
Distrib Parallel Databases (2007) 22: 165–196
DOI 10.1007/s10619-007-7019-7

A transaction model and multiversion concurrency
control for mobile database systems

Sanjay Kumar Madria · M. Baseer · Vijay Kumar ·
Sourav Bhowmick

Published online: 30 October 2007
© Springer Science+Business Media, LLC 2007

Abstract Transaction management on Mobile Database Systems (MDS) has to cope
with a number of constraints such as limited bandwidth, low processing power, un-
reliable communication, and mobility etc. As a result of these constraints, traditional
concurrency control mechanisms are unable to manage transactional activities to
maintain availability. Innovative transaction execution schemes and concurrency con-
trol mechanisms are therefore required to exploit the full potential of MDS. In this pa-
per, we report our investigation on a multi-versions transaction processing approach
and a deadlock-free concurrency control mechanism based on multiversion two-phase
locking scheme integrated with a timestamp approach. We study the behavior of the
proposed model with a simulation study in a MDS environment. We have compared
our schemes using a reference model to argue that such a performance comparison
helps to show the superiority of our model over others. Experimental results demon-
strate that our model provide significantly higher throughput by improving degree
of concurrency, by reducing transaction wait time, and by minimizing restarts and
aborts.

Keywords Mobile transaction · Concurrency · Multiversions · Locking ·
Timestamps

Communicated by Ahmed K. Elmagarmid.

S.K. Madria (�) · M. Baseer
Department of Computer Science, University of Missouri-Rolla, Rolla, MO 65401, USA
e-mail: madrias@umr.edu

V. Kumar
SICE, Computer Networking, University of Missouri-Kansas, Kansas City, MO 64110, USA
e-mail: kumarv@umkc.edu

S. Bhowmick
School of Computer Engineering, Nanyang Technological University, Singapore, Singapore

166 Distrib Parallel Databases (2007) 22: 165–196

1 Introduction

A Mobile Database System (MDS) allows its clients to initiate and process trans-
actions from anywhere and at anytime. MDS, which we envision, has a number of
applications and system level problems, which must be solved before MDS can be
fully realized. One of such complex problems is maintaining database consistency in
the presence of high contention transaction traffic. Maintaining consistency has al-
ways been a resource intensive process, however, it gets worse in MDS because of
a number of factors related to its architecture, availability and sharing of hardware
and software resources, distribution of data, and mobile client’s processing capabil-
ity. One of the serious concerns is the efficient utilization of limited wireless channels
to provide acceptable level of performance [4].

Some of the problems in managing transaction and data in a mobile environment
have been identified in (we list only a few here) [5, 11, 13, 35, 42]. We revisit these
limitations and justify the need for developing an efficient transaction processing
scheme, augmented with a concurrency control and a serialization technique for Mo-
bile Transactions (MT) running on MDS. We first identify some unique situations
which MT’s may encounter during their execution, and which do not appear in con-
ventional database systems [30, 42].

• A short MT (accessing only a few data items) could become long-lived due to
the mobility of both the data and users, and due to frequent disconnections. Note
that long-lived here does not mean MT accesses a large number of database items,
rather it takes longer to finish the execution.

• Transactions in MDS are executed in a distributed manner (i.e., client-server)
which may be subjected to further restrictions due to inherent constraints such
as limited bandwidth. Distributed execution of transactions in the presence of mo-
bility makes transaction commitment and termination quite complex [20].

• A MT may have to suffer “forced wait” or “forced abort” because of the lack
of wireless channels (uplink or downlink) and it may be delayed further due to
random hand-offs. In addition, a MT at mobile host may not be able to complete
its execution due to non-availability of complete DBMS capability.

In this paper, we present a transaction processing model augmented with a multi-
version concurrency control mechanism (CCM) to increase resource availability and
reduced aborts in MDS. Our CCM aims to achieve high throughput and low-abort
rate by increasing data availability during concurrent read-write and write-write op-
erations, and by reducing the restart rate. Note that reducing aborts is very important
in mobile networks [8]. A short-version of this paper appeared in [28] which did not
include formal model, experimental evaluation and proof of correctness. We compare
the performance of our protocol with a speculative model for transaction processing
(SMTP) using model that appeared in [38, 39]. In this reference model, each transac-
tion is executed based on both after and before images and each transaction commits
based on the outcome of the previous transaction. Note that this is the closet model we
found which uses versions in a mobile environment and has some similarity with our
scheme. Moreover, this model outperforms basic 2PL [15], and WDL [7] in a similar
environment. We justify based on the experimental results that our model presented
in this paper outperforms the SMTP model in terms of response time and throughput.

Distrib Parallel Databases (2007) 22: 165–196 167

2 Architecture of mobile database system (MDS)

The architecture of the Mobile Database System (MDS) we are investigating is shown
in Fig. 1. It is a distributed client/server system based on the Personal Communica-
tion Systems (PCS). To incorporate distributed database functionality, we have added
a number of DBSs (database Servers) without affecting any aspect of the generic mo-
bile network [23]. The entire platform is comparable to a distributed multidatabase
system with a special feature of mobility in data processing.

The platform is composed of a set of general purpose computers (PCs, worksta-
tions, etc.) which are interconnected through a high-speed wired network. These com-
puters are categorized as Fixed Hosts (FH) and Base Stations (BS) or Mobile Support
Stations (DBS). A number of mobile computers (laptop, PDAs, etc.) referred to as
Mobile Hosts (MH) or Mobile Units (MU) are connected to the wired network com-
ponents only through BSs via wireless channels. A BS maintains and communicates
with its MUs and has some processing capability. One or more BSs are connected
with a BSC (Base Station Controller or Cell Site Controller), which coordinates the
operation of its BSs using its own stored software program when commanded by
the MSC (Mobile Switching Center). The MSC is connected to the PSTN (Public
Switched Telephone Network). MUs are battery powered portable computers, which
move around freely in a restricted area, which we refer to as the “geographical mo-
bility domain” (G). For example in Fig. 1, G is the total area covered by all BSs. This
size restriction on their mobility is mainly due to the limited bandwidth of wireless
communication channels.

To support the mobility of MHs and to exploit frequency reuse, the entire G is
divided into smaller areas called cells. Each cell is managed by a particular BS and is
allocated a set of frequencies for communication. The mobility support requires that
an MH must have unrestricted movement within G (inter-cell movement) and must
be able to access desired data from any cell. The process of crossing a cell boundary

Fig. 1 Reference architecture
of mobile database system
(MDS)

168 Distrib Parallel Databases (2007) 22: 165–196

by an MH and entering into another cell is referred to as a handoff. The process of
handoff is responsible for maintaining end-to-end data movement connectivity and is
transparent to the MH. A DBS provides full database services and it communicates
with MHs only through a BS. DBSs can either be installed at BSs or can be a part
of FHs or can be independent to BS or FH. MHs are mobile processors with some
light weight database functionality such as requesting locks, executing transactions
but can not terminate (complete) the transaction (can not change the final database
state).

3 Review of earlier works

In this section, we review some commonly used CCMs and a variety of MT process-
ing model for managing database consistency for improving performance.

3.1 Concurrency control mechanisms

Commonly used CCMs are based on locking approach [7, 19]. A variety of locking-
based CCMs have been developed to cater for high contention transaction traffic.
Most of these algorithms are resource intensive and they would not provide accept-
able performance if used in MDS. In addition, these algorithms would not be able to
manage long and short-lived MTs satisfactorily. Such situations do arise in conven-
tional systems as well; however, on MDS, its effect on system performance will be
comparatively much more significant.

In optimistic schemes [21], cached objects on mobile hosts can be updated without
any co-ordination but the updates need to be propagated and validated at the database
servers before the commitment of MTs. This scheme leads to aborts of MTs unless
the conflicts are rare. Since MTs are expected to be long-lived they may suffer higher
degree of conflict where as our objective is to have very low abort rate in high con-
flicting traffic.

In pessimistic schemes [11], cached objects can be locked exclusively and MT
can be committed locally. Another optimistic method [18] minimizes the overheads
and transaction abort ratio by executing transactions only locally using caches. These
schemes lead to unnecessary transaction blocking since mobile hosts cannot release
any cached objects while it is disconnected. Existing caching methods attempt to
cache the entire data object or the complete file. Caching of these potentially large
objects over low bandwidth communication channels can result in wireless network
congestion and high communication cost and the limited cache size of MH is unable
to cache all desired data.

3.2 Mobile transaction execution models

Researchers have investigated different ways of structuring and processing MTs to
improve performance and system availability. These processing approaches are not
directly related to concurrency control so we review them briefly.

Distrib Parallel Databases (2007) 22: 165–196 169

Semantic based transaction processing models [9, 37] have been extended for mo-
bile computing in [45] to increase concurrency by exploiting commutativity of op-
erations. These techniques require caching large portion of the database or maintain
multiple copies of many data items. In [45], fragmentation of data objects has been
used to facilitate semantic based transaction processing in MDS. The scheme frag-
ments data objects where each fragmented data object has to be cached independently
and manipulated synchronously. It, however, works only in situations where the data
objects can be fragmented like sets, aggregates, stacks and queues.

Dynamic object clustering has been proposed in mobile computing in [31, 32]
using weak-read, weak-write, strict-read and strict-write. Strict-read and strict-write
have the same semantics as normal read and write operations invoked by transactions
satisfying ACID properties [7]. A weak-read returns the value of a locally cached
object written by a strict-write or a weak-write. A weak-write operation only updates
a locally cached object, which might become permanent on cluster merging if the
weak-write does not conflict with any strict-read or strict-write operation. The weak
transactions use local and global commits. The “local commit” is same as our “com-
mit” and “global commit” is same as our “termination” (see Sect. 4). However, a weak
transaction after local commit can be aborted and/or compensated. In our model, a
committed transaction does not abort and therefore, no undo or compensation is re-
quired. A weak transaction’s updates are visible to other weak transactions whereas
pre-writes are visible to all transactions. Reference [26] presents a new transaction
model using isolation-only transactions (IOT) which do not provide failure atomicity
and are similar to weak transactions of [31].

An open nested transaction model has been proposed in [10] for modeling mobile
transactions. The model allows MT to be executed in disconnected mode. It sup-
ports unilateral commitment of compensating and sub-transactions. However, not all
operations are compensated [10]. A Kangaroo Transaction (KT) model is presented
in [14]. It incorporates the property that transactions in MDS hop from one base sta-
tion to another as the mobile unit moves. The mobility of MT is captured by the use
of split transaction [36]. A split transaction divides an on-going transaction into se-
rializable subtransactions. Earlier created subtransaction may commit and the next
subtransaction can continue its execution. The mobile transaction splits when a hop
occurs. The model captures the data behavior of the mobile transaction using global
and local transactions. The model also relies on compensating transaction in case a
transaction aborts. Unlike KT, our model does not need any compensatory transac-
tion and has low abort-rate. [38, 39] presented a speculative transaction processing
approach, which can increase concurrency, but require more resources since it has
high abort-rate in case of conflicts.

Transaction models for mobile computing that perform updates at mobile comput-
ers have been developed in [10, 31]. They propose a new correctness criterion [10]
that is weaker than serializability. They can cope more efficiently with the restrictions
of mobile and wireless communications.

In [27], a prewrite operation is used before a write operation in a mobile trans-
action to improve data availability. A prewrite operation does not update the data
object but only makes visible the future value the data object will have after the final
commit of the transaction. Once a transaction reads all the values and declares all

170 Distrib Parallel Databases (2007) 22: 165–196

the prewrites, it can pre-commit at mobile host (MH). The remaining transaction’s
execution is shifted to DBS. Writes on database consume resources at stationary host
and are therefore, delayed. A pre-committed transaction’s prewritten value is made
visible both at mobile and stationary hosts before the final commit of the transaction.
Thus, increases data availability during frequent disconnection common in mobile
computing. The model also provides only serializable schedules [29].

In [20] a mobile transaction model called Mobilaction was presented. In Mobilac-
tion, a location property was added in the ACID properties of conventional transac-
tion to manage location dependent processing, which is inherent in MDS. This work
also presented a commit protocol for Mobilaction and discussed its performance,
which showed that the model successfully handles location dependent queries.

Our motivation is to increase availability with efficient use of limited channels. It is
well-known that multiversion schemes significantly improve concurrency and many
such algorithms [7, 17, 24] use bounded number of versions to improve system per-
formance. The mixed multiversions [3, 6, 12, 44] have two types of transactions, i.e.,
the read-only and update transaction. The read operation reads the old but consistent
versions while update (write) generates a new version of the old consistent version.
We believe that multiversion approach may work well in MDS if reads are allowed
only at mobile host and final writes are executed at DBSs. Multiversion schemes us-
ing two phase locking [7, 22] utilize the versions to allow the concurrent execution of
the conflicting transactions. Since the concurrent access of the conflicting reads and
writes is allowed on different versions of a data item in unrestricted fashion, the exe-
cution of a transaction must be validated before it can commit. In this case, the effort
of executing the transaction that fails validation is wasted and is undesirable in MDS
because aborts due to failed validation grows rapidly and gets worse with transaction
size. Agarwal and Krishnamurthy [2] have used multiversion concurrency control for
write-only transactions (blind-writes) and multiversions of objects have been pro-
posed in disconnected databases [33], where transactions can work locally, but they
are aborted if they get involved in conflicts.

In MDS, therefore, a mobile transaction processing scheme and the concurrency
control mechanism must be able to achieve a balanced execution in the presence of
limited resources and autonomy of the mobile host with respect to read and write
operations. We first present our transaction-processing model and then discuss the
locking based concurrency control mechanism.

4 A mobile transaction processing model

We discuss a multiversion transaction (MV-T) execution scheme, which increases
data availability and reduces abort-rate using data versions. A successful MT in MV-
T goes through three states (a) start, (b) commit, and (c) terminate. At any time an
active MT may exist in any one of these states. A MT can start and commit (different
than usual commit in DBMS) at a mobile host (MH) but it terminates only at one of
the database servers (DBS). Our scheme synchronizes read and write lock requests on
different versions of a data item in a constrained manner. The constraints are specified
in terms of timestamps on the lock requested and on the lock held for the data item

Distrib Parallel Databases (2007) 22: 165–196 171

(Sect. 6). The correctness of the transaction execution is guaranteed if the transaction
can announce its commit by submitting its commit action to the server. No separate
validation phase is required. The model supports concurrent read and write operations
without blocking. A Read always gets the last committed or terminated version and is
never blocked. MV-T scheme increases data availability at MH and at the server and
supports both short and long transactions without very high block-rate or aborting
short-transactions.

We explain MV-T scheme through the execution of MTs. A MT arrives at MH
where it executes partially and the completion phase is moved to a DBS for execution.
We consider the following scenario: A MT can arrive at a DBS from any MH and at
the same time other MTs can start at DBSs initiated by other hosts connected via
fixed network.

We assume that a MH starts and initiates the commit of a new MT but it always
terminates at DBS. The commit of the transaction is the logical completion of the
transaction after which MH sends the updated data items to DBS. The termination
of a transaction is the state at which DBS revokes all the locks assigned to the trans-
action and the modified data items are successfully installed in the database at DBS.
A transaction that committed successfully at MH is assured of successful termination
at DBS. Note that MH has no DBMS capability to finish the transaction execution. It
can only create a new value or image of a data item, but only DBMS can install that
in the database.

In our execution model, we improve the concurrency of mobile transactions by
making use of the time between the commitment of the mobile transaction at MH
and the termination of the transaction at DBS. Consider the following examples and
applications.

Example Consider two transactions T1 and T2 being executed at two MHs controlled
by the same DBS (Fig. 2). Transaction T2 starts as soon as T1 commits but before it
terminates. T2 does not wait for the transaction T1 to terminate in order to start its
operations, thus increases concurrency. If a transaction is allowed to commit at MH,
the data item values that are written by the transaction at MH, are send to DBS, which
are then available to other transactions.

Application 1 In a mobile banking application where a bank agent can visit different
regions to collect deposits/withdrawn of money in remote zones using a mobile de-

Fig. 2 Concurrent transaction execution

172 Distrib Parallel Databases (2007) 22: 165–196

vice, once a check-deposit transaction is executed, the balance gets updated (commit)
but the transaction terminates only when the money is deposited in the bank which
then can be withdrawn. However, the account balance is available for reading after
the commit of the check-deposit transaction at the mobile device.

Application 2 In emerging wireless networks, a MH can broadcast in its Cell com-
mitted values along with the time stamp and therefore, can save substantial wireless
communication overhead as other MHs may not have to send their read requests to
DBS for read-only locks and can always compare the broadcasted values to get the
most recent updated values. It is only when a MH wants to read and write, locks need
to be set. This increases the availability and reduces response time for read-only data
objects.

4.1 Multiversion of data items

We use the concept of two versions (one committed and one terminated) to develop
our transaction execution model. We then extend our scheme for multiversion (many
committed and one terminated) case. Initially, we maintain two versions of a data
item at any particular instance. When a MH requests for a data item, one of the two
versions, depending upon the specified constraints (discussed later in the section), is
granted. We represent a version of data item as Xi

ts(i), where ‘X’ is the data item;
‘ts(i)’ is the timestamp of the mobile transaction Ti that has written the version of
the data item. ‘ts(i)’ stands for the current timestamp of data item version Xi

ts(i)

used in version selection to process a read operation on ‘X’. It also implies that the
transaction Ti , which has updated the data item, has been successfully committed at
MH but is yet to be terminated at DBS. DBS assigns timestamps to the data items
when a transaction accesses them, and are assumed to be synchronized across the
system.

Formally, the two versions of a data item ‘X’ maintained at DBS are: X
j

0 and

Xk
ts(k). X

j

0 is the data version written by the mobile transaction Tj , which has been
terminated successfully at DBS. The subscript ‘zero’ indicates the successful termi-
nation of Tj at DBS. Xk

ts(k), as said earlier, is the new version of data item created
by the committed mobile transaction Tk at MH that has created the new value at time
ts(k), but is not yet terminated (Tj < Tk in timespace) at DBS. We discuss two cases.

Case 1: Concurrent read-write access to increase availability: In this case, we
discuss how committed and terminated versions are used to increase the concurrency
among read and write operations. In Fig. 3, DBS has one version of data item ‘X’
and two versions of data item ‘Z’. Versions, Xi

0 and Zi
0, represent that a transaction

Ti which updated X and Z has been most recently terminated. The version Zk
ts(k),

indicates that there is a transaction Tk that is committed but is yet to be terminated.
The data item versions present at MH indicate that earlier the transaction Tj being
executed at MH has requested a read operation on data item ‘Z’ and a write operation
on data item ‘X’. DBS assigned the most up-to-date version of data items to the
read operation. Hence, Tj read data item versions Zk

ts(k) (committed version) and Xi
0

(terminated version) available at DBS. After obtaining write permission (write-lock)
on data item ‘X’, it writes its version X

j

ts(j). Version Zk
ts(k) at DBS indicates that

Distrib Parallel Databases (2007) 22: 165–196 173

Fig. 3 Case 1: data versions at
MH and DBS

(a)

(b)

Fig. 4 a Case 2: data versions at MH and DBS, before Tj commits at MH. b Data versions at DBS and
MH (case 2) after Tj commits at MH

there existed a transaction Tk that has committed at MH but not yet terminated. In
our model, in order to maintain exactly two versions of a data item, we do not assign
write permission on a data item to any transaction if there is another transaction that
holds the write permission on that data item. The concurrent write operations on
a data item conflict. Also, a transaction abort after acquiring write permission might
result in cascading aborts. It is also possible that both transactions can simultaneously
commit at MH resulting in the existence of more than one committed version of data
item. Therefore, MH cannot obtain a write permission and write its version of ‘Z’
but can only read the version Zk

ts(k).
Case 2: Concurrent write-write access to increase availability: In Fig. 4(a), we see

that there exist two versions of data items ‘X’ and ‘Z’ at DBS. As discussed earlier,
the data items Xk

ts(k)
and Zk

ts(k)
represent that there exist a committed but yet to be

terminated transaction Tk . The data items Xi
0 and Zi

0 represent a transaction Ti that
is most recently terminated at DBS. We see that the transaction Tj being executed on
MH reads the version Xk

ts(k) at MH. Here, we have relaxed the condition that: “There
cannot be more than one committed version of data item at DBS”. That is, DBS
assigns the write permission to transaction Tj at MH on data item ‘X’ even though

174 Distrib Parallel Databases (2007) 22: 165–196

there exists a committed but yet to be terminated transaction Tk at DBS that has a
committed version Xk

ts(k). This is possible because the transaction Tk is committed
and therefore assured of successful termination. The versions of a data item written
by such transaction are up-to-date and can be used by another transaction. Since
transactions can be terminated only at DBS, it can keep track of the order in which
transactions need to be terminated. Thus, DBS can give a write permission on a data
item when there exists another transaction that is committed on the same data item
but yet to be terminated. Hence, Tj at MH is assigned the write permission on data

item ‘X’ with version Xk
ts(k). It then writes its own version of data item, X

j

ts(j). The

transaction Tj then commits at MH and sends the version X
j

ts(j) to DBS to terminate.
Though our discussions in this paper is focused on two versions, however, in gen-

eral, we can see that there can be more than one committed versions of a data item
present at DBS resulting from transactions that have written newer versions of data
item ‘X’ and are successfully committed at MH but yet to be terminated at DBS
(Fig. 4(b)). DBS terminates them in the order in which they have been committed
earlier. In Fig. 4(b), Tk terminates first and Tj is terminated next and so on. Thus,
DBS improves concurrency. Note that if a new transaction Tl arrives at DBS request-
ing read or write operation on the data item ‘X’ when Tj holds the write access, it is
blocked until Tj commits.

The actual lock-acquiring scenario is discussed in the next section where we in-
troduce the locking protocol and read and write constraints.

5 Locking protocol

We have used locking for achieving isolation, timestamp to avoid deadlock, and use
incremental locking to eliminate cascading aborts. We introduce an additional lock
type called verified-lock. A write-lock is converted to a verified-lock after a MT’s
commit. If there are conflicting lock requests then MTs are either blocked or aborted.
We refer to a MT that is requesting a data item as requestor and the MT that holds
the requested data as the holder. A requestor is blocked when its timestamp is higher
than the holder.

A MT gets the latest version of data item on a read request. This defines our Read
Rule, which is applied to all read requests. Note that in an optimistic model a trans-
action usually reads an older version of the data item. A requestor is blocked when
it does not get the data item. Action taken by the scheduler on the lock request that
fails to satisfy the constraints is rejected to avoid conflicts. Since no MT is blocked
indefinitely, there is no deadlock. We discuss the following two cases to explain how
locking is applied to them.

Locking rules for case 1 DBS assigns the locks to the requesting MTs. These trans-
actions can be initiated at a MH or at DBS. There are two kinds of read locks: rl=0(X)

and rl �=0(X). These read-locks differentiate two versions of data items: rl=0(X) for
terminated version Xi

0 and rl �=0(X) for committed version Xk
ts(k) respectively. We

have write lock wl(X) for write operation and a verified lock vl(X) which shows the

Distrib Parallel Databases (2007) 22: 165–196 175

Fig. 5 Lock compatibility matrix (for case 1 only)

transition from ‘Commit State’ of mobile transaction at MH to ‘Termination State’
of mobile transaction at DBS.

A MT at MH acquires the required locks on data items before performing any
read or write. DBS assigns MH the appropriate version of the data item to read. The
requested lock on a data item is assigned in such a manner that there is no other MT
holding a conflicting lock. The read locks do not conflict with any of the read, write
or the verified lock. The write lock conflict with write and verified locks because
a MT can be aborted after it has acquired the write lock and if some other MT is
assigned the write lock on the same data item, it can result in cascading aborts. One
may think that both MTs can simultaneously commit at MH and convert their write
locks to verified locks which may result in the existence of more than one committed
version of data item (possible only when the other MT holding write lock has already
committed as discussed earlier in Case 2, Fig. 4(b)). This situation may occur when
both MTs try to obtain a verified lock, which results in violation of the condition—
there exists at the most two versions of data item at any instance of time at a DBS. One
of which is a terminated version and the other is committed but yet to be terminated
version of data item. The lock compatibility matrix shown is in Fig. 5.

There are two constraints that must be satisfied by any MT for obtaining locks.
DBS checks constraint before assigning locks and assigns verified lock to a MT when
it has completed all its reads and writes and has committed. The actions performed
when a MH executes commit are:

i. The new versions of a data item (if any) are sent to DBS.
ii. The write locks held by MTs are converted into verified locks at DBS.

iii. The committed version of data items written by MT, Xi
ts(i)

is available for other
MTs.

DBS later executes a terminate ‘ti ’ command to end MT’s execution. The different
actions performed at the execution of terminate command at DBS are:

i. All MTs holding read locks rl �=0(X) on data item version Xi
ts(i) are converted to

rl=0(X).
ii. The previous committed and terminated versions of data item X

j

0 are deleted and
data version Xi

ts(i) is converted to Xi
0.

iii. All the verified locks are revoked and so are the read locks assigned to Ti .
iv. Once locks are revoked and the version of the data item is being updated at DBS,

it completes the MT.

176 Distrib Parallel Databases (2007) 22: 165–196

Fig. 6 Lock compatibility matrix (case 2)

Due to the conflict between write and verified locks only two versions of a data
are available at DBS. The compatibility matrix in Fig. 6 shows that no two MTs can
have write locks on the same data item simultaneously.

Locking rules for case 2 In this case we relax the constraint that at most only two
versions of data item at any instance of time are available to improve concurrency.
The compatibility matrix for this case is shown in Fig. 6 and the data versions sce-
nario at DBS and MH is shown in Fig. 4(b). In Fig. 6, if a MT holding the verified
lock on the data item is committed but is still to be terminated then it can assign the
conflicting write lock or verified lock to another MT at MH. It can do that by main-
taining the order in which MTs need to be terminated, as discussed earlier in Case 2
(Fig. 4(b)). This is possible because DBS can only assign locks to MH and terminates
a transaction. Thus, when Tj at MH requests DBS a write or a verified lock on data
item ‘X’, DBS can assign the write lock or verified lock to Tj provided the current
lock held by Ti on DBS is the verified lock. The DBS records the order of verified
locks after assigning the lock to Tj . When Tj commits, DBS performs termination in
the order in which it has assigned the verified locks, i.e., Ti and then Tj . If Ti cannot
be terminated, then Tj is held from termination until Ti is terminated. In this way
DBS preserves the correct serial order of MT execution. Also, the value read by Tj is
a correct value written by Ti since Tj gets the write lock only after Ti is committed
but is yet to be terminated.

In MDS, a MH can encounter handoff randomly. This gets worse with highly
mobile MHs. We argue that a handoff does not affect our locking protocol. If a lock is
not granted to a transaction then it is blocked irrespective of its connection status and
its geographical location. For example if a transaction running at a MH requests a lock
in cell 1 and the MH moves to cell 2 then irrespective of its geographical location,
the transaction will be blocked. Note that the change in the status of a transaction
(blocked or aborted) is free from the movement and status of the MH where it is
executing. Of course the movement (handoff) will have some effect on the behavior
of our schemes which is included in the performance study (we assume 10% hand-
off in all our experiments). Further, it is useful to investigate the situation when a
disconnection occurs before the MH receives a lock granted confirmation. This can
be treated as “not granted” if the disconnection is flowed with “doze mode”. We have
modeled the effect of disconnection after a handoff in this manner.

The status of the underlying network (i.e., network partition) does have some ef-
fect on transaction management. This, however, is true only in wired network. In
cellular network on which MDS is mounted, such network partition does not exist. If
a MH crosses the geographical mobility domain (Fig. 1), then it can be treated as a
disconnection and our scheme is capable of handling this.

Distrib Parallel Databases (2007) 22: 165–196 177

6 Constraints with read and write operations

In our model, a read request is completed at DBS using a Read rule similar to the
multi-version timestamp ordering (MVTO) read rule [7]. Whenever a transaction
wants to read a data item then the committed version of the data item with the largest
timestamp less than or equal to the timestamp of the transaction is selected. That is,
if there exist versions: X1

0 and X2
ts(2) at DBS and transaction T 3 at MH or at DBS

requesting data item X having a timestamp ts(T 3) > ts(T 2), then T 3 is given X2
ts(2)

and otherwise X1
0. A read protocol on is stated as follows:

• Ti requests a read lock on the data item X.
• DBS grants rl0

i (X) or rl
�=0
i (X) corresponding to whether the version X

j

0 or version
Xk

ts(k) (if it exists and is committed) is selected in accordance with the read rule;
and the read lock version satisfies the specified constraints.

• Transaction Ti reads the selected version of X.

The write protocol is stated as follows:

• Ti requests a write lock on data item X.
• DBS grants wli(X), if there are no conflicts.
• Ti creates a new version Xi

ts(i) for data item X.

The following two constraints must be satisfied before the requested lock is
granted:

Constraint 1 If a transaction Tj at DBS holding wlj (X) lock, then transaction Ti

gets read lock if timestamp(Ti) > timestamp(Tj).

This condition checks for the situation that no read request is processed violating
the Read rule, that is, if the transaction Tj that is holding a write lock on the data item
and has a timestamp less than the transaction Ti that is requesting a read lock then
granting a read lock might result in violation of serializability and also might result
in cascading aborts. This constraint satisfaction results automatically in maintaining
serializability of transaction execution at DBS.

Constraint 2 The write lock request wli(X) or verified lock request vli(X) for trans-
action Ti (at MH or at DBS) must satisfy:

(a) There does not exist any transaction at DBS holding wl(X) or vl(X) (verified
lock); and for all transaction Tj at MH that holds rl0

j (X), the timestamp(Ti) ≥
timestamp(Tj).

(b) If there is any other transaction Tk at DBS holding vlk(X) lock, then
timestamp(Tk) < timestamp(Ti), where Ti is a requesting verified or write-lock
on X.

This constraint ensures that the transactions at DBS, already having the read locks
on previous version of data items are not made void by assigning a write lock or
verified lock to another transaction that comes after these transactions, thus avoiding
aborts.

178 Distrib Parallel Databases (2007) 22: 165–196

Rules for terminating a transaction The termination for Ti may not be invoked
immediately after it commits. The following rules must be observed for correct exe-
cution of transactions:

1. Ti at MH will precede Tj at DBS in commit order if Ti has read a previous version
of a data item for which Tj has created a new version or Tj has read the committed
version of the data item written by Ti . This is because if Ti reads the previous ver-
sion of a data object, which has later been updated by Tj then if Tj commits before
Ti then it should have read the updated version. Note that a read-only transaction
also needs to send the commit information to DBS. Other alternative is that such
read-only transaction can be switched back in the transaction history for the seri-
alization purpose. In the second possibility, if Tj has read the committed version
written by Ti then Ti should come before Tj in the serialization order.

2. Tj can not terminate at DBS until each transaction Ti at MH that has either read
Xk

0 (for some k) or written a committed version Xi
ts(i) that has been read by Tj ,

has been terminated. This is because a transaction may be reading two data items,
for one it may get a data version written by the last terminated transaction and
for another data item version it may read, is written by the committed transaction.
Thus, there is no equivalent serial order as read-only transaction read one version
of data object at initial state and updated version of the second object.

3. Ti executed at MH cannot terminate at DBS until Tj that has committed before
Ti, terminates at DBS.

Blocking transactions Deadlocks and subsequent aborts could be costlier in a mo-
bile environment. Also, wireless connection from MH to DBS is expensive; therefore,
we would like to avoid MH contacting DBS as far as possible. In some situations
when a lock cannot be granted, a transaction can be blocked rather than aborted and
when the lock is available, it can be unicasted. Consider a case where a read transac-
tion initiated by MH does not satisfy constraint-1 then it should be blocked at DBS
rather than aborting it. When at DBS the write lock of a transaction is converted into
the verified-lock, the transaction blocked at MH can read the committed version. DBS
can unicast this message and MH needs not be contacted DBS again.

Deadlock avoidance rule If Ti holds a write- or verified-lock lock on X then
the write-lock request on X by other transaction Tj is rejected if timestamp(Ti) >

timestamp(Tj); otherwise Tj is blocked.

Using the above rule along with the write-lock request that fail the constraint 2
can make the execution deadlock free. Since lock requests are blocked in asymmetric
fashion; only transaction with higher timestamp may be blocked by a transaction with
a lower timestamp, there will not be any deadlocks.

6.1 Comparison with constrained shared locking model

The lock acquisition in our proposed model has some similarity with the constrained
shared locking model in [1]. The Lock Acquisition rule in constrained shared lock-
ing model states that: in an history H , for any two operations pi[x] and qj [x] such

Distrib Parallel Databases (2007) 22: 165–196 179

Fig. 7 Lock compatibility matrix (case 2)

that pli[x] ⇒ qlj [x] is permitted, if Ti acquires pli[x] before Tj acquires qlj [x],
then execution of pi[x] must precede the execution of qj [x]. In our proposed model,
according to Property2a : For any two transactions Ti and Tj at DBS, if ci < cj then
vli(x) < vlj (x) and ti < tj , we state that the transactions obtain verified locks at DBS
and also terminate in the order they commit. That is, for two transactions Ti and Tj

if there exists an ordering ci(x) ⇒ cj (x) then

1. they obtain verified locks in the same order of the form vli(x) ⇒ vlj (x) and
2. the corresponding termination operations have ordering of the form ti ⇒ tj .

There is an ordering for obtaining conflicting write locks and verified locks given
a condition that one of the two transactions is a committed transaction at DBS. That
is for a transaction Ti which is committed at DBS and holding vli(x) lock, if there is
another transaction Tj requesting a write-lock on x, it is assigned the write lock by
maintaining an order between vli(x) and wlj (x). Therefore if vli(x) ⇒ wlj (x) then
vli(x) ⇒ vlj (x) and ti ⇒ tj .

The compatibility matrix shown in Fig. 6 is redrawn in Fig. 7 depicting the above-
discussed cases where there is some similarity between the proposed model and the
constrained shared locking model of [1].

7 Formal proof of correctness

A read operation executed by a mobile transaction Ti on a data object ‘x’ is denoted
either as ri(x

k
ts(k)) or ri(x

j

0) depending on the read and write rule constraints speci-

fied in Sect. 5. A write operation is executed as wi(x
j

ts(j)). The commit is denoted as
‘ci ’, an abort as ‘ai ’ and terminate as ti . When a transaction is committed its changes
are updated at the DBS (DBS) and if it aborts, all the data versions that the transac-
tion has created will be discarded. A transaction is correct if it maps the database at
DBS (DBS) from one consistent state to another consistent state. Formally a mobile
transaction Ti is a partial order with ordering <i where

i. Ti ⊆ {ri(xk
ts(k)) or ri(x

j

0), wi(x
i
ts(i)) | x is a design object } ∪ {ci, ai, ti}.

ii. If ri(x
k
ts(k)) ∈ Ti if and only if ri(x

j

0) /∈ Ti .
iii. If ai ∈ Ti if and only if ci /∈ Ti and vice-versa.
iv. If ‘t’ is ci or ai then for any operation p <i t .
v. If ri(x

k
ts(k)), wi(x

i
ts(i)) ∈ Ti then ri(x

k
ts(k)) <i wi(x

i
i).

Let T = {T0, T1, T2, . . . , Tn} be a set of transactions, where the operations of Ti are
ordered by <i for 0 ≤ i ≤ n. To process operations from T , a multiversion scheduler

180 Distrib Parallel Databases (2007) 22: 165–196

must translate T’s operations on (single version) data items into operations on specific
versions of those data items. This translation can be formalized by a function “f ” that
maps each wi(x) into wi(x

i
ts(i)

), each ri(x) into ri(x
k
ts(k)

) for some k, each ci into ci ,
and each ai into ai .

A complete multiversion (MV) history [7] H over T is partial order with order
relation <H where

i. H = f (
⋃n

i=0 Ti) for some translation function ‘f ’, which is the combination of
read and write rule constraints in our transaction model;

ii. for each Ti and all operations pi and qi in Ti , if pi <i qi , then f (pi) < f (qi);
iii. if f (rj (x)) = rj (x

i
ts(i)), then wi(x

i
ts(i)) <H rj (x

i
ts(i));

iv. if wi(x) <i ri(x), then f (ri(x)) = ri(x
i
ts(i)); and

v. if f (rj (x)) = rj (x
i
ts(i)), i �= j , and cj ∈ H , then ci <H cj .

A committed projection of a MV history H , denoted as C(H), is obtained by
removing from H the operations of all but the committed transactions. C(H) is com-
plete MV history if H is a MV history [7]. Two MV histories over a set of transactions
are equivalent iff the histories have the same operations. Two operations in an MV
history conflict if they operate on the same version and one is a Write. Only one
pattern of conflict is possible in an MV history: if pi < qj and these operations con-
flict, then pi is wi[xi

ts(i)] and qj is rj [xi
ts(i)] for some data item x. The other type of

conflicts [7] are not possible. Thus conflicts in MV history correspond to reads-from
relationships.

A complete MV history is serial if for a pair of transactions Ti and Tj ∈ H , either
all operations executed by Ti precede all operations executed by Tj or vice versa.
Not all serial MV histories behave like ordinary serial 1V histories [7]. A serial MV
history H is one-copy (or 1-serial) if for all i, j , and x, if Ti reads x from Tj , then
i = j , or Tj is the last transaction preceding Ti that writes into any version of x. A
MV history is one-copy serializable (or 1SR) if its committed projection, C(H), is
equivalent to an 1-serial MV history.

The serialization graph SG(H) for an MV history is defined as for an 1V history.
Given an MV history H and a data item x, a version order, 	, for an x in H is
a total order of versions of x in H . A version order for H is the union of version
orders of data items. For example for a history H = w0[x0

ts(0)], w0[y0
ts(0)], w0[z0

ts(0)],
r1[x0

ts(0)
], r2[x0

ts(0)
], r2[z0

ts(0)
], r3[z0

ts(0)
], w1[y1

ts(1)
], w2[x2

ts(2)
], w3[y3

ts(3)
], w3[z3

ts(3)
],

c1, c2, c3 possible version orders are x0
ts(0) 	 x2

ts(2), y0
ts(0) 	 y1

ts(1) 	 y3
ts(3).

The Multiversion Serialization Graph for H and version order 	, MVSG(H,),
is SG(H) with the following version order edges added: for each rk[xj

ts(j)] and

wi[xi
ts(i)] in C(H) where i, j and k are distinct, if xi

ts(i) 	 x
j

ts(j), then include
Ti → Tj otherwise include Tk → Ti . An MV history H is 1SR and hence conflict
serializable, iff there exists a version order 	 such that MVSG(H,) is acyclic.

We now discuss a few possible histories during concurrent transaction executions
according to our model. We assume that the multiversion scheduler of our transac-
tion model starts in an initial correct and consistent database state D0, with a single
version x0

0 for each data item xk
j in the database

1. The history produced by our transaction is conflict serializable and is equal to
serial 1V history.

Distrib Parallel Databases (2007) 22: 165–196 181

Consider the following simple history that conforms to both read and write rule
constraints during obtaining locks. Given ts(1) < ts(2) < ts(3) < ts(4).

rl=0
1 (x)r1(x

0
0)rl=0

2 (x)r2(x
0
0)c2wl1(x)w1(x

1
ts(1))c1(wl1(x) → vl1(x))rl

�=0
3 (x)

r3(x
1
ts(1))wl3(x)w3(x

3
ts(3))t2c3(wl3(x) → vl3(x))rl

�=0
4 (x)r4(x

3
ts(3))c4t1t3t4.

The MVSG for the above history is T0 ← T2 T1 ← T3 ← T4 (assuming that the
version x0

0 results from an earlier terminated transaction T0). It is acyclic. If we re-
move the versions of data items then that would also results in:

rl=0
1 (x)r1(x)rl=0

2 (x)r2(x)c2wl1(x)w1(x)c1(wl1(x) → vl1(x))rl
�=0
3 (x)

r3(x)wl3(x)w3(x)t2c3(wl3(x) → vl3(x))rl
�=0
4 (x)r4(x)c4t1t3t4.

It is clear that the above history is a serial 1V history with the execution order of
T2 → T1 → T3 → T4.

We now prove that if a transaction doesn’t conform to either the read rule or the
write rule constraint then it will not result in a serial 1V history.

2. A transaction cannot be assigned locks if there is some other uncommitted trans-
action at DBS holding conflicting locks.

rl=0
1 (x)r1(x

0
0)rl=0

2 (x)r2(x
0
0)c2wl1(x)w1(x

1
ts(1))rl

�=0
3 (x)r3(x

1
ts(1))c1(wl1(x)

→ vl1(x))rl
�=0
3 (x)r3(x

1
ts(1))wl3(x)w3(x

3
ts(3))t2c3(wl3(x)

→ vl3(x))rl
�=0
4 (x)r4(x

3
ts(3))c4t1t3t4.

The above history is not possible since transaction T1 holds write locks and hence
the read lock rl

�=0
3 (x) cannot be assigned to T3 against the read rule constraint.

Properties We now discuss possible properties that every operation in the transac-
tion execution history of our mobile transaction model conforms to, and then later
will prove the correctness of our locking protocol scheme by describing it using mul-
tiversion serializability theory discussed earlier in the section1 and confirming that
all histories produced by it are 1SR.

Let H be a history over T {T1, T2, T3, . . .} produced by our locking protocol. Then
H must satisfy the following properties.

Property 1 For each Ti , there is a unique timestamp ts(Ti). For simplicity, we as-
sume that ts(Ti) = ts(i).

Property 2 For each Ti , the terminate action ti follows after the commit action and
the verified lock vli(x) acquisition; i.e. ci < vli(x) < ti .

1Interested users can refer to reference book [7] for a detail discussion on multiversion serializability
theory.

182 Distrib Parallel Databases (2007) 22: 165–196

Property 2a For any two transactions Ti and Tj at DBS, if ci < cj then vli(x) <

vlj (x) and ti < tj .
Property 2a states that if two transactions commit in an order they acquire and hold

verified locks at DBS in the same order as they commit and they are terminated in the
same order as they had acquired the verified locks, thus maintaining the serializability
of transaction execution and allowing DBS to assign conflicting vl and wl locks.

Property 3a For each rk[xj

0] ∈ H , either (1) tj < rk[xj

0] and j > 0; or (2) x0
0 ∈ D0

(initial consistent state of database of data items at DBS).

Property 3b For each rk[xj

ts(j)] ∈ H , either (1) cj < rk[xj

ts(j)] < vlj (x) < tj <

vlk(x) < tk and ts(x
j

ts(j)) < ts(Tk); or (2) wj [xj

ts(j)] < rk[xj

ts(j)] and j = k.

Property 4 For each rk[xl
ts(a)] and wk[xk

ts(k)] ∈ H ; if wk[xk
ts(k)] < rk[xl

ts(a)] then
a = k and l = k.

Property 3a, 3b together says that every Read rk[x] either reads a committed ver-
sion or reads a version written by itself (i.e. Tk). In either case, it reads the version
with the timestamp less than or equal to ts(Tk). tj < tk in Property 3b follows from
the definition of unary relation terminates. Property 4 says that if Tk wrote x before
the scheduler received rk[x], it translates the request to read the version written by Tk .

Property 5a For every rk[xj

0] and wi[xi
ts(i)] ∈ H ; either ti < rk[xj

0] or rk[xj

0] < ti .

Property 5a says that rk[xj

0], i.e. a read on the version x
j

0 , created by the termi-
nated transaction Tj at DBS, is strictly ordered with respect to the terminate action
of every transaction (either at MH or at DBS) that writes x. This is because each
transaction Ti that writes xi

ts(i) and commits at MH making the version available for
other transactions holds a verified lock vli(x) at DBS. Each such transaction Ti waits
for each transaction that has read the existing version x

j

0 to terminate, before it can
terminate and release vli(x) lock. Since the vl and wl locks conflict (according to
case 1, Fig. 5) for each transaction Tk that reads x

j

0 , either Ti must have terminated

before Tj even got the wlj (x) lock, i.e. ti < wlj (x) < tj < rk[xj

0] < tk ; or Ti must

have terminated after Tk reading the version x
j

0 had terminated, i.e. rk[xj

0] < tk < ti .

Property 5b For every rk[xj

ts(j)] and wi[xi
ts(i)] ∈ H ; if wi[xi

ts(i)] then (1) either

vli(x) < rk[xj

ts(j)] or ti < rk[xj

ts(j)]; else (2) rk[xj

ts(j)] < vli(x), tk < ti and ts(k) <

ts(i).

Property 5b says that rk[xj

ts(j)], i.e. a read on a committed version x
j

ts(j) due to
a transaction Tj committed successfully at MH but yet to be terminated at DBS, is
strictly ordered with respect to the every transaction that holds verified lock vli(x) at
DBS after committing at MH and writing a version of data item x.

Distrib Parallel Databases (2007) 22: 165–196 183

(1) As discussed in case 2, Fig. 6, DBS assigns conflicting vl and wl locks on data
items depending on the condition that the transactions that have written new version
of data item must be committed successfully at MH and hold a verified lock at DBS
in a strict complete order of execution. Therefore Ti must have either successfully
committed at MH and have acquired vli(x) or terminated and released the vli(x)

lock before Tj even got the wlj (x) lock, i.e. either ci < vli(x) < wlj (x) or ti <

wlj (x) < cj < rk[xj
j];

(2) By definition of the terminate action, tj converts the version x
j

ts(j) read by

rk[xj

ts(j)] into x
j

0 ; converts the rl
�=0
k (x) lock into rl0

k (x) lock; and then releases the
vlj (x) lock. By the Property 3b, tj < tk . Thus after Tj terminated and before Tk

terminates, if ts(k) > ts(i), wli(x) lock request must wait for Tk to terminate and
release the now rl0

k (x) lock in accordance with Constraint 2, i.e. rk[xj

ts(j)] < tj <

tk < wli(x) < ti ; otherwise ts(k) < ts(i) and Ti obtains the wli(x) lock, writes the
version xi

ts(i), and then waits for Tk that has read the new version x
j

0 , to terminate,

i.e. rk[xj

ts(j)] < tj < wli(x) < tk < ti .

Property 6a For every rk[xj

0] and wi[xi
ts(i)] (i, j , k distinct); if ti < rk[xj

0] then
ti < tj .

Property 6b For every rk[xj

ts(j)
] and wi[xi

ts(i)
] (i, j , k distinct); if ti < rk[xj

ts(j)
]

then ti < tj .

Property 6a says that rk[xj

0] reads the most recently terminated version of x. As-

sume to the contrary that tj < ti . But then the version x
j

0 generated when Tj is
terminated, must have been deleted and replaced by xi

0 when Ti terminates, and

thus rk[x] could not have accessed x
j

0 . Property 6b combined with Property 3b

says that rk[xj

ts(j)] either reads the version written by itself or the most recently

committed version x
j

ts(j). Since the vl and wl locks conflict, if ti < rk[xj

ts(j)] then

ti < wj [xj

ts(j)] < cj , which combined with Property 3b says ti < tj .

Property 7a For every rk[xj

0] and wi[xi
ts(i)], i �= j , j �= k, if rk[xj

0] < ti then tk < ti .

Property 7b For every rk[xj

ts(j)] and wi[xi
ts(i)], i �= j , j �= k, if rk[xj

ts(j)] < ti then
tk < ti .

Property 7a, 7b says that Ti cannot terminate until every transaction that has read
the existing terminated version, has terminated. Property 7a follows directly from the
definition of unary relation terminates. Property 7b follows from Property 5b and
Property 2a.

Property 8 For every wi[xi
ts(i)] and wj [xj

ts(j)], either ti < tj or tj < ti .

184 Distrib Parallel Databases (2007) 22: 165–196

Property 8 says that the termination of every two transaction that writes the same
data item are atomic with respect to each other.

Theorem Every history H produced is 1SR.

Proof By Property 2, Property 3a, 3b, Property 4, H preserves reflexive reads-from
relationship and is recoverable. Hence it is a MV history. Define a version order 	
as xi 	 xj only if ti < tj . By Property 8, 	 is indeed a version order. We will
prove that all edges in MVSG(H,) are in the termination order. That is Ti → Tj in
MVSG(H,) then ti < tj .

Let Ti → Tj be in SG(H). This edge corresponds to a reads-from relationship such
as Tj reads x from Ti . By Property 3a ti < rj [xi

0] and from Property 2 rj [xi
0] < tj .

Hence ti < tj . Similarly, by Property 3b and Property 2a for any rj [xi
ts(i)

], ti < tj .

Consider a version order edge induced by wi[xi
ts(i)], wj [xj

ts(j)] and rk[xj

0], (i, j ,

k distinct). There are two cases: xi 	 xj or xj 	 xi . If xi 	 xj , then the version
order edge is Ti → Tj , and ti < tj follows from the definition of 	. If xj 	 xi ,
then the version order edge is Tk → Ti . Since xj 	 xi , tj < ti follows from the

definition of the version order. By Property 5a either ti < rk[xj

0] or rk[xj

0] < ti . In

former case, Property 6a implies that ti < tj contradicting tj < ti . Thus rk[xj

0] < ti .
By Property 7a, tk < ti that is Tk → Ti , as desired. The case of the version order
edge induced by wi[xi

ts(i)], wj [xj

ts(j)] and rk[xj

ts(j)], (i, j , k distinct) can be proved
in exactly similar manner, just by applying Property 5b, Property 6b and Property 7b
in place of Property 5a, Property 6a and Property 7a respectively as used in the above
discussed case.

This proves that all edges in the MVSG(H,) are in termination order.
Since termination order is embedded in a history, which is acyclic by definition,
MVSG(H,) is acyclic too. Thus, from the definition of multiversion conflict seri-
alizable history, H is 1SR. �

8 Simulation model

First we study the behavior of our scheme with a simulation model and then compare
their performance with SMTP model [38, 39] to establish better performance. This
two level performance study was necessary to understand the behavior of our model
and its comparison with a suitable reference model.

Table 1 lists the parameters and their values, which drive the simulator. The data-
base size is represented in terms of lockable units and a small database size (DB_Size)
is used to generate a high contention environment to show the resiliency of our
scheme. In our architecture, therefore, we assume that transactions originate only at
MUs and do not cache data. This assumption allowed us to measure the performance
under high communication traffic. Trans_size is the average number of data objects
required by a transaction, which is computed form their largest size (MAX_Objects)
and smallest size (MIN_Objects). We assume that a read always precedes a write and
Write-Prob defines this probability. The parameter Transmission Delay defines the

Distrib Parallel Databases (2007) 22: 165–196 185

Table 1 Simulation parameters

Parameter Description Value

DB_Size The number of data objects in the system 500/fixed

Num_MH The number of mobile hosts in the system 125 (maximum)

MAX_Objects Maximum number of data objects a transaction
needs

20/Fixed

MIN_Objects Minimum number of data objects a transaction
needs

12/Fixed

Trans_Size Average transaction size 17

MPL Total number of active transactions in a MDS 5–125

Write-Prob Probability that the object read will also be written (0–1)

Object_Size The size of the data object being read 250–500 kilobytes

Wireless-
Bandwidth

Available transmission Bandwidth 5–10 kilobytes per ms

Transmission
Delay

Message delay between a DBS and a MH Message Size (Object_Size/
Bandwidth)

Read Time Time taken to for reading an object 10 ms

Write Time Time taken for writing a new value for the object 20 ms

communication delay between DBS and MH. This delay mainly depends on two pa-
rameters Wireless-Bandwidth available for transmission and Object_Size of the object
being sent or received. Read Time and Write Time are the times required for reading
an object from the database and writing a new value for the object in the database re-
spectively. Most of these parameters have been used in the papers including [38, 39].

We have assumed that at any time there could be a maximum of 120 MHs in a cell
moving (0 to 10 m/s) using Random Waypoint Model from which the transactions
are initiated. Since we conducted our experiment with one cell only; we have used
multiple MHs, one BS, one DBS, as BSs and DBSs are assumed to be connected with
high bandwidth faster wired network, therefore, hand-offs are simulated in terms of
delays (between 100–200 ms [43]) with 10% random hand-offs in each case. We
consider random disconnections causing aborts in all our experiments with variable
bandwidths. The effect was taken into account in all our experiments, which was not
significant in terms of overall transaction response time.

8.1 Simulation results and discussion

The important parameters to define the performance of a concurrency control mech-
anism are throughput, transaction abort, blocking and rates, response time, and Con-
flict rate with in a range of multiprogramming levels (MPL) under a normal to stress
situation. To minimize the stray effects of simulation we executed 5000 transactions
for each simulation run. We executed the same run multiple times and took the aver-
age of the results. We define throughput as the number of transactions committed per
unit time (milliseconds) and the response time as the total time spent by a transaction
in the system. The restart rate defines how many transactions were restarted per unit
time and the block rate defines the number of transactions blocked per unit time due

186 Distrib Parallel Databases (2007) 22: 165–196

Fig. 8 Throughput vs MPL

to data conflict. We also measured conflict rate; the number of conflicts suffered by
concurrent transactions per unit time.

Performance metric 1: throughput vs MPL In this experiment (Fig. 8), we measured
the throughput for different MPL with a varying write probability Write_Prob. We
observe that the throughput remains nearly constant after an initial increase and begin
to fall with increase in MPL and write-probability. Throughput also falls with increase
in write-probability due to resource contention among transactions. The throughput
is much higher for write-probability 0 when read-only transactions are present in the
system, as versions are made available much before termination of the transactions.
On the other hand for the Write-Probability of 1; when all the transactions are read-
write, the throughput is the lowest as each transaction reads and writes. These results
are expected from the behavior of the MV-T model described earlier.

Performance metric 2: abort rate vs MPL We observe an interesting result here. In
Fig. 9 we have calculated the rate of transaction abort with MPL for different write
probabilities. There is an increase in abort rate with lower MPL values for different
write-probabilities but rate falls as the MPL increases. This is due to the blocking of
conflicting transactions based on timestamps rather than aborting them. However, the
initial trend shows that the abort-rate increases as the number of blocked transactions
are relatively low compared to aborted transactions but the abort-rate gradually de-
creases with higher write-probabilities as the number of blocked transactions is much
higher than the number of aborts. The interesting pattern is that at higher MPL abort-
rate starts increasing again with higher write-probabilities. Therefore, the scheme
performs efficiently in the sense that the abort-rate decreases with increase in write-
probability for medium load and perform otherwise for very low or very high MPL.
This shows that the MV-T model is suitable in mobile environment where aborts are
very expensive.

Another interesting result is that for higher write-probabilities the abort rate is
less compared to the lower write-probabilities, which is different than what has been
observed by other blocking transaction models. This happens because of the blocking

Distrib Parallel Databases (2007) 22: 165–196 187

Fig. 9 Abort-rate vs MPL

Fig. 10 Response time vs MPL

of the conflicting lock requests present in our model. Note that our MV-T model uses
locking as well as timestamps, but the abort-rate for medium load shows a balanced
model, neither many aborts as expected in completely optimistic scheme or nor any
deadlock based aborts as expected in lock-based schemes.

Performance metric 3: response time vs MPL In this experiment (Fig. 10) we calcu-
lated the response time. Graph shows that the response time for a MV-T transaction
increases with MPL. It happens because of increasing contention for data objects with
the increase in the number of transactions active at any particular time in the system.
Another point to note is that the response time for the transaction with write proba-
bility 1 is the highest and it is the lowest for the transaction with write probability 0.
In case of read-only transactions response time is higher as read-only transactions do
not wait for the termination of write-transactions.

Performance metric 4: restart rate & block rate vs MPL In this experiment
(Fig. 11), we observed the restart rate and the block rate for different write-
probabilities. The graphs on the top portion depict the block-rate and the graphs at the
bottom portion depict the restart-rate of the transactions. It is clear that the restart-rate
of the transactions is much less compared to the block-rate for any write- probabil-
ity. The block-rate starts increasing with the increase in MPL and it remains constant
for a certain amount of time with MPL between 45 to 60 and then starts to rising

188 Distrib Parallel Databases (2007) 22: 165–196

Fig. 11 Block rate & restart rate vs MPL

Fig. 12 Conflict rate vs MPL

rapidly again. This gradual rise in the blocking-rate of transactions is dependent on
the write-probability, i.e., it occurs first in write probability of 1 then in write prob-
ability of 0.75 then in 0.5 and lastly in 0.25. It should also be noted that the rise in
block-rate at the start is for much shorter duration for higher write probabilities of 1,
0.75 and 0.5 as compared to lower write-probability of 0.25. The restart-rate performs
in the same fashion as the block- rate. This experiment shows that the model achieves
a consistent restart rate/block rate for MPL from 45 to 60 and after that limit, the
resource contention has increased again, which results in higher restart/block rates.
This is also confirmed by the response time as shown earlier where the response time
increases more gradually after MPL of 45.

Performance metric 5: conflict rate vs MPL In this experiment (Fig. 12), we ob-
served the rate of conflict with the increasing MPL for different write-probabilities.
There is an increase in the number of conflicts with the increase in MPL and the
number of conflicts for a particular MPL also increases with the increasing write-
probability. Therefore, the highest conflict graph represents the conflict rate for write

Distrib Parallel Databases (2007) 22: 165–196 189

Fig. 13 Throughput vs MPL

probability 1 and the lowest conflict graph represents the conflict rate for the write-
probability 0. The interesting observation is that though the conflict–rate increases
with gradual increase in write-probability but abort-rate decreases. This behavior is
what a mobile system desires due to expensive cost of aborts.

8.2 Performance study with blind writes

In this section, we analyze the different performance metrics evaluated in the previ-
ous section in a blind write environment. In the previous case, depending on the write
probability, a read-write transaction would perform a read on data object before it
writes a version for that data object. In this case, the transaction performs only blind
writes, i.e., it does not read the data object but simply writes a new version for the data
object. In mobile computing, stock indices, currency rates, etc. can be updated with-
out necessarily reading their earlier values and hence, are considered as blind writes.
Here we obtain performance metrics for our model under such an environment. In
most of the cases, the graphs behave in a different manner.

Performance metric 1: throughput V/S MPL This graph is very similar to its coun-
terpart without blind writes, where the throughput remains nearly constant with an
increasing MPL of more than 25 for a given write probability. The difference is that
the graphs for 50%, 75% and 100% write probability are very close and nearly over-
laps in this case which is not the same in the throughput vs MPL graph for transactions
without blind writes. This is because of the absence of reads on data objects before
the writes are performed. However, there are read-only transactions mixed with blind
write transactions.

Performance metric 2: abort ratio V/S MPL In this experiment (Fig. 14), we calcu-
lated the rate of transaction abort with an increasing MPL for different write prob-
abilities in the similar manner as we did for the transactions without blind writes.
For any particular write-probability the rate of abort first increases with the increas-
ing MPL but then after certain MPL the rate of abort falls with the increase in MPL
and after sometime it starts to rise again with increase in MPL. This later increase

190 Distrib Parallel Databases (2007) 22: 165–196

Fig. 14 Abort-ratio vs MPL

Fig. 15 Response time vs MPL

in the rate of abort with the increase in MPL depends on the write-probability. For
a higher write probability this increase appears earlier than compared to the lower
write-probabilities That is, the graph starts to rise again for 100% write-only sooner
than the rise in graph for 75% write & 25% read case, and so on. In any other locking
protocol, the rate of aborts for higher write-probability must be greater than the rate
of aborts for the lower write-probability. That is, the graph for 25% write-probability
is higher than the graphs for 50%, 75% and 100% write-probability. This is because
of the blocking nature of the conflicting write lock requests present in our protocol.
Instead of aborting the conflicting write lock requests, we block those with higher
timestamp order and thus, resulting in lesser abort rate as compared to the other mod-
els.

Another observation to be made here is that with higher write probability the faster
is the abort-rate increase for increasing MPL. That is, the graph for 100% write-only
begins to fall at MPL of 10, the graph for 75% write & 25% read begin to fall at MPL
of 15 and the graph for 25% write & 75% read begins to fall at MPL of 30. This is
because of blind writes presence in this case.

Performance metric 3: response time v/s MPL In this experiment (Fig. 15), we have
calculated the average time a transaction spends in the system, called the response
time. The graphs here behave in the same manner as their counterpart in the earlier

Distrib Parallel Databases (2007) 22: 165–196 191

Fig. 16 Restart rate & block rate vs MPL

Fig. 17 Conflict rate vs MPL

case, that is, the transactions with a read before every write on a data object. The dif-
ference is that the response time is less for any particular MPL and write probability,
in this case, because of the absence of read on data objects before writes.

Performance metric 4: restart rate & block rate vs MPL In Fig. 16, we have plotted
the block rate and the restart rate for the different write probabilities. The graphs in the
top portion represent the block rate and the graphs in the bottom portion represent the
restart rate. The graph for a particular write probability behaves in a similar manner
as compared to its counterparts in the earlier case where read-write transactions do
not have blind writes. The difference is that the block rate graphs tend to remain
constant with increase in MPL whereas, in the earlier case, those graphs begin to rise
after certain MPL depending on the write-probability. The restart rate of transactions
is less compared to the block rate for any write probability, because of the blocking
nature of the write lock request present in our model.

Performance metric 5: conflict rate V/S MPL In this experiment (Fig. 17), we have
plotted the rate of conflict with increasing MPL for different write probabilities. The

192 Distrib Parallel Databases (2007) 22: 165–196

Fig. 18 After commit wait time vs MPL

graphs in the above diagram behave in a similar manner as compared to their coun-
terparts in the earlier case where the write on data object is performed only after
read.

Performance metric 6: AfterCommitWaitTime V/S MPL In this experiment (Fig. 18),
we have plotted the rate of AfterCommitWaitTime with the increasing MPL for the
different write probabilities. AfterCommitWaitTime is the average time a transaction
has to wait at DBS after its commit before it is actually terminated by DBS. It can
be clearly seen that the AfterCommitWaitTime for a particular write probability is
nearly constant with varying MPL. That is, even with an increase in MPL, which
means an increase in data contention and increase in the number of transactions that
are active at DBS, the average time a transaction has to wait after its commit before it
is actually terminated, is the same. This behavior is definitely to an advantage of the
locking protocol adapted in our model.

8.3 Comparison with speculative transaction model

In this section, we compared our MV-T model with a Speculative Model for Transac-
tion Processing (SMTP) proposed in [38, 39]. We use throughput and response time
for the comparison. Note that the SMTP model assumes no aborts as the conflict-
ing transactions are executed in parallel on multiple versions, and each transaction
commit on one value and the other one is discarded. That is, a waiting transaction
speculatively carries out alternative executions on both before and after images and
they retain the appropriate execution outcome based on the termination decision of
preceding transactions before its own commit. We selected this model as it uses ver-
sions to execute transactions in a mobile environment. Moreover, the SMTP model
outperforms traditional 2PL [15], and WDL [16] and therefore, these basic reference
models have not been compared again here. In our experiments, we consider only two
versions in both the models and keep the same environment as in earlier experiments.
Note that this is best case scenario in both the models. Also, in this experiment, each
transaction reads and writes a data object (100% read-write) which is the condition
used in the SMTP model. Also, this is the worst-case comparison, as the resource
contention will be much higher under this condition which makes it useful for the
purpose of comparing two models.

Distrib Parallel Databases (2007) 22: 165–196 193

Fig. 19 Throughput: SMTP V/S MV-T

Fig. 20 Response: SMTP V/S MV-T

It is clear from the performance model, MV-T model performs better in terms of
throughput as the SMTP takes longer in execution as it compute the values using
both the before- and after-versions and the next transaction waits for the completion
of earlier transaction and then again waits for the commit of prior transactions. Thus,
a transaction has to wait longer for both read and write operations in SMTP. In MV-T
model, a transaction upgrades a write-lock to verified-lock to make data values avail-
able for others much before it terminates. In addition, in MV-T model, a transaction
makes available data values at the time of commit (before final termination), whereas

194 Distrib Parallel Databases (2007) 22: 165–196

in case of SMTP, they are only available after a transaction is terminated. The ad-
vantage of separating a commit state from the termination state is visible from this
particular experiment. In addition to the above arguments which also hold true in ar-
guing for increase in the response time in case of SMTP than MV-T model, our model
voids delays due to deadlocks by using timestamps. In terms of gradual increase, both
models experience resource contention at almost same MPL of about 30 onwards. At
a lower value of MPL, the difference in the two models is not that significant as the
lock waiting time and the difference between the commit and termination time in
MV-T model is comparable to SMTP model’s speculative execution of transactions.
However, once the load on the system increases, the SMTP model suffers due to re-
source contention, long-duration, possible deadlocks, and waiting to commit of the
previous transactions.

Note that in the presence of read-only transactions, SMTP model’s performance
will deteriorate as read-only transactions will read both the versions and wait for the
previous write transaction to commit on one of the versions. This will not only in-
crease the response time and decrease the throughput, but will also consume extra re-
sources. In addition, SMTP assumes unlimited resources not an appropriate assump-
tion in case of mobile computing. Moreover, every time a transaction is executed,
the system accepts only the outcome of the execution using either before- or after-
images, and discard the other one and thus, SMTP wastes resources such as storage,
battery power and CPU usage. One can argue that in SMTP model discarding a par-
tial result of a transaction (though not considered as abort in [38, 39]) is equivalent to
one sub-transaction abort per transaction execution (with only two versions) which is
very expensive in case of a wireless mobile environment.

9 Conclusions and future work

In this paper, we presented a formal transaction-processing model that handles two
versions: committed and terminated and discussed the locking algorithms to control
the concurrent executions of transactions under multiversion. Read-only transactions
always return the current value either committed or terminated. We have presented
the performance evaluation of MV-T model which increases availability in mobile
computing environment. The model presented is deadlock free and reduces abort-
rate with increase in write-probability for the moderate load. The blocked transac-
tions also have low restart-rate. Thus, the model provides very efficient transaction
execution in a mobile environment with high throughput with low abort-rate. For
future work, we are simulating the model in the environment of multiple versions
rather than restricting to only two versions. Also, we are considering another varia-
tion of the model where we block every conflicting transaction and abort transactions
that involve in deadlocks. Another interesting issue we are exploring is to introduce
real-time constraints in the model, and transactions which have hard-deadlines, can
always read the latest version of the object as reads are never aborted in our model.
We are exploring to adapt the model for broadcast transaction processing [11, 25, 34,
40, 41] and in M-P2P domain.

Acknowledgement We are very thankful to the coauthor P.K. Reddy of SPTM model for providing the
simulator and fruitful discussions during the period of this research.

Distrib Parallel Databases (2007) 22: 165–196 195

References

1. Agrawal, D., Abbadi, A.E.: Constrained shared locks for increasing concurrency in databases. J. Com-
put. Syst. Sci. 51, 53–63 (1995)

2. Agrawal, D., Krishnamurthy, V.: Using multiversion data for non-interfering execution of write-only
transactions. In: Proceeding of the ACM SIGMOD Conference, pp. 98–107 (1991)

3. Agrawal, D., Sengupta, S.: Modular synchronization in multiversion databases: version control and
concurrency control. In: ACM Proceedings of SIGMOD, New York, May 1989, pp. 408–417 (1989)

4. Barbara, D.: Mobile computing and databases—a survey. IEEE Trans. Knowl. Data Eng. 11(1), 108–
117 (1999)

5. Böse, J.-H., Böttcher, S., Gruenwald, L.: Research issues in mobile transactions. http://drops.dagstuhl.
de/opus/volltexte/2005/168/pdf/04441.SWM5.Paper.168.pdf (2005)

6. Bober, P., Carey, M.J.: On mixing queries and transactions via multiversion locking. Technical report,
Computer Science Department, University of Wisconsin-Madison, Nov 1991

7. Bernstein, P., Hadzilacos, V., Goodman, N.: Concurrency Control and Recovery in Database Systems.
Addison-Wesley, Reading (1987)

8. Böttcher, S., Gruenwald, L., Obermeier, S.: Reducing sub-transaction aborts and blocking time within
atomic commit protocols. In: BNCOD, pp. 59–72 (2006)

9. Barghouti, N., Kaiser, G.: Concurrency control in advanced database applications. ACM Comput.
Surv. 23(3), 269–317 (1991)

10. Chrysanthis, P.K.: Transaction processing in a mobile computing environment. In: Proceedings of
IEEE Workshop on Advances in Parallel and Distributed Systems, October 1993, pp. 77–82 (1993)

11. Chung, I., et al.: Taxonomy of data management via broadcasting in a mobile computing environ-
ment. In: Mobile Computing: Implementing Pervasive Information and Communication Technolo-
gies. Kluwer Academic, Dordrecht (2002)

12. Chan, A., Fox, S., Lin, W., Nori, A., Ries, D.: The implementation of an integrated concurrency
control and recovery scheme. In: ACM Proceedings of SIGMOD, pp. 184–191. ACM, New York
(1982)

13. Dirckze, R., Gruenwald, L.: A pre-serialization transaction management technique for mobile multi-
databases. MONET 5(4), 311–321 (2000)

14. Eich, M.H., Helal, A.: A mobile transaction model that captures both data and movement behavior.
In: ACM/Baltzer Journal on Special Topics on Mobile Networks and Applications (1997)

15. Eswaran, K.R., Gray, J.N., Lorie, R.A., Traiger, I.L.: The notions of consistency and predicates locks
in a database system. Commun. ACM 19(11), 624–633 (1976)

16. Franaszek, P.A., Robinson, J.T., Thomasin, A.: Concurrency control for high contention environments.
ACM Trans. Database Syst. 17(2), 304–345 (1992)

17. Goel, S., Bhargava, B., Madria, S.: An adaptable constrained locking protocol for high data contention
environments. In: Proceedings of IEEE for 6th International Conference on Database Systems for
Advanced Applications (DASFAA’99), Taiwan, April 1999

18. Hwang, S.-Y.: On optimistic methods for mobile transactions. J. Inf. Sci. Eng. 16, 535–554 (2003)
19. Kumar, V.: Performance of Concurrency Control Mechanisms for Centralized Database Systems.

Prentice Hall, New York (1996)
20. Kumar, V., Prabhu, N., Dunham, M., Seydim, Y.A.: TCOT—a timeout-based mobile transaction com-

mitment protocol. IEEE Trans. Comput. 51(10), 1212–1218 (2002)
21. Kisler, J., Satyanarayanan, M.: Disconnected operation in the coda file system, ACM Trans. Comput.

Syst. 10(1) (1992)
22. Kataoka, R., Satoh, T., Inoue, U.: A multiversion concurrency control algorithm for concurrent ex-

ecution of partial update and bulk retrieval transactions. In: Proceedings 10th International Phoenix
Conference on Computers and Communications, pp. 130–136. IEEE Computer Society Press, New
Jersey (1991)

23. Kuruppillai, R., Dontamsetti, M., Cosentino, F.J.: Wireless PCS. McGraw-Hill, New York (1997)
24. Lam, K.-Y., Li, G., Kuo, T.-W.: A multi-version data model for executing real-time transactions in a

mobile environment. In: Proceedings of MobiDE, pp. 90–97 (2001)
25. Lee, V., Lam, K., Son, S., Chan, E.: On transaction processing with partial validation and timestamp

ordering in mobile broadcast environments. IEEE Trans. Comput. 51(10), 1196–1211 (2002)
26. Lu, Q., Satyanaraynan, M.: Improving data consistency in mobile computing using isolation-only

transactions. In: Proceedings of the fifth Workshop on Hot Topics in Operating Systems, Washington,
May 1995

196 Distrib Parallel Databases (2007) 22: 165–196

27. Madria, S.K., Bharat, B.: A transaction model to improve availability in mobile computing environ-
ment. Distrib. Parallel Database Syst. J. 10(2), 127–160 (2001)

28. Madria, S., Baseer, M., Bhowmick, S.: Multi-version transaction model to improve data availability
in mobile. In: Proceedings of 10th International Conference on Co-operative Information Systems
(COOPIS’02). Lecture Notes in Computer Science, vol. 2519, pp. 322–338. Springer, Berlin (0000)

29. Papadimitriou, C.H.: The serializability of concurrent database updates. J. ACM 26(4), 631–653
(1979)

30. Sanjay, K.M., Mukesh, K.M., Sourav, S.B., Bharat, K.B.: Mobile data and transaction management.
Inf. Sci. 141(3–4), 279–309 (2002)

31. Pitoura, E., Bhargava, B.: Building information systems for mobile environments. In: Proceedings of
3rd International Conference on Information and Knowledge Management, pp. 371–378 (1994)

32. Pitoura, E., Bhargava, B.: Maintaining consistency of data in mobile computing environments. In: Pro-
ceedings of 15th International Conference on Distributed Computing Systems, June 1995; Extended
version has appeared in IEEE TKDE (2000)

33. Pathak, S., Badrinath, B.R.: Multiversion reconciliation for mobile databases. In: Proceedings of IEEE
International Conference on Data Engineering (ICDE), pp. 582–589 (1999)

34. Pitoura, E., Chrysanthis, P.: Multiversion data broadcast. IEEE Trans. Comput. 51(10), 1224–1230
(2002)

35. Pitoura, E., Samaras, G.: Data Management for Mobile Computing. Kluwer Academic, Dordrecht
(1998)

36. Pu, C., Kaiser, G.: Hutchinson, X.: Split-transactions for open-ended activities. In: Proceedings of the
14th International Conference on Very Large Databases (VLDB) (1988)

37. Ramamritham, K., Chrysanthis, P.K.: A taxonomy of correctness criterion in database applications.
J. Very Large Databases 4(1), 85–97 (1996)

38. Reddy, P.K., Kitsuregawa, M.: Speculative lock management to increase concurrency in mobile en-
vironments. In: Proceedings of First International Conference (MDA’99), Hong Kong, China, 16–17
December 1999, pp. 82–96 (1999)

39. Reddy, P.K., Masaru, K.: Speculative locking protocols to improve performance for distributed data-
base system. IEEE Trans. Knowledge Data Eng. 16(2), 154–169 (2004)

40. Shigiltchoff, O., Chrysanthis, P., Pitoura, E.: Multiversion data broadcast organizations. In: 6th East
European Conference on Advances in Databases and Information Systems, ADBIS 2002, pp. 135–148
(2002)

41. Shanmugasundaram, J., Nithrakashyap, A., Sivasankaran, R.M., Ramamritham, K.: Efficient concur-
rency control for broadcast environments. In: SIGMOD Conference, pp. 85–96 (1999)

42. Serrano-Alvarado, P., Roncancio, C., Adiba, M.: A survey of mobile transactions. Distrib. Parallel
Databases 16(2), 193–230 (2004)

43. http://media.wiley.com/product_data/excerpt/28/04714190/0471419028.pdf
44. Weihl, W.E.: Distributed version management for read-only actions. IEEE Trans. Softw. Eng. 13(1),

55–64 (1987)
45. Walborn, G.D., Chrysanthis, P.K.: Supporting semantics-based transaction processing in mobile data-

base applications. In: Proceedings of 14th IEEE Symposium on Reliable Distributed Systems, Sep-
tember 1995, pp. 31–40 (1995)

	A transaction model and multiversion concurrency control for mobile database systems
	Abstract
	Introduction
	Architecture of mobile database system (MDS)
	Review of earlier works
	Concurrency control mechanisms
	Mobile transaction execution models

	A mobile transaction processing model
	Multiversion of data items

	Locking protocol
	Locking rules for case 1
	Locking rules for case 2

	Constraints with read and write operations
	Rules for terminating a transaction
	Blocking transactions
	Comparison with constrained shared locking model

	Formal proof of correctness
	Properties

	Simulation model
	Simulation results and discussion
	Performance metric 1: throughput vs MPL
	Performance metric 2: abort rate vs MPL
	Performance metric 3: response time vs MPL
	Performance metric 4: restart rate & block rate vs MPL
	Performance metric 5: conflict rate vs MPL

	Performance study with blind writes
	Performance metric 1: throughput V/S MPL
	Performance metric 2: abort ratio V/S MPL
	Performance metric 3: response time v/s MPL
	Performance metric 4: restart rate & block rate vs MPL
	Performance metric 5: conflict rate V/S MPL
	Performance metric 6: AfterCommitWaitTime V/S MPL

	Comparison with speculative transaction model

	Conclusions and future work
	Acknowledgement
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for journal articles and eBooks for online presentation. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

