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Abstract— In a previous paper, we laid out the vision of a novel
graph query processing paradigm where instead of processing a
visual query graph after its construction, it interleaves visual
query formulation and processing by exploiting the latency
offered by the GUI to filter irrelevant matches and prefetch partial
query results [6]. Our first attempt at implementing this vision,
called GBLENDER [6], shows significant improvement in system
response time (SRT) for subgraph containment queries. However,
GBLENDER suffers from two key drawbacks, namely inability to
handle visual subgraph similarity queries and inefficient support
for visual query modification, limiting its usage in practical
environment. In this paper, we propose a novel algorithm
called PRAGUE (PRactical visuAl Graph QUery blEnder), that
addresses these limitations by exploiting a novel data structure
called spindle-shaped graphs (SPIG). A SPIG succinctly records
various information related to the set of supergraphs of a
newly added edge in the visual query fragment. Specifically,
PRAGUE realizes a unified visual framework to support SPIG-
based processing of modification-efficient subgraph containment
and similarity queries. Extensive experiments on real-world and
synthetic datasets demonstrate effectiveness of PRAGUE.

I. INTRODUCTION

Querying graph databases has emerged as an important
research problem due to explosive growth of graph-structured
data in recent years. A wide variety of graph queries in many
applications (e.g., drug design, computer vision and pattern
recognition) involve the core substructure search problem
(also called subgraph containment query). In this problem,
given a graph database D and a query graph q, the aim is to
find all data graphs in D in which q is a subgraph. Note that q
is a subgraph of a data graph g ∈ D if there exist a subgraph
isomorphism from q to g [14]. A common problem for this
type of query is that in many occasions there may not exists
any g ∈ D that matches the query. For example, consider
the substructure search query in Figure 1(a) and the data
graphs in Figures 1(b) and (c). Observe that the query is not a
subgraph of any of these data graphs. In this case, it is often
useful to find out data graphs that “approximately” contain
the query graph, which is called the substructure similarity
search problem [12] (also called subgraph similarity query).
For example, if we are allowed to miss at most two edges from
the query in Figure 1(a), then both the data graphs match it as
they contain subgraphs that nearly (or approximately) contain
the query graph (shown by dotted box).

A number of graph query languages (e.g., SPARQL,

C

(b) 

C
C C

C
C C

C
C C

C
C C

C
C C

CN
C

C

O

(a) 

C

C

C C

C

OC

(c) 

Fig. 1. A query graph (a) and data graphs ((b) and (c)).

GraphQL [4]) have been proposed that can be used to for-
mulate subgraph queries. However, formulating a graph query
using these languages often demands considerable cognitive
effort from the end user and requires “programming” skill
that is at least comparable to SQL. Unfortunately, in many real
life domains (e.g., life sciences) it is unrealistic to assume that
users (e.g., biologists) are proficient in expressing such queries.

A. Motivation

The traditional approach to address the query formulation
challenge is to build a user-friendly visual framework on top
of a state-of-the-art graph query processing technique (e.g.,
[2]). Figure 2 depicts an example of such a visual interface.
A user begins formulating a query by choosing a database
as the query target and creating a new query canvas using
Panel 1. The left panel (Panel 2) displays the unique labels
of nodes that appear in the dataset in lexicographic order. In
the query formulation process, the user chooses labels from
Panel 2 for creating the nodes in the query graph. Then, she
drags a node that is part of the query from Panel 2 and drops
it in Panel 3. Next, she adds another node in the same way
and creates an edge between the added nodes by left and right
clicking on them. Additional nodes and edges are added to
the query graph by repeating these steps1. Finally, the user
can execute the query by clicking on the Run icon in the
Query Toolbar. Panel 4 displays the query results.

In traditional visual query processing paradigm, although
the final query that a user intends to pose is revealed gradually
in a step-by-step manner during query construction, it is not
exploited by the query processor prior to clicking of the Run
icon to execute the query. That is, query processing is initiated
only after the user has finished drawing the query. This often

1In this paper, we assume an “edge-at-a-time” visual query formulation interface.
A more advanced and domain-dependent GUI may support drag and drop of canned
patterns or subgraphs (e.g., benzene ring) for composing visual queries. Such visual
query composition interface is beyond the scope of this work.
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Fig. 2. Visual interface for formulating graph queries.

results in slower system response time (SRT)2 as the query
processor remains idle during query formulation.

In [6], we laid out the vision of a novel graph query
processing paradigm where we blend the two traditionally
orthogonal steps, namely visual query formulation and query
processing. Specifically, we proposed a visual subgraph con-
tainment querying system called GBLENDER (Graph blender)
which was our first attempt at implementing this vision. Let
us illustrate it with an example. Consider a graph-structured
chemical compounds dataset. GBLENDER first mines and
extracts the frequent and infrequent graph fragments from this
dataset using an existing frequent graph mining algorithm [13].
These fragments are then used to construct the action-aware
frequent index (A2F) and action-aware infrequent index (A2I)
to support efficient matching of frequent and infrequent query
fragments, respectively, while formulating a visual query.

Suppose now a user formulates a visual subgraph contain-
ment query over this dataset using the GUI in Figure 2. The
sequence of steps taken by the user to formulate this query
is shown in Figure 3 (Sequence 1). After every visual step
taken by the user, the current query fragment is evaluated by
exploiting the latency offered by the GUI. For instance, after
Step 1 the query fragment is a frequent fragment (see the
Status column) and is efficiently evaluated using the A2F-index
and a set of identifiers of data graphs containing this fragment
(denoted by Rq) is retrieved. Next, when the user draws
Step 2, Rq is refined by filtering irrelevant matches using the
index structure (the query fragment is still frequent). Observe
that at Step 4, the query fragment evolves from frequent to an
infrequent one. Consequently, the A2I-index is probed and Rq

is refined accordingly. This continues until the user clicks on
the Run icon, when the final query results are computed by
performing subgraph isomorphism test if necessary.

The key benefits of the aforementioned paradigm are two-
fold. First, it ensures that the query processor does not remain
idle during visual query formulation. Second, it significantly
improves the SRT. In traditional graph processing paradigm,
SRT is identical to the time taken to evaluate the entire query.

2Duration between the time a user presses the Run icon to the time when the user
gets the query results [6].
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Fig. 3. Query formulation steps.

In contrast, in this new paradigm SRT is the time taken to
process a part of the query that is yet to be evaluated (if any).

Despite these appealing benefits of the new paradigm,
GBLENDER has the following limitations. Firstly, it was de-
signed to handle subgraph containment queries. Hence, if a
query fragment does not have any match in the underlying
database then it returns empty result set. For instance, in
Figure 3 (Sequence 1) the query fragment after Step 5 does not
have any match (the value of Status is set to “Similar” indi-
cating that no exact match exists.). Hence, GBLENDER returns
empty result set from this step onward. As mentioned earlier,
this may not be desirable in many practical occasions. In fact,
it should support substructure similarity search by retrieving
graphs that are similar to the query fragment. Secondly, as
GBLENDER utilizes the Rq computed in the preceding step to
update the candidate data graphs, it is expensive to update it if
a user modifies the formulated query fragment (e.g., delete an
edge) at any time during query construction (see Section II).
In this paper, we propose a novel framework that provides a
unified solution to the aforementioned limitations.

B. Overview and Contributions

We present a novel algorithm called PRAGUE (PRactical
visuAl Graph QUery blEnder) (see Section IV) that seamlessly
supports evaluation of subgraph containment and similarity
queries as well as efficient visual query modification3. During
visual query formulation, it creates a novel data structure
called spindle-shaped graph (SPIG) for each new edge eℓ
added by the user. A SPIG succinctly records information
related to the set of supergraphs of eℓ in the query fragment q
and their containment relationships (see Section V for details).

The algorithm monitors the status of Rq at each step. If
Rq remains non-empty at each step then SPIG-based subgraph
containment search is invoked as q has exact matches in the
database (see Section VI). However, if Rq becomes empty
then it again exploits the SPIG set to efficiently support the
following two steps. (a) If the user chooses to modify the
query fragment (e.g., the user may wish to retrieve only exact
matches) then it automatically suggests the edge ed that needs

3Note that there are two different research streams processing graph queries [10]. One
stream handles a large number of small graphs. The other stream handles a small number
of large graphs using approximate graph search. The former is the focus of our study.



to be deleted to make Rq non-empty. Note that the user
may ignore this suggestion and is free to delete any edge (at
any time during query formulation) that has been previously
constructed by her (see Section VII). (b) Otherwise, it invokes
substructure similarity search to retrieve approximate matches
to q (see Section VI).

In Section VIII, our experimental study demonstrates that
PRAGUE has excellent performance as the system response
time (SRT) and query modification cost grow gracefully with
increasing number of data graphs. Importantly, our results
show that the latency offered by the GUI at every step during
visual query formulation is sufficient to efficiently support
practical subgraph query processing in the new paradigm. We
also show that PRAGUE has significantly smaller candidate size
compared to several traditional substructure similarity search
techniques [8], [11], [12]. Consequently, in spite of adopting a
simple subgraph similarity verification technique [3], its SRT
is often significantly smaller than these techniques.

II. RELATED WORK

Most germane to this work is our previous effort in [6]
called GBLENDER. The main idea behind GBLENDER is to
compute efficiently the identifier of data graphs containing
unique discriminative infrequent fragments (DIFs) (for infre-
quent queries) or frequent fragments (for frequent queries)
with the addition of each new edge by utilizing the candidate
matches of the preceding step. The candidate space for final
verification is generated by intersecting the identifier sets of
the data graphs (Rq) containing these fragments.

Our work differs from GBLENDER in the following ways.
Firstly, we focus on a practical querying environment where
we assume that a user is oblivious to the nature of the query
fragment match (exact or approximate) at different formulation
steps. Our proposed query evaluation technique automatically
responds to the evolving nature of the query fragment type by
invoking exact or substructure similarity search. In contrast,
in GBLENDER the visual query framework assumes that the
formulated query fragment must have exact matches to the
data graphs. Otherwise, it returns empty result set. Secondly,
we present an efficient framework to support modifications to
a visual query any time during query formulation.

Thirdly and more importantly, although GBLENDER and
PRAGUE exploit the same action-aware indexing schemes they
have very distinct query processing strategies. GBLENDER
is based on the assumption that as the size of a query
graph increases the size of candidate data graphs decreases.
Consequently, it only records the most recent Rq . Although
this assumption is sufficient to support efficient subgraph
containment query processing, it is not conducive for subgraph
similarity queries as the candidates set size may not decrease
after each formulation step. Furthermore, it also makes update
of candidate data graphs expensive when a user modifies the
visual query graph during formulation. For instance, suppose
at Step i a user deletes an edge that was formulated at
Step k (k < i). Then, GBLENDER needs to recompute Rq

for each step again starting from the earliest step which obvi-

TABLE I
KEY SYMBOLS.

Symbol Definition
D A graph database
g, G A (sub)graph
q, Q A query graph (fragment)
Dg A set of FSGs of g
fsgIds(g) Set of identifiers of the data graphs in Dg

delId(g) A subset of fsgIds(g) used in indexes
difi A discriminative infrequent fragment (DIF)
infi A non-discriminative infrequent fragment (NIF)
Id A set of DIFs in D
a2fId(·) Identifier of each node in A2F-index
a2iId(·) Identifier of a DIF in A2 I-index
α Minimum support threshold
σ Subgraph distance threshold
β Fragment size threshold
eℓ A new edge added by user
Sℓ = (Vℓ, Eℓ) A SPIG
LE(g) Edge List associated with the vertex v ∈ Vℓ containing

a list of labels of edges in g
Lfrag(g) The Fragment List of a vertex v ∈ Vℓ representing g
freqId(g) frequent id attribute of Lfrag(g)
difId(g) DIF id attribute of Lfrag(g)
Φ(g) frequent subgraph id set attribute of Lfrag(g)
Υ(g) DIF subgraph id set attribute of Lfrag(g)
S A set of SPIGs
Rq Identifiers of data graphs containing q
Rfree Identifiers of verification-free candidate graphs
Rver Candidate graphs that need verification

ously involves unnecessary processing. In contrast, PRAGUE
exploits a novel data structure called spindle-shaped graph
(SPIG) which efficiently records the DIFs and frequent frag-
ments extracted during all (not only the most recent) query
formulation steps for future processing. It exploits these in-
formation effectively to support both exact and approximate
matches to users’ queries as well as query modifications. A
novel and efficient SPIG management strategy is also proposed
to build, update, and remove SPIGs during query formulation
in order to support practical subgraph query processing.

III. BACKGROUND

For the sake of completeness, in this section we briefly de-
scribe the action-aware indexing schemes of GBLENDER [6],
which we shall be exploiting in the sequel. The key notations
used in this paper are summarized in Table I.

A graph G is denoted as (V,E), where V is the set of nodes
and E ⊆ V × V is the set of (directed or undirected) edges
in the graph. Nodes and edges can have labels as attributes
specified by mappings ϕ : V →

∑
Vℓ

and ψ : E →
∑

Eℓ

respectively, where
∑

Vℓ
is the set of node labels and

∑
Eℓ

is
the set of edge labels. In this paper, we assume that G (data
or query graph) has at least one edge, and all nodes in G
are connected (no dangling edges or nodes). The size of G is
defined as |G| = |E|. For ease of presentation, we present our
method using undirected graphs with labeled nodes.

A graph G1 = (V1, E1) is a subgraph of another graph
G2 = (V2, E2) (or G2 is a supergraph of G1) if there exists a
subgraph isomorphism from G1 to G2, denoted by G1 ⊆ G2

(or G2 ⊇ G1). We may also simply say that G2 contains G1.
The graph G1 is called a proper subgraph of G2, denoted as
G1 ⊂ G2, if G1 ⊆ G2 and G1 + G2.



Frequent and infrequent fragments. Let D be a graph
database containing a set of data graphs. We assign a unique
identifier to each data graph in D. Let g be a subgraph of
Gi ∈ D (0 < i ≤ |D|) and has at least one edge. Then, g
is a fragment in D. Given a fragment g ⊆ G and G ∈ D,
G is referred to as the fragment support graph (FSG) of g.
We denote the set of FSGs of g as Dg. We refer to |Dg| as
(absolute) support, denoted by sup(g). We denote the set of
identifiers of the data graphs in Dg as fsgIds(g). Note that we
shall refer to a fragment in a query graph as query fragment
in order to distinguish it from a fragment in a data graph.

A fragment g is frequent if its support is no less than α|D|
where α is the minimum support threshold [6]. That is, if
g ∈ D and sup(g) ≥ α|D| and 0 < α < 1 then g is a frequent
fragment in D. We denote the set of frequent fragments in
D as F . For example, let |D| = 10000 and α = 0.1. Then,
all the fragments with support larger than or equal to 1000
are frequent fragments. The fragments f0− f6 in Figure 4 are
frequent fragments (support values are shown in parenthesis).

Given a fragment g ∈ D, if sup(g) < α|D| then g is
an infrequent fragment [6]. For example, in Figure 4 dif0-
dif2 and inf0-inf7 are infrequent fragments. We denote
the set of infrequent fragments in D as I. Specifically,
only discriminative infrequent fragments (DIFs) are indexed
in GBLENDER as it is computationally expensive to index
all infrequent fragments in the database. Informally, a DIF
is a smallest infrequent subgraph of an infrequent fragment.
Given g ∈ I, let sub(g) be the set of all subgraphs of g. If
sub(g) ⊂ F or |g| = 1, then g is a discriminative infrequent
fragment (DIF) in D. For example in Figure 4, dif1 is a DIF
as all its subgraphs are frequent fragments (f0, f1, f2, f3,
and f5). However, inf0 is not a DIF as one of its subgraph
(C-S-C) is infrequent. We denote a set of DIFs in D as Id.

A DIF satisfies the following properties (see [6]).
• Let g′ ∈ Id and g ∈ D. If g′ ⊂ g then g ∈ I.
• Given g ∈ I, ∃g′ ∈ Id such that g′ ⊆ g.
• Given g ∈ I, if ∀gi ⊂ g and gi ∈ F , g ∈ Id.
For distinction, we refer to an infrequent fragment that is

not a DIF as non-discriminative infrequent fragment (NIF). For
example, inf0-inf7 are NIFs. Note that if one of the subgraphs
of g is a DIF, then g is an infrequent fragment. Therefore, a
DIF can be used in turn to identify an infrequent fragment.

Action-aware indexes. The action-aware frequent index
(A2F) is a graph-structured index having a memory-resident
and a disk-resident components called memory-based frequent
index (MF-index) and disk-based frequent index (DF-index), re-
spectively. Small-sized frequent fragments (frequently utilized)
are stored in MF-index whereas larger frequent fragments (less
frequently utilized) reside in DF-index. Informally, DF-index is
an array of fragment clusters. A fragment cluster is a directed
graph C = (VC , EC) where each vertex4 v ∈ VC is a frequent
fragment f where the size of f (denoted as |f |) is greater
than the fragment size threshold β (i.e., |f | > β). There

4For clarity, we distinguish between a node in a query graph fragment and a node in
action-aware indexes and SPIGs by using the terms “node” and “vertex”, respectively.
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Fig. 4. Frequent and infrequent fragments.

is an edge (v′, v) ∈ EC iff f ′ is a proper subgraph of f
(denoted as f ′ ⊂ f ) and |f | = |f ′| + 1. The root vertex
(vertex with no incoming edge) of C is denoted by root(C).
Each fragment f of v is represented by its CAM code [5]. Each
vertex with fragment f in C points to a set of FSG identifiers
of f (fsgIds(f)). Note that it is not space efficient to attach
the complete list of fsgIds(f) on each vertex as the size
can be large. Fortunately, given the frequent fragments f and
f ′, if f ′ ⊂ f then fsgIds(f)∩ fsgIds(f ′) = fsgIds(f) [2].
GBLENDER exploits this to store only delId(f) ⊂ fsgIds(f).

MF-index indexes all frequent fragments having size less
than or equal to β. Similar to a fragment cluster, it is a directed
graph GM = (VM , EM ) where the vertexes and edges have
the same semantics as C. In addition, by abusing notations for
trees, vertexes representing frequent fragments of size β are
leaf vertexes in GM . Each leaf vertex v ∈ VM (representing
f ) is additionally associated with a fragment cluster list L
where each entry Li points to a fragment cluster Cj in the
DF-index such that f ⊂ root(Cj). An example of MF-index
is depicted in Figure 5(a) (β = 4) based on the frequent
fragments in Figure 4. Note the distinction between delId(f)
and fsgIds(f). For instance, |delId(f0)| = |fsgIds(f0)| −
|fsgIds(f2)| − |fsgIds(f3)|. Also, each vertex v in A2F-
index is assigned an identifier, denoted by a2fId(v) (e.g.,
a2fId(v0) = 0 in Figure 5(a)).

The action-aware infrequent index (A2I) indexes DIFs to
prune the candidate space for infrequent queries. It consists
of an array of DIFs arranged in ascending order of their sizes.
Each entry stores the CAM code of a DIF g and a list of FSG
identifiers of g. Figure 5(b) depicts an A2I-index based on the
DIFs in Figure 4. The identifier of each DIF g in the index is
denoted by a2iId(g) (e.g., a2iId(dif1) = 1 in Figure 5(b)).

IV. OVERVIEW OF PRAGUE

A. Substructure Similarity Search Problem

Most of the existing subgraph similarity query processing
techniques [8], [11], [12], [15] measure similarity between two
graphs using distance measures that are either based on graph
edit distance [15] or maximum common subgraph [11], [12].
In the former approach, the similarity of two graphs is defined
by the least edit operations (insertion, deletion, and relabeling)
used to transform one graph into another. Each of these
operations relaxes the query graph by removing or relabeling
one edge. The latter approach detects the Maximum Common
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Subgraph (MCS) [1] between the query graph and the data
graphs, and measures the similarity based on the difference of
the query graph and the MCS. Grafil [12] uses MCS to compute
similarity between graphs. Since the maximum common sub-
graph is not necessarily connected, it may include many low-
quality results in substructure similarity search [11]. This is
because it is possible that different parts of a query are mapped
to very different locations in a data graph which are far away
from each other. To alleviate this problem, Shang et al. [11]
adopted maximum connected common subgraphs (MCCS) for
the substructure similarity search problem. Given two graphs
Q and G, the maximum common connected subgraph of Q
and G is the largest connected subgraph of Q that is subgraph-
isomorphic to G, denoted as mccs(G,Q).

In spite of the applicability of edit distance for any type of
graphs and its superior quality of results over MCS for several
cases [15], in this paper we use MCCS for similarity search
for the following reasons. Firstly, as highlighted in [1] any
edit distance measure critically depends on the costs of the
underlying edit operations. How these edit costs are obtained
is still a challenging problem. The costs that are assigned to the
edit operations have an important influence on the matching
results. Two graphs that are similar under one particular cost
function may be no longer similar under another cost function.
Secondly and more importantly, in a visual querying system
the choice of similarity measure needs to take into account the
cognitive overhead associated with the end-users to interpret
the similarity matches. Visually displaying edit operations on
query results to highlight similarity between a pair of graphs
add significant cognitive overhead to end-users who may
not have any knowledge about edit distance. Comparatively,
missing edges (used for MCCS) are more intuitive in a visual
system and easier to interpret. It can be easily depicted in the
results by highlighting the MCCS in the matched data graphs.

Definition 1: (Subgraph Similarity Degree) Given two
graphs Q and G, the subgraph similarity degree from G to Q
is defined as: δ = |mccs(G,Q)|

|Q| .
The subgraph distance measures the maximum number of

edges that are allowed to be missed (deleted) in Q in order to
match G.

Definition 2: (Subgraph Distance) Given two graphs G
and Q and their subgraph similarity degree δ, the sub-
graph distance, denoted as dist(Q,G), is defined as follows:
dist(Q,G) = ⌊(1− δ)|Q|⌋.

Observe that the subgraph similarity degree and subgraph
distance are used to measure the similarity between two

Algorithm 1: PRAGUE
Input: GUI Action, query q, candidate set Rq , subgraph

distance threshold σ, graph database D.
Output: Query results Results

1 Initialize SPIG set S = ∅;
2 if Action is New then
3 q ← q + eℓ;
4 Sℓ ← SpigConstruct(q, Q, eℓ, S) /*Algorithm 2*/;
5 if simFlag = false then
6 Rq ← ExactSubCandidates(Sℓ.vtarget)

/*Algorithm 3*/;
7 if Rq = ∅ then
8 Action← OptionDialogueDisplay();
9 else

10 (Rfree, Rver)← SimilarSubCandidates(q, σ, S)
/*Algorithm 4*/;

11 else if Action is Modify then
12 q ←QueryModification(q,Rq , S, σ) /*Algorithm 6*/;

13 else if Action is SimQuery then
14 Set simFlag = true;
15 (Rfree, Rver)← SimilarSubCandidates(q, σ, S);
16 else if Action is Run then
17 if simFlag = false then
18 Results← ExactVerification(Rq);
19 if Results = ∅ then
20 (Rfree, Rver)← SimilarSubCandidates(q, σ, S);
21 Results← SimilarResultsGen(q, Rfree, Rver ,

σ) /*Algorithm 5*/;

22 else
23 Results←SimilarResultsGen(q, Rfree, Rver , σ);

graphs. Two graphs G1 and G2 with a larger δ or smaller dist
are more similar to each other. If δ = 1 or dist(G1, G2) = 0,
then G1 and G2 are subgraph isomorphism to each other.

Definition 3: (Substructure Similarity Search) Given a
query graph Q, a graph database D = {g1, g2, . . . , gn},
and subgraph distance threshold σ, the goal of substructure
similarity search problem is to retrieve all the graphs gi ∈ D
with dist(Q, gi) ≤ σ.

Example 1: Reconsider the query and data graphs in Fig-
ure 1. If we set σ as 1 (one edge miss), then Figure 1(b) is
an approximate match with δ = 6/7. If we relax σ to 2, then
Figure 1(c) is also an approximate match with δ = 5/7.

B. Algorithm Overview

The PRAGUE algorithm is outlined in Algorithm 1. In the
sequel, we assume that subgraph queries in PRAGUE are
formulated using the GUI in Figure 2. Let q be the visual
query being formulated by the user. Let simFlag be a boolean
variable to indicate if q is subgraph similarity or containment
query (true or false, respectively). We monitor four visual
actions on the GUI, namely New for new edge addition,
Modify for deletion of an existing edge, SimQuery for
invoking substructure similarity search, and Run for executing
q. When the user adds a new edge eℓ to q, the algorithm first
constructs the spindle-shaped graph (SPIG) Sℓ (Line 4). If



simFlag is false, it retrieves the FSG identifiers of q (Rq) by
invoking the ExactSubCandidates procedure (Line 6).

If Rq is empty, then there is no exact match for q after the
addition of eℓ. Consequently, PRAGUE gives the user options
to either modify q (Action is Modify) or enable retrieval of
approximate matches (Action is SimQuery) by popping out
an option dialogue box (Line 8). If the user chooses to modify
q, then it provides suggestion on which edge she should delete
in order to ensure Rq is not empty. The user may select the
suggested modification or perform a different modification to
q. These steps are encapsulated in the procedure QueryMod-
ification (Line 12). On the other hand, if the user intends to
continue formulating the query without modification (Action
is SimQuery), then the algorithm identifies q as a sub-
graph similarity query. The SimilarSubCandidates procedure
retrieves the candidate data graphs that match approximately
with q by exploiting the SPIG set S (Line 15). These steps are
repeated for each new edge until the user clicks the Run icon
(Line 16). If simFlag is false, then the exact results Results
are returned from the candidate graphs (Line 18). If Results is
empty after candidate verification (subgraph isomorphism test)
then the substructure similarity search is invoked to retrieve
approximate matches (Lines 20-21). Otherwise, if it is already
a substructure similarity search (simFlag is true), then a
list of data graphs that match the query approximately is
returned to the user. This step is encapsulated in the procedure
SimilarResultsGen (Lines 23).

V. SPINDLE-SHAPED GRAPH (SPIG)

We now present in detail the concept of spindle-shaped
graph. For each new edge eℓ created by the user, we create a
spindle-shaped graph (SPIG). We allocate each edge a unique
identifier according to their formulation sequence. That is, the
ℓ-th edge constructed by a user is denoted as eℓ where ℓ is the
label of the edge. The edge with the largest ℓ is referred to
as new edge (most recently added). For example, in Figure 3
(Sequence 1) after Step 4, four edges have been constructed
and they are uniquely identified as e1 to e4. The new edge is
e4 (C-C) as ℓ = 4 is largest in this step.

A SPIG is a directed graph Sℓ = (Vℓ, Eℓ) where each
vertex v ∈ Vℓ represents a subgraph g of the query fragment
containing the new edge eℓ. In the sequel, we refer to a vertex
v and its associated query fragment g interchangeably. There
is a directed edge from vertex v′ to vertex v if g′ ⊂ g and
|g| = |g′| + 1. Each v is associated with the CAM code of
the corresponding g, a list of labels of edges of g, and a list
of identifier set called Fragment List to capture information
related to frequent or infrequent nature of g or its subgraphs.

A Fragment List contains four attributes, namely frequent
id, DIF id, frequent subgraph id set, and DIF subgraph id set.

• If g is in A2F-index or A2I-index (see Section III), then
the identifier of the vertex or entry representing g in
the corresponding index is stored in frequent id or DIF
id attribute, respectively. Recall from Section III, the
identifier of a vertex or an entry in A2F-index or A2I-
index is denoted by a2fId(g) or a2iId(g), respectively.

Algorithm 2: SpigConstruct
Input: Query q, Vertex queue Q, new edge eℓ, set of SPIGs S
Output: Spindle-shaped graph Sℓ

1 vℓ,1 ← f(eℓ);
2 Enqueue(vℓ,1,Q);
3 Insert(vℓ,1, Sℓ);
4 while Q ̸= ∅ do
5 vℓ,i ← Dequeue(Q);
6 foreach vℓ,j ∈ Sℓ is the parent of vℓ,i do
7 Add vℓ,j’s FragmentList to vℓ,i;

8 if gi /∈ A2F-index or A2 I-index then
9 g′i ← gi − eℓ;

10 v′ℓ,i ← Search cam(g′i) in the |g′i|-th level of Sℓ′ ;
11 Attach v′ℓ,i’s FragmentList to vℓ,i;
12 else
13 Attach vℓ,i with difId(gi) or freqId(gi);

14 if |gi|=|q| then
15 Add Sℓ in S;
16 return Sℓ;
17 else
18 foreach gi ⊂ gj ⊂ q and |gj |=|gi|+1 do
19 if vℓ,j ̸∈ Q then
20 vℓ,j ← f(gj);
21 Enqueue(vℓ,j ,Q);

22 Insert(vℓ,j , Sℓ);
23 Connect edge(vℓ,i, vℓ,j);
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Fig. 6. The vertices of the spindle-shaped graph in step 5.

• If g is neither in A2F-index nor in A2I-index, then the
frequent subgraph id set stores the frequent ids of all
largest proper subgraphs of g that are in A2F-index. Note
that the size of these subgraphs is |g| − 1. The DIF
subgraph id set of g contains the DIF ids of all subgraphs
of g that are indexed by A2I-index.

The source vertex (vertex with no incoming edge) in the
first level of Sℓ, denoted by Sℓ.vsource, represents eℓ and the
target vertex (vertex with no outgoing edge) in the last level,
denoted by Sℓ.vtarget, represents the entire query fragment at
a specific step. Since there is only one vertex at the first and
the last level and a set of vertices in the “middle” levels, the
shape of Sℓ is like a spindle.

Definition 4: (Spindle-shaped Graph (SPIG)) Let eℓ be the
new edge added to a visual graph query q during Step ℓ. Then,
the spindle-shaped graph (SPIG) of eℓ is a directed graph
Sℓ = (Vℓ, Eℓ) that satisfies the following conditions.

• For each v ∈ Vℓ, ∃ an injective function f : v → f(g) s.t.
eℓ is contained in g and g ⊆ q.
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Fig. 7. The SPIG set for Sequence 1 (Edge Lists are in square brackets and Fragment Lists are shown in rectangular boxes).

• By abusing the notations of trees, each (v′, v) ∈ Eℓ

represents the parent-child relationship between two ver-
tices v′ and v where v is the child of v′ iff g′ ⊂ g and
|g| = |g′|+ 1.

• Each v ∈ Vℓ is a 3-tuple v = (cam(g),LE(g),Lfrag(g))
where cam(g) is the CAM code of g,
LE(g) is the Edge List containing a list
of labels of edges in g, and Lfrag(g) =
(freqId(g), difId(g),Φ(g),Υ(g)) is the Fragment List.
freqId(g), difId(g), Φ(g), and Υ(g) refer to frequent
id, DIF id, frequent subgraph id set, and DIF subgraph
id set, respectively such that:

1) if g ∈ A2F-index, then freqId(g) = a2fId(g) and
difId(g) = Φ(g) = Υ(g) = ∅.

2) if g ∈ A2I-index, then difId(g) = a2iId(g) and
freqId(g) = Φ(g) = Υ(g) = ∅.

3) if g /∈ A2F-index and g /∈ A2I-index, then ∀g′ ⊂ g
where |g′| = |g| − 1, if g′ ∈ A2F-index, then Φ(g)
contains a2fId(g′), and freqId(g) = difId(g) =
∅. Also, ∀g′ ⊂ g where g′ ∈ A2I-index, Υ(g)
contains a2iId(g′).

• Each v is uniquely identified by the pair (ℓ, k) where k
is the position of v based on depth-first traversal order
starting from Sℓ.vsource.

Example 2: Consider Step 5 (Sequence 1) in Figure 3.
Figure 6(a) depicts the SPIG S5 after the addition of the
new edge labeled 5 (e5). Each vertex represents a subgraph
of the query fragment containing e5 and is identified by a
pair of identifiers containing label of e5 and its position. For
instance, v5,3 refers to the third vertex in S5. Information
associated with each vertex in S5 is shown in Figure 6(b).
Particularly, the entries from left to right in the Fragment
List are freqId, difId, Φ, and Υ, respectively (we follow
this sequence in all relevant figures). Note that v5,1, v5,2, v5,3
and v5,4 represent the frequent fragments f1, f3, f5 and f6
(Figure 4), respectively. Therefore, their freqIds are 1, 3,
5, and 6, respectively. Since v5,5 represents dif1, the difId
is 1 (Figure 5(b)). However, v5,6 represents the NIF inf4.
Hence, it satisfies the Condition 3 in Definition 4 as inf4 is
neither indexed by A2F-index nor by A2I-index. Consequently,
freqId(v5,6) = difId(v5,6) = ∅. Among all the largest

proper subgraphs of inf4 (size of these subgraphs is |inf4| −
1), the subgraph f6 (see Figure 4) is a frequent fragment and
hence stored in the A2F-index (vertex id 6 in Figure 5(a)).
Hence, Φ(v5,6) = {6}. Also, among all the subgraphs of inf4,
the subgraphs dif1 and dif2 (see Figure 4) are DIFs and are
indexed by A2I-index (having entry ids 1 and 2 in Figure 5(b)).
Consequently, Υ(v5,6) = {1, 2}.

A. Algorithm for SPIG Construction
The algorithm for building a SPIG is shown in Algorithm 2.

It takes as input the new edge eℓ added to the query fragment
q, a set of SPIGs S from previous step, and a queue Q to
temporarily store the vertexes of Sℓ. The building process
starts from the new edge (Lines 1-2). It first attaches the CAM
code and edge label of eℓ to vertex vℓ,1. Let vℓ,i be the vertex
dequeued from Q (Line 5). For each vℓ,j in Sℓ, if vℓ,j is the
parent of vℓ,i, then vℓ,i inherits the frequent and DIF ids of vℓ,j .
That is, it attaches freqId(vℓ,j) to Φ(vℓ,i), difId(vℓ,j) and
Υ(vℓ,j) to Υ(vℓ,i) (Lines 6-7). If gi is not a DIF or a frequent
fragment (Line 8), then the algorithm first extracts the largest
subgraph of gi without eℓ (denoted by g′i). Let ℓ′ be the new
edge in g′i where ℓ′ < ℓ. Since Sℓ′ has already been constructed
and stored in S, the algorithm retrieves v′ℓ,i from the|g′i|-th
level of Sℓ′ (Lines 9-10). Then it attaches the relevant ids in
FragmentList of v′ℓ,i to vℓ,i (Line 11). Note that as all the
largest subgraphs of vℓ,i can be found in S, the identifiers of
frequent and infrequent fragments can be efficiently inherited
without decomposing them to its subgraphs and retrieving
them by probing action-aware-indexes.

If gi is a DIF or a frequent fragment, then it attaches
frequent fragment id or DIF id of gi on vℓ,i’s freqId or difId,
respectively (Line 13). If |gi| = |q|, then the SPIG construction
process is terminated and Sℓ is added to S (Lines 14-16).
Otherwise, vertex vℓ,j is constructed as the child of vℓ,i in
Sℓ. For each gj ⊃ gi in q, if vℓ,j does not exist in Q then
it attaches the CAM code and edge labels of gj to vℓ,j and
inserts the vertex in Q. Lastly, it adds vℓ,j in Sℓ and connects
vℓ,i and vℓ,j with a directed edge (Lines 18-23).

Observe that the aforementioned procedure does not incre-
mentally build Sℓ from Sℓ′ (ℓ′ < ℓ) as eℓ is different in each
formulation step. Consequently, the fragments represented by
the vertices of Sℓ are often different from those in Sℓ′ . For



Algorithm 3: ExactSubCandidates
Input: Target vertex v in Sℓ, A2F-index, A2 I-index
Output: Set of candidate identifiers Rq

1 if freqId(v) ̸= ∅ then
2 i = freqId(v);
3 Rq ← retrieve fsgIds(gi) from A2F-index;

4 else if difId(v) ̸= ∅ then
5 i = difId(v);
6 Rq ← retrieve fsgIds(gi) from A2 I-index;

7 else
8 foreach i ∈ Φ(v), j ∈ Υ(v) do
9 Rq ← Rq ∩ fsgIds(gi) ∩ fsgIds(gj);

instance, Figure 7 shows a set of SPIGs constructed for Steps 1
to 6 in Sequence 1 in Figure 3. Observe that the fragments in
two consecutive SPIGs (e.g., S5 and S6) can be quite different.

B. Analysis of SPIG Construction

Size of SPIG set. The cost of SPIG construction depends
on the number of edges in the query as it influences the
number of levels and vertex set size of the SPIG. Let q be
a visual query graph fragment with n distinct edges. That is,
q has n edges with unique node label pairs (vi, vj). Then
the maximum number of vertexes in the k-th level of Sℓ

is Ck−1
n−1. Consequently, the total number of vertices in Sℓ

is:
∑n

k=1 C
k−1
n−1. However in practice, often some nodes in q

share the same vertex labels. For example, in the query in
Figure 2 there are only two distinct edges (C-S and C-C).
Consequently, the number of unique vertexes in the k-th level
of Sℓ is much less than the worst-case scenario. For instance,
only two vertexes are in the fourth level of S6 (Figure 7(f)).
We shall empirically study the cost of SPIG set construction
in Section VIII.

LEMMA 1: The total number of vertexes in the k-th levels
of SPIGs in S is: N(k) ≤ Ck

n. 2

Proof: The proof is given in [7].
Effect of query formulation sequence. Different sequence

of formulation steps for a query q (e.g., Sequences 1 and 2 in
Figure 3) will result in different SPIG sets. However, the total
number of vertexes in the k-th level will remain identical in
different SPIG sets. That is, given Si and Sj generated by two
distinct sequence of formulation steps for q, Ni(k) = Nj(k).

VI. SUBSTRUCTURE SIMILARITY SEARCH

We begin by describing SPIG-based candidates generation
for exact substructure search (ExactSubCandidates procedure).
Note that this will be exploited by substructure similarity
search and our query modification strategy.

A. Exact Substructure Candidates Set Generation

Algorithm 3 outlines the SPIG-based procedure for retriev-
ing Rq at a specific step. Given the target vertex v in the SPIG
Sℓ representing the query fragment q, if v represents a frequent
fragment, then it retrieves FSG identifiers of v from A2F-
index (Lines 1-3). Otherwise, if v represents a DIF, then the

Algorithm 4: SimilarSubCandidates
Input: Query fragment q, σ, SPIG set S
Output: Rfree, Rver

1 for i=|q|-1 to |q|-σ do
2 foreach vj in ith level of S do
3 if freqId(vj) ̸= ∅ or difId(vj) ̸= ∅ then
4 Rfree(i)← Rfree(i)∪ ExactSubCandidates(vj);
5 else
6 Rver(i)← Rver(i)∪ ExactSubCandidates(vj);

7 Rver(i)← Rver(i)− (Rfree(i) ∩Rver(i));
8 Add Rfree(i) in Rfree and Rver(i) in Rver;

algorithm retrieve the FSG identifiers from A2I-index (Lines 4-
6). If v represents a NIF then for each identifier in the frequent
subgraph id set (Φ(v)) and DIF subgraph id set (Υ(v)) of v,
it retrieves the corresponding FSG identifiers from A2F-index
and A2I-index, respectively, and then intersect them with Rq

to generate the candidate set (Lines 8-9).

B. Similar Substructure Candidates Set Generation

A key challenge in substructure similarity search is that
the similar subgraph verification for a large candidate set is
prohibitively expensive [12]. Our strategy for reducing the
verification cost is as follows: (a) retrieve only candidates that
are “nearly” similar to the query fragment and (b) identify
verification-free candidates among them.

Algorithm 4 describes the SimilarSubCandidates procedure.
It separates the candidate set into two parts, namely Rfree and
Rver. Rfree stores the identifiers of verification-free candidate
graphs whereas Rver stores identifiers of candidate data graphs
that need verification. Given the subgraph distance threshold
σ, the algorithm exploits the SPIG set S to identify the relevant
subgraphs of q that need to be matched for retrieving approx-
imate candidate sets. Specifically, these subgraphs are query
fragments represented by the vertices at levels |q|−1 to |q|−σ
in S (Line 1). Let Rfree(i) and Rver(i) store the verification
free candidates and candidates that need verification in the i-
th (|q|-σ ≤ i < |q|) level of S, respectively. For each vertex
vj in the i-th level, if it is a frequent fragment or DIF, then
the algorithm retrieves the candidates satisfying vj using the
ExactSubCandidates(vj) procedure and combine them with
Rfree(i) (Lines 3-4). Otherwise, vj is a NIF. Consequently,
Rver(i) is computed by combining Rver(i) with the candi-
dates returned by ExactSubCandidates(vj) (Lines 5-6). Next, it
removes the candidates that exist in both Rfree(i) and Rver(i)
from Rver(i) as these are already identified as verification-free
candidates (Line 7). Finally, it adds Rver(i) and Rfree(i) in
Rver and Rfree, respectively (Line 8).

Analysis of candidate graph set. Observe that the candi-
date set is equal to the union of the FSG identifiers of vertexes
in the levels |q|-σ to |q| − 1 of the SPIGS in S.

LEMMA 2: Let Rcand be the candidate set at a specific
formulation step. Then, Rcand =

∪|q|−1

k=|q|−σ

∪N(k)
i=0 fsgIds(vi).

Proof: The proof is given in [7].
Notably, the query formulation sequences do not have any

effect on the candidate graphs set for both subgraph contain-



ment and similarity queries. That is, given two SPIG sets Si and
Sj of a query q, Rcand(i) = Rcand(j). Consequently, different
formulation sequences do not have significant effect on the SRT
as it is primarily influenced by the size of candidate set. Our
empirical study in Section VIII confirms this argument.

C. Generation of Approximate Query Results

As the data graphs in the result set of a substructure similar-
ity search have varying degree of similarity with respect to the
query graph, we order them based on the following rule. Let
g1 and g2 be two candidate graphs that approximately match
the query q. If dist(g1, q) < dist(g2, q) then Rank(g1) <
Rank(g2). Note that a lower rank of g indicates that g is
more similar to q.

Algorithm 5 outlines the procedure for generating ordered
query results. As the subgraph distance of candidate graphs
associated with the i-th level of SPIGs in S is |q| − i, the
higher level the candidate graph is in S, the more similar it is
to the query graph. For the candidate graphs that are associated
with level i, firstly the verification-free candidates (Rfree(i))
are added in Results (Line 2). Next, it generates the result set
from the candidates in Rver(i) (Lines 3-4). Here we extend
VF2 [3] to handle MCCS-based similarity verification. This
procedure is encapsulated by the SimVerify procedure (the
formal algorithm is given in [7]). The verified candidates
are then added to Results (Line 4). The aforementioned
procedure is repeatedly executed up to (|q|-1)-th level of the
SPIGs. The results are returned ordered by increasing σ values.

Note that our focus here is not to develop an efficient similar
subgraph verification technique. In fact, we can easily replace
the implementation of SimVerify with a more efficient tech-
nique (e.g., [11]). Fortunately, in spite of using such a simple
verification technique, PRAGUE has very good performance
due to its superior candidates pruning ability as well as its
ability to exploit GUI latency (demonstrated in Section VIII).

VII. SUPPORTING QUERY MODIFICATION

In PRAGUE a user may modify a visual query due to two
key reasons: (a) if the candidate set of the formulated query
fragment is empty then she may modify the query when
prompted by the system (Lines 7-8 in Algorithm 1); (b) she
may commit a mistake or may change her mind during query
formulation and modify the query fragment accordingly (Lines
11-12 in Algorithm 1). We now discuss how such query
modification is efficiently supported.

In the current version of PRAGUE, modification to a query
is achieved by edge deletion5. The user can delete any edge
as long as the modified query graph is a connected graph
at all times. For clarity, we introduce our query modification
algorithm based on single edge deletion at a time. It is trivial
to extend it to support multiple edge deletions.

Algorithm 6 outlines our SPIG-based strategy for handling
query modifications. Let eℓ be the most recently added edge in
q and ed be the edge deleted from q where 0 < d ≤ ℓ. When

5Node relabeling can be expressed as deletion of edge(s) following by insertion of
new edge(s) and node.

Algorithm 5: SimilarResultsGen
Input: q, Rfree, Rver and σ
Output: Ordered result set Results

1 for i=|q|-σ to |q|-1 do
2 Results← Results ∪Rfree(i);
3 Rver(i)← Rver(i) ∩Results;
4 Results← Results∪ SimVerify(q, Rver(i), i);
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Fig. 8. Queries on real and synthetic datasets.

the candidate set of subgraph containment query fragment q
becomes empty and the user opts for query modification then
Lines 3-8 are executed to provide modification suggestion
to her. For each possible deleted edge in q, it matches the
corresponding vertex vi in the |q′|-th level of the SPIGs in S by
performing the graph isomorphism test of q′ and vi. Note that
two graphs g and g′ are isomorphic to each other, if and only if
cam(g) = cam(g′) [5]. It recommends the edge, that returns
the largest candidate set Rq′ , for deletion to the user (Lines 6-
8). On the other hand, if ed is selected by the user at any time
during query formulation, the new query fragment q′ is formed
by deleting ed from q (Line 11). The SPIG set S is updated
by removing SPIGs and vertexes related to ed (Lines 12-14).
Finally, if modification occurs when the query fragment is
already a subgraph similarity query, then the new candidate
set is generated by SimilarSubCandidates procedure (Line 16).
Otherwise, the candidate set is generated by invoking the
ExactSubCandidates procedure. Due to space constraint, an
example illustrating this algorithm is given in [7].

VIII. PERFORMANCE STUDY

PRAGUE is implemented in Java JDK 1.6 and the results
display component is implemented using ZGRViewer [9].
We run all experiments on an AMD 3.4GHz machine with
3.25GB RAM, running Ubuntu 9.10 system. Since there is
no existing system that realizes our new paradigm in the
context of substructure similarity search, we are confined to
compare PRAGUE (denoted by PRG for brevity) against the
following state-of-the-art MCS-based substructure similarity
search methods based on traditional paradigm: Grafil [12]
(denoted by GR), SIGMA [8] (denoted by SG), and restricted
version6 of DistVP [11] (denoted by DVP). These programs
are all implemented in C++.

A. Experimental Setup

Datasets. We use the AIDS Antiviral dataset containing 40K
(40, 000) graphs as real-world dataset (similar to [8], [10],

6The publicly-available executable file limits our performance evaluation due to
problems highlighted later. We do understand that such problems may exist as it is
not an official release version.



Algorithm 6: QueryModification
Input: Query q, Deleted edge ed, S, Rq , σ
Output: Rq

1 Initialize ed to be deleted edge;
2 if Rq=∅ and ed = ∅ then
3 foreach ei ⊂ q do
4 q′ ← q − ei;
5 vi ←Match q′ in the |q′|-th level of S;
6 if |fsgIds(vi)| > |Rq′ | then
7 ed ← ei;
8 Rq′ ← fsgIds(vi);

9 else
10 ed ← edge deleted by the user;
11 q′ ← q − ed;

12 Remove Sd from S;
13 foreach vi ∈ Sj , Sj ∈ S, ed ∈ LE(vi) do
14 Sj ← Delete vi and its edges in Sj ;

15 if Rq=∅ then
16 SimilarSubCandidates(q′, σ, S);
17 else
18 ExactSubCandidates(q′);

TABLE II
INDEX SIZE COMPARISON (MB)

DVP
PRG SG/GR

σ 1 2 3 4
Size 179.5 381.4 630.4 918.7 36.1 11.1

[12]). The average size of a graph is 25 vertices and 27
edges. The maximum size of a graph is 222 vertices and 251
edges. We use the Graphgen of FG-Index [2] to generate five
synthetic datasets with sizes from 10, 000 to 80, 000 (denoted
by 10K - 80K). The average number of graph edges in each
dataset is set to 30 and the average graph density is 0.1.

Query Sets. Q1 − Q4 are queries on the AIDS dataset
whereas Q5 −Q8 are queries on the synthetic datasets. Since
these queries are formulated by end users using the visual
interface, it is not realistic to expect a user to formulate large
queries visually. Therefore, we chose query graphs whose
sizes do not exceed 10. Additionally, unlike traditional ap-
proaches [8], [11], [12], [15] where the benchmark queries are
automatically generated from the graph database, the queries
here are visually formulated by real end users. Hence, it is not
possible to generate a large number of visual queries as our
preliminary study revealed that such aspiration strongly deters
end users to participate in the empirical study.

The labels on the edges of a query in Figure 8 rep-
resent the default sequence of steps for query formula-
tion in PRG. For example, in Q3 the default sequence
of steps for query formulation is: [(Hg,O), (O,C), (C,C),

(C,N), (N,N), (N,N), (N,N), (C,N)]. Unless mentioned other-
wise, we shall be using the default sequence for formulating a
particular query. The specific step in a query when Rq becomes
empty is shown by bold edge (e.g., Step 4 in Q1).

Recall that the candidate set of PRG consists of two parts:
Rfree and Rver. Obviously, the more candidates are in Rfree,
the better it is for PRG as these candidates are verification-free.
Hence, we chose the query set to study best and worst case

behaviors of PRG with respect to Rfree and Rver. Specifically,
all candidates of Q1 is in Rfree (“best” case). In contrast, all
candidates of Q2, Q3, Q5 −Q8 are in Rver (“worst” case).

Participants profile. Eight unpaid male volunteers (ages
from 21 to 27) participated in the experiments. None of them
are familiar with any graph query languages. They were first
trained to use the GUI of PRG. For every query, the participants
were given some time to determine the steps that are needed
to formulate the query visually. This is to ensure that the effect
of thinking time is minimized during query formulation. Note
that faster a user formulates a query, the lesser time PRG has
for SPIG construction. Each query was formulated five times
by each participant (using the default sequence unless specified
otherwise) and reading of the first formulation was ignored.
The average query formulation time (QFT) for a query by all
participants is shown in parenthesis in Figure 8.

B. Performance on Real Graph Dataset

For the AIDS dataset, we set α = 0.1, β = 8 for PRG
and σ = 3 for all techniques unless specified otherwise. Note
that we do not study the effect of different values of β here
as in [6] we have demonstrated that it has negligible effect
on frequent subgraph containment queries (candidate pruning
depends on frequent fragments). For subgraph similarity query,
the candidate pruning is mainly based on DIFs. Hence, the
variation of β has even lesser effect on similarity queries. For
other parameters, we use the default settings of GR, SG, and
DVP as suggested in [12], [8] and [11], respectively.

Index size comparison. Table II shows the index sizes of
PRG, GR, SG, and DVP. Note that GR and SG use the same
indexing scheme. Except DVP, all the indexing strategies of
representative systems are independent of σ. Observe that the
index size of DVP is significantly larger than PRG for all σ
(highest observed factor being 25).

SPIG-based subgraph containment query performance.
Recall that if a query has exact matches, then PRG will
invoke Algorithm 3. However, in contrast to the exact subgraph
matching strategy in [6] (denoted by GBR), Algorithm 3
generates exact matches by exploiting the SPIGs. Hence,
we compare PRG and GBR here over subgraph containment
queries. We use the subgraph containment queries used for
empirical study in [6] (denoted by Q1 - Q6 in [6]) as test
queries. Figure 9(a) depicts the query performance. The
average SRT is computed by taking the average of the SRTs
of all participants (last four formulations). In the sequel, SRT
of PRG refers to this average SRT unless specified otherwise.

Observe that the SRT of PRG is similar to GBR (SRTs of Q1-
Q3 are less than 0.1ms). This is favorable to PRG as it can
support a unified framework for both subgraph containment
and similarity queries without sacrificing performance of the
former type of queries in comparison to GBR.

Candidate size and system response time (SRT). Next, we
compare the performances of the representative systems for
evaluating subgraph similarity queries by varying σ from 1 to
4. Figures 9(b)-(e) report the candidate sizes of representative
queries for different values of σ. Note that in PRG, GR, and SG,
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Fig. 9. Experimental results for real dataset.
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Fig. 10. Experimental results for synthetic datasets.

candidate size refers to |Rfree ∪Rver|. In fact, GR and SG do
not separate the candidates into these two categories. However,
candidate size in DVP refers to |Rver| only7. Observe that
for most cases the candidate size of PRG is significantly less
than GR, SG, and DVP. In Figures 9(c) and (d) (“worst” case
queries), although the candidate size of PRG is larger than GR
and SG when σ ∈ {1, 2}, it becomes less than these approaches
when σ increases to 3 and 4. The candidate pruning of PRG
depends on the DIFs and frequent fragments. Typically, DIFs
have stronger pruning ability. In contrast, pruning of SG and
GR mainly depends on the frequent fragments. In the worst
cases, there are less DIFs in the queries with smaller σ, which
weakens pruning ability of PRG. Additionally, the candidate
sizes of DVP in Q1 (“best” case) is significantly lesser than
PRG for σ ∈ {3, 4}. This is primarily because DVP only reports
|Rver|. For Q1, |Rver| = 0 in PRG. For Q2-Q4, the candidate
sizes of DVP are close to the entire dataset (∼ 40K).

Figures 9(f)-(i) report the SRTs for different values of σ. In
GR, SG, and DVP, SRT refers to the execution time of a query.
Each query was executed five times in each approach and the
results from the first run were always discarded. Observe that
we only display the SRTs of DVP for Q1 only. This is because
in contrast to the remaining approaches, DVP returns empty
results for the remaining queries8.

It is evident that the performance of PRG is better than the
existing strategies. Although in Figures 9(g) and (h) (worst
case queries), the SRT of PRG is a little bit longer than GR and

7The current version of DVP program outputs only |Rver|.
8We have also manually verified that the result sets are indeed non-empty.

SG for σ ∈ {1, 2}, it is less than these approaches for larger
σ. SG/GR converts the subgraph similarity verification problem
to the exact subgraph isomorphism verification problem. The
latter is typically faster than the former. In the worst cases,
all the candidates in PRG need to be verified. Note that
SG/GR loses this advantage when σ increases as they have to
perform a large number of exact subgraph verification. More
importantly, the SRT of PRG grows gracefully with σ. Lastly,
only PRG orders the query results according to their subgraph
distance. Inevitably, this increases the SRT of PRG.

Query modification costs. We now compare the cost of
modifying a visual query using Algorithm 6. We vary the steps
when a user performs modification, namely from addition of
the 4-th edge (e4) to the 9-th edge (e9) if any. We always
delete the first edge (e1) from Q1−Q4 to simulate worst case
scenario. Table IV reports the performances. Observe that the
modification cost of PRG is cognitively negligible (virtually
“zero”). This also implies that the cost of updating the SPIG
set is negligible. Since the time taken to construct an edge
in PRG typically is at least 2 seconds, query modification can
easily be completed by exploiting the GUI latency.

SPIG construction cost and query formulation sequence.
Table III lists two different formulation sequences for Q1 and
Q3 and the average time (all participants) to construct the
SPIGs at different steps. Performances of remaining queries
are similar and are reported in [7]. Observe that the SPIG
construction process at each step is very efficient and takes
negligible time. It is significantly lower (almost an order of
magnitude) than the available GUI latency (at least two seconds



TABLE III
EFFECT OF VARIATION IN QUERY FORMULATION SEQUENCE ON SPIG CONSTRUCTION (IN SEC.)

Query Sequence Step1 Step2 Step3 Step4 Step5 Step6 Step7 Step8 Step9 Avg. SRT

Q1

1,2,3,4,5,6,7,8,9 0 0.265 0.266 0.3 0.234 0.303 0.156 0.265 0.093 10.3
4,3,2,1,5,6,7,8,9 0.265 0.266 0.235 0.5 0.453 0.313 0.157 0.266 0.093 10.2

Q3

1,2,3,4,5,6,7,8 0 0.063 0.078 0 0 0.016 0 0.016 7.2
3,2,1,4,8,5,7,6 0.19 0.177 0.22 0.016 0.031 0.016 0 0.016 7.1

TABLE IV
QUERY MODIFICATION COSTS FOR AIDS DATASET (MSEC.).

Query e4 e5 e6 e7 e8 e9
Q1 20 36 36 36 37 37
Q2 0 0 0 15 15
Q3 0 0 0 0 0
Q4 16 16 16 16

to draw an edge9). Also, SPIG construction is not adversely
affected by addition of new edges to a query fragment. In
summary, SPIGs can be easily constructed by exploiting the
latency offered by the GUI. Lastly, the formulation sequences
only have minor effect on the SPIG construction time and SRT
highlighting the robustness of our technique.

Effect of α. Lastly, we compare the performance of PRG
for different values of α (from 0.05 to 0.2). Note that α affects
the number of frequent fragments and DIFs built in the action-
aware indexes and also the distribution of candidates in Rfree

and Rver. We use the queries on the real-world dataset (Q1-
Q4) as representative queries. Figure 9(j) reports the SRT of
these queries for different values of α. Observe that the SRTs
fluctuate in a small range with the variations of α.

C. Performance on Synthetic Graph Dataset
For synthetic datasets, we set β = 4, α = 0.05 for PRG and

σ = 3 for PRG, SG and GR. We do not compare DVP here as
it failed to build indexes for the synthetic datasets10.

Size of indexes. Figure 10(a) reports the size of indexes with
increase in dataset size. Observe that the index size of PRG
increases slowly and is smaller than SG/GR for all datasets.

SRT and size of candidate graphs. Figures 10(b)-(e) depict
the SRTs and sizes of candidate graphs of Q6 and Q8 for the
five datasets. The performances of Q5 and Q7 are similar and
are reported in [7]. Clearly, SRT of PRG is lower than SG
and GR and it has the least candidates across all datasets and
queries, confirming the strengths of PRG. More importantly,
our proposed paradigm enables PRG to scale gracefully. Note
that the sharp increase in SRT for Q6 (for 80K dataset) in PRG
is primarily due to the simple verification method we have
used rather than its candidates pruning ability.

Query modification cost. Table V reports the modification
costs of Q5 − Q8. For each query we modify at the last
step and the first edge is always deleted. Observe that the
modification is very efficient for PRG and scales gracefully
across all datasets. Importantly, it can be easily completed
during the latency provided by the GUI.

IX. CONCLUSIONS

In this paper, we have presented PRAGUE - a practi-
cal and unified visual framework that supports processing

9Here we ignore the ‘user thinking time”. As the thinking time increases, the latency
offered by the GUI increases as well at each step.

10DVP simply exits index building. No specific error message is displayed.

TABLE V
QUERY MODIFICATION COST FOR SYNTHETIC DATASET (MSEC).

Query 10K 20K 40K 60K 80K
Q5 0 0 0 16 16
Q6 0 0 0 0 15
Q7 0 0 0 15 30
Q8 0 0 15 30 40

of modification-efficient subgraph containment and similarity
queries by blending their evaluation with visual query for-
mulation. It employs a data structure called SPIG, which
succinctly records various information related to the set of
supergraphs of newly added edge in the visual query fragment.
These information along with the latency offered by the
GUI-based query formulation are exploited by our innovative
subgraph query evaluation algorithms and query modification
technique to efficiently retrieve and update candidate data
graphs. Experimental studies on real and synthetic graphs
validated the practical merit and superiority of PRAGUE.
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