
XMorph: A Shape-Polymorphic, Domain-Specific
XML Data Transformation Language

Curtis Dyreson#1, Sourav Bhowmick*2, Aswani Rao Jannu#3, Kirankanth Mallampalli#4, Shuohao Zhang^5

#Department of Computer Science, Utah State University
Logan, UT USA

1Curtis.Dyreson@usu.edu
3aswani.jannu@usu.edu

4kirankanth.mallampalli@usu.edu
* Nanyang Technological University

 Singapore
2assourav@ntu.edu.sg

^ Marvel
 San Jose, CA USA

5shuohao@msn.com

Abstract— By imposing a single hierarchy on data, XML makes
queries brittle in the sense that a query might fail to produce the
desired result if it is executed on the same data organized in a
different hierarchy, or if the hierarchy evolves during the life-
time of an application. This paper presents a new transformation
language, called XMorph, which supports more flexible querying.
XMorph is a shape polymorphic language, that is, a single
XMorph query can extract and transform data from differently-
shaped hierarchies. The XMorph data shredder distills XML
data into a graph of closest relationships, which are exploited by
the query evaluation engine to produce a result in the shape
specified by an XMorph query.

I. INTRODUCTION

The goal of the research presented in this paper is to make
it easier for users to query data, in particular XML data. One
factor that adds complexity to querying XML data is that
query writers have to know the shape of the data to effectively
query it. Long before the advent of XML E. F. Codd wrote
about this problem. In his foundational paper on the relational
model Codd critiqued the hierarchical model, in part, because
it uses asymmetric path expressions to locate data [4]. A path
expression is a specification of a path in a hierarchy. Codd
presented five hierarchies for a simple part/supplier database
and demonstrated that, in general, a path expression formu-
lated with respect to one hierarchy would fail on some other.
For instance, suppose that the expression supplier/part
locates parts “below” suppliers. The same expression fails
when the data is organized differently, say when parts are
above suppliers. Asymmetric path expressions have
resurfaced in XML query languages.

In this paper we propose a new, shape-polymorphic,
domain-specific data transformation language called XMorph.
We invite readers to visit the XMorph project website 1 to
experiment with XMorph in an on-line demo or download the
Java implementation. XMorph offers the following features in
a data transformation language.

1 http://www.cs.usu.edu/~cdyreson/pub/XMorph

Easy to specify and transform the data’s shape. The
primary component of XMorph is a morph in which the user
declares the desired shape of the result. XMorph reorganizes
the source data to match the specified shape.

Shape polymorphism. In XMorph, only the shape of the
output needs to be given, the query adapts to the shape of the
input. Shape polymorphism was first described by Jay and
Crockett [7]. In shape polymorphism in object-oriented lang-
uages, a method, e.g., to print a value, adapts to the shape of
the data, e.g., adapts to a tree or a list. This notion applies to
database query languages as follows: a language is shape
polymorphic if a query evaluated on the same data in different
structures yields (approximately) the same result2.

Ability to identify information loss. The XMorph query
engine can analyze a query to determine potential information
loss in a transformation.

XQuery support. XMorph can be translated to XQuery.
Ability to treat attributes as indistinct from sub-

elements. Though data modelers often arbitrarily choose to
use attributes rather than subelements, XMorph queries do not
force users to differentiate between them.

Easy creation of groups. XQuery 1.0 has ad-hoc support
for groups using a distinct-values function. XQuery 1.1 adds
support for grouping in aggregation. XMorph supports both
persistent and dynamic group creation for data transformation.

Vocabulary translation. To use XMorph, a user has to
know the “vocabulary” (e.g., the names of the elements) in a
data collection. But XMorph also supports vocabulary
translation, so that users can change their terminology.

Finally, XMorph is a domain-specific3 language, lacking
many features found in a general-purpose query language like
XQuery, such as namespace and white-space handling.
XMorph can not guarantee that document order is maintained
by a transformation (due to grouping, though without

2 The same result modulo duplicates, ordering, and attribute/sub-

element swaps.
3 Domain-specific has nothing to do with a database “domain,” rather

it means “special purpose” or dedicated to a specific task.

PREPRESS PROOF FILE CAUSAL PRODUCTIONS1

grouping, order can be maintained). Further XMorph assumes
that the data has a meaningful vocabulary (i.e., element and
attribute names), XMorph is not an appropriate tool for data
collections in which the names are not meaningful (e.g., every
element is named “foo”). We also assume that the vocabulary
is small, relative to the data size. Finally, XMorph can give
counterintuitive results when transforming recursive data
since each level of recursion moves data that is semantically
close to a node further from it.

II. RELATED WORK

Previous shape-related research on making it easier to
query XML can be broadly classified into four categories.

1) Query relaxation/approximation. Techniques have
been proposed to find data that inexactly or approximately
matches a query [1],[8] by relaxing the notion that only crisp
answers be returned by query evaluation [3]. These techniques
implicitly generate and explore a space of shapes that are
related to the shape of the input and/or query, usually all
shapes within a given edit distance. But these techniques are
orthogonal to XMorph (they could be employed to create
approximate XMorph).

2) Query correction/refinement. In this approach, similar
queries are automatically generated when a query is unable to
be satisfied [3] or a query is refined [2]. The user guides the
search for the query they want to execute by choosing among
alternatives, and these alternatives implicitly involve trying
different shapes for the input. These approaches are also
orthogonal to XMorph, which does not require interactive user
input.

3) XML search engines. XML search engines have simple,
easy-to-use interfaces (c.f., [5],[12]). Like XMorph, they de-
couple queries from specific hierarchies. But unlike XMorph,
XML search engine queries typically do not transform data.
XMorph straddles the middle ground between XML search
engines and path expression-dependent XML query languages
by borrowing useful techniques from each end of the spectrum.

4) Structure-independent querying. The final category of
research is more clearly applicable to XMorph. The idea that
path expressions can be made (more) symmetric by exploiting
a least common ancestor (LCA) has been explored previously.
Schema-free XQuery uses the meaningful LCA [10], XSeek
exploits node interconnections [5], and others use the smallest
LCA [11],[12],[14]. Similarly, we proposed a closest XPath
axis [15],[16] based on the LCA. In contrast to all of the
above research, XMorph focuses on the use of the LCA in
data trans-formation, characterizing the potential information
loss, and explicitly specifying and mutating the shape of data.

Similar to XMorph there are other proposals for declarative
languages for specifying transformations of XML [9],[13].
These languages hide from users many of specification details
that would be needed in a language such as XQuery or XSLT.
However, these techniques, unlike XMorph, are not shape
polymorphic. A transformation query might have to be
rewritten for a different hierarchy.

III. XMORPH OVERVIEW

This section gives a short tutorial on XMorph through a
series of examples of increasing complexity. The examples
will transform the data about books written by E. F. Codd
shown in Fig. 1.

The primary function in XMorph is a morph, which places
children below a parent in the result. The parameter of the
function is a pattern, which specifies the shape of the result.
Fig. 2 gives a simple example. The query is intended to list
the titles written by each author extracted from a collection of
book data. The pattern specifies that <title> and <name>
elements become children of <author>s4. Only <title> and
<name> elements that are closest to an <author> element
are placed within that <author>. The notion of closeness
forms the core semantics for XMorph [15]. Intuitively the idea
is that authors are closely related to the titles of their own
books and articles (and their own names), but not close to
titles written by others. Fig. 2 also shows the result of the
query when evaluated on the data in Fig. 1.

A morph can be restricted to select individual authors.
Suppose we want only the titles by the author E. F. Codd.
Then we can use the query given in Fig. 3 which selects
<author> elements where the value is ‘E.F. Codd’. The
result is the same as that in Fig. 2 since only E. F. Codd has
authored books in the source data. There may be duplicate
authors in the data, but authors can be grouped to eliminate
the duplicates. Fig. 4 shows an example that consolidates titles
under a single E. F. Codd author using a ‘group’ modifier for
the author.

Modifiers are listed after a label, separated by commas. The
group modifier uses the default, persistent grouping for author
(e.g., author is grouped by its ‘key’ as specified by the data’s
schema, or by the distinct-values function for a schema-less
data collection). Authors could also be dynamically grouped
during query evaluation, by specifying a grouping pattern.

E. F. Codd wrote both books and articles, and we may want
to select only book titles. In the query given in Fig. 5,
<title> elements closest to a <book> element are selected
but books are hidden in the output; a <book> is only used to
find a closely-related <title>. The result is the same as that
in Fig. 2 since the data has only <book>s.

Though XMorph assumes that a user is familiar with the
vocabulary of the data, it also has a translate function to
automate translation of a query or its result into the terms
desired by a user. The translation can be specified before a
morph, with the output of the translation being piped into the
morph (as shown in Fig. 6) or afterwards, in which case the
output of the morph is piped into a translate function.

The pipe operator, ‘|’, is used to connect the output of one
XMorph function into the input of another function. Initially,
the input is assumed to come from a default data collection,
but the data collection could be explicitly named using a data
specification as illustrated in Fig. 7.

4 In the explanation of this example, we’ve assumed elements rather

than attributes, but, in general, “author”, “name”, or “title” could
be either an attribute or element.

2

To this point, the descriptions of the queries have avoided
describing the shape of the input, that is, the same query could
be applied to data in a variety of hierarchies. Moreover each
query, when applied to the same data in different hierarchies
will produce the same output. The only hierarchy that the user

needs to specify is that of the output. To illustrate this,
consider the query shown in Fig. 8. The query applies a morph
to the result of a morph. The first morph produces a hierarchy
which lists the titles published in each year and within each
title the authors for that title. The second morph is the
transformation of Fig. 2.

XMorph also supports mutation of a shape. A mutation is
similar to a morph but unlike a morph the entire shape is
implicitly involved rather than just the portion explicitly given
in the pattern. A mutation is given in Fig. 9. The mutation
explicitly lists only three types, but it outputs the entire shape
of the data, with two mutations. First it moves <publisher>
elements to within the closest <author> elements, and
second, it clones <title> elements to also place them under
the closest <author> (the un-cloned <title> elements will
remain in place). The rest of the shape is not changed.

These examples show a few of the uses of XMorph and
illustrate its most important design feature: shape
polymorphism. In a shape-polymorphic query language a user
specifies the shape of the output. The evaluation of a query
adapts to the shape of the input data to produce the desired
output. In XMorph, this adaptation is based on the notion of
closeness. While XQuery path expressions are wedded to a
particular hierarchy, the key to developing a technique that
works for any hierarchy is to identify what is invariant across
the “same” data organized in different hierarchies. Observe
the two hierarchies in Fig. 1 and Fig. 10. In each of the
hierarchies, the book titles by an author are closest to that
author. Here “closeness” is roughly defined as the distance on
the path between nodes in the hierarchical model of an XML
document. This is not something specific to authors and titles
only. In fact, whenever two nodes are closest in Fig. 1 so are
their counterparts in Fig. 10.

XMorph can be evaluated natively or translated to XQuery.
As an example, Fig. 11 shows the XQuery translation of the
query in Fig. 2 on the data of Fig. 10. The translation uses the
shape of the data to generate the path expressions to locate
closest elements.

����

�����	
����

�		��		�

����� ���	� ��������

DB Addison
Wesley

46.95

�����

E.F. Codd

����

����� ���	� ��������

Automata Academic
Press

9.99

�����

E.F. Codd

����

�����	
����

�		��		�

����� ���	� ��������

DB Addison
Wesley

46.95

�����

E.F. Codd

����

����� ���	� ��������

Automata Academic
Press

9.99

�����

E.F. Codd

Fig. 1 Authors listed by book

morph author [
 name
 title
]

E. F. Codd

���	����	�

���� �����

DB

���� �����

E. F. Codd AutomataE. F. Codd

���	����	�

���� �����

DB

���� �����

E. F. Codd Automata

Fig. 2 List titles by author, and result

morph author [
 name, where value = 'E.F. Codd'
 title
]

Fig. 3 List titles by author E. F. Codd

morph author, group [
 name, where value = 'E.F. Codd'
 title
]

E. F. Codd

���	�

���� �����

DB

�����

AutomataE. F. Codd

���	�

���� �����

DB

�����

Automata

Fig. 4 List titles grouped by author E. F. Codd

morph author, group [
 name, where value = 'E.F. Codd'
 title [book, hide]
]

Fig. 5 List book titles grouped by E. F. Codd

translate
 author -> writer
| morph
 writer [
 name, where value = 'E.F. Codd'
 title [book, hide]
]

Fig. 6 List book titles by the writer E. F. Codd

3

IV. SUMMARY

XQuery is precise but brittle. An XQuery programmer can
use path expressions that precisely locate data. But a

programmer has to be familiar with the shape of the data to
effectively query it. And if that shape changes, or if the shape
is other than what the programmer expects, then the query
may fail. An XML search engine is easy to use but imprecise.
Not much is required of search engine users, but XML search
engine queries dispense with the shape of data entirely.
Between these two extremes are shape polymorphic query
languages. Queries in such languages avoid both the
brittleness of XQuery and the loss of shape in XML search
engine queries. This paper presents XMorph, a shape
polymorphic data transformation language for XML. An
XMorph query uses, mutates, and extends the data’s shape
into a shape desired by the user. The constructed shape is
subsequently used to render the data.

In future we plan to implement XMorph on a back-end
SQL database with XMorph rendering to SQL. We would also
like to apply XMorph in data integration; differently-shaped
data can be translated to a common representation to improve
the comparison and integration of data.

ACKNOWLEDGEMENTS

This research was supported by a Utah State University
New Faculty Research Grant.

REFERENCES
[1] S. Amer-Yahia, S. Cho, and D. Srivastava, “Tree Pattern Relaxation,”

in Proceedings of EDBT, 2002, pp. 89-102.
[2] A. Balmin, L. Colby, E. Curtmola, Q. Li, and F. Ozcan, “Search

Driven Analysis of Heterogeneous XML Data,” in CIDR, 2009.
[3] T. Brodianskiy and S. Cohen, “Self-Correcting Queries in XML,” in

Proceedings of CIKM, 2007, pp. 11-20.
[4] E. F. Codd. A Relational Model of Data for Large Shared Data Banks.

CACM 13(6): 377-387 (1970).
[5] Sara Cohen, Jonathan Mamou, Yaron Kanza, and Yehoshua Sagiv,

“XSEarch: A Semantic Search Engine for XML,” in Proceedings of
VLDB, Berlin, Germany, 2003, pp. 45-56.

[6] C. Dyreson and S. Zhang, “The Benefits of Utilizing Closeness in
XML,” in DEXA Workshops, 2008, pp. 269-273.

[7] C. B. Jay and J. R. B. Crockett, “Shapely types and shape poly-
morphism,” in European Sym. on Programming, 1994, pp. 302-316.

[8] Y. Kanza, W. Nutt, Y. Sagiv, “Flexible Queries over Semistructured
Data,” in PODS, June 2001, pp. 40-51.

[9] S. Krishnamurthi, K. Gray, and P. Graunke, “Transformation-by-
example for XML,” in Workshop of Practical Aspects of Declarative
Languages, LNCS 1753, 2000, pp. 249-262.

[10] Y. Li, C. Yu, and H. V. Jagadish. “Schema-Free XQuery,” Proceedings
of VLDB, Sep. 2004, Toronto, CA, pp. 72-83.

[11] Z. Liu, J. Walker, and Y. Chen. “XSeek: a semantic XML search
engine using keywords,” in VLDB, 2007, pp. 1330-1333.

[12] Z. Liu and Y. Chen, “Identifying Meaningful Return Information for
XML Keyword Search,” in SIGMOD, 2007, pp. 329-340.

[13] T. Pankowski. “A High-Level Language for Specifying XML Data
Transformations,” in Proceedings of ADBIS, LNCS 3255, 2004.

[14] Y. Xu and Y. Papakonstantinou, “Efficient Keyword Search for
Smallest LCAs in XML Databases,” in SIGMOD, 2005, pp. 527-538.

[15] S. Zhang and C. Dyreson, “Symmetrically Exploiting XML,” in
WWW, 2006 Edinburgh, Scotland, May 2006, pp. 103-111.

[16] S. Zhang and C. Dyreson, “Polymorphic XML Restructuring,” in
IIWeb (a WWW Workshop), 2006. iiweb2006/cs.uiuc/edu/6.pdf.

data 'dblp.xml'
 | morph author [name [title]]

Fig. 7 List titles by author from dblp.xml

morph year, group [
 title [author [name]]
]
| morph author [name title]

Fig. 8 Morphing a morph

mutate author [
 publisher
 title, clone
]

����

�����	
����

�		�

����� ���	�

��������DB

Addison
Wesley

46.95

�����

E.F. Codd

�����

DB

����

�		�

����� ���	�

��������Automata

Academic
Press

9.99

�����

E.F. Codd

�����

Automata

����

�����	
����

�		�

����� ���	�

��������DB

Addison
Wesley

46.95

�����

E.F. Codd

�����

DB

����

�		�

����� ���	�

��������Automata

Academic
Press

9.99

�����

E.F. Codd

�����

Automata

Fig. 9 Mutating the data

����

���	�

�		��		�

����� ��������

DB Addison
Wesley

46.95

�����E.F. Codd ����� ��������

Automata Academic
Press

9.99

�����

����

���	�

�		��		�

����� ��������

DB Addison
Wesley

46.95

�����E.F. Codd ����� ��������

Automata Academic
Press

9.99

�����

Fig. 10 Books listed by author

for $a in /author, $n in $a/name,
 $t in $a/book/title
return <author>{$a/text()}
 {$n}{$t}
 </author>

Fig. 11 XQuery for the query of Fig. 2 on the data of Fig. 10

4

	Welcome Page
	Hub Page
	Session List
	Table of Contents Entry of this Manuscript
	Brief Author Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Detailed Author Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Next Manuscript
	Preceding Manuscript

	Previous View

	Search

	Links to Other Manuscripts by the Authors

	**** PREPRESS PROOF FILE
	**** NOT FOR DISTRIBUTION
	**** BOOKMARKS ARE INACTIVE
