maximum coverage is selected. The coverage of
each remaining candidate pattern p′ in the group is updated
by penalizing it by its similarity (computed using mccs [5])
to p. This process is repeated until the selected pattern set
satisfies I. Finally, these canned patterns are displayed on the
gui (grouped by size).

III. Related Systems and Novelty

There has been considerable research in the arena of visual
query languages for relational databases, Web, xml databases,
and graph databases (e.g., [1], [4], [7]). These proposals
typically focus on providing user-friendly strategies to increase
expressiveness of visual queries and direct mappability to the
textual query language. However, unlike DaVinci, they are not
data-driven and do not generate the contents of various gui
components automatically.

In [3], we demonstrated a novel paradigm of blending
subgraph query processing with visual query formulation.
Specifically, it focused on the Query Processor and Results
Visualizer modules in Figure 2. In contrast, DaVinci is built
on top of these modules and its aforementioned components
are orthogonal to these modules.

Lastly, it may seem that techniques deployed in DaVinci
are related to the areas of frequent subgraph mining and
graph summarization. Specifically, as some of the canned
patterns may be frequent in the graph database, it can be
generated using any frequent subgraph mining algorithm (e.g.,
gSpan [8]). However, data-driven visual interface construction
cannot simply be realized by adopting a frequent mining algo-
rithm due to the following reasons. First, the latter techniques
may generate very large number of frequent patterns making

6The gui constraint can be expressed as follows: the gui can only display canned
patterns having size ranging from k1 to k2 (e.g., 2 to 8) and the maximum number of
patterns is M for each size.

it hard for users to locate a canned pattern for formulating
queries. Second, it is not necessary for all canned patterns
to be frequent. It is indeed possible that some patterns are
frequently used by end users to formulate visual queries but
are infrequent in the database. Similarly, graph summarization
techniques (e.g., [6]) focus on grouping nodes at different

resolutions in a large network. In contrast, DaVinci generates
a concise canned pattern set from a large collection of data
graphs by maximizing coverage while minimizing redundancy.

IV. Demonstration Objectives

DaVinci is implemented in Java JDK 1.7 on top of the
prague query engine [4]. Our demonstration will be loaded
with a few real datasets (e.g., aids Antiviral dataset containing
43k graphs, PubChem, Protein Data Bank) with different
sizes. Example query graphs that can be constructed using the
canned patterns will be presented for formulation. Users can
also write their own ad-hoc queries through our gui. The key
objectives of the demonstration are to enable the audience to
interactively experience the followings.

User-friendly construction of a data-driven visual sub-
graph querying interface. Through DaVinci’s gui (Figure 3),
the audience will be able to select a graph database and click
on the Generate Pattern button (Panel 1) to automatically
construct the contents of Panels 2 and 3. One will also be
able to interactively change the underlying graph database
as well as the gui constraint (through Panel 1) to appreciate
the portable and data-driven nature of DaVinci. Specifically,
as the graph database or gui constraint changes, one will be
able to view automatic changes to the contents of Panels 2
and 3. Consequently, one will be able to formulate visual
subgraph queries effortlessly over different graph databases
without requiring reconstruction of the visual interface.

Formulation of a visual query effortlessly. Given the
data-driven construction of Panels 2 and 3, an audience can
quickly and interactively formulate a large variety of queries
by dragging and dropping canned patterns. Specifically, she
may formulate the same query graph using the PubChem
interface (Figure 1) and experience first-hand the tediousness
in query construction due to the lack of availability of desired
canned patterns to aid query formulation.
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