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Abstract

Recently, there is an increasing research efforts in XML data mining. These research
efforts largely assumed that XML documents are static. However, in reality, the doc-
uments are rarely static. In this paper, we propose a novel research problem called
XML structural delta mining. The objective of XML structural delta mining is to
discover knowledge by analyzing structural evolution pattern (also called structural
delta) of history of XML documents. Unlike existing approaches, XML structural
delta mining focuses on the dynamic and temporal features of XML data. Further-
more, the data source for this novel mining technique is a sequence of historical
versions of an XML document rather than a set of snapshot XML documents. Such
mining technique can be useful in many applications such as change detection for
very large XML documents, efficient XML indexing, and XML search engine etc.
Our aim in this paper is not to provide a specific solution to a particular mining
problem. Rather, we present the vision of the mining framework and present the
issues and challenges for three types of XML structural delta mining: identifying
various interesting structures, discovering association rules from structural deltas,
and structural change pattern-based classification.

Key words: Versions of XML documents, structural delta, dynamic metrics, XML
structural delta mining, research issues, applications.

1 Introduction

Recently, XML is widely used as the de facto standard for data exchang-
ing in the internet. As more and more data is stored and represented in
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XML format, there have been increasing research efforts in mining XML data.
Existing works on mining XML data include frequent substructure mining
[18, 21, 40, 9, 38, 16, 11], classification [41, 12, 17] and association rule mining
[4], etc. Among these, the frequent substructure mining is one of the most
well-researched topics. The basic idea is to extract substructures, subtrees
or subgraphs, which occur together frequently among a set of XML docu-
ments. The set of discovered frequent substructures can be useful in different
XML-based applications such as efficient querying and XML integration [39].
Moreover, they can be useful for data analysis in different domains such as
bioinformatics, chemistry, and network analysis [12, 17], since data in these
domains can be easily modelled as XML documents.

1.1 Motivation

A key feature of XML data is its dynamic property. XML data may change at
any time in any way. New data are inserted into the XML document; obsolete
data are deleted or updated. That is, the dynamic nature of XML data results
in two types of changes: structural deltas and content deltas. Structural deltas
typically modify the structure of the XML data whereas content deltas modify
the textual content. In this paper, we focus our attention to structural deltas
only. Hereafter, unless otherwise specified, changes to the XML data refer to
structural deltas.

The dynamic nature of the structure of XML data leads to the following
challenging problems in the context of data mining.

• Maintenance of XML data mining results: Due to the changes to
XML data, knowledge extracted from obsolete data may not be valid any
longer. Let us elaborate further. Suppose there is a collection of XML docu-
ments that record the detail information about products and services for a
e-commerce web site. By applying existing frequent structure mining tech-
niques [18, 21, 37, 38], frequent substructures among the XML documents
can be discovered. However, with the evolution of the XML documents,
some parts of the structure may be deleted while new structures may be
inserted. Consequently, the set of frequent substructures extracted at time
t1 may change at time t2 where t2 > t1. That is, some of the previously
discovered frequent substructures may not be frequent any more. Similarly,
some of the substructures, which were infrequent previously, may become
frequent. To address this problem, some incremental data mining techniques
[13, 28] can be applied to maintain the mining results.

• Discovering novel knowledge: Historical collection of XML data con-
tains rich temporal information. Consequently, novel knowledge may be hid-
den behind the history of changes to XML data that cannot be discovered by
data mining techniques designed for static data. For example, we may find
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<?xml version="1.0" encoding="ISO-8859-1"?>

  <ABC.com>

<About ABC>

                   <Corporation information>

                           This is ABC.com

                  </Corporation information>

                  <Investor relations>

                         Singapore Investment Ltd

                  </Investor relations>

                  <Organization>

                       <A>

                       A department

                       </A>

                       <B>

                       B department

                       </B>

                       <C>

                       C department

                       </C>

                  </Organization>

             </About ABC>

             <Products>

                      <Product id=1>

                          <Model id=1>

                               <Agent>

                                   Agent1

                               </Agent>

                          <Model>

                      </Product>

                      <Product id=2>

                          <Model id=1>

                               <Agent>

                                   Agent1

                               </Agent>

                          <Model>

                          <Model id=2>

                               <Agent>

                                   Agent1

                               </Agent>

                          <Model>

                      </Product>

             </Products>

<Services>

       <Consultants>

                         <Consultant id=1>

                            consultant 1

                         </Consultant>

                   </Consultants>

                   <Trainings>

                         <Training id=1>

                            About Product 1

                         </Training>

                         <Training id=2>

                            About Product 2

                         </Training>

                  </Training>

             </Services>

  </ABC.com>

(a) XML document

(b) Tree representation of the XML document

(c) Tree representation (version 2) of the XML document

(d) Tree representation (version 3) of the XML document

ABC.com

Products Services

P1 P2

TrainingsConsultants

M2 M3 M4

T2 T3 T4

…


A1 A2

…


A1 A2

…


P3 P4

A3 A4 A1

M5

T5

P5

C1 C3

…


…


…


…


…


…


ABC.com

About ABC

CI

Organization

IR

Products

Services

P1 P2

TrainingsConsultants

A B C

…

M1 M2 M3

T1 T2 T3

…


S1

…


A1

… … …

… …

A2 A1 A2

Agent
… … …

Training

… …

ABC.com

Products Services

P1 P2

TrainingsConsultants

M1 M3

T1 T3

…


…


…


P3

P4

M4

T4

C1 C2

A2A1 A2 A3 A2A1

Training
Consultant

…
…

…

Agent … Agent
Agent…

…

Agent Agent Agent…
…

…

(e) Tree representation (version 4) of the XML document
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Fig. 1. Versions of XML documents.

that some particular parts of the XML documents evolve more frequently
than the other parts. As we shall see later, while knowledge obtained from
snapshot data is interesting, knowledge discovered by analyzing evolution
pattern of XML data may be also critical in many applications such as
change detection for XML data, XML indexing, semantic meaning extrac-
tion etc.

In this paper, we focus on the second problem in the context of structural
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evolution of XML data. That is, we focus on discovering novel knowledge by
analyzing the patterns of the structural deltas of historical XML documents.
We call such knowledge discovery process as XML structural delta mining. We
now illustrate with an example the types of knowledge that can be discovered.
Fig. 1(a) is an XML document that records the information such as prod-
ucts, and services of an e-commerce Web site ABC.com. Fig. 1(b) is the tree
representation of the XML document. Fig. 1(c), (d) and (e) are the tree repre-
sentations of another three historical versions of the same XML document in
Fig. 1(a). For brevity, we use Pi, Ci,Mi, and Ti to represent the Product, Con-
sultant, Model and Training element, respectively whose attribute id is i. In
these figures, each node represents an element or attribute and each edge rep-
resents the parent and child relationship among the elements and attributes.
The gray circles in this figure denote elements/attributes that are deleted; the
black ones denote the elements/attributes that are inserted; the circles with
bold lines represent the elements/attributes whose values have been updated.
From the versions of XML documents in Fig. 1, the following novel knowledge
can be extracted by employing XML structural delta mining techniques.

• Frequently changing structures : Some parts of the structures change more
frequently and significantly (such as the subtrees rooted at node products
and services) compared with other parts (such as the subtree rooted at node
About ABC ). Such structures represent the relatively more dynamic parts
of the XML document.

• Frozen structures : Some parts of the structures never or seldom change in
the history (such as the substructure s1 shown in Fig. 1(b) with dotted line).
Frozen structures represent the most stable parts of the XML document.

• Association rules : Some structures are associated in terms of their change
patterns. For instance, whenever the subtree rooted at node P2 changes,
the subtree rooted at node Training also changes. Such an association rule
implies the concurrence of changes to different parts of the XML document.

• Change patterns : Consider the sequence of versions in Fig. 1. It is possi-
ble to detect certain trend-based patterns from the historical versions. For
instance, one can observe that more and more nodes are inserted in some
substructures such as Consultant, while nodes are frequently inserted in
and deleted from other substructures such as Training. We may also dis-
cover many other types of change patterns such as trends, seasonal patterns,
and periodical change patterns, etc.

In this paper, we present the issues and challenges related to the discovery of
above types of knowledge. Note that by no means we claim that the above list
is exhaustive. We use them as representatives for various types of knowledge
behind the sequence of structural changes to XML documents. Such novel
knowledge can be useful in different applications such as change detection for
very large XML documents, dynamic XML indexing, and semantic meaning
extraction etc. The details about different applications will be discussed in
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Fig. 2. Architecture of XML structural delta mining.

Section 8.

To the best of our knowledge, the state-of-the-art XML structure mining tech-
niques [37, 38] fail to extract such knowledge. This is due to the following
differences between XML structural delta mining and existing works on XML
structure mining. First of all, XML structural delta mining focuses on the
dynamic and temporal features of XML data. Secondly, the data source for
XML structural delta mining is a sequence of historical versions of an XML
document rather than a set of snapshot XML documents collected at a spe-
cific time point. The major contributions of this paper can be summarized as
follows.

• We propose to discover novel knowledge from changes to historical versions
of XML structure data (XML structural delta). The challenges and potential
applications for XML structural delta mining are also discussed.

• Three representative types of novel XML structural delta mining are dis-
cussed. They are identifying interesting substructures, mining XML struc-
tural delta association rules, and classifying XML data based on structural
change patterns, respectively.

We caution that our framework for XML structural delta mining is still in its
formative stages. Our aim in this paper is not to provide a specific solution to
a particular problem. Rather, we are presenting the vision of our framework,
with the hopes that others in the community will explore further on specific
problems in the arena of XML structural delta mining. We strongly believe
that mining historical versions of XML documents is an exciting research area
that has not yet been well explored. This paper identifies some of the major
issues that needs to be addressed in this context.

1.2 The Framework

The general framework of XML structural delta mining is depicted in Fig. 2.
Given a sequence of historical versions of an XML document, the objective of
XML structural delta mining is to extract useful knowledge such as interesting
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structures, association rules, and classification/clusters from the history of
XML structural deltas. There are two major phases in the XML structural
delta mining process.

In the first phase, there are two parallel sub-phases as shown in Fig. 2. In phase
I(i), we need a structural change detection system to obtain the sequence
of structural deltas from versions of XML documents. Recently, a number
of techniques for detecting the changes to XML data have been proposed
such as XyDiff [7], X-Diff [35], and TreeDiff [10].These techniques detect both
content and structural changes. Consequently, a structural change detection
system can be built based on these existing systems. The results of this sub-
phase is a sequence of structural delta. In phase I(ii), we define some dynamic
metrics to measure the interestingness of different substructures based on their
dynamic and temporal properties. Based on these metrics, different types of
interesting structures are defined and discovered in the subsequent phase. In
the second phase, given a sequence of historical structural deltas and user-
defined constraints with respect to a set of dynamic metrics, data mining
techniques are applied to extract various types of knowledge as highlighted
earlier. New algorithms or techniques need to be designed to mine such types
of knowledge.

1.3 Paper Organization

The organization of this paper is as follows. In Section 2, we present the related
works. In Section 3, we formally introduce the XML structural delta mining
problem and present some concepts that shall be used subsequently to discuss
various types of knowledge discovery problem. Sections 4–6 present various
types of knowledge that we can discover using XML structural delta mining
technique. Specifically, the issue of discovering different types of interesting
substructures is elaborated in Section 4. In Section 5, XML structural delta
association rule mining is discussed. The change pattern-based classification
problem is presented in Section 6. Next, key research issues for XML structural
delta mining are discussed in Section 7. Then, in Section 8, we briefly present
some real-life applications of the novel knowledge discussed in the preceding
sections. Finally, the last section concludes this paper.

2 Related Work

Our proposed XML structural delta mining is largely influenced by several
recent technologies by three major research communities. First, in the re-
cent times, the database and XML communities have looked at XML change
detection problem. Second, the data mining and AI communities have been
increasingly active in addressing various issues related to XML data mining.
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We compare our approach with these technologies and highlight the novelty
of our approach.

2.1 XML Change Detection

Recently, a number of techniques for detecting the changes to XML data have
been proposed. XMLTreeDiff [10] and XyDiff [7] are main-memory algorithms
for detecting the changes in ordered XML documents. In an ordered XML,
both the parent-child relationship and the left-to-right order among siblings
are important. In [10], Curba and Epstein proposed the TreeDiff algorithm to
compute the differences between two XML documents using DOMHash val-
ues. TreeDiff is a tool developed by IBM to detect changes to ordered XML
documents. Using the hash values, TreeDiff can reduce the size of the trees
by filtering the identical subtrees. However, the results generated by TreeDiff
may not be the optimal. XyDiff [7] is another algorithm for detecting changes
to ordered XML documents. The algorithm computes a signature (i.e., hash
value) and a weight (i.e., subtree size) for every node in both documents in
a bottom-up fashion. Based on the signature and weight, subtrees with the
largest weight are always compared first. If the signatures are equal, the two
nodes are matched. The algorithm starts from finding a match between the
heaviest nodes and heavier subtrees have higher priority to be chosen for com-
parison. Once a match is found, it will propagate to ancestors to get more
matches. Insertions/Deletions and Moves will be computed after all exact
matches are found. However, XyDiff cannot guarantee any form of optimal or
near-optimal result because of the greedy rules used in the algorithm. Wang
et al. proposed X-Diff [35] for computing the changes to unordered XML doc-
uments. In unordered XML, the parent-child relationship is significant, while
the left-to-right order among siblings is not important. In X-Diff algorithm, for
each pair of nodes from the input documents the distance between their respec-
tive subtrees is obtained by finding the minimum cost mapping for matching
children (by reduction to the minimum cost maximum flow problem). X-Diff
generates more accurate results compared with XyDiff. The main strength
of X-Diff algorithm is that it reduces the mapping space significantly and
achieves polynomial time complexity. However, the change detection response
time is slower than XyDiff and it cannot handle very large XML documents.

All these algorithms suffer from scalability problem as they fail to detect
changes to large XML documents due to lack of memory. Consequently, a
number of approaches [23, 24, 22] have been proposed to address the scalabil-
ity problem of XML change detection by using relational databases. In this
approach, first, XML documents are stored in RDBMS. Then, the changes are
detected by using a set of SQL queries. Experimental results show that this
approach has better scalability, running time, and comparable result quality
compared to X-Diff.
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Similarly, there are some works about detecting and monitoring the changes of
data schemas in the data warehouse scenario [2, 3, 29]. In [2], a set of change
operations, similar to those proposed in the XML change detection process,
was proposed to describe the changes in the data schemas. In [3], the authors
presented a concept and an implementation of a multi-version data warehouse
that is capable of handling changes in the structure of its schema. An ap-
proach to handling changes in data warehouse structure and content based on
a multi-version data warehouse is proposed in [29]. Each data warehouse ver-
sion describes a schema and data at certain period of time or a given business
scenario, created for simulation purposes. In order to appropriately analyze
multi-version data, an extension to a traditional SQL language is required.

Compared to the above works, the proposed XML structural delta mining is
different in the following way. Give a sequence of historical versions of an XML
document, XML change detection systems generates a sequence of changes
between each pair of consecutive XML documents. These systems are not
designed beyond change detection. However, the detected changes can be too
large for the users to understand. XML structural delta mining process the
detected changes further to extract hidden knowledge so that the results can
be understood and utilized by users easily.

2.2 XML Data Mining

With the ever-increasing amount of available XML data, the data mining
community has been motivated to discover knowledge from collections of XML
documents. For example, there have been increasing research efforts in mining
frequent patterns [4, 31] or sequential patterns [25] from XML repositories,
classifying [41] and clustering [27] XML documents. We review some of the
works in the following two related areas, mining association rules or frequent
patterns from XML data and classifying XML data.

As one of the most important problems of data mining, association rule mining
has been applied to discover some underlying associations from XML reposi-
tories. XMINE [4] is a tool developed to extract XML association rules from
XML documents. Based on XPath and inspired by the syntax of XQuery,
XMINE allows to express complex mining tasks. However, XMINE aims to
discover association rules from the contents of XML documents whereas we
consider the structures of XML documents.

Since XML documents are typically viewed as semi-structured data, they do
not have rigid structure. Major work on XML structure mining focuses on dis-
covering frequent substructures from a collection of XML documents [1, 31, 34,
40]. Wang and Liu [34] developed an Apriori-like algorithm to mine frequent
substructures based on the “downward closure” property. They first found the
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frequent 1-tree-expressions that are frequent individual label paths. Discovered
frequent 1-tree-expressions are joined to generate candidate 2-tree-expressions.
The process is executed iteratively till no candidate k-tree-expressions is gen-
erated. Asai et al. [1] developed another algorithm, FREQT, to discover all
frequent tree patterns from large semi-structured data. They modeled the
semi-structured data as labeled ordered tree and discover frequent trees level
by level. At each level, only the rightmost branch is extended to discover
frequent trees of the next level. Thus, efficiency can be obtained without gen-
erating duplicate candidate frequent trees. TreeMinerH and TreeMinerV [40]
are two algorithms for mining frequent trees in a forest. As the name of the
algorithm indicates, TreeMinerH is an Apriori-like algorithm based on a hor-
izontal database format. In order to efficiently generate candidate trees and
count their frequency, a smart string encoding is proposed to represent the
trees. In contrast, TreeMinerV uses vertical scope-list to represent a tree.
Frequent trees are searched in depth-first way and the frequency of gener-
ated candidate trees are counted by joining scope-lists. TreeFinder [31] is an
algorithm to find frequent trees that are approximately rather than exactly
embedded in a collection of tree-structured data modelling XML documents.
Each labelled tree is described in relaxed relational description which main-
tains ancestor-descendant relationship of nodes. Input trees are clustered if
their atoms of relaxed relational description occur together frequently enough.
Then maximal common trees are found in each cluster by using algorithm
of least general generalization. Recently, there is another line of work that
employs the pattern-growth strategy to discover frequent subtrees [33, 36].

Classification of XML documents has also been addressed by some recent re-
search works [32, 41]. In [41], Zaki proposed an algorithm to construct struc-
tural rules in order to classify XML documents. The basic idea is to relate the
presence of a particular kind of structural pattern in an XML document to
its likelihood of belonging to a particular class. In addition to the usual text-
based term frequency vectors, Theobald et al. [32] explored other features such
as XML twigs and tag paths on which an XML classifier operates. Moreover,
they also leveraged the ontological background for the construction of more
expressive feature spaces.

The critical difference between our XML structural delta mining and exist-
ing works on XML data mining is that we address the dynamic nature of
XML data. Existing works on XML data mining extract knowledge from the
snapshot version of XML documents, whereas we extract knowledge from a
sequence of historical structural deltas of an XML document.
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Symbol Description

X An XML document.

T Tree representation of an XML document.

t A subtree in XML tree T .

ei A basic structural edit operation.

4i+1
i (t) Structural delta of subtree t from i-th to (i + 1)-th version.

|4i+1
i (t)| Size of structural delta 4i+1

i (t).

Ψt Structural delta sequence of subtree t.

Gt Structural edit script sequence of a subtree t.

V (t) Version dynamic of subtree t.

V (S) Version dynamic of a set of subtrees S.

Ni(t) Structure dynamic of subtree t.

α Threshold for structure dynamic.

DoD(t, α) Degree of dynamic of subtree t.

DoD(S, α) Degree of dynamic of a set of subtrees S.

β Threshold for version dynamic.

γ Threshold for DoD.

ν Threshold for periodic dynamic structure.

ρin(t) Increasing strength of subtree t.

ρde(t) Decreasing strength of subtree t.

τin(t) Increasing tolerance of subtree t.

τde(t) Decreasing tolerance of subtree t.

σ Threshold for strength.

κ Threshold for tolerance.

Ui(t) Surprise of a subtree t.

δ Threshold for surprise.

φ Threshold for confidence.

θ Threshold for interest.

Table 1
Summary of symbols.

3 Preliminaries

In this section, we introduce some concepts that are used to define various
types of knowledge discovered by XML structural delta mining. First, we give
an overview of different types of change operations that result in XML struc-
tural deltas. Then, we present various types of dynamic metrics. Finally, we
formally define the problem of XML structural delta mining. In the subse-
quent sections, we shall use these concepts to discuss various types of novel
knowledge. Table 1 provides a summary of symbols used in the subsequent
sections.
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3.1 Types of XML Structural Changes

The structure of an XML document can be modelled as a rooted tree or a
graph. In this paper, we use the rooted tree structure as example. Formally,
an XML tree structure is defined as following.

Definition 1 (XML Tree) The structure of an XML document can be mod-
elled as a rooted tree T that has 3-tuple T = (V, E, V0), where V is a set of
nodes {V0, V1, · · · , Vn}; E is a set of edges {e0i, eij, · · ·}, where eij = (Vi, Vj)
connects node Vi to node Vj; V0 ∈ V is a distinguished node named the root of
the tree structure. 2

In the tree structure representation of an XML document, each node rep-
resents an element/attribute and each edge represents the parent and child
relationship between the two nodes. The size of the tree T , denoted by |T |,
is the number of nodes in V . After representing the structure of an XML
document as a tree, a substructure can be represented correspondingly as a
subtree, which is defined as follows.

Definition 2 (XML Subtree) A rooted tree structure t = (V ′, E ′, V ′
0) is a

subtree of an XML tree T = (V, E, V0), denoted as t ¹ T, provided i) V ′ ⊆
V; ii) eij = (Vi, Vj) ∈ E ′ if and only if eij ∈ E; iii) V ′

0 ∈ V . 2

Then, change operations on XML documents can be defined based on the tree
structures. In [35], all changes to XML documents can be described by five
types of edit operations, including three basic operations and two composite
operations that can be decomposed into a list of basic operations. As we are
only concerned of structural changes to XML document, the update operation,
which only results in the changes to contents, is not considered in our research.
Hence, we only consider the following two operations as basic edit operations.

• Insert(x (name, value), y): insert a node x, with node name name and node
value value (possibly empty), as a child node of node y.

• Delete(x ): delete a node x.

Note that using the above basic operations, the following composite operations
can be defined.

• Insert(tx,y): insert a subtree tx, which is rooted at x, to node y.
• Delete(tx): delete a subtree tx, which is rooted at node x.

Observe that we have not considered the move operation to be a basic or
composite edit operation. A move can be represented by a sequence of delete
and insert operations. The structural change is identical although they may
have different semantics. However, the structural significance of the semantics
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is application-specific. That is, for certain applications move operation may
not carry any additional semantics compared to insert and delete operations.
On the other hand, for other applications the semantics may be significant.
Hence, for this paper, we assume move to be equivalent to an insert and a
delete operations. Our edit operation definition can easily be extended if a
specific application requires the move operation to be considered as a basic
edit operation.

3.2 XML Structural Delta

Based on the edit operations, an edit script is defined as a sequence of edit
operations that transforms an XML document to another one [35]. Corre-
sponding to the structural changes, we define the structural edit script as
a sequence of basic edit operations that converts the structure of one ver-
sion to the structure of another version. Note that it differs from the def-
inition of edit script in two ways. First, a structural edit script does not
include any update operation. Second, unlike edit script, it is composed of
basic edit operations (insertion and deletion of a node). Note that an edit
script may contain composite edit operations. For example, the structural edit
script for the subtree rooted at node Products from the version in Fig. 1(b)
to the version in Fig. 1(c) is 〈 Insert((P3, val), Products), Insert((P4, val),
Products), Insert(( M4, val), P3),Insert((A1, val), M4), Insert((A2, val) M4),
Insert((A3, val), Agent), Insert((C1, val), Consultant), Insert((C2, val), Con-
sultant), Insert((T4, val), Training), Delete(M1), Delete(A1), Delete(A2),
Delete(T1) 〉.

Given two versions of an XML document, formally, the structural delta be-
tween them is defined as follows.

Definition 3 (Structural Delta) Let Ti and Ti+1 be the tree representations
of two versions of an XML document, denoted as Xi and Xi+1. Let ti ¹ Ti.
The corresponding structure of ti in Ti+1 is ti+1, denoted as ti+1 ¹ Ti+1. The
structural delta for the subtree ti from Ti to Ti+1, denoted as 4i+1

i (t), is
defined as a structural edit script 〈e1, e2, · · · , em〉 that transform the structure
of ti into ti+1. That is, 4i+1

i (t) = 〈e1, e2, · · · , em〉 where ek is a basic edit
operation ∀ 0 < k ≤ m. The size of the structural delta 4i+1

i (t), denoted as
|4i+1

i (t)|, is m. That is, |4i+1
i (t)| = m. Furthermore, the structural delta from

Xi to Xi+1 is denoted as 4i+1
i . 2

Reconsider the structural edit script for the subtree rooted at node Products
from the version in Fig. 1(b) to the version in Fig. 1(c) as discussed above.
Here, the size of its structural delta is 13 as there are 13 basic edit operations
between the two versions of XML documents.

In the above definition, the XML structural delta is defined for two consecu-
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tive versions of an XML document. To represent the sequence of changes to
more than two versions of an XML document, we define the notion of XML
structural delta sequence.

Definition 4 (Structural Delta Sequence) Let 〈T1, T2, · · · , Tn〉 be the se-
quence of tree representations of n historical versions of an XML document
X. Let t ¹ T1. The structural delta sequence for the subtree t from T1 to
Tn is Ψt = 〈42

1(t), 43
2(t), · · ·, 4n

n−1(t)〉, where 4i+1
i (t) is the XML structural

delta for t from ith version to (i+1)th version. Also, structural delta sequence
of X is denoted as ΨX = 〈42

1, 43
2, · · ·, 4n

n−1〉. 2

Definition 5 (Structural Edit Script Sequence) Let Ψt = 〈42
1(t),43

2(t),
· · ·, 4n

n−1(t)〉. Then, the structural edit script sequence for a subtree t,
denoted as Gt, is defined as 〈e1

1, e1
2, · · ·, e1

p, e2
1, e2

2, · · ·, en−1
i 〉, where es

k is the
kth structural edit operation in 4s+1

s (k), 0 < s < n and 0 ≤ k ≤ |4s+1
s (k)|. 2

3.3 Dynamic Metrics

Reconsider the example in Fig. 1. We observe that different substructures of an
XML document might change in different ways. For example, they may change
at different frequencies with different significance. To quantify the changes to
different substructures, we propose a set of dynamic metrics. The first metric
is called structure dynamic. It measures how significantly a substructure has
changed from one version to another. The second metric is called version
dynamic. It measures how frequently a substructure has changed in a sequence
of historical versions. DoD (Degree of Dynamic) is a metric to measure the
significance of the changes of a substructure in the entire history. We elaborate
on them in turn.

Definition 6 (Structure Dynamic) Let Ti and Ti+1 be the tree represen-
tations of two versions of XML documents. Suppose t ¹ Ti. The structure
dynamic of t from Ti to Ti+1, denoted as Ni(t), is defined as:

Ni(t) =
|4i+1

i (t)|
|ti ] ti+1|

where |ti ] ti+1| is distinct number of nodes in ti and ti+1. 2

Here Ni(t) is the structural dynamic of t from version i to i + 1. Ni(t) is
computed as the percentage of nodes that have changed from Ti to Ti+1 in t.
For example, consider the first two versions shown in Fig. 1(b) and 1(c). We
calculate the structure dynamic value for the subtree rooted at node P2 from
version 1 to version 2. Based on the definition, |42

1(P2)| = 7, |P21 ]P22| = 12.
Consequently, N1(P2) = 0.58 (7/12). It can be observed that 0 ≤ Ni(t) ≤ 1.
If t is inserted or deleted, then the corresponding value of structure dynamic
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is 1 since |4i+1
i (t)| = |ti ] ti+1|. If t did not change from version i to version

i + 1, then the value of structure dynamic is 0 since |4i+1
i (t)| is 0. It can be

inferred that the larger the value of structure dynamic, the more significantly
the subtree changed.

Definition 7 (Version Dynamic) Let 〈 T1, T2, · · ·, Tn 〉 be the sequence of
n versions of an XML document. Suppose t ¹ Tj (1 ≤ j ≤ n). The version
dynamic of t, denoted as V (t), is defined as:

V (t) =

∑n−1
i=1 vi

n− 1
where vi =





1, if |4i+1
i (t)| 6= 0;

0, if |4i+1
i (t)| = 0;

2

Consider the four versions of the XML document in Fig. 1. We calculate the
version dynamic value for the subtree rooted at node P2. Here n = 4. Observe
that this subtree changed in all the versions. Consequently,

∑3
i=1 vi = 3, the

version dynamic of this substructure is 1 (3/3). It can be observed that 0 ≤
V (t) ≤ 1. If t changed in every version in the history, then the version dynamic
value is 1. If t did not change in the history at all, then the version dynamic
value is 0. Also, it implies that the larger the value of version dynamic, the
more frequently the subtree changed in the history.

Definition 8 (Degree of Dynamic) Let 〈T1, T2, · · · , Tn 〉 be the sequence
of tree representations of n historical versions of an XML document. Suppose
t ¹ Tj (1 ≤ j ≤ n). The degree of dynamic, DoD, for t is defined as:

DoD(t, α) =

∑n−1
i=1 di

(n− 1) ∗ V (t)
where di =





1, if Ni(t) ≥ α

0, if Ni(t) < α

where α is the user-defined threshold for structure dynamic. 2

The metric DoD is defined based on the threshold of structure dynamic. It
represents the fraction of versions, where the structure dynamic value of the
subtree is no less than the predefined threshold α. Consider the example shown
in Fig. 1. Now, we calculate the DoD value for the subtree rooted at node P2.
Consider the structure dynamic and version dynamic values in the previous
example. Suppose the threshold for structure dynamic is set to 0.30, then
the value of DoD is 1 (3/3). If the threshold for structure dynamic is set to
0.9, then the corresponding DoD value will be 0 (0/3). It is obvious that,
∀ α, 0 ≤ DoD(t, α) ≤ 1. The value of DoD implies the significance of the
overall changes to the subtree, the larger the value, the more significant the
changes are.
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Compared with the classic measures, trend, seasonality, and residue, used in
the time series community, our proposed dynamic metrics more accurately
reflects significance of structural changes. For instance, the classic trend com-
ponents cannot work well when the time series is non-monotonous or nonlinear,
while our version dynamic can monitor any subtle changes between any con-
secutive versions. Furthermore, dynamic metrics are more flexible than the
classic time series components. For instance, the original sequences, the se-
quence of support values of certain substructure, can be easily recovered to
the exact values, while it is difficult to do so with the classic time series com-
ponents. Note that the three classic time series components can be derived
from the version dynamics, structural dynamic, and degree of dynamic.

3.4 XML Structural Delta Mining

Based on the dynamic metrics defined above, various types of useful knowledge
about the changed subtrees can be identified. The problem of XML structural
delta mining is to discover knowledge from historical versions of XML struc-
tural delta. Formally,

Definition 9 (XML Structural Delta Mining) Let 〈T1, T2, · · · , Tn〉 be the
tree representations of a sequence of historical versions of an XML document
X where Ti is the tree structure of the i-th version of the XML document. Let
ΨX = 〈42

1, 43
2, · · ·, 4n

n−1〉 be the structural delta sequence of X. Then XML
structural delta mining on X can be defined by the following function:

R= XSDMine(ΨX , Γ)

where Γ is a set of constraints on dynamic metrics and R is a set of structures
extracted from X that satisfies the constraints in Γ. 2

As mentioned in Section 1, we focus on the following three types of knowledge,
interesting structures, association rules, and change pattern based classifica-
tions. We elaborate on them in the subsequent sections in turn.

4 Discovering Interesting Structures

In the preceding section, we have introduced a set of dynamic metrics to mea-
sure the degree and significance of structural changes to XML documents.
In this section, we use these metrics as a foundation to present different
types of interesting substructures that can be discovered from XML struc-
tural deltas. The interesting substructures include frequently changing struc-
ture, frozen structure, periodic dynamic structure, increasing dynamic struc-
ture, decreasing dynamic structure, and outlier structure. Real-life applications
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of these structure will be discussed in Section 8. Some preliminary research
results related to the discovery of some of these structures are available in
[42, 43, 45, 46].

4.1 Frequently Changing Structure

Given a sequence of historical versions of an XML document, we may observe
that different substructures change at different frequencies with different sig-
nificance. Frequently changing structure refers to substructures that change
frequently and significantly enough with respect to the user-defined thresh-
olds. Based on the dynamic metrics proposed in the previous section, it is
formally defined as follows.

Definition 10 (Frequently Changing Structure) Let 〈T1, T2, · · · , Tn〉 be
the tree representations for versions of an XML document X. Let the thresh-
olds of structure dynamic, version dynamic, and degree of dynamic be α, β, γ
respectively. A structure t ¹ Tj (1 ≤ j ≤ n) is a frequently changing
structure in this sequence iff: V (t) ≥ β and DoD(t, α) ≥ γ. 2

Observe that frequent changing structures defined in terms of both the fre-
quency of the changes and the significance of the changes. To be a frequently
changing structure, a substructure must change at certain frequency (V (t) ≥
β) and corresponding changes must be significantly enough (DoD(t, α) ≥ γ).
Given a sequence of XML documents, frequently changing structure mining
is to discover all the frequently changing structures according to the user
defined thresholds for version dynamic, structure dynamic and degree of dy-
namic. For example, consider the motivating example in Fig. 1 again. Suppose
the predefined thresholds for structure dynamic, version dynamic, and degree
of dynamic are 0.3, 0.5, and 0.8, respectively. The set of frequently changing
structures are the subtrees rooted at nodes Services and Products. In real
life applications, the thresholds for these metrics may be set according to the
corresponding domain knowledge and requirements.

Observe that the definition of frequently changing structure is different from
existing definitions of frequent substructures [18, 21, 37, 9] in two aspects.
Firstly, the frequently changing structure is defined based on the dynamic
metrics, while the existing frequent substructures are defined based on the
frequency of concurrence of the substructures in the static XML documents.
Secondly, the frequently changing structure mining uses approximate matching
technique [9], while others use exact matching [18, 21, 37]. The approximate
matching allows slight variation of the substructures, which means that if
certain fraction (defined by α) of two substructures is different, then they are
matched. The approximation of the matching can be controlled by tuning the
threshold of structure dynamic in frequently changing structure mining.
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4.2 Frozen Structure

Inverse to the frequently changing structure, some substructures seldom or
never change over time. To identify such kind of substructures, we introduce
another type of interesting structure named frozen structure. Intuitively, frozen
structures refer to the structures that are relatively stable and seldom change
in the history. Similar to the frequently changing structures, frozen structure
can be defined as structures whose values of structure dynamic and version
dynamic do not exceed certain predefined thresholds. Formally,

Definition 11 (Frozen Structure) Let 〈T1, T2, · · · , Tn〉 be the tree represen-
tations of n versions of an XML document X. Let the thresholds of structure
dynamic, version dynamic, and degree of dynamic be α, β, γ respectively. A
structure t ¹ Tj (1 ≤ j ≤ n) is a frozen structure in this sequence iff:
V (t) < β and DoD(t, α) < γ. 2

For instance, the substructure within the dotted line in Fig. 1(b) is a frozen
structure for any user-defined non-zero thresholds, since this substructure did
not change in the history and both values of its version dynamic and struc-
ture dynamic are 0. The smaller the values of structure dynamic and version
dynamic, the less significantly and frequently the substructures change. Sim-
ilarly, a smaller value of degree of dynamic indicates a smaller fraction of
significant changes among all the versions it has changed. In the frequently
changing structure mining, the larger the thresholds for the parameters, the
more interesting the mining results are. But in frozen structure mining, the
smaller the thresholds, the more interesting the mining results are.

4.3 Periodic Dynamic Structure

Another type of interesting structure is periodic dynamic structure. It refers
to the structures that change periodically. Based on the survey of existing
periodic sequential pattern mining research [15], a periodic pattern is a se-
quence of items that appears repeatedly in certain sequence. For example, in
the sequence 〈s1, s2, s3, s1, s2, s4, s1, s2, s5〉, pattern 〈s1, s2〉 repeated perfectly
for three times. In this case, we say 〈s1, s2〉 is a periodic pattern in this se-
quence. Some relaxations or restrictions can be integrated to define different
types of periodic patterns.

In the context of XML structural delta mining, we treat each basic edit opera-
tion as an item and the edit operations that transform the structure of an XML
document from one version to another version as an itemset. Consequently,
the structural delta sequence can be modelled as a sequence of itemsets. Then,
existing periodic sequential pattern mining [15] can be applied to extract pe-
riodic edit operations to a particular substructure from versions of an XML
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Food

Hot

Spicy ColdSweet

H1 H2 S3S2S1 C1 C2 C3

Audio player

Walkman

CD MDMP3

W1 W2 C3C2C1 M1 M2 M3

(a) (b)

Fig. 3. Example structures.

document. The discovered substructure is referred as periodic dynamic struc-
ture. We now formally define periodic dynamic structure.

We first define the notion of subsequence in the context of structural edit
script sequence. Recall the definition of structural edit script sequence in Def-
inition 5. A structural edit script sequence G′

t = 〈 e′1, e
′
2, e

′
3, . . . , e

′
m〉 is called a

subsequence of another sequence Gt = 〈e1, e2, e3, . . . , en〉, denoted as G′
t ⊆ Gt,

if and only if there exist 1 ≤ i1 ≤ i2 ≤ . . . ≤ im ≤ n such that e′j = eij for
1 ≤ j ≤ m.

Definition 12 (Periodic Dynamic Structure) Let 〈T1, T2, · · · , Tn〉 be the
sequence of tree representations of n versions of an XML document X. Let
t ¹ Tj where 1 ≤ j ≤ n. Let Gt be the structural edit script sequence of
t. Given a threshold ν, substructure t is a periodic dynamic structure if
there exist any nonempty structural edit script sequence G′ such that

n∑

i=1

si

n
≥ ν where si =





1, if G′ ⊆ Gt;

0, otherwise;

2

Reconsider the example in Fig. 1. Suppose this ABC company releases new
products of a particular category every three months. Then, there will be edit
operations to the substructure of the particular category that occur repeatedly
every quarter. This substructure will be discovered as a periodic dynamic
structure. Fig. 3(a) is another example of the periodic dynamic structure.
It describes a list of food in a restaurant. As different food are available at
different seasons, this structure may change periodically. For instance, the hot
or cold food may be inserted and deleted in every half year. The periodic
dynamic structure is proposed to represent substructures where such periodic
change patterns reside.
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4.4 Increasing and Decreasing Dynamic Structures

Reconsider the example in Fig. 1. It can be observed that more and more agent
nodes are inserted under product models M4 and M5, while other structures do
not have such change patterns. These change patterns may indicate that prod-
uct models M4 and M5 are becoming more popular or the company is aggres-
sively promoting these product models. We call such structures as trend-based
dynamic structures. Basically, there are two types of trend-based dynamic
structures: increasing dynamic structure and decreasing dynamic structure.
We now define these structures. We begin by defining the notion of strength
and tolerance which we shall use later for the definitions of these structures.

Definition 13 (Increasing and Decreasing Strength) Let 〈 T1, T2, · · ·,
Tn 〉 be the sequence of n versions of an XML document. Suppose t ¹ Tj

(1 ≤ j ≤ n). Let

ρ(t) =

∑n−1
i=1 vi

(n− 1) ∗ V (t)

• Then, ρ(t) is called increasing strength, denoted as ρin(t), if vi = 1 when
Ni+1(t)
Ni(t)

> 1. Otherwise, vi = 0.

• It is called decreasing strength, denoted as ρde(t), if vi = 1 when 0 <
Ni+1(t)
Ni(t)

< 1. Otherwise, vi = 0. 2

Definition 14 (Increasing and Decreasing Tolerance) Let 〈T1, T2, · · · , Tn〉
be the tree representations for n versions of an XML document. Let t ¹ Tj be
a substructure in the XML document. For 1 ≤ i ≤ n− 1, let

• τi(t)=
Ni(t)−Ni+1(t)

Ni(t)
when Ni(t) 6= 0, otherwise τi =0; and

• τ ′i(t)=
Ni+1(t)−Ni(t)

Ni+1(t)
when Ni+1(t) 6= 0, otherwise τ ′i =0.

Then, increasing and decreasing tolerance are defined as
τin(t) = max{τ1(t), τ2(t), · · · , τn−1(t)} and τde(t) = max{τ ′1(t), τ ′2(t), · · · , τ ′n−1(t)},
respectively. 2

Using the above definitions, we can define increasing and decreasing dynamic
structures as follows.

Definition 15 (Increasing and Decreasing Dynamic Structures) Let
〈T1, T2, · · · , Tn〉 be the sequence of tree representations for n versions of XML
documents. Let t ¹ Tj. Let the thresholds of version dynamic, strength, and
tolerance be β, σ and κ, respectively. Then,

• A structure t is an increasing dynamic structure in this sequence iff:
V (t) ≥ β, τin(t) ≤ κ, and ρin(t) ≥ σ.
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• A structure t ¹ Tj is a decreasing dynamic structure in this sequence
iff: V (t) ≥ β, τde(t) ≤ κ, and ρde(t) ≥ σ. 2

The increasing dynamic structure is defined based on the predefined thresh-
olds for version dynamic, increasing strength, and increasing tolerance. Here
the increasing strength is used to reflect how the overall changes of the struc-
ture dynamic values from one version to another comply with the increasing
pattern. It is the number of times a substructure changed following the in-
creasing change pattern against the total number of times a structure changed.
The value of strength is between 0 and 1. A greater value of strength implies
that this structure complies better with the increasing pattern. Since it is
possible that some of the changes to the structure may not comply with the
increasing pattern, tolerance is defined to restrict the uncomplying changes.
In other words, tolerance is used to confine the maximal significance of de-
creasing change patterns in the history. That is none of the changes in the
history of an increasing dynamic structure can decrease beyond the tolerance.
The value of tolerance is also between 0 and 1. A greater value of tolerance
implies a more relaxed constraint of the decreasing patterns. According to the
above definition, to be an increasing dynamic structure, the structure should
change frequently (V (t) ≥ β). Furthermore, changes to the structure should
comply with the increasing pattern in certain number of versions (ρin ≥ σ).
There should be no versions where changes to the structure decreases beyond
the tolerance (τin(t) ≤ κ). The decreasing dynamic structure can be explained
in the similar way.

We now illustrate these two structures with an example. Suppose we have an
XML document that describes the audio player products, whose tree structure
is as shown in Fig. 3(b). There are four types of players Walkman, CD, MP3,
and MD. Assuming that Walkman and CD are going to be out of date, more
and more new models of MP3 and MD are inserted in the file. Consequently,
the subtrees rooted at nodes MP3 and MD may be discovered as increasing
dynamic structures. Similarly, the decreasing dynamic structure is illustrated
as follows. Reconsider the structure in Fig. 3(b). Observe that more and more
nodes in the subtrees rooted at Walkman and CD are deleted because these
products are becoming out of date. Hence, the two subtrees may be discovered
as decreasing dynamic structures.

4.5 Outlier Structure

Outlier structures refer to these substructures that have undergone surprising
changes with respect to their historical behaviors. Based on the sequences of
values of its structure dynamic and version dynamic, it is possible to construct
a model for a substructure that reflects its change patterns if there exists some
patterns. Based on the model, we can predict the values of structure dynamic
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and version dynamic for the next version. We propose to build an adaptive
model that can be updated based on the sequence of real values over time. To
identify these outlier structures a new parameter named surprise is introduced
to measure the deviation between the real value and the expected value.

Definition 16 (Surprise) Let 〈T1, T2, · · · , Tn〉 be the sequence of tree repre-
sentations of n historical versions of an XML document X. Let t ¹ Ti and M
be an adaptive model that describes the changes history of t. The surprise of
the changes for structure t from version i to version (i+1) is defined as:

Ui(t) =
|Nti −M(Nti)|

Nti

∗ w1 +
|Vti −M(Vti)|

Vti

∗ w2

where M(Nti) and M(Vti) are the expected values of Nti and Vti based on M,
w1 and w2 are two non-negative values that represent the weights of structure
dynamic and version dynamic and w1 + w2 = 1. 2

By using the metric of surprise, we can define some interesting substructures
that cannot be represented by the substructures defined earlier. Moreover, the
weights of structure dynamic and version dynamic in the definition makes it
flexible and enable users to modify it with respect to their requirements easily.
For example, if the structure dynamic is more important in some scenarios,
then the weight of structure dynamic can be increased and vise versa. To
identify the structures that have greater values of surprise, we introduce the
type of structure named outlier structure. Formally,

Definition 17 (Outlier Structure) Let 〈T1, T2, · · · , Tn〉 be the sequence of
tree representations of n versions of an XML document X. Let t ¹ Tj where
1 ≤ j ≤ n. Given a new version of the XML document Xn+1, t is an outlier
structure if Un(t) ≥ δ where δ is the threshold for surprise. 2

Based on the definition, if the changes to a substructure deviate significantly
from the expected values, which is defined by the threshold of surprise, we call
this substructure an outlier structure. By varying the threshold of surprise,
outlier structures that deviate with different significance can be discovered.
Usually, in different applications, the threshold value of surprise can be very
different. For example, in some applications, a deviation of 1 percent can be
significant, while it may be trivial in other applications. Briefly, the above def-
inition is defined in a flexible way so that users in different areas can efficiently
extract the interesting structures that they desired by varying the threshold
of surprise.

Considering the examples shown in Fig. 1. If the substructures that were
identified earlier as frequently changing structure, frozen structure, periodic
dynamic structure, or increasing/decreasing dynamic structure do not change
in the same way as they are predicted to change, then they will be consid-
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ered as outlier structures. The outlier structures can be any structures that
have certain predictable change patterns before they went through some sur-
prising changes. That is, their change patterns (values of structure dynamic
and version dynamic) can be predicted with certain confidence. We do not
consider random structures that have no predictable change patterns. Conse-
quently, extra attention should be paid to the outlier structures because they
may reflect certain mistakes, fraud actions, abnormal changes, or intentional
changes.

5 Discovering Association Rules

From the sequence of structural deltas of an XML document, we can discover
other types of knowledge such as association rules. For example, consider the
example in Fig. 1(b). Whenever the structure of the subtree rooted at the
node “Products” was changed, the structure of the subtree rooted at the node
“Training” mutated as well. Then, an association rule Products → Training
(we use the root node to represent a changed subtree) may be extracted with
respect to some appropriately specified thresholds. As we shall see in Section
8, knowledge obtained from such rules can be useful in applications such as
XML search engine, XML clustering. The reader may refer to [5, 6] where
we have reported some preliminary results on mining association rules from
structural deltas of historical XML documents.

When discovering association rules between changed subtrees of an XML tree,
we observe that whenever a subtree changes, all its ancestor subtrees change
as well. For example, in Fig. 1(b), when the subtree rooted at the node “P2”
changes, the subtree rooted at the node “Products” changes as well. However,
discovering an association rule between the two subtrees does not make any
sense since the knowledge in such a rule is too obvious. Hence, rather than mine
rules that indicate when some subtrees change, some other subtrees frequently
change as well, we can mine rules that indicate when some subtrees change
significantly, some other subtrees frequently change significantly as well. That
is, we capture not only the version dynamic but also the structure dynamic
of associated subtrees to discover nontrivial knowledge. In this section, we
discuss three types of association rules that can be mined from a sequence of
structural deltas of an XML document.

5.1 Positive Association Rule Mining

In order to discover association rules between changed subtrees, we need to ex-
tend the definitions of Version Dynamic (Definition 7) and Degree of Dynamic
(Definition 8). Currently, the two metrics are defined for a single subtree. For
a set of subtrees, they can be extended as follows.
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Definition 18 (Version Dynamic of Subtree Set) Let 〈 T1, T2, · · ·, Tn 〉
be the tree representations of n historical versions of an XML document X.
Suppose S = {t1, . . . , tm},∀j ∈ [1,m], ∃i ∈ [1, n] s.t. tj ¹ Ti. The version
dynamic of S, denoted as V (S), is defined as:

V (S) =

∑n
i=1 vi

n− 1
where vi =

m∏

j=1

vji
and vji

=





1, if |4j+1
j (t)| 6= 0;

0, if |4j+1
j (t)| = 0;

2

Definition 19 (Degree of Dynamic of Subtree Set) Let 〈T1, T2, · · · , Tn

〉 be the tree representations of n historical versions of an XML document
X. Suppose S = {t1, . . . , tm}, ∀j ∈ [1,m],∃i ∈ [1, n] s.t. tj ¹ Ti, Ni(tj) is
the value of structure dynamic of each subtree in S and V (S) is the value of
version dynamic of S. The degree of dynamic, DoD, for S is defined as:

DoD(S, α) =

∑n
i=1 di

(n− 1) ∗ V (S)
where di =

m∏

j=1

dji
and dji

=





1, if Ni(tj) ≥ α

0, if Ni(tj) < α

where α is the pre-defined threshold for structure dynamic. 2

Based on the two metrics, we can define a set of subtrees as a frequent pattern
if subtrees in the set not only frequently change together but also frequently
change significantly when they change together.

Definition 20 (Frequent Pattern) Given the user-specified minimum struc-
ture dynamic α, minimum version dynamic β and minimum degree of dynamic
γ, a set of subtrees S={t1, t2, . . ., tm} is a frequent pattern if it satisfies
the following two conditions:

• Version dynamic of the set is no less than the user-specified threshold, V(S)
≥ β.

• Degree of dynamic of the set is no less than the user-specified threshold,
DoD(S, α) ≥ γ. 2

Then we can derive association rules from frequent patterns. The metric con-
fidence is defined similarly as in classical association rule mining. It measures
the strength of a discovered association rule. Basically, it reflects the condi-
tional probability that subtrees in the consequent of a rule change significantly
when subtrees in the antecedent change significantly.

Definition 21 (Confidence) Given a frequent pattern S={t1,. . . , tm}, let X
be a subset of subtrees in pattern S, let Y be the non-empty subset of remaining
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subtrees in S. Confidence of association rule X ⇒ Y is:

Confidence(X ⇒ Y) =
V (S) ∗DoD(S, α)

V (X) ∗DoD(X, α)

2

If subtrees in Y change significantly enough every time when subtrees in X
change significantly, then the confidence of the rule X ⇒ Y will be one; if
subtrees in Y never change significantly enough when subtrees in X change
significantly, then the confidence of the rule X ⇒ Y will be zero.

Definition 22 (Positive Association Rule) Given the user-specified min-
imum confidence φ, let X, Y be two subtree sets s.t. X∩Y=∅. X ⇒ Y is a
positive association rule if it satisfies the following conditions: 1) X∪Y is
a frequent pattern 2) confidence(X ⇒ Y) ≥ φ. 2

For example, consider the example in Fig. 1(b) again. Although whenever
the subtree rooted at the node “P2” changes, the subtree rooted at the node
“Products” changes as well, we may not discover an association rule between
them because when the former subtree change significantly, the latter may not
change significantly as well.

5.2 Negative Association Rule Mining

A positive association rule indicates that when some subtrees change signif-
icantly, some other subtrees change significantly as well with certain confi-
dence. Conversely, a negative association rule indicates that when some sub-
trees change significantly, some other subtrees rarely change significantly with
certain confidence. In order to discover negative association rules between
changed subtrees, we need a metric Interest, as in classical negative asso-
ciation rule mining, to measure the dependence between two subtree sets.
Given two variables a and b, the Interest between them can be defined as
Interest(a, b) = p(a∪b)

p(a)p(b)
, where p(a) is the probability of variable a. If Inter-

est(a, b) is greater than one, variable b is positively dependent on variable a.
Otherwise, variable b is negatively dependent on variable a. Similarly, we can
define the Interest between two set of subtrees as follows.

Definition 23 (Interest) Given two sets of subtrees X and Y, V(X), V(Y)
and V(X∪Y) are the version dynamic of subtree sets X, Y and X∪Y respec-
tively. The interest between the two sets is,

Interest(X, Y) =
V (X)− V (X ∪ Y )

V (X)(1− V (Y ))

2
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The numerator is the fraction of the versions when subtrees in X changed
whereas subtrees in Y did not change. The denominator is the product of the
fraction of versions when subtrees in X changed and the fraction of versions
when subtrees in Y did not change. If subtree set Y negatively depends on
subtree set X, the value of Interest(X, Y ) should be greater than some user-
specified minimum Interest that is greater than 1.

Correspondingly, the confidence of a negative association rule can be defined
as follows.

Definition 24 (Confidence) Given a frequent pattern S={t1, . . . , tm}, let X
be a subset of subtrees in pattern S, let Y be the non-empty subset of remaining
subtrees in S. Confidence of association rule X ⇒ ¬Y is:

Confidence(X ⇒ ¬Y) =
V (X) ∗DoD(X,α)− V (S) ∗DoD(S, α)

V (X) ∗DoD(X, α)

2

Thus, the negative association rules that can be mined from a sequence of
XML structural deltas can be defined as follows.

Definition 25 (Negative Association Rule) Given user-specified minimum
structure dynamic α, minimum version dynamic β, minimum degree of dy-
namic γ, minimum Interest θ, and minimum confidence φ, let X, Y be two
sets of subtrees, s.t. X ∩ Y = ∅. X ⇒ ¬Y is a negative association rule
if it satisfies the following conditions. 1) V(X∪Y)<β; 2) DoD(X∪Y) < γ; 3)
Interest(X, Y) ≥ θ; 4) Confidence(X ⇒ ¬Y) ≥ φ. 2

Hence, the semantic meaning of a negative association rule is that the subtrees
in the antecedent and consequent of the rule rarely change together. Even if
they change together, they rarely change significantly. The change of subtrees
in the consequent negatively depends on the change of subtrees in the an-
tecedent. And when subtrees in antecedent change significantly, subtrees in
consequent usually change slightly with certain confidence.

5.3 Specialized Association Rule Mining

Moreover, association rules can also be extracted between the interesting struc-
tures discussed in the previous section. For example, we may discover an as-
sociation rule between a set of increasing dynamic structures and a set of
decreasing dynamic structures, which means when subtrees in the antecedent
of the rule change more and more significantly, subtrees in the consequent
of the rule change slightly gradually. We call the association rules between
the particular interesting structures as specialized association rule. We do not
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elaborate on the details of the definition of specialized association rule as it is
similar to the association rules we defined above.

6 Structure Change Pattern Based Classification

Besides the two types of knowledge discussed above, we can also perform
classification based on the XML structural deltas.

As we reviewed in Section 2, XRULE [41] is a classifier that classifies XML doc-
uments according to the discriminatory structures extracted from each class
of XML documents by some algorithm of frequent subtree mining. However,
only the structures embedded in the static XML documents are considered.
To classify XML documents with higher precision, the evolutionary patterns
of XML structure can be integrated into the feature space on which the classi-
fier operates. For example, suppose there are two XML documents describing
the Web site map of an IT company and a consultant company respectively.
Both documents contain a subtree of “Products” and a subtree of “Training”.
According to XRULE, the two documents can be grouped in the same class as
they share some common substructures. However, for the XML file describing
the information of an IT company, the structure of the subtree “Training”
may mutate frequently once the structure of the subtree “Products” changes
since training courses are provided for new products. For the XML file de-
scribing the information of a consultant company, the subtree of “Products”
may contain some financial solutions while the subtree of “Training” may con-
tain some training course for careers. Then, when the structure of the subtree
“Products” changes, the structure of the subtree “Training” may not change
simultaneously as they do not have any hidden association. Hence, by consid-
ering the change patterns of the substructures in XML documents, the two
documents can be distinguished as they describe two company sites of different
types.

Basically, the idea of classification on XML structural deltas is to relate the
presence of particular change patterns of substructures to the likelihood of
belonging to a particular class. The classifier based on change patterns of
substructures can be a general model that classify all types of evolutional
data that are structured or semi-structured. Such techniques can be used not
only for XML documents but also for any types of structured data that is
dynamic, such as web log data, chemical data, and biological data etc.

7 Research Issues

In the preceding section, we have introduced various types of knowledge that
can be discovered using XML structural delta mining technique. In this sec-
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tion, we present the key research issues that needs to be addressed to realize
these various mining efforts.

7.1 Duration of Real Data Collection

In order to make the extracted knowledge convincible and accurate, the data
collection is expected to go on for a significant time period. However, finding
appropriate time duration for data collection is a challenging task as it de-
pends on several parameters such as characteristics of source and application,
frequency of changes, number of available versions, type of knowledge to be
discovered, etc. It is an open problem to estimate the appropriate duration for
different applications. Such estimation will reduce the resource consumption
of the data mining process and maximize the quality of results generated by
different XML structural delta mining techniques.

7.2 Determining Schedules for Structural Delta Generation

XML data mining research has largely assumed that XML documents are
static. However, in reality the documents are rarely static. XML structural
delta mining aims to extract knowledge by analyzing the structural evolution
pattern of history of XML documents. One key issue is to generate a sequence
of structural deltas that can be fed to the mining engine for pattern extraction.
To improve the accuracy of the mining process, ideally we should be able to
harness the complete set of structural deltas during a particular time period.
As these documents often reside in autonomous and remote sources, it is not
realistic to assume that structural deltas will be automatically propagated to
the mining engine. Hence, finding appropriate schedules for change detection
is important so that set of structural deltas used for the mining task is com-
plete and contain sufficient data to guarantee reliable and accurate mining
results. Defining schedules for structural delta detection is a challenging task,
because the rate of change of the XML document may vary drastically from
document to document. Note that the naive solution of polling the sources
periodically is not an efficient process for two reasons. First, we may miss
some of the intermediate structural deltas as frequency of change of a par-
ticular document/source may not match the polling frequency. Second, this
approach may unnecessarily overload the mining process by attempting to de-
tect changes when the document have not changed. A more efficient way of
solving this problem is to predict the rate of change of documents by analyzing
the change history. Recently, Ipeirotis et al. have proposed such schedule pre-
diction technique for web databases by using survival analysis technique [19].
However, this is an open research problem in the context of XML structural
delta mining.
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<Cars>
  <Car>
    <Make>Jaguar</Make>
    <Price>80,000</Price>
  </Car>
  <Car>
    <Make>Ford</Make>
    <Price>20,000</Price>
  </Car>
</Cars>

<Cars>
  <Car>
    <Make>Mercedes</Make>
    <Price>80,000</Price>
  </Car>
  <Car>
    <Make>Ford</Make>
    <Price>20,000</Price>
  </Car>
</Cars>

(a) Version 1 (b) Version 2

(a) Sample documents.

<Cars>
  <Car>
    <Make>Mercedes
      <?UPDATE FROM "Jaguar"?>
    </Make>
    <Price>80,000</Price>
  </Car>
  <Car>
    <Make>Ford</Make>
    <Price>20,000</Price>
  </Car>
</Cars>

<unit_delta>
  <update XID=5>
    <oldval>Jaguar</oldval>
    <newval>Mercedes</newval>
  </update>
</unit_delta>

(a) X-Diff

(b) XyDiff

(b) Edit scripts.

Fig. 4. Semantic-conscious change detection.

7.3 Efficient and Scalable Structural Change Detection

XML structural delta mining is expected to extract novel knowledge that exist-
ing data mining techniques for structured data fail to discover. Experimental
results in [46, 42] have verified that XML structural delta mining can indeed
produce novel knowledge and the size of XML structural delta sequence is
substantially smaller than the original XML data sequence. However, we also
observed that the XML change detection process is one of the most expensive
tasks in the whole mining process. This is further aggravated by parsing the
XML documents repeatedly. Although there are many XML parsers available,
it has been acknowledged that the parsing process is the most expensive part
of XML data management [30]. When the number of versions is large and
the size of the XML documents is also very large, the cost of parsing the
XML documents will consume a lot of resources in the XML structural delta
mining system. Currently, many change detection systems have been designed
for detecting changes to XML documents [7, 35]. However, most of them are
not efficient enough and have certain limitations. For instance, the X-Diff [35]
algorithm cannot handle very large XML documents. Consequently, two key
issues need to be addressed. First, we need to rethink and optimize exist-
ing change detection systems for our XML structural delta mining. Second,
there is a pressing need to improve the efficiency and scalability of the parsing
mechanism.

7.4 Scalable and Efficient Mining Algorithms

One of the most important concerns in designing a data mining algorithm is
the scalability and efficiency. Similarly, for our XML structural delta mining,
we need to design efficient and scalable algorithms that can handle very long
sequence of historical XML documents that are very large. In the context of
XML structural delta mining, the algorithm should be scalable with respect
to not only the size of the XML delta sequence, but also to various values of
different dynamic metrics such as degree of dynamic, structure dynamic, and
version dynamic in discovering the various types of interesting structures,
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association rules, and classifications. To address the scalability, a relational
database based approach may be more competitive than a memory based one.
However, in terms of efficiency, a memory based approach is more competitive
than the relational database based approach. To sum up, there should be
a trade-off between the scalability and the efficiency. In addition, another
issue should be considered. Since the dataset is accumulated over time, the
characteristics and knowledge hidden behind the data collection may vary
accordingly. This feature makes it desirable to design an incremental data
mining algorithm that can use the previously discovered results and the current
changes to update the extracted knowledge.

7.5 Semantic-conscious Algorithms

It is important that algorithms designed for XML structural delta mining
are semantic-conscious. Otherwise, these algorithms may produce results that
may not be accurate or reliable. Let us elaborate with an example. It is evident
that detecting structural deltas is a fundamental activity in the XML struc-
tural delta mining process. Consider the old and new versions of an XML doc-
ument in Figure 4(a). The results returned by the change detection techniques
such as X-Diff and XyDiff are depicted in Figures 4(b). Observe that both the
algorithms detect that the Make of the first car is updated from Jaguar to
Mercedes. However, in reality the car whose Make is Jaguar definitely cannot
be updated to Mercedes. Hence, the results generated by X-Diff and XyDiff are
semantically incorrect. The correct types of changes that should be detected
here are deletion of the first car element in Figure 4(a)(i) and insertion of a
new car (the first car element in Figure 4(a)(ii)). Observe that as the change
is detected as an update, it will be not part of the structural delta. As a result,
semantically incorrect deltas will be propagated to the XML structural delta
mining engine which may eventually produce unreliable output! Consequently,
it is important to design change detection as well as data mining algorithms
that exploit the semantic constraints of the data. By incorporating such se-
mantic knowledge in a general-purpose data mining algorithm,i t is possible
to increase the performance of the algorithm.

7.6 Unified Mining Framework

Since data from many fields, such as Web log data and biological data, can
be represented in XML format and there are different types of knowledge
that can be extracted, it is desirable to design a unified mining framework
that is suitable for different applications in different fields and can discover
various types of knowledge. For example, different users may be interested in
different types of knowledge. The unified mining framework should be able to
provide different types of knowledge to different users with regards to their
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requirements. That is, for the same data, the mining framework should contain
different data mining techniques so that it can provide personalized knowledge
for all types of possible users. Similarly, for applications in different areas,
the background knowledge will be different. The unified mining framework
should be able to incorporate the corresponding background knowledge into
the mining process.

8 Applications

As mentioned before, there are many potential applications for the XML struc-
tural delta mining. In this section, we present some of the typical applications
for the three types of knowledge we discussed earlier. Note that by no means
we claim this list to be exhaustive.

8.1 Applications of Interesting Structures

Efficient Change Detection for Very Large XML Documents: One
of the major limitations of existing XML change detection systems [7, 35] is
that they are not scalable for very large XML documents. The state-of-the-art
XML change detection algorithms [35, 7] attempt to compare the entire XML
trees to detect changes. For instance, X-Diff [35] requires entire Xtree to be
memory resident. An Xtree is typically much larger than its XML document.
Thus, the scheme is not scalable for large XML documents. With the above
mentioned interesting structures, the scalability and efficiency of XML change
detection system can be improved. For instance, if one can discover substruc-
tures that change frequently (frequently changing structures) and those that
do not (frozen structures), then he/she can use such knowledge to detect
changes for different parts of the documents at different frequencies based on
their change patterns. For example, we can detect changes to frequently chang-
ing structures more frequently than detect changes to structures that change
infrequently. Moreover, we may ignore frozen substructures during change de-
tection, as most likely they undergo no changes. For example, the substructure
rooted at node About ABC in Fig. 1 is a frozen structure, so this portion of
the document can be ignored during the change detection process. We believe
that this will improve the efficiency of change detection process, especially for
very large XML documents.

Efficient XML indexing: As we know that one of the key issue of XML in-
dexing is to identify the ancestor and descendant relationship quickly. To this
end, different numbering schemes have been proposed [26, 20]. Li and Moon
proposed a numbering scheme in XISS (XML Indexing and Storage System)
[26]. The XISS numbering scheme uses an extended preorder and a size. The
extended preorder allows additional nodes to be inserted without reordering
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and the size determines the possible number of descendants. More recently,
XR-Tree [20] was proposed to index XML data for efficient structural joins.
Compared with the XR-tree [20], XISS numbering scheme is more flexible and
can deal with dynamic updates of XML data more efficiently. Since extra space
is reserved in the extended preorder to accommodate future insertions, global
reordering is not necessary until all the reserved space is consumed. However,
Li and Moon did not highlight on how much extra space should be allocated.
Allocating too small reversed space will lead to the ineffectiveness in maintain-
ing the numbering scheme, whereas allocating too much extra space will lead
to too large numbers being assigned to nodes in a large XML document. More-
over, in the XISS approach, the gaps are equally allocated, while in practice
different parts of the document change with different significance. Based on
our mining results, the numbering scheme can be improved by allocating the
gaps in a more intelligent manner. For example, for the parts of structure that
change frequently and significantly, larger gaps are allocated while for frozen
structures, smaller gaps can be reserved. By using this strategy, the number-
ing scheme should be more efficient in terms of both index maintenance and
space allocation.

Dynamic-Conscious XML Caching: Existing XML query pattern-based
caching strategies focus on extracting the set of frequently issued Query Pat-
tern Trees (QPTs) based on the number of occurrences of the QPTs in the
history. Each occurrence of the same QPT is considered equally important for
the caching strategy. However, the same QPT may occur at different time-
points in the history of XML queries. This temporal feature can be used to
improve the caching strategy. Let us elaborate on it further.

Given an XML data repository, a collection of XML queries are issued by
different users over a period of time. These queries can be represented as a
collection of QPTs. Each QPT consists of a set of rooted query paths (RQPs).
A RQP in a QPT is a path starting from the root. The support value of a RQP
in a particular week represents the number of occurrences of a RQP against
the total number of QPTs issued in the specified week. Note that the support
values can change in different ways for different RQPs in the history.

Based on the above observation, we can use two dynamic metrics called fre-
quency and degree of dynamic (DoD), to summarize the support values of the
RQPs and the changes to the RQPs. Frequency is used to measure the aver-
age support values and the standard deviations among the historical support
values. Degree of dynamic (DoD) is used to measure the aggregated changes
in the historical support values. Based on these two metrics, an algorithm can
be designed to discover two groups of interesting RQPs from the historical
QPTs, called the frequent conserved query paths (FCQP) and the infrequent
conserved query paths (ICQP). An RQP P is called conserved query path if
and only if the standard deviation of the history of support values of P is no
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greater than the deviation threshold and the degree of dynamic is no greater
than the DoD threshold. A conserved query path is frequent (FCQP) if and
only if the mean value of the sequence of support values in the history is no less
than the minimum mean threshold. Similarly, a conserved query path is infre-
quent (ICQP) if and only if the mean value is no greater than the maximum
mean threshold.

Observe that in the frequent and infrequent conserved query paths, the sup-
ports of RQPs do not change significantly (conserved) and their support val-
ues can be potentially large or small. We can use this concept to devise a
more efficient dynamic-conscious caching strategy by ranking the set of ex-
tracted conserved query paths using a rank metric. The idea is to cache the
results for the FCQPs with the largest rank scores by replacing the cache re-
sults of the ICQPs with the smallest rank scores. In [44], we have proposed
such caching strategy. Our preliminary experimental results show that the
dynamic-conscious caching strategy outperforms the existing XML query pat-
tern tree-based caching strategies.

Semantic meaning extraction: Based on the frequency, significance, and
type of the changes, some semantic meaning can be extracted from the in-
teresting structures with related domain knowledge. For example, suppose we
find out that the substructure rooted at node Training is a frequently changing
structure with more and more subtrees inserted with similar labels as shown
in Fig. 1. Then, it can be inferred that the service Training is becoming more
and more popular or profitable. Certainly, semantic meaning can also be ex-
tracted from other types of structures. The basic idea is to incorporate some
meta data (such as labels of the edges and nodes, types of changes etc) into
the interesting structures to get the semantic implications. For instance, con-
sider the structure in Fig. 3(a). Assume that similar changes (insertion and
deletion) occurred periodically to this structure. Incorporated with relevant
domain knowledge, labels of the nodes, and types of changes, we may infer
that certain food are popular in that place during certain period of time. The
semantic meaning extracted from the structural delta mining results can be
widely used in e-commerce such as monitoring and predicting the competitors’
strategies.

8.2 Applications of XML Structural Delta Association

Structure-based Document Clustering: Clustering XML documents based
on the structures embedded in documents is proposed in [34]. However, it may
not be accurate enough to cluster according to structures existing in the snap-
shot data only. In some cases, the evolutionary patterns of the structures can
distinguish documents with higher precision. For example, consider the exam-
ple in Section 6 again. If the associations between the changes to substructures
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are taken into account, the documents can be distinguished as they describe
different types of company. Hence, association rules mined from XML struc-
tural deltas can be used to improve the accuracy of clustering.

Semantic XML Search Engine: When substructures frequently change to-
gether, it is very likely that the objects represented by the substructures have
underlying semantic correlation, such as the “Products” and “Training” in our
motivation example. This kind of knowledge can be used by semantic XML
search engine [8], which returns semantically related document fragments that
satisfy users’ queries. When determining whether elements are semantically re-
lated or not, the authors heuristically claim that if two nodes share the same
label, they represent two different entities. Thus, content under the two nodes
are unrelated. For example, the courses under the “Training” node in Fig. 1(b)
may have the same label (they may be different in their attribute values). Ac-
cording to [8], all these courses are unrelated. However, some courses may be
semantically related if they are provided for a same product. When one of the
courses changes, the other courses very likely change as well. Hence, associ-
ation rules mined from XML structural deltas can be used here to identify
semantically related elements. The knowledge discovered from the evolution
of the objects is more convincible than the heuristics.

8.3 Applications of Change Pattern Based Classification

XML Structural Summary Maintenance: XML structural summary is an
index structure that stores the mapping from index nodes to data nodes [14].
An XML structure summary can improve the path evaluation performance by
pruning the search space significantly. Given a collection of XML documents
with different structures, we can group them according to their structure char-
acteristics and create structural summary for each class. However, consider
the dynamic nature of XML documents, the constructed structural summary
should be updated with the changes to structures of XML documents. If only
the structures embedded in snapshots of XML documents are considered in
classification, the update process can be quite expensive as documents in the
same class may experience different change patterns. However, if the change
patterns of XML structures are taken into account in classification, the pro-
cess of updating structural summary can be expected to be more efficient since
documents in the same class very likely change similarly.

9 Conclusions

XML data mining research has largely assumed that XML documents are
static. However, in reality the documents are rarely static. In this paper, we
propose a novel research problem called XML structural delta mining. The
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objective of XML structural delta mining is to discover knowledge by analyz-
ing structural evolution pattern of history of XML documents. Rather than
discussing solutions to a specific mining problem, we present the vision of our
XML structural delta mining framework, with the hopes that others in the
community will explore further on specific problems in this arena. Currently,
we are studying some of these problems. We believe that XML structural
delta mining is an important new application area for data mining, combining
commercial interest with intriguing research questions.
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