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Abstract

In this paper, we describe a system called XomatiQ to ad-
dress the problem of integration, querying and correlation
of biological data. XomatiQ is an integral part of the ge-
nomics Research Network Architecture (gRNA). The gRNA
provides the development environment in which new appli-
cations can be quickly written, and the deployment environ-
ment in which they can systematically avail of computing
resources and integrate information from distributed bio-
logical data sources. Specifically, XomatiQ is build on top
of the Data Hounds component. The Data Hounds trans-
forms data from various sources to XML format and loads
them into tuples of relational tables in a standard commer-
cial DBMS. The XomatiQ provides capability for querying
XML data using the underlying relational engine. XomatiQ
has been fully implemented using Java.

1 Introduction

The problem of integrating and querying heterogenous
bioinformatics resources is of immense importance. Most
bioinformatics research relies on a combination of a wide
set of related public and private databases [15]. These
databases contain annotated genomic sequence information
[1, 8], or the results of new high-throughput techniques such
as microarray experiments [22], or curated databases con-
taining carefully scrutinized existing research, systemati-
cally compiled by domain experts [35]. It is useful [12]
to correlate these databases with those containing medical
records [33], information on disease [26], databases on ref-
erences to literature [7], databases containing information
on the properties of chemicals and their molecular structure
[46]. Therefore, useful queries do span through a multitude
of databases in the categories mentioned above.

However, integrating and correlating biological data
from disparate sources is a challenging problem due to

the nature of biological data. Most data pertaining to ge-
nomics and molecular biology is characterized by being
highly evolving and semi-structured [20]. Moreover, ge-
nomic data available from public and private repositories
is voluminous [36], highly heterogeneous, and not con-
sistently represented. The heterogeneity results from our
evolving understanding of complex biological systems; the
numerous disparities in modeling biological systems across
organisms, across tissue, in different environments and over
time; and disparities across the scientific community in their
understanding of these systems. Moreover, there continues
to be a lack of common standards in the representation of bi-
ological data [4]. In fact, the extremely rapid pace of change
of the field - in terms of science, technology, and business
- discourages the development of stable standards for in-
teroperation and formation of commercial companies that
can deliver specialized software of reasonable prices [37].
This results in crippling incompatibilities among software
tools and databases. Scientists find it slow, cumbersome,
and labor-intensive to establish connections across informa-
tion resources that fuel scientific research.

Recognizing that integrating and correlating data across
disparate biological data sources is essential, researchers
and commercial companies have tried various approaches to
allow interoperability of formerly incompatible resources.
These approaches can be broadly categorized into three
types as indicated in [37]. The first approach provides a uni-
form Web interface to various databases and analysis tools
[25, 41, 42, 44]. These systems usually use CGI scripts or
Java servlets to execute queries against databases, to call
analysis programs, or to search file-based data reposito-
ries. However, these systems permit little customization by
the user and are not designed to allow “plug and play” of
components. The second approach focuses on formulating
complex declarative queries that span multiple heteroge-
nous databases [14, 23, 24]. However, these systems re-
quire “on-the-fly” mappings from representations in source
databases to a global schema, or forces users to express
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queries in the local schemas of source databases. The third
approach focuses on component integration and standard-
ization. The objective is to package heterogenous software
tools and databases as components adhering to standard,
well-defined interfaces, according to which information can
be exchanged [9, 29, 37]. This approach enables interopera-
tion and allows components implementing the same abstract
interface to be interchanged. However, its main stumbling
block is the standardization of interfaces.

1.1 Overview of our Approach

We take a warehousing approach. In this approach we
harness data from various sources and transform them to
an uniform model and store them locally. Queries for corre-
lating relevant information from multiple databases are then
performed on these locally stored data. Apart from the obvi-
ous advantages of performance, flexibility, and availability,
warehousing biological data has a positive impact on the
privacy of the relevant information retrieval. Users inter-
ested in information from biological sources are typically at
the mercy of web-sites and service providers that offer pub-
lic query interfaces [49] to the data. Moreover, many ser-
vice providers have the rights to monitor and inspect queries
formulated on their data repositories [45]. In the bioinfor-
matics domain, there is a pressing need to prevent service
providers from predicting the objective behind the formula-
tion of a set of meaningful queries by a user.

In this paper, we focus on our warehousing approach
of integrating and querying biological data from disparate
sources. Specifically, Data Hounds and XomatiQ was de-
signed and developed at HeliXense Pte Ltd, Singapore [3]
to achieve this goal. XomatiQ is build on top of the Data
Hounds component. In the Data Hounds component, we
first generate a relational schema. Second, we transform
data from various sources to XML format by creating valid
XML documents of the corresponding data. Third, we parse
XML documents created from the previous step and load
them into tuples of relational tables in a standard commer-
cial DBMS (in our case, Oracle 9i). The XomatiQ compo-
nent supports a visual XML-based query interface. Through
the interface, DTD structures of stored XML documents
are displayed, and users can formulate queries by clicking
the relevant data elements and entering conditions. Such
queries are specified in a language similar to XQuery [11]
and are transformed into SQL queries over the correspond-
ing relational data. The results are formatted as XML docu-
ments (if necessary) and returned back to the user or passed
to another application for further processing.

It is worth mentioning that recently there has been con-
siderable research effort made by the database commu-
nity on storing and querying XML documents using rela-
tional database systems. In this context, several techniques

proposed for storing XML data in relations and translat-
ing XML queries into SQL queries over those relations
[21, 34, 40, 48]. This has definitely inspired us to take a
“XML-to-relational” approach. To the best of our knowl-
edge, this is the first attempt in the bioinformatics industry
to store and query biological data using an “all-XML” sys-
tem. Observe that XomatiQ creates an illusion of a fully
XML-based data management system as the underlying re-
lational system remains hidden from the users.

Note that XomatiQ and Data Hounds are an integral part
of the Genomics Research Network Architecture (gRNA)
[31] which was designed and developed at HeliXense Pte
Ltd, Singapore [3] to address the challenges for develop-
ing new bioinformatics applications. The gRNA provides a
development environment and a deployment framework in
which to maintain distributed warehouses, and to model,
query and integrate disparate sources of data. It avails of the
flexible data representation provided by XML along with
the established reliability and powerful data management
capabilities of an RDBMS. It also provides the mechanism
to account for disparities in the nomenclature and repre-
sentation of data, as well as the semi-structured nature of
most types of data. In the same context, the architecture
strives to prevent the introduction or imposition of new bi-
ases. By providing useful domain-specific abstractions and
functionalities, and related visual interfaces, the gRNA ef-
fectively minimizes the time, cost and degree of human ex-
pertise typically required in the bioinformatics application-
development process. The reader may refer to [31] for de-
tailed discussion on the architecture and application of the
gRNA.

The rest of the paper is organized as follows: We dis-
cuss the Data Hounds component of the gRNA in Section 2.
Then, in Section 3 we present an XML-based query lan-
guage for querying the warehoused data (XomatiQ compo-
nent). We discuss related work in the area of integrating
and querying life sciences data in Section 4. Finally, the
last section concludes the paper.

2 Data Hounds

Although a large amount of biological data can be down-
loaded from the Web, integration of them from heteroge-
neous sources and preprocessing of the integrated data for
posing useful queries are challenging tasks. In this sec-
tion, we discuss how heterogeneous biological data from
disparate sources are harnessed and stored locally. Typi-
cally, there are two important considerations when working
with biological databases:

1. The conversion of a wide variety of different databases
into one consistent format.

2. The ability to download and integrate the latest updates
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Figure 1. Data Hounds.

to any database without any information being left out
or added twice.

DataHounds are built with these two considerations in
mind. It enables us to efficiently warehouse data locally. It
contains third-party programmable mechanisms to facilitate
the transport, wrapping and conversion of remotely located
relational tables and flat-files into local warehouses that are
conducive to semi-structured data management. Specifi-
cally, DataHounds are developed to provide a consistent
way of converting existing biological databases into XML
format. As XML is easily understood by applications, this
conversion will yield benefits in terms of application de-
velopment and implementation in the gRNA [31]. Figure 1
shows the functional overview of the Data Hounds. We now
describe the functional components (XML-Transformer and
XML2Relational-Transformer) of the Data Hounds in turn.

2.1 XML-Transformer

Most of the publicly accessible databases of interest
are accessible through internet protocols such as FTP (File
Transfer Protocol) and HTTP (Hypertext Transfer Proto-
col). Typically, updates to these databases are also pro-
vided through pre-designated locations through the same
protocols. Data Hounds must select one of these desig-
nated modes for physically transporting data from its origi-
nal source.

As biological databases are rarely exactly the same in
the structure, converting each one requires a special trans-
former. The XML-transformer module harnesses data (flat
files, relational tables, XML data etc.) from disparate bio-
logical sources and then converts it into XML form (if re-
quired). This involves specifying a set of DTDs for every

kind of data in the remote biological sources, and a map-
ping of the attributes in this data to elements and attributes
in the DTDs. The justification of converting remote data to
XML format is as follows:

� First, XML data is self-describing (describes the data
itself). Hence, it is possible for a program to interpret
the data. This means that a program receiving an XML
document can interpret it in multiple ways, can filter
the document based upon its content, can restructure it
to suit the application’s need, and so forth.

� Second, increasingly, genomic data is being provided
in XML format. New bioinformatics applications also
increasingly take XML as input, making it essential
that existing non-XML data be easily converted to
XML. For instance, the SRS data integration platform
[25, 49] now includes an XML parser, allowing XML
data to be quickly incorporated into SRS. Several pub-
lic domain and proprietary XML databanks such as the
INTERPRO databank [5] are already in existence.

We now illustrate the XML-transformer module with an
example. ENZYME [2] is a repository of information re-
lated to the nomenclature of enzymes. It is provided by the
ExPASy (Expert Protein Analysis System) Molecular Biol-
ogy Server of SIB (Swiss Institute of Bioinformatics). It
is primarily based on the recommendations of the Nomen-
clature Committee of IUBMB (the International Union of
Biochemistry and Molecular Biology) and it describes each
type of characterized enzyme for which an EC (Enzyme
Commission) number has been provided. This is a repos-
itory that is made available as flat file off its FTP site. It
is useful to anyone working with enzymes and helps in the
development of computer programs involved with the ma-
nipulation of metabolic pathways. The ENZYME database
contains the following data for each type of characterized
enzyme for which an EC number has been provided: (1) EC
number (2) Recommended name (3) Alternative names (if
any) (4) Catalytic activity (5) Cofactors (if any) (6) Point-
ers to the SWISS-PROT entries (or entry) that correspond
to the enzyme (if any) and (7) Pointers to the disease (s) as-
sociated with a deficiency of the enzyme (if any). Figure 2
shows a sample entry from the ENZYME database. Each
entry in the database data file is composed of lines. Dif-
ferent types of lines, each with its own format, are used to
record the various types of data which make up the entry.
The general structure of a line is given in Figure 3. The line
types, along with their respective line codes, are listed in
Figure 4. Note that some entries do not contain all of the
line types, and some line types occur many times in a single
entry. Each entry must begin with an identification line (ID)
and end with a terminator line (//).

Writing the XML-transformer module for the ENZYME

database involves specifying a DTD for the data in the flat-
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ID 1.14.17.3
DE Peptidylglycine monooxygenase.
AN Peptidyl alpha-amidating enzyme.
AN Peptidylglycine 2-hydroxylase.
CA Peptidylglycine + ascorbate + O(2) = peptidyl(2-hydroxyglycine) +
CA dehydroascorbate + H(2)O.
CF Copper.
CC -!- Peptidylglycines with a neutral amino acid residue in the
CC Penultimate position are the best substrates for the enzyme.
CC -!- The enzyme also catalyzes the dismutatation of the product to
CC glyoxylate and the corresponding desglycine peptide amide.
PR PROSITE; PDOC00080;
DR P10731, AMD BOVIN ; P19021, AMD HUMAN ; P14925, AMD RAT ;
DR P08478, AMD1 XENLA; P12890, AMD2 XENLA;
//

Figure 2. A Sample Entry in the ENZYME Database.

Characters Content

1 to 2 Two character line code.
Indicates the type of
information contained in
the line

3 to 5 Blank
6 up to 78 Data

Figure 3. Structure of a line.

Code Type Description

ID Identification Begins each
entry, 1 per
entry

DE Description >=1 per entry
AN Alternate name(s) >=0 per entry
CA Catalytic activity >=0 per entry
CF Cofactor(s) >=0 per entry
CC Comments >=0 per entry
DI Diseases >=0 per entry
PR Cross-references to >=0 per entry

PROSITE
DR Cross-references to >=0 per entry

SWISS-PROT
// Termination line Ends each entry

Figure 4. Line types and their codes.

file and a mapping of attributes from the flat-file to elements
and attributes in the DTD. Figure 5 shows the DTD of the
ENZYME database generated based on the entries in the
database. Note that the root element ��� ������ consists
of a �	 ��
�� corresponding to each entry of the ENZYME

data (from ID to //). Each �	 ��
�� consists of:

� ������ �� (mapped from ID.)
� ������ ������
��� (mapped from DE; at least one

occurrence.)
� ��
����
� ���� ��
 (mapped from AN; consists of

zero or more alternate name’s.)
� ��
���
�� ��
���
� (mapped from CA; optional ele-

ment; can be more than one.)
� �����
�� ��
 (mapped from CF; consists of zero or

more cofactor’s.)
� ������
 ��
 (mapped from CC; consists of zero or

more comment’s.)
� ����
� ��������� (mapped from PR; zero

or more; each ����
� ��������� will have
����
� ������� ���	�� as an attribute.)

� �����
 ��������� ��
 (mapped from DR; con-
sists or zero or more reference’s; each ref-
erence will have two attributes - ���� and
�����
 ������� ���	��.)

� ����� ��
 (mapped from DI; consists of zero or
more disease’s. Each disease will have ��� �� (MIM
catalogue number of the disease) as an attribute.)

Once the DTD is generated the XML-Transformer reads
the input flat file and produce a set of XML documents. The
rules for XML formation is defined by the DTD we have
developed and the line codes in the input flat file. The al-
gorithm looks for ID, DE, AN, CA, CF, CC, DI, PR, DR
respectively in the lines (keeping in mind that they may or
may not be present) and output to the XML file as per the
rules specified in the DTD. Since in our DTD, we have de-
fined ��� ������ to consist of only one element �	 ��
��,
our algorithm produces one XML file per entry in the sam-
ple data. Figure 6 shows the XML version of the sample
entry in Figure 2.

2.2 XML2Relational-Transformer

The second component in Figure 1, i.e., the
XML2Relational-transformer parses XML data gener-
ated from the previous step and loads them into tuples of
relational tables in a standard commercial DBMS (in our
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<?xml version="1.0" encoding="UTF-8"?>
<!ELEMENT hlx enzyme (db entry)>
<!ELEMENT db entry (enzyme id,enzyme description+, alternate name list,
catalytic activity*, cofactor list, comment list, prosite reference*,
swissprot reference list, disease list)>
<!ELEMENT enzyme id (#PCDATA)>
<!ELEMENT enzyme description (#PCDATA)>
<!ELEMENT alternate name list (alternate name*)>
<!ELEMENT alternate name(#PCDATA)>
<!ELEMENT catalytic activity (#PCDATA)>
<!ELEMENT cofactor list (cofactor*)>
<!ELEMENT cofactor (#PCDATA)>
<!ELEMENT comment list (comment*)>
<!ELEMENT comment (#PCDATA)>
<!ELEMENT prosite reference (#PCDATA)>
<!ATTLIST prosite reference

prosite accession number NMTOKEN #REQUIRED>
<!ELEMENT swissprot reference list (reference*)>
<!ELEMENT reference (#PCDATA)>
<!ATTLIST reference name CDATA #REQUIRED

swissprot accession number NMTOKEN #REQUIRED
>
<!ELEMENT disease list (disease*)>
<!ELEMENT disease (#PCDATA)>
<!ATTLIST disease

mim id CDATA #REQUIRED
>

Figure 5. DTD of the ENZYME Database.

case, Oracle 9i). For example, the XML data generated
from the ENZYME database is transformed to relational
tuples and stored in the RDBMS. Our database is designed
based on consideration of the following issues:

� Generic schema: The XML documents are modeled
in our system by a generic relational schema, which is
independent of any particular instance of XML data.

� Preservation of document order: As XML data is
ordered and commercial RDBMS are optimized for
unordered relational model, we have implemented a
mechanism so that document order is captured in the
RDBMS. We achieve this by treating order as a data
value. Note that this is particularly important for re-
construction of the XML documents from the tuples
as well as for evaluation of order-based functionalities
of XQuery (such as BEFORE and AFTER operators,
range predicates, and numeric literals).

� Sequence and non-sequence data: Researchers typi-
cally look into sequences to find patterns or motifs
within that may be of biological significance. Non-
sequence data is usually annotations that may result
from computational analysis of sequences, expert an-
notation describing the function and location, com-
ments, authors, known and predicted interactions with
other components etc. Types of queries posed on DNA
or protein sequences are generally different from those
posed on non-sequence data. Hence, we differentiate

between the sequence and non-sequence data in our
database.

� String and numeric data: It is also necessary to distin-
guish between string and numeric data in XML data.
Note that all these data appear as strings in the bio-
logical sources. For example, several databases store
annotations that are of numeric type such as the length
of a sequence, it location in a chromosome, homology
scores, coordinates of an atom, etc.. Common queries
often require to compare these numeric types across
large datasets in order to establish the relationships of
the biological entities.

� Keyword-based search: Finally, our design supports
efficient keyword-based searches in the relational
database system.

Note that details of the relational schema are proprietary
and therefore beyond the scope of this paper.

Since an XML document is an example of semistruc-
tured data, an obvious question is – why not use semistruc-
tured database to store this data in lieu of relational DBMS.
While this approach will clearly work, we transform the
XML data to relational tuples for the following reasons:

� First, though there has been increasing research in
XML data management, development of a full-fledged
commercial XML data management system for man-
aging very large volumes of XML data is still in its
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�?xml version="1.0" encoding="UTF-8"?�
�hlx enzyme�

�db entry�
�enzyme id�1.14.17.3�/enzyme id�
�enzyme description�Peptidylglycine monooxygenase.�/enzyme description�
�alternate name list�

�alternate name�Peptidyl alpha-amidating enzyme�/alternate name�
�alternate name�Peptidylglycine 2-hydroxylase�/alternate name�

�/alternate name list�
�catalytic activity�

Peptidylglycine + ascorbate + O(2) = peptidyl(2-hydroxyglycine) +
�/catalytic activity�
�catalytic activity� dehydroascorbate + H(2)O �/catalytic activity�
�cofactor list�

�cofactor�Copper�/cofactor�
�/cofactor list�
�comment list�

�comment�
Peptidylglycines with a neutral amino acid residue in the
Penultimate position are the best substrates for the enzyme.

�/comment�
�comment�

The enzyme also catalyzes the dismutatation of the product to
glyoxylate and the corresponding desglycine peptide amide.

�/comment�
�/comment list�
�prosite reference prosite accession number="PDOC00080"/�
�swissprot reference list�

�reference name="AMD BOVIN" swissprot accession number="P10731"/�
�reference name="AMD HUMAN" swissprot accession number="P19021"/�
�reference name="AMD RAT" swissprot accession number="P14925"/�
�reference name="AMD1 XENLA" swissprot accession number="P08478"/�
�reference name="AMD2 XENLA" swissprot accession number="P12890"/�

�/swissprot reference list�
�disease list/�

�/db entry�
�/hlx enzyme�

Figure 6. XML Data of Figure 2.

infancy. On the other hand, twenty years of work in-
vested in relational database technology has made it
commercially very successful and ensured simplicity,
stability and expressiveness. As relational databases
are prevalent in most commercial companies, no ad-
ditional costs are incurred. Furthermore, RDBMSs
are capable of storing and processing large volumes
of data (up to terabytes) efficiently.

� Second, state-of-the-art query optimization and query
processing algorithms still rely on relational model.
However, algorithms for equivalent efficiency and
ease-of-use, but designed for XML, are more difficult
to find [34]. In fact, special-purpose XML query pro-
cessors are not mature enough to process large vol-
umes of data [34].

� Third, recent research [21, 32, 34, 40, 48] demon-
strates that it is indeed possible to use standard com-
mercial relational database systems to store, index and
evaluate powerful queries over XML documents. It is
possible to take XML queries, data sets, and schemas

and process them in relational systems without any
manual intervention. This means that all of the power
of relational database systems can be brought to bear
upon solving the XML-query problem.

� Finally, by using a standard commercial relational
database systems, we can exploit the concurrency ac-
cess and crash recovery features of an RDBMS.

Data Hounds also have the capability to update the
data in the warehouse based on the changes to the remote
sources. Once the changes have been committed to the lo-
cal warehouse, the Data Hounds sends out triggers to related
applications, indicating changes to the warehouse.

3 Querying Biological Data

Since data from remote biological sources are first trans-
formed into XML documents, it should be possible to query
the contents of these documents. One should be able to is-
sue queries over a set of XML documents to extract, synthe-
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(a) XomatiQ GUI. (b) Query results.

Figure 7. Querying ENZYME database.

size, correlate, and analyze their contents. However, when
XML data is stored in relational systems, it makes it diffi-
cult to formulate query by looking at the relational schema
as the original structure of the XML documents are not well
reflected by the relational schema. In fact, the XML struc-
ture of the underlying data makes it conducive to using an
XML query language. Furthermore, the possibility of using
a standard XML query langauge has a commercial advan-
tage. Using an XML-based query language at the interface
level in our system allows us to hide the proprietary rela-
tional schema that we do not want to disclose.

The XomatiQ component provides an XML query lan-
guage to facilitate the querying of one or more distributed
or local warehouses managed within the gRNA. The syntax
for the query language is based on the W3C XQuery specifi-
cation [11]. The XQuery language is still work in progress,
and our query language is valid with respect to the syntax
and semantics defined as of June 2001. Advances in stan-
dardization process may slightly change the semantics of
the language. Specifically, we use the FLWR expressions
(for-let-where-return) of XQuery in XomatiQ. The for-let
clause makes variables iterate over the result of an expres-
sion or binds variables to arbitrary expressions, the where
clause allows specifying conditions on the variables, and
the return clause can construct new XML element as output
of the query.

Due to the pressing need in bioinformatics, the Xoma-
tiQ extends the syntax of the XQuery specification by mak-
ing provisions for simple keyword-based queries, similar to

those found in web-based search engines. The extension
simply allows the user to specify keywords that are implic-
itly meant to be located close to one another in the same
XML document. We have implemented a subset of the fea-
tures of XQuery which we believe is sufficient to provide all
the functionalities and components required by biologists to
analyze their data in a meaningful way [38]. We now dis-
cuss the main steps of a query scenario in XomatiQ.

3.1 Query Formulation

There are two ways of posing a query in XomatiQ. Ex-
pert users that are familiar with the syntax and semantics of
the query language can formulate the query in text form,
while novice users can use an user-friendly visual query
interface which can guide the user to formulate queries.
We believe the GUI-based query formulation technique has
greater importance in bioinformatics as we do not expect the
biologists to be well-versed with the syntax and semantics
of the query language.

Figure 7(a) depicts the screen dump of the visual inter-
face of XomatiQ. It consists of two panels. The left panel
displays the DTD structure of the XML documents to be
queried. The right panel is for users to specify the target at-
tributes to be retrieved and the conditions to be satisfied by
the retrieved data elements. User can click on the elements
in the DTD portion to select them and enter the conditions
at the right hand panel. Once the user completes the formu-
lation of the query, it can be transformed to the text form by
clicking on the “Translate Query” button.
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FOR $a IN document("hlx embl.inv")/hlx n sequence,
$b IN document("hlx sprot.all")/hlx n sequence

WHERE contains ($a, "cdc6", any)
AND contains ($b, "cdc6", any)

RETURN �
$b//sprot accession number,
$a//embl accession number

�

Figure 8. Keyword-based XomatiQ Query.

FOR $a IN document("hlx enzyme.DEFAULT")/hlx enzyme
WHERE contains($a//catalytic activity, "ketone")
RETURN �

$a//enzyme id,
$a//enzyme description

�

Figure 9. Sub-tree Query.

Specifically, XomatiQ provides the user the following
three modes to formulate queries visually:

� Keyword-based search mode: This is used to perform
simple keyword searches in the selected database(s).
This kind of search can be used to help users to
“browse” the relevant databases, or as a filter for for-
mulating more structured queries. For example, we
may specify a query to search for the cell division cy-
cle protein “cdc6” through all entries in the EMBL and
Swiss-Prot databases and return the accession numbers
of the relevant documents in these databases. The cor-
responding text format of this query is shown in Fig-
ure 8.

� Sub-tree search mode: This is used to perform sim-
ple text searches in the selected sub-tree(s) in the
database(s). Note that this mode is useful if the user
wants to limit the search to selected sub-trees within
the data source(s) instead of the entire data source(s).
For example, Figure 7(a) specifies a search for the key-
word “ketone” contained in the catalytic activity el-
ement of the ENZYME database. We wish to return
the enzyme id and the description of those enzymes
which match this query. The corresponding text for-
mat of the query is shown in Figure 9. The results of
the query executed against a partially warehoused EN-
ZYME database is shown in Figure 7(b). Clicking on
each enzyme id (left panel) displays the corresponding
XML document in the right panel. Note that Xoma-
tiQ allows the user to specify complex conjunctive and
disjunctive constraints in the where clause using logi-
cal operators.

� Join query mode: This mode allows us to correlate or
join multiple databases. Let us illustrate this with an
example. Consider the warehoused ENZYME database
as introduced in Section 2. Suppose we have also
warehoused data from EMBL. Suppose the user wants

to specify a query that finds all the EMBL entries from
the division invertebrates that have a direct link to en-
zymes characterized in the ENZYME database. In ef-
fect the query performs a join operation between the
database references. The query checks if the attribute
��������� 
��� has the value “EC number” and if so
compares the value of the element ��������� with the
������ �� from the ENZYME database. The query
results must return the EMBL accession numbers and
descriptions that satisfies the query. The screen shot
of the query is depicted in Figure 10. Observe that
the left and rightmost panels display the DTDs of the
EMBL and ENZYME databases. The join condition is
specified in the middle panel by specifying the joining
elements. The corresponding text format of the query
is shown in Figure 11.

3.2 XQ2SQL-Transformer

Once a user formulates a query using XomatiQ, it is
fed to the XQ2SQL-transformer module which rewrites the
query to corresponding one or more SQL queries over the
relational generic schema. These queries are evaluated
against the database where the data is stored in relational ta-
bles. Note that the design and implementation of this step is
inspired by the recent research done in [32, 34, 40, 48]. As
the relational schema of our system is proprietary, discus-
sion related to the transformation to SQL queries is beyond
the scope of this paper.

We have created a set of indexes by meticulous analy-
sis of the query plans generated by the Oracle’s query op-
timizer. Our experience shows that majority of XomatiQ
queries which are important in bioinformatics domain can
be evaluated efficiently over relational database systems.

8



Figure 10. Screen shot of the join query.

FOR $a IN document("hlx embl.inv")/hlx n sequence/db entry,
$b IN document("hlx enzyme.DEFAULT")/hlx enzyme/db entry

WHERE $a//qualifier[@qualifier type = "EC number"] =$b/enzyme id
RETURN �

$Accession Number = $a//embl accession number,
$Accession Description = $a//description

�

Figure 11. Text version of the join query.

Figure 12. Results of the join query.

3.3 Relation2XML-Transformer

Upon successful execution of the SQL queries, instead
of producing as result an XML document they produce the
equivalent instance of the generic relational schema. The
resultant tuples are either displayed in a simple table for-
mat or treated by a tagger module, that structure them into
the desired XML format of the result and presented to the
user. Note that the tagger module is inspired by the recent

work done in [39]. Observe that we provide an option to
display the results in XML format or a simple table format
because in bioinformatics the user may not always wish to
view the results in an XML format. Note that reconstruction
of entire large XML document from the tuples is expensive
compared to the query processing time in the RDBMS.

Figures 7(b) and 12 depict the screen dumps of the vi-
sual interface of XomatiQ query results. It consists of two
panels. The left panel displays the results in a table or XML
structure format. The right panel displays the tree structure
view of the documents satisfying the query. User can click
on the elements in the left panel to view the corresponding
document in the right panel.

Results returned by XomatiQ can be fed into a variety
of applications designed to further process the data with
predictive techniques or they can be used to construct con-
textual reports with several levels of information that can,
for example give an integrated view of the annotations to a
genome stored in distinct databases in a graphical interface.
Applications under the gRNA framework [31] leverage on
the ability of XomatiQ to fetch data dispersed in several
databases (different formats, different types of biological
information).

4 Related Work

SRS: SRS (Sequence Retrieval System) [25, 49] is a fast,
popular and effective data retrieval system for indexed flat-
file text data sources that also provides simple filtering and

9



linking capability. It was designed to retrieve data directly
from formatted text files, a widely used format in biolog-
ical databases such as EMBL [1] and Swiss-Prot [10]. In
the SRS approach, formatted text files are indexed to de-
fine classes using its own scripting language called Icarus
which are then queried through a web based interface. Its
data model is structured text, i.e., tag/value pairs, and there-
fore its query language is limited to index lookups and fol-
lowing predefined links between data sources. Recently,
and recognizing the advantages of the self-descriptive XML
format, the SRS indexes XML files into the same meta-
representation as the one used to index the flat files. How-
ever, SRS was developed almost ten years ago, when the
overall requirements were considerably less. Moreover, it
does not manipulate and query data using the power of
a database management system. Compared to an XML
query language (such as XQuery [11]), Icarus is less ex-
pressive in querying XML data. Searches are only per-
mitted on pre-defined indexed attributes whereas Xoma-
tiQ permits searches on attributes at any level, and joins
may be performed as needed between two or more data
sources.Finally, unlike the Data Hounds, SRS does not au-
tomatically update the local data with respect to the source
regularly, that can be particularly painful with large and fre-
quently updated data sources such as Genbank.

Kleisli: The Kleisli [16, 19, 23] system transforms
and integrates heterogeneous data sources using a complex
object data model and CPL, a powerful query language
inspired by work in functional programming languages.
Kleisli provides connectivity to various data sources in
bioinformatics and genomics. In Kleisli databases are
queried by constructing functions that access the databases
in their native format; in gRNA, component databases
are warehoused, transformed to a consistent format, and
queried using an XML-based query language. Furthermore,
the CPL is a functional language that is relatively uncom-
mon and difficult to learn as far as either biologists or pro-
grammers are concerned.

Discovery Link: IBM’s Discovery Link [27, 28] is
an SQL-based heterogeneous database integration sys-
tem based on the Garlic research prototype [17] and the
DB2/UDB DataJoiner [6] federated database management
system for relational databases. Our approach is different
in the sense that we take a warehousing approach. Further-
more, we use the power of XML query language to pose
complex meaningful queries. Note that such queries often
requires more sophisticated conditions than the SQL query
langauge can express, for example, regular expression pat-
tern matching.

Merck & Co. Approach: Merc & Co. [47] have created
a set of applications using Perl and Java in combination with
XML technology to install biological sequence databases
into an Oracle RDBMS. An user-friendly interface using

Java has been created for database query. Unlike XomatiQ,
they do not exploit the power of an XML query language.
Queries are based on simple conditions and does not support
pattern matching, joins etc..

TINet: Target Informatics Net (TINet) [24] is a data in-
tegration system developed at GlaxoSmithKline, based on
the Object-Protocol Model (OPM) [18] multidatabase mid-
dleware system of Gene Logic Inc. TINet follows primar-
ily the federated model supplemented by limited use of the
warehousing approach. In this approach data sources are
not transformed or loaded into a single storage format, but
are accessed in their native formats as required. It uses a
Multidatabase Query System (MQS) to query and explore
multiple heterogeneous data sources that have OPM views.
Queries against the MQS are expressed in the OPM multi-
database query language (OPM-MQL) and the query results
are returned as OPM data structures. TINet permits the out-
put of a query to be returned in XML format. However, it
does not take the advantage of an XML-based query lan-
guage. Hence, it is much more difficult to impose complex
queries using TINet. Furthermore, it does not have a user-
friendly GUI to pose complex queries which makes query
formulation a difficult task for biologists.

TAMBIS: The Tambis system (Transparent Access to
Multiple Biological Information Sources) provides a view
of heterogeneous biological data sources by means of the
TaO (TAMBIS Ontology), an ontology of biological termi-
nology based on a description logic. Semantic knowledge-
representation is the main focus of TAMBIS, rather than the
syntactic integration which is the primary focus of the Xo-
matiQ and the other systems surveyed.

5 Conclusions

We have demonstrated how the Data Hounds and Xo-
matiQ provides an efficient and systematic mechanism for
warehousing and querying biological data. They also rep-
resents a successful strategy for consistently using XML
for representing and querying biological data. Specifically,
the Data Hounds component transforms data from various
sources to XML format and load them into tuples of rela-
tional tables in a standard commercial DBMS. The Xoma-
tiQ component provides the capability for querying XML
data using the underlying relational engine. Our system has
been fully implemented using Java. We use Oracle 9i as the
underlying RDBMS.

By providing practical ways of dealing with the hetero-
geneity and semistructured nature of biological data, the
gRNA provides a practical backbone and an engineering
approach to guide the development of genomics centric
tools. We see the gRNA (supported by Data Hounds and
XomatiQ) as an efficient way to integrate heterogeneous,
semistructured, distributed biological data.
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