
Xandy: A Scalable Change Detection

Technique for Ordered XML Documents

Using Relational Databases

Erwin Leonardi Sourav S. Bhowmick

School of Computer Engineering, Nanyang Technological University,
Singapore 639798

Abstract

Previous work in change detection to XML documents is not suitable for detecting
the changes to large XML documents as it requires a lot of memory to keep the
two versions of XML documents in the memory. In this article, we take a more
conservative yet novel approach of using traditional relational database engines for
detecting the changes to large ordered XML documents. To this end, we have im-
plemented a prototype system called Xandy that converts XML documents into
relational tuples and detects the changes from these tuples by using SQL queries.
Our experimental results show that the relational-based approach has better scal-
ability compared to published algorithm like X-Diff. It has comparable efficiency
and result quality compared to X-Diff in some cases. Our experimental results also
show that, generally, Xandy has better result quality than XyDiff.

1 Introduction

Over the next few years XML is likely to replace HTML as the standard for-
mat for publishing and transporting documents over the Web. The Web allows
these documents to change at any time and in any way. These changes typi-
cally take two general forms. The first is existence. XML pages exhibit varied
longevity pattern. The second is structure and content modification. An XML
document replaces its antecedents, usually leaving no trace of the previous
document. These rapid and often unpredictable changes to the information
create a new problem of detecting and representing these changes (hereafter
called XML deltas or XDeltas). Such a change detection tool is important to
incremental query evaluation, trigger condition evaluation, search engine, data
mining applications, and mobile applications [4,15].

Even though the underlying challenge is how to detect and represent the

Preprint submitted to Elsevier Science 11 October 2005

division

name staff

name rank research

interest interest

staff

name rank research

interest

staff

name rank research

interest

Information
Systems

Smith Assoc Prof

Web Mining Multimedia
Mining

Chan Assoc Prof

Web Data
Management

Data Mining

Mark Assoc Prof

Digital
Libraries

division

name staff

name rank research

interest interest

staff

name rank research

interest

staff

name rank research

interest

Information
Systems

Mark Prof

Digital
Libraries

Information
Retrieval

Chan Assoc Prof

Web Data
Management

Steve Asst Prof

Semantic
Web

(a) XML Tree of The First Version (T1)

(b) XML Tree of The Second Version (T2)

interest

A

A

A

A

Deleted node

Inserted node

Updated node

Moved node

1

2(1) 3

4(2) 5(3) 6

7(4) 8(5)

9

10(6) 11(7) 12

13(8) 14(9)

15

16(10) 17(11) 18

19(12)

101

102(1) 103

104(2) 105(3) 106

107(4) 108(5)

109

110(6) 111(7) 112

113(8)

114

115(9) 116(10) 117

118(11)

node id
node id (leaf order)

1

2

3

4

5

6

7

sibling order

node id (leaf order)

staff

name rank research

interest

Don Asst Prof

Indexing

21(13) 22(14) 23

24(15)

8

9

interest

Security

25(16)

20

staff

name rank research

interest

Don Asst Prof

Security

120(12) 121(13)

122

123(14)

interest

Indexing

124(15)

119

Fig. 1. Tree Representation of Ordered XML Documents.

changes to large volume of data, the novel context of the XML forces us to sig-
nificantly extend traditional techniques. XML data is commonly modelled by
a tree structure (hereafter called XML tree), where nodes represent elements,
attributes and text data, and parent-child pairs represent nesting between
XML elements. The XML trees are classified into ordered trees and unordered
trees. An ordered tree is one in which both the ancestor relationships and the
left-to-right ordering among siblings are significant. An unordered tree is one
in which only ancestor relationships are significant. In this article, we focus
on ordered XML documents.

The changes to ordered XML documents can be classified into two types:
changes to internal elements and changes to leaf elements. An internal element
does not contain textual data. For example, consider two versions of an XML
document in Figure 1. For the time being, ignore the dotted boxes. The nodes
3 and 9 in Figure 1(a) are internal elements. The changes to internal elements
are called structural changes as they modify the structure of the document
but do not change the textual data content. We consider the following types
of structural changes: internal element insertion, internal element deletion,
and internal element movement. For instance, node 114 in Figure 1(b) is an
example of internal element insertion. Node 15 (node 103 in Figure 1(b)) is
moved from being the fourth child of node 1 to be the second child of node
101. Note that node 101 in T2 is the corresponding node of node 1 in T1. A
leaf element is an element/attribute which contains textual data. For example,
node 4 is a leaf element which has name “name” and textual content “Smith”.
The changes to leaf elements are called content changes as they modify the
textual data content. We consider the following four types of content changes:
leaf element insertion, leaf element deletion, content update of a leaf element,

2

and leaf element movement. For example, a leaf element “Interest” (id=108)
which has value “Information Retrieval” is an inserted leaf element. In this
article, we present novel techniques for detecting the content and structural
changes in ordered XML documents using relational databases.

1.1 Related Work

The XML change detection problem is related to the problem of change de-
tection to trees. In [2], the authors address the problem of detecting changes
to two snapshots of hierarchically structured information that are represented
as ordered trees. MH-Diff [1] is an efficient algorithm for meaningful change
detection between two unordered trees. The authors introduce the following
matching criteria to compare nodes, and the matchings between two versions
of a tree are determined based on this assumption.

Given two labeled trees, T1 and T2, there is a “good” matching function, so
that given any leaf s in T1, there is at most one leaf in T2 that is “close”
enough to match s.

The faster version of the matching algorithm uses longest common subse-
quence computations for every element node starting from the leaves of the
document. The algorithm runs in time O(ne+e2), where n is the total number
of leaf nodes, and e is a weighted edit distance between the two trees. This as-
sumption holds well for many SGML documents that do not contain duplicate
or similar objects, but it does not hold for many XML documents.

Recently, a number of techniques for detecting the changes to XML data has
been proposed. Most of these techniques focus on developing main memory
algorithm to detect the changes. XMLTreeDiff [5] and XyDiff [4] are designed
for detecting the changes to ordered XML documents. In XyDiff, the changes
are detected by using signatures and weights of nodes. For each node in a
XML DOM tree, the signature is computed using the nodes content and its
children signatures. Simultaneously, the weight is computed for each node,
based on the size of its content for text nodes and the sum of the weights
of its children for element nodes. The change detection starts from finding
a matching between the heaviest nodes. Note that the heavier subtree will
have higher priority to be chosen for comparison. Once a match is found, it
is propagated to the ancestors and descendants nodes to get more matchings.
Inserts, deletes and moves are computed after all exact matches are found.
XMLTreeDiff (a tool developed by IBM) is a set of JavaBeans and does ordered
tree-to-tree comparison to detect the changes to XML documents by using
DOMHash [10]. X-Diff [15] is designed for computing the XDeltas for two
unordered XML documents. The main strength of X-Diff algorithm is that it
reduces the mapping space significantly and helps the algorithm to achieve
polynomial time in complexity. However, the change detection response time
is slower than XyDiff. XMLTreeDiff [5], XyDiff [4], and X-Diff [15] are the

3

memory-based approaches as they parse both versions of XML documents and
detect the changes to these documents that are in the main memory.

The above memory-based approaches have some limitations as follows. First,
they require the entire trees (i.e., DOM trees) of two XML documents to be
memory resident. This problem is exacerbated by the fact that these trees are
typically much larger than their XML documents [9]. Thus, the scheme is not
scalable for very large XML documents. In fact, the scheme is inefficient. We
need to parse an XML document whenever we want to compare it with a new
version. That is, if a document is compared with more than one document at
different times, then it has to be parsed multiple times.

1.2 Motivation

There has been a substantial research effort in storing and processing XML
data. The relational storage approach has attracted considerable interest with
a view to leveraging their powerful and reliable data management services.
The above limitations coupled with the recent success in storing XML data
in relational databases [6,7,12,13,17] force us to ask whether we can address
these problems by using relational techniques to detect the changes to XML
documents. A relational database can be used in two ways to address the
change detection problem. Let us elaborate on this further. Suppose source A
sends a XML document D1 (version 1) at time t1 to source B. B stores D1 in
its local RDBMS. At time t2, A modifies D1 to D2 (version 2) and sends it to
B. B can now detect the changes to the document in the following two ways.

(1) B extracts D1 from the relational database and compares it to D2 (before
inserting D2 into the database) by using any one of the above memory-
based change detection approaches.

(2) B first stores D2 in the relational database and then detects the changes
to the documents by executing a set of SQL queries whenever appropriate.

In the first approach, the costs incurred are the extraction time of D1 and
the change detection time of the memory-based algorithms. However, as men-
tioned earlier, these algorithms are not scalable. Furthermore, the extraction
cost is incurred every time we wish to compare D1. The costs incurred by the
second approach are the time taken to insert D2 into the database and the
change detection time in the database. In particular, by storing XML docu-
ments as tables, we can filter out tuples and attributes that are not needed.
Second, the system using this approach is more scalable as it can handle very
large XML documents that may not fit into the main memory. Third, by stor-
ing XML in RDBMS, we only need to parse the XML documents once and
then we can find the changes by issuing SQL queries against the database.
Finally, implementing a change detection algorithm in SQL makes the pro-
gramming task easier. Also, as SQL is an industry standard and available on

4

all major RDBMS, the implementation of the change detection technique is
portable.

As the relational storage approach for storing and managing XML data has
gained popularity, we believe that the second approach is an attractive option
if it can address the following two issues. First, the insertion and extraction
times for D1 and D2 should be comparable. In other words, the underlying
relational storage structure must support efficient insertion and extraction
of XML documents. Second, we must be able to detect all types of changes
accurately.

1.3 Our Approach

In our preliminary efforts in [3,8], we have demonstrated that it is indeed
possible to use the relational database to detect the changes to ordered XML
documents. However, the approaches in [3,8] focused on the content changes
only and did not detect the structural changes. The underlying relational
schema of DiffXML [3] is simplistic and is not efficient for path expressions
query processing. Hence, our approach in [8] uses SUCXENT schema that enables
us to insert, extract, and query XML data efficiently [12].

In this article, we present a novel relational-based approach called Xandy
(Xml enAbled chaNge Detection sYstem) for detecting the both content and
structural changes to ordered XML documents. Given T1 and T2 as the old and
new versions of an XML document respectively, first, we store both documents
in the relational database. After the documents are stored in the relational
database, we are ready to detect the changes between T1 and T2. There are two
phases in our approach to detect the changes between T1 and T2 as follows:

(1) Find the Best Matching Subtrees.
The objective of this phase is to find the most similar subtrees in T1

and T2. In this phase, we try to match the subtrees in T1 to ones in T2.
Some of the subtrees in T1 can be matched to more than one subtree in
T2 and vice versa. We measure the similarity of each matching subtrees
by calculating the similarity score of these matching subtrees. The most
similar subtrees are called best matching subtrees. The top-down approach
starts computing the similarity scores from the root nodes of T1 and T2,
and move downward. In the bottom-up approach, we start matching the
root nodes of the subtrees rooted at the lowest level, and move upward.
We shall see that the bottom-up approach is, on average, 5 times faster
then the top-down approach. We also shall see that the result quality of
the bottom-up approach is better than the one of the top-down approach.

(2) Detect the Changes.
In this phase, we use the information on best matching subtrees in order

to detect the types of changes as discussed above by issuing SQL queries.
First, we determine the changes on internal nodes (both insertions and

5

deletions). Next, the inserted and deleted leaf nodes are detected. Finally,
we detect updated leaf nodes and moved nodes. The XDeltas are stored
in the relational tables.

1.4 Contributions

In summary, this article makes the following contributions:

• We propose a novel technique to detect the changes, both structural and con-
tent changes, to the ordered XML documents by using relational databases.
The relational-based approach is able to overcome the scalability problem
that occurs on the memory-based approach.

• By extending a published relational schema called SUCXENT [12], Xandy
is efficient not only for detecting the changes, but also for inserting, ex-
tracting, and querying XML data as it inherits the features of SUCXENT.
In [12], the authors have shown that the execution time of insertion and
extraction XML documents by using SUCXENT schema are comparable.

• An extensive performance study was conducted on our approaches. The ex-
perimental results show that the relational-based approach is more scalable
than the memory-based approaches.

The organization of the rest of this article is as follows. In Section 2 we shall
briefly discuss the relational schema that we use for storing the XML docu-
ments. In Section 3, we discuss how we are able to find the best matching
subtrees from two given versions of an XML document. We present the al-
gorithms for the top-down approach and the bottom-up approach. We shall
elaborate how the XDeltas can be discovered in Section 4. We also present the
SQL queries that are used to discover the XDeltas. In Section 5, we compare
the performance of different approaches. Finally, we conclude the article in
the last section.

2 Background

There are two approaches for storing XML documents in relational database:
the model-mapping approaches [6,7,12,17] and the structure-mapping approaches
[13]. The model-mapping approaches maintain a fixed schema which is used
to store XML documents irrespective of their schemas. The structure-mapping
approaches first create a relational schema based on the schemas of XML doc-
uments. In this article, we also adopt the model-mapping approach due to the
following reasons. First, the DTD or any structure definition for the documents
may not be available. Second, it is often the case that an XML collection would
have documents that conform to more than one DTD. Detecting the changes
to these XML documents would be a problem in the structure-mapping ap-
proach as several relational schemas would be created, one for each DTD. This
means that we have to rewrite a different set of SQL queries for detecting the

6

Path

LeafValue

AncestorInfo

Document

NodeLevel

1
2
3
...

1
2
3

...
3

2

2

3

MinSibOrder

1
2
3
...

1
2
3

...
9

8

4

9

MaxSibOrder

9
3
3
...

9
3
3

...
9

9

5

9

LocalOrder

1
2
3
...

1
2
3

...
3

5

3

3

LeftSibIxn
Level

-1
1
2
2
...
2

-1
1
2
2
...
2

NodeName

division
staff
research

...

division
staff
research

...
research

staff

staff

research

Doc_Name

division01.xml
division02.xml

Doc_ID

1
2

Path_ID

1
2
3
4

Path_Exp

./division./name

./division./staff./name

./division./staff./rank

./division./staff./research./interest

Level

2
3
3
4
...
4

2
3
3
4
...
4

Doc_ID

1
1
1
...

2
2
2

...
2

1

2

1

Dewey

1
1.2
1.2.3

...

1
1.2
1.2.3

...
1.5.3

1.5

1.3

1.5.3

Sibling
Order

1
2
2
3
...
7

1
2
2
3
...
7

Local
Order

1
1
2
1
...
1

1
1
2
1
...
1

LeafValue

Information Systems
Smith
Assoc Prof
Web Mining
...
Digital Libraries

Information Systems
Mark
Prof
Digital Libraries
...
Semantic Web

Dewey

1.1
1.2.1
1.2.2
1.2.3.1

...
1.4.3.1

1.1
1.2.1
1.2.2
1.2.3.1

...
1.4.3.1

Doc_ID

1
1
1
1
...
1

2
2
2
2
...
2

Leaf
Order

1
2
3
4
...
12

1
2
3
4
...
12

Path_ID

1
2
3
4
...
4

1
2
3
4
...
4

...

...

(b) Top-down Approach

(c) Bottom-up Approach

Document (Doc_ID, Doc_Name)

Path (Path_ID, Path_Exp)

LeafValue (Doc_ID, LeafOrder,

 Path_ID, SiblingOrder,

 Level, LeftSibIxnLevel,

 LeafValue, LocalOrder)

AncestorInfo (Doc_ID, MinSibOrder,

 MaxSibOrder, NodeLevel,

 NodeName, LocalOrder)

(d) XML Shredded in Relational Database

LeafValue (Doc_ID, LeafOrder,

 Path_ID, LeftSibIxnLevel,

 SiblingOrder, LeafValue,

 LocalOrder, Level, Dewey)

AncestorInfo (Doc_ID, MinSibOrder,

 MaxSibOrder, NodeLevel,

 NodeName, LocalOrder, Dewey)

Document (Doc_ID, Doc_Name)

Path (Path_ID, Path_Exp)

Document (Doc_ID, Doc_Name)

Path (Path_ID, Path_Exp)

LeafValue (Doc_ID, LeafOrder,

 Path_ID, LeftSibIxnLevel,

 SiblingOrder, LeafValue)

AncestorInfo (Doc_ID, MinSibOrder,

 MaxSibOrder, NodeLevel,

 NodeName)

(a) Original Sucxent Schema

Fig. 2. The SUCXENT Schemas and XML data in RDBMS.

changes to XML documents which have different DTD. Third, the DTD of
an XML document may also be changed. Consequently, the relational schema
of the underlying database has to be modified. Obviously, this will result in
modification of the SQL queries for detecting the changes.

We have extended the relational schema of our XML storage system called
SUCXENT (Schema UnConcious XML ENabled SysTem) [12]. We chose SUCXENT
because we have shown in [12] that our approach outperforms significantly the
current state-of-the-art model mapping approaches like XParent [7] as far as
storage size (up to 20%), insertion time (up to six times), extraction time,
and path expression queries (up to 25%) are concerned. Note that Jiang et
al. has shown in [7] that XParent outperforms existing model mapping ap-
proaches such as Edge approach [6], and XRel [17]. The SUCXENT schema is
shown in Figure 2(a). The Document table is used for storing the names of
the documents in the database. This allows us to store multiple versions of
XML documents. The Path table is used to record all paths from the root to
the leaf nodes. It maintains the path ids and the relative path expressions as
instances of the Path ID and Path Exp attributes respectively.

The LeafValue table is used for storing the information on leaf nodes. The
Doc ID attribute indicates which XML document a particular leaf node be-
longs to. The Path ID attribute maintains the id of the path of a particular

7

leaf node stored in the Path table. The LeafOrder attribute is used to record
the node order of the leaf nodes in an XML tree. For example, consider the
XML tree in Figure 1(a). When we parse the XML document, we will find the
leaf node “name” with value “Information Systems” as the first leaf node in
the document. Hence, we assign the LeafOrder equal to “1” for this leaf node.
The next leaf node we find is the node “name” with value “Smith”. Therefore,
the LeafOrder of this node is equal to “2”. Two leaf nodes have the same
SiblingOrder if they share the same parent. For example, the leaf nodes
with LeafOrder equal to “2”, and “3” shall have the same SiblingOrder

(equal to “2”) since they share the same parent node (node “staff” with node
id 3). The dotted boxes in Figure 1(a) indicate the leaf nodes that have the
same SiblingOrder. The LeftSibIxnLevel (Left Sibling Intersection Level)
is a level at which the leaf nodes belonging to a particular sibling order in-
tersect the leaf nodes belonging to the sibling order that comes immediately
before. For example, consider the leaf nodes with SiblingOrder equal to “3”
in the XML tree. These leaf nodes shall intersect with the leaf nodes having
SiblingOrder equal to “2” at the node “staff” (id=3) which is at level 2.
The LeafValue stores the textual content of the leaf nodes. Note that the
LeftSibIxnLevel in this table is only useful for constructing the XML docu-
ments from the relational database [12].

The AncestorInfo table is used for storing the ancestor information for each
leaf node. The Doc ID attribute indicates to which XML document a particular
ancestor node belongs to. We record the names and the level of ancestor nodes
in the NodeName and NodeLevel attributes respectively. The MinSibOrder and
MaxSibOrder store the minimum and maximum sibling orders of the leaf nodes
under a particular ancestor node respectively. For example, the node “staff”
(id=3) in Figure 1(a) has MinSibOrder and MaxSibOrder equal to “2” and
“3” respectively. Node “division” (id=1) has MinSibOrder and MaxSibOrder

equal to “1” and “9” respectively.

For the top-down approach, the SUCXENT schema is modified as follows. The at-
tributes LocalOrder and Dewey are added in the LeafValue and AncestorInfo

tables to store the position of a node among its siblings and ancestors’ local
orders of each node respectively. This DEWEY attribute is adopted from the
Dewey Ordering Encoding [11]. For example, the Dewey values of nodes 3 and
7 in T1 are “1.2” and “1.2.3.1” respectively. The local order is assigned in an
incremental manner among the siblings from left to right. We also add the
attribute Level in the LeafValue table to store the level of leaf nodes. The
extended SUCXENT schema for the top-down approach is shown in Figure 2(b).
Figure 2(d) depicts the relations containing two shredded XML documents in
Figure 1 (partial view only).

We extend the SUCXENT schema for the bottom-up approach as follows. We
add the Level and LocalOrder attributes in the LeafValue table to store

8

Update(4,"Smith", "Mark")
Update(5, "Assoc Prof", "Prof")
Update(7, "Web Mining", "Digital Libraries")
Update(8, "Multimedia Mining", "Information Retrieval")
Update(4, "Mark", "Steve")
Update(5, "Assoc Prof", "Asst Prof")
Update(7, "Digital Libraries", "Semantic Web")
Delete(13)

Move(15, 3, 1)
Delete(3)
Delete(13)
Insert(114, 101, 3)
Insert(108, 106, 2)
Update(17, "Assoc Prof", "Prof")

(a) XDelta 1 (b) XDelta 2

Fig. 3. XDeltas: Example.

the level and the position among siblings of the leaf nodes respectively. The
AncestorInfo table is extended by adding the LocalOrder attribute that is
used to store the positions among siblings of the internal nodes. We do not use
the Dewey attribute in this approach for the following reason. Our approach
determines the best matching subtrees at level level + 1 before finding the
best matching subtrees at level level. That is, the matching subtrees at level
greater than level are already determined. Hence, we just need to use the
information on the best matching subtrees at level level + 1 in order to find
the best matching subtrees at level level. The extended SUCXENT schema for
the bottom-up approach is depicted in Figure 2(c). Figure 2(d) depicts the
relations containing two shredded XML documents in Figure 1 (partial view
only, without the Dewey attribute in the LeafValue and AncestorInfo tables).

Note that the performance of the extended SUCXENT schema is comparable
to the performance of the original SUCXENT schema and still outperforms
XParent. As the modifications are not significant, the insertion and extraction
performances of the extended SUCXENT schema are still faster than XParent.
The modified SUCXENT still stores the ancestor information of only the leaf
nodes compared to XParent which stores ancestor information of every node.
Hence, the storage requirement of the extended SUCXENT schema is still lesser
than the one of XParent. The query processing performance of the extended
SUCXENT schema is also faster than XParent as the key properties of the orig-
inal SUCXENT schema (SiblingOrder, MinSibOrder, MaxSibOrder, etc.) are
still preserved in the extended schema. Furthermore, as query processing in
modified SUCXENT is still done without θ-joins, query performance is still better
than XParent due to the reduced storage space.

3 Finding Best Matching Subtrees

In this section, we shall elaborate how to find the best matching subtrees. The
objectives of finding the best matching subtrees are to enable us to get the
minimum XML delta. The minimum XML delta can be defined as the delta
which has the least number of edit operations (types of changes).

Suppose we have two XML trees, T1 and T2, as depicted in Figure 1. There are
more than one XDelta that can be detected from T1 and T2. For example, we
may have an XDelta that contains seven updates and a deletion as shown in
Figure 3(a). We get this XDelta if we match subtree t3 to subtree t103, subtree

9

t9 to subtree t109, subtree t15 to subtree t114, and subtree t20 to subtree t119.
We can also have other XDelta as depicted in Figure 3(b). This XDelta that
contains six edit operations is a result of matching subtree t9 to subtree t109,
subtree t15 to subtree t103, and subtree t20 to subtree t119. The second XDelta
is a candidate to be the minimum XML delta if there is no other XDeltas that
have lesser number of edit operations. Therefore, the selection of the correct
matching subtrees is important in order to get the minimum XML deltas.

3.1 Preliminaries

The matching subtrees from the first and second versions of an ordered XML
tree are determined by measuring their similarity. The similarity score is used
to measure the degree of similarity between two subtrees in the two versions
of an XML document. Note that a subtree in the first version may be matched
to more than one subtree in the second version. The most similar subtrees are
considered as the best matching subtrees. In this section, we shall introduce
some concepts that we shall be using to compute similarity score. First, we
present the notations that will be used in our discussion as follows.

• L(T) : a set of leaf nodes in the subtree T ,
• I(T) : a set of internal nodes in the subtree T .

The root node of subtree T is denoted by root(T). The textual content of a
leaf node `x is denoted by value(`x), where `x ∈ L(T). The name and level of
node n are denoted by name(n) and level(n) respectively.

Definition 3.1 [Matching Leaf Nodes] Let `1 ∈ L(T1) and `2 ∈ L(T2)
be two leaf nodes from the first and second versions of an XML documents
respectively. `1 and `2 are matching leaf nodes (denoted as `1 ↔ `2) if
name(`1) = name(`2), level(`1) = level(`2), and value(`1) = value(`2), where
`1 ∈ L(T1) and `2 ∈ L(T2). 2

Example 3.1 The leaf nodes 2 and 102 are matching leaf nodes (`2 ↔ `102)
because they have the same node name (“name”) and the same node value
(“Information Systems”). Note that a leaf node in T1 can be matched to more
than one leaf node in T2, and vice versa. The leaf node 111 in T2 can be
matched to the leaf nodes 5, 11, and 17 in T1 as they have the same node
name (“rank”) and the same node value (“Assoc Prof”).

The matching leaf nodes are classified into two types: fixed matching leaf nodes
and shifted matching leaf nodes. The fixed matching leaf nodes are the ones
whose positions among their siblings are not changed. The shifted matching
leaf nodes are the ones whose positions among their siblings are changed due
to the insertions or deletions of their siblings, and changes of their positions
among theirs siblings. For example, nodes 2 and 102 are fixed matching leaf
nodes, and nodes 14 and 113 are shifted matching leaf nodes. Note that if `1

10

and `2 are not matching leaf nodes, then they are denoted by `1 6↔ `2.

Next, we define the notion of matching sibling orders that will only be used in
the bottom-up approach. A set of leaf nodes that have the same parent node
will have the same sibling order. The matching sibling orders can be seen as
the summarization of the matching leaf nodes. Consider subtrees t9 and t109

as depicted in Figure 1. There are three matching leaf nodes in subtrees t9
and t109 (`10 ↔ `110, `11 ↔ `111, and `14 ↔ `113). We are able to summarize
these matching leaf nodes to two matching sibling orders. Hence, the storage
space needed for storing the matching information is reduced.

Definition 3.2 [Matching Sibling Orders] Let so1 and so2 be two sibling
orders in T1 and T2 respectively. Let siborder(`) be the sibling order of a leaf
node `. Let P = {p1, p2, ..., px} and Q = {q1, q2, ..., qy} be two sets of leaf
nodes in T1 and T2 respectively, where ∀pi ∈ P siborder(pi) = so1, ∀qj ∈ Q
siborder(qj) = so2, P ⊆ L(T1), and Q ⊆ L(T2). Then so1 and so2 are the
matching sibling orders (denoted by so1 ⇔ so2) if ∃pi ∃qj such that pi ↔ qj

where pi ∈ P and qj ∈ Q. 2

Example 3.2 A set of leaf nodes whose parent is node 9 in T1 has a sibling
order equal to 4. A set of leaf nodes whose parent is node 109 in T2 has a
sibling order equal to 4. These two sibling orders are matching sibling orders
as they have two matching leaf nodes (`10 ↔ `110 and `11 ↔ `111).

The next step is to determine the possible matching subtrees. Informally, the
possible matching subtrees are subtrees in which they have at least one match-
ing leaf node. Hence, the subtrees in T1 are possible to be matched to more
than one subtree in T2. From these possible matching subtrees, we determine
the most similar subtrees to be the best matching subtrees. Note that the
matching is only performed between subtrees at the same level. This is be-
cause matching the subtrees at different level is an expensive process. Formally,
the possible matching subtrees is defined as follows.

Definition 3.3 [Possible Matching Subtrees] Let t1 and t2 be two sub-
trees rooted at nodes i1 ∈ I(T1) and i2 ∈ I(T2) respectively. t1 and t2 are the
possible matching subtrees (denoted by t1 l t2) if name(i1) = name(i2),
level(i1) = level(i2), and ∃p ∃q such that p ↔ q, where i1 is the ancestor of
p, i2 is the ancestor of q, p ∈ L(T1), and q ∈ L(T2). 2

Definition 3.3 is a general definition of the possible matching subtrees for
both the top-down and bottom-up approaches. We are able to use the notion of
matching sibling orders in the third condition of Definition 3.3 for the bottom-
up approach as there is at least one matching leaf node in the matching sibling
orders (Definition 3.2).

Example 3.3 The subtrees rooted at node 9 in T1 and node 109 in T2 are
possible matching subtrees (t9 l t109) as they have three matching leaf nodes

11

Input:
 document id of the first version did1,
 document id of the second version did2,
 threshold theta
Output:
 the MATCHING table

1 root1 = getRootNode(did1)
2 root2 = getRootNode(did2)
3 if (root1.name != root2.name) then
4 return
5 end if
6 score = calculateScore(root1, root2)
7 if (score == 1.0) then
8 Store the root node information
 in the MATCHING table
9 return
10 else if (score < theta) then
11 return
12 end if
13 Store the root node information
 in the MATCHING table
14 TD-findBestMatchingSubtree(did1, did2,
 theta, root1, root2);
15 extendIdenticalSubtrees(did1, did2);

1 SELECT
2 M.DID1, M.DID2, A1.MINSIBORDER,
3 A1.MAXSIBORDER, A2.MINSIBORDER,
4 A2.MAXSIBORDER, A1.NODELEVEL,
5 A1.LOCALORDER, A2.LOCALORDER,
6 1.000 AS SCORE
7 FROM MATCHING AS M,
8 ANCESTORINFO AS A1,
9 ANCESTORINFO AS A2
10 WHERE
11 M.DID1 = did1 AND
12 M.DID2 = did2 AND
13 M.SCORE = 1.000 AND
14 A1.DOC_ID = did1 AND
15 A2.DOC_ID = did2 AND
16 A1.NODENAME = A2.NODENAME AND
17 A1.NODELEVEL = A2.NODELEVEL AND
18 A1.LOCALORDER = A2.LOCALORDER AND
19 A1.MINSIBORDER >= M.MINSO1 AND
20 A1.MAXSIBORDER <= M.MAXSO1 AND
21 A2.MINSIBORDER >= M.MINSO2 AND
22 A2.MAXSIBORDER <= M.MAXSO2

(a) The rootMatching Algorithm (b) Extend Identical Subtrees

Fig. 4. Top-down Approach: Algorithm rootMatching and SQL Queries.

(`10 ↔ `110, `11 ↔ `111, and `14 ↔ `113). The subtrees rooted at node 15 in
T1 and node 109 in T2 are also possible matching subtrees (t15 l t109) as they
have one matching leaf node (`17 ↔ `111).

3.2 Best Matching Subtrees

The next step is to determine the best matching subtrees from a set of possi-
ble matching subtrees. Note that the terms matching subtrees and matching
internal nodes are used interchangeably. Consequently, we have to measure
how similar two possible matching subtrees are. Note that two subtrees are
more similar if they have more numbers of matching leaf nodes. We are able
to use the proportion of the matching leaf nodes and the total nodes in the
subtrees for determining how similar two subtrees are. We define a metric
called similarity score to measure how similar these subtrees are.

Definition 3.4 [Similarity Score] The similarity score < of two subtrees

t1 and t2 is as follows: <(t1, t2) = 2|A|+|B|
|t1|+|t2| where |t1| and |t2| are the total

numbers of leaf nodes in t1 and t2 respectively, and |A| and |B| are num-
bers of nodes of fixed and shifted matching leaf nodes in t1 and t2 respectively
(A ∩B = ∅). 2

The similarity score will be between 0 and 1. Given a set of subtrees from two
versions of an XML tree, T1 and T2, <(t1i, t2j) is the similarity score of a pair
of possible matching subtrees t1i and t2j, where t1i ∈ T1 and t2j ∈ T2. Based
on the similarity score, we classify the matching subtrees into three types:

• Identical subtrees (<(t1i,t2j)= 1). For example, subtree t20 in T1 and sub-
tree t119 in T2 are identical subtrees. In the top-down approach, if subtrees
X and Y are determined as identical subtrees, then we do not need to com-

12

pare subtrees xi and yj, where xi ⊂ X and yj ⊂ Y , as they are also identical
subtrees.

• Unmatching subtrees (<(t1i,t2j)= 0). We say two subtrees are unmatch-
ing if they are totally different. For example, subtree t3 in T1 and subtree t103

in T2 are unmatching subtrees (<(t3,t103)= 0). In the top-down approach, if
subtrees X and Y are determined as unmatching subtrees, then we do not
need to compare subtrees xi and yj, where xi ⊂ X and yj ⊂ Y , as they are
also unmatching subtrees.

• Matching subtrees (0 < <(t1i,t2j)< 1). For instance, subtree t12 in T1 and
subtree t112 in T2 are matching subtrees (<(t12,t112)= 0.6667). The higher
<(t1i, t2j) of matching subtree indicates that the subtrees are more similar.

In order to minimize the number of subtree comparisons, we define a mini-
mum score threshold θ. If <(t1i, t2j) < θ, then we assume that t1i and t2j are
unmatching subtrees. The value of θ is between 0 and 1. In most cases, the
smaller value of θ shall result in better quality of XML deltas. After we are able
to determine how similar the possible matching subtrees are, the best match-
ing subtrees can be determined. The formal definition of the best matching
subtrees is as follows.

Definition 3.5 [Best Matching Subtrees] Let t ∈ T1 be a subtree in T1

and P ⊆ T2 be a set of subtrees in T2. Also t and ti ∈ P are possible matching
subtrees ∀ 0 < i ≤ |P |. Then t and ti are the best matching subtrees
(denoted by t m ti) iff (<(t, ti) > <(t, tj)) ∀ 0 < j ≤ |P | and i 6= j. 2

Example 3.4 There are five best matching subtrees in our example: t9 m t109,
t12 m t119, t15 m t103, t18 m t106, and t1 m t101.

Note that if t1 and t2 are not best matching subtrees, then they are denoted
by t1 6m t2.

3.3 The Top-down Approach

In this section, we shall present the algorithm for finding best matching sub-
trees in our top-down approach by using the concepts presented in previous
sections. Suppose we have two versions of an XML document shredded in a
relational database, T1 and T2, and minimum score threshold θ. The first step
of finding best matching subtrees in the top-down approach is to compare the
root nodes of T1 and T2. If T1 has different node name from T2, then we assume
that T1 and T2 are different trees. Consequently, the delta shall consist of a
deletion of T1 and an insertion of T2. Otherwise, <(T1,T2) is calculated. Based
on Definition 3.4, the similarity score of two subtrees is calculated by using
the number of fixed and shifted matching leaf nodes, and the total number
of leaf nodes in the both subtrees. The number of fixed and shifted matching
leaf nodes can be calculated by using the SQL queries depicted in Figures 5(a)
and (b) respectively. Figure 5(c) depicts the SQL query to retrieve the total

13

1 SELECT COUNT(P1.LEAFORDER)
2 FROM LEAFVALUE AS P1 , LEAFVALUE AS P2
3 WHERE
4 P1.DOC_ID = did1 AND P2.DOC_ID = did2 AND
5 P1.PATH_ID = P2.PATH_ID AND
6 P1.LOCALORDER = P2.LOCALORDER AND
7 P1.LEAFVALUE = P2.LEAFVALUE AND
8 P1.SIBLINGORDER BETWEEN
 minso1 AND maxso1 AND
9 P2.SIBLINGORDER BETWEEN
 minso2 AND maxso2 AND
10 P1.DEWEY LIKE ' dewey1.%' AND
11 P2.DEWEY LIKE ' dewey2.%' AND
12 SUBSTR(P1.DEWEY, LENGTH(dewey1)) =

SUBSTR(P2.DEWEY, LENGTH(dewey2))

1 SELECT COUNT(P1.LEAFORDER)
2 FROM LEAFVALUE AS P1 , LEAFVALUE AS P2
3 WHERE
4 P1.DOC_ID = did1 AND P2.DOC_ID = did2 AND
5 P1.PATH_ID = P2.PATH_ID AND
6 P1.LEAFVALUE = P2.LEAFVALUE AND
7 P1.SIBLINGORDER BETWEEN minso1 AND maxso1 AND
8 P2.SIBLINGORDER BETWEEN minso2 AND maxso2 AND
9 P1.DEWEY LIKE ' dewey1.%' AND
10 P2.DEWEY LIKE ' dewey2.%' AND
11 SUBSTR(P1.DEWEY, LENGTH(dewey1)) !=

SUBSTR(P2.DEWEY, LENGTH(dewey2)) AND
12 (P1.LEAFORDER, P2.LEAFORDER) NOT IN (
13 SELECT P1.LEAFORDER, P2.LEAFORDER
14 FROM PATHVALUE AS P1 , PATHVALUE AS P2
15 WHERE
16 P1.DOC_ID = did1 AND P2.DOC_ID = did2 AND
17 P1.PATH_ID = P2.PATH_ID AND
18 P1.LOCALORDER = P2.LOCALORDER AND
19 P1.LEAFVALUE = P2.LEAFVALUE AND
20 P1.SIBLINGORDER BETWEEN
 minso1 AND maxso1 AND
21 P2.SIBLINGORDER BETWEEN
 minso2 AND maxso2 AND
22 P1.DEWEY LIKE ' dewey1.%' AND
23 P2.DEWEY LIKE ' dewey2.%' AND
24 SUBSTR(P1.DEWEY, LENGTH(dewey1)) =

SUBSTR(P2.DEWEY, LENGTH(dewey2)))

1 SELECT COUNT(LEAFORDER) AS VALUE
2 FROM LEAFVALUE
3 WHERE DOC_ID = did AND
4 SIBLINGORDER BETWEEN minso AND maxso

(c) Calculate Number of Leaf Nodes

(a) Calculate Number of Fixed Leaf Nodes

(b) Calculate Number of Shifted Leaf Nodes

1 SELECT NODENAME, NODELEVEL,
2 MINSIBORDER, MAXSIBORDER
3 FROM ANCESTORINFO
4 WHERE DOC_ID = did AND
5 MINSIBORDER >= minso AND
6 MAXSIBORDER <= maxso AND
7 NODELEVEL = level+1

(d) Get Internal Child Nodes

Fig. 5. Top-down Approach: SQL Queries (1).

number of leaf nodes in a subtree. If <(T1,T2) < θ, then we also assume that T1

and T2 are different trees. If <(T1,T2) = 1, then T1 and T2 are identical trees.
Consequently, we store the matching information of the root nodes of T1 and
T2 into database and do not need to do the top-down matching. Otherwise, we
store the matching information of the root nodes of T1 and T2 into database
and start to find best matching subtrees in the top-down fashion. This root
node matching is done by using the rootMatching algorithm as depicted in
Figure 4(a).

The top-down matching is done by using the TD-findBestMatchingSubtrees
algorithm as depicted in Figure 6. The algorithm works as follows. Suppose
we have two root nodes of two subtrees, that is, r1 and r2, where r1 ∈ I(T1),
r2 ∈ I(T2), name(r1)=name(r2), and level(r1)=level(r2). First, we retrieve
the child internal nodes of r1 and r2. Figure 5(d) depicts the SQL query for
retrieving the child internal nodes of an internal node. If at least one of r1 and
r2 does not have child internal nodes, then the algorithm returns no result.
Otherwise, the algorithm starts comparing the child internal nodes of r1 with
the ones of r2 by calculating the similarity scores. The algorithm tries to com-
pare a child node c1x of node r1 with c2y of r2 in order to find the most similar
one. For each comparison, the algorithm calculates the similarity score of t1x
and t2y, where c1x and c2y are the root nodes of subtrees t1x and t2y respec-
tively. After calculating the similarity score, the algorithm checks whether they
are identical subtrees (<(t1x,t2y)= 1), unmatching subtrees (<(t1x,t2y)< θ),
or matching subtrees (θ ≤ <(t1x,t2y) < 1).

If <(t1x, t2y) < θ, then the algorithm assumes that t1x and t2y are unmatch-
ing subtrees. Consequently, the algorithm will not process the child nodes of

14

Input:
 document id of the first version did1,
 document id of the second version did2,
 parent node in the first version p1,
 parent node in the second version p2,
 threshold theta
Output:
 the MATCHING table

1 list1 = getInternalChildNode(did1, p1);
2 list2 = getInternalChildNode(did2, p2);
3 if (list1 is empty or list2 is empty)
4 return;
5 end if
 // Calculate the similarity score
 // for each pair of subtrees
6 isIdentical = false;
7 Pos = -1;
8 while (list1 is NOT empty and list2 is NOT empty)
9 if (list1[0].name == list2[j].name)
10 score = calculateScore(list1[0], list2[j]);
11 if (score==1.0) // Identical Subtree
12 isIdentical = true;

13 maxScore = score;
14 Pos = j;
15 else if ((score <maxScore) and (score>= theta))
16 maxScore = score;
17 Pos = j;
18 end if
19 end if
20 j++;
21 if (isIdentical or
 (j > sizeOf(list2) and (Pos != -1)))
22 newP1 = list1[0];
23 newP2 = list2[Pos];
24 delete(list1[0]);
25 delete(list2[Pos]);
26 Store (newP1, newP2) in the MATCHING table;
27 if (not isIdentical)
28 findBestMatchingSubtrees(did1, did2,
 theta, newP1, newP2);
29 end if
30 else if (j > sizeOf(list2))
31 delete(list1[0]);
32 end if
33 end while

Fig. 6. Top-down Approach: Algorithm TD-findBestMatchingSubtrees.

c1x and c2y. If <(t1x, t2y) = 1, then t1x and t2y are identical subtrees. Conse-
quently, the algorithm will store the matching information of these identical
subtrees into database. Note that the algorithm will also not process the child
nodes of c1x and c2y. If θ ≤ <(t1x,t2y) < 1, then t1x and t2y are best matching
subtrees. Consequently, the algorithm will store the matching information of
these best matching subtrees into database and will process the child nodes
of c1x and c2y in order to find other best matching subtrees in the next level.
To process the child nodes of c1x and c2y, the algorithm recursively invokes
the TD-findBestMatchingSubtrees algorithm (line 30, Figure 6).

Finally, the algorithm extends the identical subtrees (if any) by using the
SQL query in Figure 4(b). This means that the algorithm maps all identical
subtrees in given identical subtrees. Given two root nodes of identical subtrees,
the SQL query basically retrieves the internal nodes that are the descendent of
these root nodes from the AncestorInfo table (lines 19-22, Figure 4(b)). Note
that the subtrees in the identical trees must also be identical. Hence, these
internal nodes are matched by using their node name (line 16, Figure 4(b)),
node level (line 17, Figure 4(b)), and local order (line 18, Figure 4(b)). The
information on best matching subtrees are stored in the Matching table as
depicted in Figure 8(e). The semantics of attributes of the Matching table are
depicted in Figures 8(a) and (b).

The TD-findBestMatchingSubtrees algorithm is a greedy approximation. Once
the algorithm determines that subtree rooted at node p in the old version
document is matched to subtree rooted at node q in the new version, it will not
compare the subtree rooted at node p to subtrees in the new version document
nor the subtree rooted at node q to subtrees in the old version document. This
greedy approximation may lead the algorithm to result non-optimal delta in
some cases. If we do not use the greedy approximation, then the algorithm does
|N | × |M | subtrees comparisons (similarity score calculations) for each level,
where |N | and |M | are the numbers of internal nodes that are the child nodes
of matching subtrees in the old and new versions of an XML tree respectively.
This leads to significant reduction of the performance of the algorithm. Hence,
we trade off the result quality for better performance.

15

Input:
 did1 : document id of first
 version of document
 did2 : document id of second
 version of document
 theta : similarity threshold
Output:
 the MATCHING table

1 if (!isRootNodeMatched(did1, did2))
2 return;
3 end if
4 findMatchingSiblingOrder(did1, did2);
5 maxLevel = getInternalNodeMaxLevel(did1, did2);
 // the level of root node is equal to 1
6 for (curLevel=maxLevel; curLevel>=1;
 curLevel--)
7 findPMatchingIntNodes(did1,did2,curLevel);
8 maximizeSimilarityScore(did1,did2,curLevel);
9 deleteUnMacthingNodes(did1, did2,
 curLevel, theta);
10 end for
11 populatingBestMatchingSubtrees(did1,did2);

(a) Algorithm findBestMatchingSubtree

1 SELECT
2 D.LEVEL, D.SO1, D.SO2,
3 D.COUNTER AS COUNTER,
4 V1.TOTAL+V2.TOTAL AS TOTAL
5 FROM
6 (SELECT
7 F.LEVEL, F.SO1, F.SO2,
8 F.COUNTER + S.COUNTER
9 FROM FIXEDLV AS F, SHIFTLV AS S
10 WHERE
11 F.LEVEL = S.LEVEL AND
12 F.SO1 = S.SO1 AND
13 F.SO2 = S.SO2) AS D,
14 (SELECT L1.LEVEL, L1.SIBLINGORDER,
15 COUNT(L1.LEAFORDER) AS TOTAL
16 FROM LEAFVALUE AS L1
17 WHERE L1.DOC_ID = did1
18 GROUP BY L1.LEVEL,
19 L1.SIBLINGORDER) AS V1,
20 (SELECT L1.LEVEL, L1.SIBLINGORDER,
21 COUNT(L1.LEAFORDER) AS TOTAL
22 FROM LEAFVALUE AS L1
23 WHERE L1.DOC_ID = did2
24 GROUP BY L1.LEVEL,
25 L1.SIBLINGORDER) AS V2
26 WHERE
27 V1.LEVEL = D.LEVEL AND
28 V2.LEVEL = D.LEVEL AND
29 V1.SIBLINGORDER = D.SO1 AND
30 V2.SIBLINGORDER = D.SO2

(b) Finding Matching SiblingOrder

1 SELECT
2 L1.LEVEL, L1.SIBLINGORDER AS SO1,
3 L2.SIBLINGORDER AS SO2,
4 COUNT(L1.SIBLINGORDER) AS COUNTER
5 FROM LEAFVALUE AS L1, LEAFVALUE AS L2
6 WHERE
7 L1.DOC_ID = did1 AND
8 L2.DOC_ID = did2 AND
9 L1.PATH_ID = L2.PATH_ID AND
10 L1.LEAFVALUE = L2.LEAFVALUE AND
11 L1.LOCALORDER = L2.LOCALORDER
12 GROUP BY L1.LEVEL, L1.SIBLINGORDER,
 L2.SIBLINGORDER

1 SELECT
2 L1.LEVEL, L1.SIBLINGORDER AS SO1,
3 L2.SIBLINGORDER AS SO2,
4 COUNT(L1.SIBLINGORDER) AS COUNTER
5 FROM LEAFVALUE AS L1, LEAFVALUE AS L2
6 WHERE
7 L1.DOC_ID = did1 AND L2.DOC_ID = did2 AND
8 L1.PATH_ID = L2.PATH_ID AND
9 L1.LEAFVALUE = L2.LEAFVALUE AND
10 (L1.LEVEL, L1.SIBLINGORDER) NOT IN
11 (SELECT LEVEL, SO1 FROM FIXEDLV) AND
12 (L2.LEVEL, L2.SIBLINGORDER) NOT IN
13 (SELECT LEVEL, SO2 FROM FIXEDLV)
14 GROUP BY L1.LEVEL, L1.SIBLINGORDER, L2.SIBLINGORDER

(d) Finding FixedLeafNode (e) Finding ShiftedLeafNode

1 SELECT MAX(NODELEVEL)
2 FROM ANCESTORINFO WHERE DOC_ID = did

(c) Maximum Level of Internal Nodes

Fig. 7. Bottom Up Approach: Algorithm BU-findBestMatchingSubtree and SQL
Queries.

Observe that the top-down approach has two drawbacks. First, the detected
delta may not be optimal delta in some cases as it uses a greedy approximation.
Second, the first phase (“finding best matching subtrees”) in the top-down
approach is a time consuming process. In the next section, we shall present
another approach that is able to overcome these drawbacks.

3.4 The Bottom-up Approach

In this section, we elaborate the first phase of the bottom-up approach to find
best matching subtrees in T1 and T2 by using the concepts presented in the
former section. The algorithm for determining the best matching subtrees in
T1 and T2 is shown in Figure 7(a). The BU-findBestMatchingSubtree algorithm
is a bottom-up algorithm as it starts finding best matching subtrees from lower
levels to the root node. Here we use an example to illustrate the algorithm.

To find best matching subtrees in T1 and T2, first we check whether the root
nodes of T1 and T2 have the same name. If they have different node name, then
we assume that T1 and T2 are different. Consequently, the delta will consist
of a deletion of T1 and an insertion of T1. Otherwise, the algorithm shall find
the best matching sibling orders in T1 and T2. The SQL query for retrieving
matching sibling orders in T1 and T2 is depicted in Figure 7(b). The FIXEDLV

and SHIFTLV relations are two sets of fixed and shifted matching leaf nodes

16

TempSO (Level, SO1, SO2, Counter, Total)

TempMatching (MinSO1, MaxSO1, MinSO2, MaxSO2, Level,
 LO1, LO2, Flag, Counter, Total, Score)

(a) Attributes of The TempSO and Matching Tables

2 1 1 2 2
3 2 4 2 4
3 4 4 4 4

4 5 5 1 3
4 7 3 2 3

(c) TempSO Table

Matching (DID1, DID2, MinSO1, MaxSO1, MinSO2, MaxSO2,

 Level, LO1, LO2, Score)

3 3 3 1 35 5 5 5 0 0.3333

3 3 3 4 49 9 9 9 0 1.0000
3 3 3 2 37 7 3 3 0 0.6666

1 1 1 19 311 9 1 9 0 0.6129

(d) TempMatching Table

2
2

2
2
2

(e) Matching Table

1
1

1
1
1

Level LO1 LO2 Counter TotalMinSO1 MaxSO1 MinSO2 MaxSO2 Flag Score Level LO1 LO2
Min
SO1

Max
SO1

Min
SO2

Max
SO2

DID2 ScoreDID1

Level SO1 SO2 Counter Total

21

21

4 9 9 4 4

3 6 2 2 4
3 6 4 2 4
3 8 6 2 4
3 8 8 4 4

2 2 3 2 72 3 4 5 0 0.2857
2 3 3 5 74 5 4 5 0 0.7142
2 4 2 4 76 7 2 3 0 0.5714
2 4 3 2 66 7 4 5 0 0.3333
2 5 4 2 78 9 6 7 0 0.2857
2 5 5 8 88 9 8 9 0 1.0000

3 3 35 5 5 5 0.3333

3 3 39 9 9 9 1.0000
3 3 37 7 3 3 0.6666

1 1 11 9 1 9 0.6129

2 3 34 5 4 5 0.7142
2 4 26 7 2 3 0.5714
2 5 58 9 8 9 1.0000

(b) Description of Attributes

DID1
DID2

LEVEL
MINSO1
MAXSO1

SO1
SO2

Attribute

LO1
LO2

The document id of the first document
The document id of the second document
The node's level
The minimum sibling order of an internal node in the first version
The maximum sibling order of an internal node in the first version

The sibling order of a leaf node in the first version
The sibling order of a leaf node in the second version

Description

The local order of a node in the first version
The local order of a node in the second version

MINSO1
MAXSO1

The minimum sibling order of an internal node in the second version
The maximum sibling order of an internal node in the second version

Total
Score

Flag
Counter

The total number of leaf nodes
The similarity score

Annotation indicating that a subtree is moved to different parent node
The number of matching leaf nodes

Fig. 8. Bottom Up Approach: The TempSO, TempMatching, and Matching Tables.

respectively. The fixed matching leaf nodes and shifted matching leaf nodes
can be determined by using the SQL query depicted in Figures 7(d) and (e)
respectively. The matching siblings orders will be stored in the TempSO table
as depicted in Figure 8(c). The semantics of the attributes of the TempSO table
are depicted in Figures 8(a) and (b).

Next, we determine the deepest level maxLevel of internal nodes in T1 and
T2 by using the SQL query as depicted in Figure 7(c). For each level curLevel
starting from level maxLevel to the level of the root nodes, the algorithm
starts finding the best matching subtrees. First, the algorithm shall find the
possible matching internal nodes at which the possible matching subtrees are
rooted. The SQL query in Figure 9(a) is used to retrieve the root nodes of
the possible matching subtrees at level curLevel based on Definition 3.3. We
use the information on matching sibling orders to match the parent nodes of
leaf nodes in matching sibling orders. That is, the subtrees rooted at these
parent nodes will have at least one matching leaf node. We store the results
into the TempMatching table as depicted in Figure 8(d). The semantics of the
attributes of the TempMatching table are depicted in Figures 8(a) and (b). The
Flag attribute of the TempMatching table is initially set to “0”. The usage of
the Flag attribute shall be discussed later.

The next step is to maximize the similarity scores of the possible matching
internal nodes at level curLevel. This is because we may have some subtrees
and sibling orders at (curLevel + 1) in T1 that can be matched to more than
one subtree and sibling order in T2 respectively, and vice versa. For example,
there are several possible matching subtrees in level 2: S3 l S109, S9 l S109,
S15 l S109, S15 l S103, S20 l S114, and S20 l S119. There is a matching
sibling order in level 2: s11 ⇔ s21. The algorithm needs to find what matching
combination of these possible matching subtrees and matching sibling orders
such that <(1, 101) is maximized. There are six possible matching combi-
nations of these possible matching subtrees and matching sibling orders as

17

1 SELECT
2 A1.NODELEVEL,
3 A1.MINSIBORDER AS MINSO1,
4 A1.MAXSIBORDER AS MAXSO1,
5 A2.MINSIBORDER AS MINSO2,
6 A2.MAXSIBORDER AS MAXSO2,
7 SUM(T.COUNTER) AS COUNTER,
8 SUM(T.TOTAL) AS TOTAL
9 FROM
10 ANCESTORINFO AS A1, ANCESTORINFO AS A2,
11 TEMPSO AS T
12 WHERE
13 A1.DOC_ID = did1 AND
14 A2.DOC_ID = did2 AND
15 T.SO1 BETWEEN A1.MINSIBORDER AND
 A1.MAXSIBORDER AND
16 T.SO2 BETWEEN A2.MINSIBORDER AND
 A2.MAXSIBORDER AND
17 A1.NODELEVEL = A2.NODELEVEL AND
18 A1.NODENAME = A2.NODENAME AND
19 A1.NODELEVEL = level
20 GROUP BY A1.NODELEVEL,
 A1.MINSIBORDER, A1.MAXSIBORDER,
 A2.MINSIBORDER, A2.MAXSIBORDER

(a) Finding Possible Matching Internal Node

Input : scoreMatrix
Output: maximumScore and maxScoreCombination

1 SET row TO the numbers of row of scoreMatrix;
2 SET column TO the numbers of column of scoreMatrix;
3 INITIALIZE backTrackMatrix[row][column];
4 SET maxScore TO zero;
5 SET maxScoreCombination TO empty;
6 FOR i = 1 TO row DO
7 FOR j = 1 TO column DO
8 IF (scoreMatrix[i][j].matchScore > 0) THEN
9 IF (i = 1) THEN // if it it the first row
10 ADD j TO backTrackMatrix[i][j];
11 SET scoreMatrix[i][j].maxScore TO
 scoreMatrix[i][j].matchScore;
12 IF (scoreMatrix[i][j].matchScore > maxScore) THEN
13 maxScore = scoreMatrix[i][j].matchScore;
14 maxScoreCombination = backTrackMatrix[i][j];
15 END IF
16 ELSE
 // Use score in row i-1 to calculate score in row i
17 FOR k = 1 TO column DO
18 IF ((j is not in backTrackMatrix[i-1][k]) AND
 (scoreMatrix[i][j].maxScore <
 (scoreMatrix[i][j].matchScore +
 scoreMatrix[i-1][x].maxScore))) THEN
19 scoreMatrix[i][j].maxScore =
 scoreMatrix[i][j].matchScore +
 scoreMatrix[i-1][x].maxScore;
20 SET backTrackMatrix[i][j] TO
 backTrackMatrix[i-1][x];
21 ADD j TO backTrackMatrix[i][j];
22 END IF
23 IF ((j != k) AND
 (scoreMatrix[i][j].maxScore <
 (scoreMatrix[i][j].matchScore +
 scoreMatrix[i-1][x].matchScore))) THEN
24 scoreMatrix[i][j].maxScore =
 scoreMatrix[i][j].matchScore +
 scoreMatrix[i-1][x].matchScore;
25 RESET backTrackMatrix[i][j];
26 ADD j TO backTrackMatrix[i][j];
27 END IF
28 END FOR
29 IF (scoreMatrix[i][j].matchScore > maxScore) THEN
30 maxScore = scoreMatrix[i][j].matchScore;
31 maxScoreCombination = backTrackMatrix[i][j];
32 END IF
33 END IF
34 END IF
35 END FOR
36 END FOR
37 RETURN maxScore and maxScoreCombination;

Input :
 document id of first version of document did1,
 document id of second version of document did2,
 level curLevel,
 the MATCHING and TEMPSO tables
Output: the MATCHING table

 // find non one-to-one matching relation
 // groupped by the parent nodes
1 Data = getNon121Matching(did1, did2, curLevel);
2 FOR EACH group d IN Data
 // generate the scoreMatrix
3 scoreMatrix = generateScoreMatrix(d);
 // Start finding the maximum score
4 (maxScore, maxScoreCombination) =
 bestCombinationFinder(scoreMatrix);
 // delete the corresponding tuples in
 // the MATCHING table that are
 // not used in getting maximum score
5 annotateUnusedTuple(maxScoreCombination);
6 deleteUnusedTuple(maxScoreCombination);
7 END FOR

(b) The maximizeSimilarityScore Algorithm

(c) The bestCombinationFinder Algorithm

Fig. 9. SQL Query, and The maximizeSimilarityScore and bestCombinationFinder
Algorithms.

follows. First, s11 ⇔ s21, S3 l S109, S15 l S103, and S20 l S114. Second,
s11 ⇔ s21, S3 l S109, S15 l S103, and S20 l S119. Third, s11 ⇔ s21, S9 l S109,
S15 l S103, and S20 l S114. Fourth, s11 ⇔ s21, S9 l S109, S15 l S103, and
S20 l S119. Fifth, s11 ⇔ s21, S15 l S109, and S20 l S114. Sixth, s11 ⇔ s21,
S15 l S109, and S20 l S119. The matching combination that results the max-
imum <(1, 101) is s11 ⇔ s21, S9 l S109, S15 l S103, and S20 l S119. We
use dynamic programming to determine the best matching configuration that
maximizes the similarity score of the possible matching internal nodes at level
curLevel. Dynamic programming is chosen as we need to find best matching
configuration from several matching configurations. The maximizeSimilari-
tyScore algorithm is depicted in Figure 9(b). The first step of the algorithm
is to find non one-to-one matching relations at level curLevel and group them
according to the parent nodes. The maximizeSimilarityScore algorithm shall
invoke the bestCombinationFinder algorithm as depicted in Figure 9(c) to
find the best matching configuration. Note that the bestCombinationFinder
algorithm is motivated by the Smith-Waterman algorithm [14] for sequence
alignments. The bestCombinationFinder returns the maximum score that can
be achieved and the best matching configuration that maximizes the similar-
ity score. Next, the maximizeSimilarityScore algorithm uses the best matching
configuration returned by the bestCombinationFinder algorithm to annotate

18

Description

A set of inserted internal nodes ni, where

A set of inserted leaf nodes yi, where

A set of deleted internal nodes di, where

A set of deleted leaf nodes zi, where

A set of updated leaf nodes ui

A set of absolute updated leaf nodes uai, where

A set of relative updated leaf nodes uri, where

)(1TID ⊆

)(2TIN ⊆

)(2TLY ⊆

)(1TLZ ⊆

UU a ⊆

UU r ⊆

Notation

N

Y

D

Z

U

Ua

Ur

Fig. 10. Notations.

and delete the corresponding tuples of nodes that are not used in the best
matching configuration (lines 5-6, Figure 9(b)). The algorithm annotates the
root nodes of the possible matching subtrees at level (curLevel + 1) whose
parents are not used in the best matching configuration by setting the Flag

attribute in the TempMatching table to “1”. The annotations mean that these
subtrees may be moved to different parent nodes.

Then the BU-findBestMatchingSubtree algorithm deletes the root nodes of
subtrees at level curLevel that are categorized as unmatching subtrees. After
the algorithm determines the best matching subtrees up to the root nodes of
T1 and T2, it populates the best matching subtrees from the TempMatching

table. The best matching subtrees in T1 and T2 are stored in the Matching

table. Note that the TempMatching table also stores the corresponding tuples
of the root nodes of the subtrees that are suspected as moved subtrees. The
semantics of the attributes of the Matching table are Figures 8(a) and (b). The
Matching table storing the best matching subtrees of our example is depicted
in Figure 8(e).

The bottom-up approach is able to find the best matching subtrees in T1 and T2.
Intuitively, a set S is maximized if all subsets si of S are maximized. That is,
if subtrees at level l +1 have maximum similarity score, then subtrees at level
l will also have maximum similarity score. Therefore, the bottom-up approach
is able to find the best matching subtrees by maximizing the similarity scores
of the subtrees from the lower levels to the root nodes.

4 Detecting the Changes

After we are able to identify best matching subtrees in T1 and T2, we are ready
to detect the changes between T1 and T2 by using the information on the best
matching subtrees. There are seven types of changes considered in this article:
insertion of internal nodes, insertion of leaf nodes, deletion of internal nodes,
deletion of leaf nodes, content update of leaf nodes, move among siblings, and
move to different parent nodes. In this section, we shall discuss the concepts
that we shall use in finding the changes. We also present the SQL queries
based on the properties to find the XDeltas.

We now define the notion of parent node with respect to relational schema
that we use to store XML documents as follows.

19

Definition 4.1 [Parent Nodes] Let minsiborder(x) and maxsiborder(x) be
the minimum sibling order and maximum sibling order of an internal node x
respectively. Node i is a parent node of a node n (denoted by parent(n)) iff
level(n) = level(i) + 1, and satisfies:

• if n is a leaf node, then minsiborder(i) ≤ siborder(n) ≤ maxsiborder(i).
• if n is an internal node, then minsiborder(i) ≤ minsiborder(n) and

maxsiborder(i) ≥ maxsiborder(n). 2

Figure 10 depicts the notations that will be used in our discussion.

4.1 Types of Changes

In this section, we shall elaborate the properties for detecting types of changes
in turns.

4.1.1 Insertion

There are two types of insertions: insertion of internal nodes and insertion of
leaf nodes.

Insertion of Internal Nodes

Intuitively, the inserted internal nodes are internal nodes that are in the new
version (T2), but not in the old version (T1). Hence, the inserted internal nodes
must not be the root nodes of best matching subtrees as these nodes are in
both versions. Formally,

Definition 4.2 [Inserted Internal Nodes] Node n is an inserted inter-
nal node if n ∈ I(T2), and ∀jx ∈ I(T1) such that jx 6m n. 2

Example 4.1 We have two best matching subtrees at level 2 (t9 m t109 and
t15 m t103). The node 114 that is the root node of subtree t114 in T2 is an
inserted internal node as the conditions in Definition 4.2 are satisfied.

An internal node i in tree T is identified by four properties of node i (node level,
minimum sibling order, and maximum sibling order). By using Definition 4.2
and these properties of internal nodes, we are able to find inserted internal
nodes.

Insertion of Leaf Nodes

The new leaf nodes are only available in the new version of an XML tree (T2).
We observed that there are two types of inserted leaf nodes as follows.

• Inserted leaf nodes in the newly inserted subtrees. These inserted
leaf nodes must be the child nodes of inserted internal nodes. Note that
the inserted internal nodes are the root nodes of inserted subtrees. Consider

20

two versions of an XML document depicted in Figure 1. The leaf nodes with
identifier 115, 116, and 118 belong to the newly inserted subtree rooted at
node 114.

• Inserted leaf nodes in the best matching subtrees. The parent nodes
of these inserted leaf nodes are the root nodes of best matching subtrees.
Note that the best matching subtrees are in the old and new versions of
XML documents. Consider two versions of an XML document depicted in
Figure 1. The leaf node with identifier 108 is also inserted in the new version.
The parent node of node 108 is node 106 which are matched to node 18
(t18 m t106).

Definition 4.3 [Inserted Leaf Nodes] y ∈ L(T2) is an inserted leaf node
if the following conditions are satisfied:

• if y is in a newly inserted subtree, then parent(y) = ni, where ni ∈ N ,
• if y is in a best matching subtree, then parent(y) = i2, and ∀ax ∈ L(T1)

such that (ax 6↔ y), where parent(ax) = i1 and ti1 m ti2. 2

Note that by using Definition 4.3, we also detect the updated leaf nodes as
they can be decomposed into pairs of deleted and inserted of leaf nodes. For
example, we have t15 m t103. Node 105 which should be an updated leaf node
is detected as an inserted leaf node.

4.1.2 Deletion

There are also two types of deletions: deletion of internal nodes and deletion
of leaf nodes.

Deletion of Internal Nodes

The deleted internal nodes can be determined by using the same intuitions as
one for finding inserted internal nodes. The deleted internal nodes are in the
old version (T1), but not in the new version (T2). The deletion of an internal
node is formally defined as follows.

Definition 4.4 [Deleted Internal Nodes] Node j is a deleted internal
node if j ∈ I(T1), and ∀ix ∈ I(T2) such that ix 6m j. 2

Example 4.2 We have two best matching subtrees at level 2 (t9 m t109 and
t15 m t103). The node 3 that is the root node of subtree t3 in T1 is a deleted
internal node as the conditions in Definition 4.4 are satisfied.

Deletion of Leaf Nodes

Intuitively, the deleted leaf nodes are only available in the old version of an
XML tree (T1). We noticed that there are two types of deleted leaf nodes as
follows.

21

• Deleted leaf nodes in the deleted subtrees. The parent nodes of these
deleted leaf nodes are deleted internal nodes which are the root nodes of
deleted subtrees. For example, the leaf nodes with identifier 4, 5, 7, and 8
belong to the deleted subtree rooted at node 3.

• Deleted leaf nodes in the best matching subtrees. The parent nodes
of these deleted leaf nodes are the root nodes of best matching subtrees.
Consider two versions of an XML document depicted in Figure 1. The leaf
node with identifier 13 is also deleted. This leaf node is in the best matching
subtrees t12 m t112.

Definition 4.5 [Deleted Leaf Nodes] z ∈ L(T1) is an deleted leaf node
if the following conditions are satisfied:

• if z is in a deleted subtree, then parent(z) = di, where di ∈ D,
• if z is in a best matching subtree, then parent(z) = i1, and ∀bx ∈ L(T2)

such that (bx 6↔ z), where parent(bx) = i2 and ti1 m ti2. 2

Note that by using Definition 4.5, we also detect the updated leaf nodes as
they can be decomposed into pairs of deleted and inserted of leaf nodes. For
example, we have t15 m t103. Node 17 which should be an updated leaf node
is detected as a deleted leaf node.

4.1.3 Update

Intuitively, an updated node is available in the first and second versions, but
its value is different. As the updated leaf nodes are detected as pairs of deleted
and inserted leaf nodes by using Definitions 4.5 and 4.3 respectively, we are
able to find the updated leaf nodes from two sets of leaf nodes: inserted leaf
nodes and deleted leaf nodes. In addition, we also need the information on best
matching subtrees in order to guarantee that the updated leaf nodes are in
best matching subtrees. Note that we only consider the update of the content
of leaf nodes. The modification of the name of a node is detected as a pair of
deletion and insertion.

As the position among siblings in ordered XML is important, the update op-
eration can be classified into two types: absolute update operation and relative
update operation. In the absolute update operation, only the content value of
an updated leaf node is changed, while its position among siblings remains
the same. In relative update operation, the content value and position among
siblings of an updated leaf node are changed.

Definition 4.6 [Absolute Updated Leaf Nodes] Let Za ⊆ Z be a set of
deleted leaf nodes and Ya ⊆ Y be a set of inserted leaf nodes. Let za ∈ Za

and ya ∈ Ya be a deleted leaf node and an inserted leaf node respectively.
Let localorder(x) be the local order of a leaf node x. A leaf node ua is an
absolute updated leaf node decomposed as a deletion of leaf node za and
an insertion of leaf node ya if name(za) = name(ya), level(za) = level(ya),

22

localorder(za) = localorder(ya), value(za) 6= value(ya), and (parent(za) m
parent(ya)). 2

Example 4.3 The subtrees rooted at node 15 in T1 and node 103 in T2 are
best matching subtrees. Node 17 is updated from “Assoc Prof” to “Prof”. This
update operation is classified into absolute update operation as name(`17) =
name(`105) (“rank”), level(`17) = level(`105) (“3”), localorder(`17) = localor-
der(`105) (“2”), value(`17) 6= value(`105) (“Assoc Prof” 6= “Prof”), and (t15 m
t103).

Definition 4.7 [Relative Updated Leaf Nodes] Let Zr ⊆ Z be a set of
deleted leaf nodes and Yr ⊆ Y be a set of inserted leaf nodes. Let zr ∈ Zr

and yr ∈ Yr be a deleted leaf node and an inserted leaf node respectively.
A leaf node ur is a relative updated leaf node decomposed as a deletion
of leaf node zr and an insertion of leaf node yr if name(zr) = name(yr),
level(zr) = level(yr), localorder(zr) 6= localorder(yr), value(zr) 6= value(yr),
(parent(zr) m parent(yr)), Zr ∩ Za = ∅, and Yr ∩ Ya = ∅. 2

Example 4.4 The subtrees rooted at node 23 in T1 and node 122 in T2

are best matching subtrees. Node 24 is updated from “Indexing” to “XML
Indexing”. This update operation is classified into relative update opera-
tion as name(`24) = name(`124) (“interest”), level(`24) = level(`124) (“4”),
localorder(`24) 6= localorder(`124) (“1” 6= “2”), value(`24) 6= value(`124) (“In-
dexing” 6= “XML Indexing”), and (t23 m t122).

4.1.4 Move

The move operations are classified into two categories. First, the moved node
changes its position among its siblings in the XML tree. That is, before and
after the move operation, it has same parent but different position among its
siblings. Second, the node (subtree) is moved to be the child of a different
parent. That is, before and after the move operation, it has different parents,
and may have different position among its siblings. These two move operations
are formally defined as follows.

Definition 4.8 [Moved Internal Node] Let S1 and S2 be two subtrees
rooted at nodes i1 ∈ D and i2 ∈ N respectively. Subtree S1 is moved if
(S1 m S2) and satisfies: (a) if S1 is moved among its siblings, then
localorder(i1) 6= localorder(i2), and (parent(i1) m parent(i2)), (b) if S1 is
moved to different parent node, then (parent(i1) 6m parent(i2)). 2

Definition 4.8 defines move operations of internal nodes. The same intuitions
as in Definition 4.8 is used to define move operations of leaf nodes.

Definition 4.9 [Moved Leaf Node] Let `1 and `2 be two leaf nodes where
`1 ∈ Z and `2 ∈ Y respectively. `1 is moved if (`1 ↔ `2) and satisfies: (a) if
`1 is moved among its siblings, then localorder(`1) 6= localorder(`2), and

23

(parent(`1) m parent(`2)), (b) if `1 is moved to different parent node,
then (parent(`1) 6m parent(`2)). 2

From Definitions 4.8 and 4.9, we notice that a node is moved among its siblings
if its local order is changed. The local order of a node may be changed because
there are insertions/deletions of its sibling nodes. We observed that a deletion
of node a, that has local order equal to k, will decrease the local orders of its
siblings, that have local order greater than k, by one. Another observation is
that an insertion of node b to be the k-th child of a parent node p will increase
the local orders of the child nodes of node p, that have local order greater
than or equal to k, by one. Note that we are not interested in the changes
on the local orders because of insertions/deletions of its sibling nodes. Hence,
we need to determine the nodes that are really moved among their siblings.
We are able to determine these moved nodes by using the above observations
for simulating the insertions/deletions of sibling nodes that affect on the local
orders. We shall elaborate further in the subsequent sections.

4.2 SQL Queries

In this section, we shall present the SQL queries that are used to detect the
changes. The SQL queries are written based on the definitions presented in
the previous section.

4.2.1 Insertion

Insertion of Internal Nodes

The inserted internal nodes can be found by using the AncestorInfo and
Matching tables. As the internal nodes in the AncestorInfo table are identi-
fied by their node level, minimum sibling orders, and maximum sibling orders,
the Level, MinSibOrder, and MaxSibOrder attributes in the AncestorInfo

table are used. We also use the Doc ID attribute of the AncestorInfo table as
inserted internal nodes must be in the second version of an XML document.
The DID1, DID2, Level, MinSO2, and MaxSO2 attributes of the Matching table
are used to find inserted internal nodes. The SQL query depicted in Fig-
ure 11(a) (denoted by SQL-01) detects a set of newly inserted internal nodes.
The did1 and did2 refer to the document id of the old and new versions of an
XML document respectively.

The SQL-01 is able to find all inserted internal nodes. Suppose we have an
internal node n. If n is in the new version, then the condition (line 6) in
the WHERE-clause of SQL-01 is true. If n has a corresponding node in the old
version, then the information on n will be the query result of sub query of
SQL-01 (lines 8−10). Consequently, the condition (lines 7−10) in the WHERE-
clause of SQL-01 is false. But if n has no corresponding node in the old version,
then the information on n will not be the query result of sub query of SQL-01

24

(c) Detecting Inserted Leaf Nodes (2).

1 SELECT DISTINCT
2 did1, did2, NODENAME, NODELEVEL,
3 MINSIBORDER, MAXSIBORDER, LOCALORDER
4 FROM ANCESTORINFO
5 WHERE
6 DOC_ID = did2 AND
7 (NODELEVEL,MINSIBORDER,MAXSIBORDER) NOT IN
8 (SELECT LEVEL, MINSO2,MAXSO2
9 FROM MATCHING
10 WHERE DID1 = did1 AND DID2 = did2)

(a) Detecting Inserted Internal Nodes.

1 SELECT DISTINCT
2 did1, did2, PV.SIBLINGORDER, PV.PATH_ID,
3 PV.LEAFVALUE, PV.LOCALORDER,
4 PV.LEVEL
5 FROM LEAFVALUE AS PV, INS_INT AS II
6 WHERE
7 PV.DOC_ID = did1 AND
8 II.DID1 = did1 AND II.DID2 = did2 AND
9 PV.SIBLINGORDER BETWEEN
 II.MINSO AND II.MAXSO AND
10 PV.LEVEL = II.LEVEL+1

(b) Detecting Inserted Leaf Nodes (1).

1 SELECT
2 did1, did2, PV.LEVEL, PV.SIBLINGORDER,
3 PV.PATH_ID, PV.LEAFVALUE, PV.LOCALORDER
4 FROM LEAFVALUE AS PV,
5 (SELECT DISTINCT
6 M.MINSO1, M.MAXSO1, M.MINSO2, M.MAXSO2,
7 PV.PATH_ID, PV.LEAFVALUE
8 FROM MATCHING AS M, LEAFVALUE AS PV
9 WHERE
10 M.DID1 = did1 AND M.DID2 = did2 AND
11 PV.DOC_ID = did2 AND
12 PV.LEVEL = M.LEVEL+1 AND
13 PV.SIBLINGORDER BETWEEN M.MINSO2 AND M.MAXSO2
14 EXCEPT ALL
15 SELECT DISTINCT
16 M.MINSO1, M.MAXSO1, M.MINSO2, M.MAXSO2,
17 PV.PATH_ID, PV.LEAFVALUE
18 FROM MATCHING AS M, LEAFVALUE AS PV
19 WHERE
20 M.DID1 = did1 AND M.DID2 = did2 AND
21 PV.DOC_ID = did1 AND
22 PV.LEVEL = M.LEVEL+1 AND
23 PV.SIBLINGORDER BETWEEN M.MINSO1 AND M.MAXSO1) AS D
24 WHERE
25 PV.DOC_ID = did2 AND
26 PV.SIBLINGORDER BETWEEN D.MINSO2 AND D.MAXSO2 AND
27 PV.PATH_ID = D.PATH_ID AND
28 PV.LEAFVALUE = D.LEAFVALUE

Fig. 11. Detecting Changes: SQL Queries (1).

(lines 8−10). Consequently, the condition (lines 7−10) in the WHERE-clause of
SQL-01 is true. Therefore, node n that is in the result of SQL-01 is an inserted
node.

The SQL query depicted in Figure 11(a) is able to return all inserted internal
nodes. The result of this SQL query is stored in the INS INT table as depicted
in Figure 13(a). The semantics of attributes of the INS INT table are depicted
in Figures 12(d) and (e).

Insertion of Leaf Nodes

Recall that there are two types of inserted leaf nodes: inserted leaf nodes
in newly inserted subtrees, and inserted leaf nodes in best matching subtrees.
We use the Doc ID, Path ID, Level, and SiblingOrder attributes of the
LeafValue table to detect the inserted leaf nodes in inserted subtrees. The
DID1, DID2, Level, MinSO and MaxSO attributes of the INS INT table are also
used. To detect the inserted leaf nodes in best matching subtrees we use the
same attributes of the LeafValue table as the ones for detecting the inserted
leaf nodes in inserted subtrees. We need to use the DID1, DID2, Level, MinSO1,
MaxSO1, MinSO2, and MaxSO2. Note that by using these properties, we also de-
tect the updated leaf nodes as they can be decomposed into a pair of deleted
and inserted leaf nodes.

The SQL query depicted in Figure 11(b) (denoted by SQL-02A) is able to
detect all inserted leaf nodes in newly inserted subtrees. The child nodes of an
inserted node must also be inserted nodes. The SQL query SQL-02A basically
retrieves the leaf child nodes of inserted internal nodes by using Definition 4.1.

All inserted leaf nodes in best matching subtrees are able to be detected by
using the SQL query depicted in Figure 11(c) (denoted by SQL-02B). Let

25

r1 and r2 be two root nodes of best matching subtrees in first and second
versions respectively. Let Lr1 and Lr2 be two sets of leaf nodes which are the
child nodes of r1 and r2 respectively. Let Y(r1,r2) be a set of inserted leaf nodes
in best matching subtrees rooted at r1 and r2. Intuitively, Y(r1,r2) = Lr2 −Lr1 .
This intuition is similar to the intuition of Definitions 4.3. The sub queries in
lines 5 − 13 and 15 − 23 of SQL-02B are used to retrieve the leaf nodes that
are the child nodes of r2 and r1 respectively. The EXCEPT ALL statement is
used to find yi ∈ Lr2 where ∀aj ∈ Lr1 such that (aj 6↔ yi). In other words,
this statement is used to find Y(r1,r2). Finally, we need to find other detailed
information on inserted leaf nodes, such as the sibling orders and local orders,
by joining Y(r1,r2) with Lr2 (lines 25-28).

The results of these SQL queries are stored in the INS LEAF table as depicted
in Figure 13(c). The semantics of attributes of the INS LEAF table are depicted
in Figures 12(d) and (e).

4.2.2 Deletion

Deletion of Internal Nodes

The deleted internal nodes can also be found by using the AncestorInfo and
Matching tables. We use the similar attributes as for finding inserted internal
nodes. The DID1, DID2, Level, MinSO1, and MaxSO1 attributes of the Matching
table are used to find deleted internal nodes. The SQL query depicted in
Figure 11(a) can be used to detect a set of deleted internal nodes after slight
modification. We replace “MINSO2” and “MAXSO2” in line 8 with “MINSO1” and
“MAXSO1” respectively. We also replace the “did2” in line 7 to “did1”. The
modified SQL query depicted in Figure 11(a) is denoted by SQL-03. The SQL
query SQL-03 is able to detect all deleted internal nodes. The correctness of
the SQL query SQL-03 can be examined by following the similar intuitions as
examining the correctness of the SQL query SQL-01. The result of this SQL
query is stored in the DEL INT table as depicted in Figure 13(b). The semantics
of attributes of the DEL INT table are depicted in Figures 12(d) and (e).

Deletion of Leaf Nodes

Similar to the inserted leaf nodes, the deleted leaf nodes are also classified into
two categories: deleted leaf nodes in deleted subtrees, and deleted leaf nodes in
best matching subtrees. We also use the SQL queries depicted in Figures 11(b)
and (c) for detecting the deleted leaf nodes after slight modification. We re-
place “INS INT” in line 5 in Figure 11(b) by “DEL INT”. We also replace the
“did2” in line 7 in Figure 11(b) and in lines 11 and 25 in Figure 11(c) with
“did1”. The “did1” in line 21 in Figure 11(c) is replaced by “did2”. We also re-
place “MINSO2” and “MAXSO2” in lines 13 and 26 in Figure 11(c) by “MINSO1”
and “MAXSO1” respectively. The “MINSO1” and “MAXSO1” in line 23 in Fig-
ure 11(c) are replaced by “MINSO2” and “MAXSO2” respectively. The modified

26

1 SELECT DISTINCT
2 did1, did2, DL.PATH_ID, DL.LEVEL,
3 DL.LO AS LO1, IL.LO AS LO2,
4 DL.SO AS SO1, IL.SO AS SO2,
5 DL.VALUE AS V1, IL.VALUE AS V2
6 FROM DEL_LEAF AS DL,
7 INS_LEAF AS IL, MATCHING AS C
8 WHERE
9 DL.VALUE != IL.VALUE AND
10 DL.LO = IL.LO AND
11 DL.PATH_ID = IL.PATH_ID AND
12 DL.SO BETWEEN
 C.MINSO1 AND C.MAXSO1 AND
13 DL.LEVEL = (C.LEVEL+1) AND
14 IL.SO BETWEEN
 C.MINSO2 AND C.MAXSO2 AND
15 IL.LEVEL = (C.LEVEL+1) AND
16 IL.DID1 = did1 AND
17 IL.DID2 = did2 AND
18 DL.DID1 = did1 AND
19 DL.DID2 = did2

(a) Detecting Absolute Updated Leaf Nodes.

1 SELECT DISTINCT did1, did2, DL.PATH_ID, DL.LEVEL,
2 DL.LO AS LO1, IL.LO AS LO2, DL.SO AS SO1,
3 IL.SO AS SO2, DL.VALUE AS V1, IL.VALUE AS V2
4 FROM DEL_LEAF AS DL, INS_LEAF AS IL, MATCHING AS C
5 WHERE
6 DL.VALUE != IL.VALUE AND DL.LO != IL.LO AND
7 DL.PATH_ID = IL.PATH_ID AND
8 DL.SO BETWEEN C.MINSO1 AND C.MAXSO1 AND
9 DL.LEVEL = (C.LEVEL+1) AND
10 IL.SO BETWEEN C.MINSO2 AND C.MAXSO2 AND
11 IL.LEVEL = (C.LEVEL+1) AND
12 IL.DID1 = did1 AND IL.DID2 = did2 AND
13 DL.DID1 = did1 AND DL.DID2 = did2

(b) Detecting Relative Updated Leaf Nodes.

DEL_INT (DID1, DID2, NAME, LEVEL,
 MINSO, MAXSO, LO)

INS_INT (DID1, DID2, NAME, LEVEL,
 MINSO, MAXSO, LO)

DEL_LEAF (DID1, DID2, PATH_ID, SO,
 LO, LEVEL, VALUE)

INS_LEAF (DID1, DID2, PATH_ID, SO,
 LO, LEVEL, VALUE)

UPD_LEAF (DID1, DID2, PATH_ID, LO1,
 LO2, SO1, SO2, LEVEL, VALUE1,
 VALUE2)

(d) Tables and Attributes (e) Description of Attributes

DID1
DID2

NAME
LEVEL
MINSO
MAXSO

SO
PATH_ID
VALUE

SO1
SO2

VALUE1
VALUE2

Attribute

MOV_INT (DID1, DID2, NAME, LEVEL,
 LO1, LO2, MINSO1, MAXSO1,
 MINSO2, MAXSO2)

MOV_LEAF (DID1, DID2, LEVEL, LO1,
 LO2, PATH_ID, SO1, SO2, VALUE)

LO1
LO2

The document id of the first document
The document id of the second document
The internal node's name
The node's level
The minimum sibling order of an internal node
The maximum sibling order of an internal node
The sibling order of a leaf node
The path id of a leaf node
The leaf node's value

The sibling order of a leaf node in the first version
The sibling order of a leaf node in the second version
The old value of an updated node
The new value of an updated node

Description

The local order of a node in the first version
The local order of a node in the second version

LO The local order of a node

1 DELETE FROM DEL_LEAF
2 WHERE
3 DID1 = did1 AND DID2 = did2 AND
4 (PATH_ID, LO, SO, VALUE) IN
5 (SELECT PATH_ID, LO1, SO1, VALUE1
6 FROM UPD_LEAF
7 WHERE DID1 = did1 AND DID2 = did2)

(c) Delete Updated Leaf Nodes Detected as Deleted Leaf Nodes

Fig. 12. SQL Queries (2) and Table For Storing Delta.

SQL query depicted in Figures 11(b) and (c) are denoted by SQL-04A and
SQL-04B respectively.

The correctness of SQL-04A and SQL-04B can be shown by following similar
intuitions as showing the correctness of SQL-02A and SQL-02B respectively.
The results of these SQL queries are stored in the DEL LEAF table as shown in
Figure 13(d). The semantics of attributes of the DEL LEAF table are depicted
in Figures 12(d) and (e).

4.2.3 Update

Update operations on leaf nodes can be classified into absolute updates and
relative updates. In the absolute update, the node’s position in DOM tree is
not changed, but the value has changed. In the relative update operation,
the absolute position as well as the value of the node has changed due to in-
sert/delete/move operations on other nodes. We detect the updated leaf nodes
by using the INS LEAF and DEL LEAF tables in which inserted and deleted leaf
nodes are stored respectively. In addition, we also need to use the Matching

table to guarantee that the updated leaf nodes are in best matching subtrees.

Detecting Absolute Updates

According to Definitions 4.6, we are able to detect absolute update operations
by using the DID1, DID2, Level, SiblingOrder, LocalOrder, Path Id, and

27

Name

staff
research

Level

2
3

MinSO

6
7

MaxSO

7
7

(a) Inserted Internal Nodes (INS_INT Table)

(b) Deleted Internal Nodes (DEL_INT Table)

(c) Inserted Leaf Nodes (INS_LEAF Table)

(d) Deleted Leaf Nodes (DEL_LEAF Table)

ID2

105

(e) Updated Leaf Nodes (UPD_LEAF Table)

4
3

Value

Semantic Web
Steve
Asst Prof
Information Retrieval
Prof

Path_ID

4
2
3
4
3

ID

13
4
7
5
8
17

Path_ID

4
2
4
3
4
3

SO

5
2
3
2
3
6

LO

1
1
1
2
2
2

ID1

17

Path_ID

3

LO1

2

SO1

6

SO2

2

Value1

Assoc Prof

Value2

Prof

SO

7
6
6
3
2

LO

1
1
2
2
2

DID2

2
2
2
2
2

DID1

1
1
1
1
1

Level

4
3
3
4
3

ID

118
115
116
108
105

DID2

2
2

DID1

1
1

ID

114
117

LO

DID2

2
2
2
2

2

DID1

1
1
1
1

1
21

Level

4
3
4
4

3
4

Name Level MinSO MaxSODID2DID1ID LO

staff
research

2
3

2
3

3
3

3
6

2
3

2
2

1
1

LO2

2

Value

Data Mining
Smith
Web Mining
Assoc Prof
Multimedia Mining
Assoc Prof

Level

3

DID2DID1

21

Fig. 13. Delta.

Value attributes of the INS LEAF and DEL LEAF tables. For matching internal
nodes in the Matching table, we use DID1, DID2, Level, MinSO1, MaxSO1,
MinSO2, and MaxSO2 attributes. The SQL query for detecting absolute update
operations is shown in Figure 12(a) (denoted by SQL-05A).

The SQL-05A is able to find all absolute updated leaf nodes. Lines 12− 15 of
SQL-05A are used to guarantee that pairs of deleted and inserted leaf nodes
are the child nodes of the root nodes of best matching subtrees by following
Definition 4.1. Each pair of leaf nodes must have the same local order (line
10), and the same path from the root nodes (line 11), but have different value
(line 9). Recall that the updated leaf nodes are detected as pairs of deleted
and inserted leaf nodes. Hence, the SQL query depicted in Figure 12(c) is used
to delete the corresponding tuples of absolute updated leaf nodes detected as
deleted leaf nodes in the DEL LEAF table. We also need to delete the absolute
updated nodes detected as inserted leaf nodes by using the SQL query depicted
in Figure 12(c) (after slight modification). We replace “DEL LEAF” in line 1
with “INS LEAF”. The “LO1”, “SO1”, and “VALUE1” in line 5 are replaced by
“LO2”, “SO2”, and “VALUE2” respectively.

Detecting Relative Updates

We use the same attributes of the INS LEAF, DEL LEAF, and Matching tables
as ones for detecting absolute updates. We also use the UPD LEAF in which
absolute update leaf nodes are stored in order to guarantee the leaf nodes that
are already detected as absolute updates are not detected as relative updates.
Based on Definition 4.7, the relative update operations can be detected by
using the SQL query in Figure 12(b) (denoted by SQL-05B). Lines 8-11 are
used to guarantee that the parent nodes of the updated leaf nodes are best
matching internal nodes.

We observed that the result of the SQL query SQL-05B may not be correct
for certain cases. Let us elaborate by using an example. Suppose we have two
trees as depicted in Figure 14(a). The result of the SQL query depicted in Fig-
ure 12(b) is shown in Figure 14(b) (partial view only). We notice that nodes
B with values “V2” and “V4” are detected as updated leaf nodes twice. This

28

is because the SQL query depicted in Figure 12(b) only finds the leaf nodes
which have the same paths, but different values and local orders. We use up-
dateCorrector algorithm that is depicted in Figure 14(c) to correct the result.
First, the algorithm determines the updated leaf nodes in the first version
that are detected as updated leaf nodes more than once (line 2, Figure 14(c))
by using the SQL query Q1 as depicted in Figure 14(d). Lines 17 and 18 in
Figure 14(d) are used to retrieve only one row. The SQL query Q1 returns
R. Next, the algorithm deletes the incorrect tuples (line 3, Figure 14(c)) by
using the SQL query in Figure 14(e). A tuple t is an incorrect tuple if one and
only one of the following conditions is satisfied: 1) the VALUE1 of tuple t is
equal to VALUE1 of R, 2) the VALUE2 of tuple t is equal to VALUE2 of R. We
also do the same process for the updated leaf nodes in the second version that
are detected as updated leaf nodes more than once. Note that the SQL query
Q2 is generated by slightly modifying the query in Figure 14(d). We replace
the “VALUE1” in lines 7, 12, 13, and 20 in Figure 14(d) with ‘VALUE2”. The
updateCorrector algorithm results the UPD LEAF table (without highlighted
rows) as depicted in Figure 14(b). Note that we also need to delete the corre-
sponding tuples of relative updated leaf nodes detected as pairs of deleted and
inserted leaf nodes stored in the DEL LEAF and INS LEAF tables respectively.
The detected updated leaf nodes are stored in the UPD LEAF table as shown
in Figure 13(e). The semantics of the attributes of the UPD LEAF table are
depicted in Figures 12(d) and (e).

4.2.4 Move Operations

In this section, we shall discuss how the move operations are detected. Ac-
cording to the discussion in Section 4, move operations are classified into move
among siblings and move to different parent nodes. Let us elaborate further
how to detect each type of move operations.

Move Among Siblings

The naive approach of detecting the movement of nodes among the siblings is
to check whether or not the local order of a node has changed. However, this
approach may lead to the detection of non-optimal deltas in certain situations.
We illustrate this with a simple example. Suppose we have two versions of
XML trees as depicted in Figure 15(a). Node e2 with value “New” is a newly
inserted node. If we do not consider this newly inserted node during the move
detection process, then we may detect that nodes e2 with values “C” and “D”
are moved among their siblings since they have different local order values
in the old and new versions. Hence, the detected delta consists of two move
operations and an insert operation. However, the optimal delta should consist
of only an insert operation. To overcome this problem, we need to simulate
the insertions and deletions occurring under the same parent before detecting
moved nodes.

29

A

B B B

A

B B B

T1 T2

V1 V2 V3 VA V1 VB

DID1

..

DID2

..

LEVEL

..
..

SO1

..

..

SO2

..

..

(b) Updated Leaf Nodes

..

..
..
..

..

..

VALUE
1

V2
V2
V4
V4

VA
VB

VALUE
2

VA
VB

(a) Example

1 SELECT
2 U.SO1, U.SO2, U.PATH_ID,
3 U.VALUE1, U.VALUE2
4 FROM UPD_LEAF AS U,
5 (SELECT DID1, DID2, SO1, SO2,
6 PATH_ID, VALUE1, COUNT(VALUE1)
7 FROM UPD_LEAF
8 WHERE DID1 = did1 AND DID2 = did2
9 GROUP BY DID1, DID2, SO1, SO2,
10 PATH_ID, VALUE1
11 HAVING COUNT(VALUE1)>1) AS T
12 WHERE
13 U.DID1 = did1 AND U.DID2 = did2 AND
14 U.SO1 = T.SO1 AND U.SO2 = T.SO2 AND
15 U.PATH_ID = T.PATH_ID AND
16 U.VALUE1 = T.VALUE1
17 FETCH FIRST 1 ROWS ONLY
18 OPTIMIZE FOR 1 ROWS

Input: Table UPD_LEAF, did1, did2
Output: Corrected Table UPD_LEAF

1 Algorithm updateCorrector {
2 while (result R of query Q1 is not empty){
3 correctUpdateTable(R);
4 }
5 while (result R of query Q2 is not empty){
6 correctUpdateTable(R);
7 }
8 }

(d) SQL Query (1)

(c) Algorithm updateCorrector

1 DELETE FROM UPD_LEAF
2 WHERE
3 DID1 = did1 AND DID2 = did2 AND
5 SO1 = R.SO1 AND SO2 = R.SO2 AND
6 PATH_ID = R.PATH_ID AND
7 ((VALUE1 = R.VALUE1 AND
8 VALUE2 != R.VALUE2) OR
9 (VALUE1 != R.VALUE1 AND
10 VALUE2 = R.VALUE2))

(e) SQL Query (2)

PATH_
ID

..

..

..

..

B

V4

B

V3

LO1

2
2

LO2

1
3

4
4

1
3

Fig. 14. Example of the Uncomplete Result in Update Operation.

Figure 15(b) depicts the algorithm for detecting the movement of nodes among
their siblings. First, the algorithm generates a moveList table that initially
consists of nodes that are in the matching subtrees. The SQL queries shown
in Figures 15(c) and (d) are used to generate the moveList table. The SQL
query depicted in Figure 15(c) joins the Matching table in order to guarantee
that the moved leaf nodes are in the best matching subtrees. For example, the
moveList table is depicted in Figure 16(a) (partial view only). The second
step of the algorithm is to simulate the insertions and deletions by adjusting
the local orders of the nodes affected by these operations. The adjustment of
the local orders is based on the observations as in Section 4.1. For instance,
the moveList table after the adjustment of the local orders is depicted in Fig-
ure 16(b) (partial view only). Finally, we delete the tuples in the moveList

that have identical values of the LO1 and LO2 attributes. The moveList ta-
ble after deleting the tuples that have identical values of the LO1 and LO2

attributes is shown in Figure 16(c). The moved internal nodes among their
siblings are stored in the MOV INT table. The moved leaf nodes among their
siblings are stored in the MOV LEAF table. The attributes of the MOV INT and
MOV LEAF tables are depicted in Figures 12(d) and (e).

Move to Different Parent Nodes

A particular node that is moved to different parent node is detected as a pair
of deletion and insertion. Hence, we are able to determine the nodes that
are moved to different parent nodes by querying the DEL INT and INS INT

tables (for moved internal nodes), and the DEL LEAF and INS LEAF tables (for
moved leaf nodes). However, for the moved internal nodes, the subtrees that

30

Input: MATCHING, LEAFVALUE tables
Output: moveList table

1 generateMTable(T.minso1, T.maxso1,
 T.minso2, T.maxso2);
2 adjustLocalOrder();
3 DELETE FROM moveList WHERE LO1=LO2;
4 return moveList table

(b) Algorithm findMoveAmongSibling.

1 SELECT
2 did1, did2, P1.SIBLINGORDER,
3 0 AS MAXSO1, P2.SIBLINGORDER,
4 0 AS MAXSO2, P1.LEAFVALUE,
5 P1.LOCALORDER, P2.LOCALORDER, P1.LEVEL
6 FROM LEAFVALUE AS P1,
 LEAFVALUE AS P2, MATCHING AS C
7 WHERE
8 P1.DOC_ID = did1 AND
9 P2.DOC_ID = did2 AND
10 C.DID1 = did1 AND C.DID2 = did2 AND
11 C.SCORE < 1.000 AND
12 P1.PATH_ID = P2.PATH_ID AND
13 P1.LEVEL = (C.LEVEL+1) AND
14 P2.LEVEL = P1.LEVEL AND
15 P2.LEAFVALUE = P1.LEAFVALUE AND
16 P1.SIBLINGORDER BETWEEN
 C.MINSO1 AND C.MAXSO1 AND
17 P2.SIBLINGORDER BETWEEN
 C.MINSO2 AND C.MAXSO2

1 SELECT
2 did1, did2, C.MINSO1, C.MAXSO1, C.MINSO2,
3 C.MAXSO2, '-' AS VALUE, C.LO1, C.LO2, C.LEVEL
4 FROM MATCHING AS C
5 WHERE DID1 = did1 AND DID2 = did2

(d) Second Query

(c) First Query

(a) Example

e1

e2 e2 e2 e2

A B C D

e1

e2 e2 e2 e2

A B C D

e2

New

(i) T1 (ii) T2

Fig. 15. Move Among Siblings: Example, Algorithm, and SQL Queries.
LO2

1
3
2

LO1

1
2
3

Value

Information System
-
-

MaxSO2

-
5
3

MinSO2

1
4
2

MaxSO1

-
5
7

MinSO1

1
4
6

......-............

(a) moveList Table: Intial state (b) moveList Table: After applying insertions and deletions

LO2

1
3
2

LO1

1
3
4

MaxSO2

-
5
3

MinSO2

1
4
2

MaxSO1

-
5
7

MinSO1

1
4
6

..................

LO2

3
2

LO1

2
3

Value

-
-

MaxSO2

5
3

MinSO2

4
2

MaxSO1

5
7

MinSO1

4
6

(c) moveList Table: Final state

Value

Information System
-
-
...

Level

2
2
2
...

Level

2
2
2
...

Level

2
2

DID2

2
2

DID1

1
1

DID2

2
2

DID1

1
1

2
2

1
1

DID2

2
2

DID1

1
1

2
2

1
1

Fig. 16. Move Among Siblings: moveList Table.

are rooted at these moved internal nodes should be matching subtrees. This
leads us to have a better quality of XDelta. Note that we only consider the
movement of nodes to different parent nodes at the same level. The movement
of nodes to different parent nodes at different level will be detected as pairs
of deletion and insertion.

In the bottom-up approach, these moved internal nodes can be found by using
the DEL INT, INS INT, and TempMatching tables. Recall that the TempMatching
table has Flag attribute that is used to annotate the root nodes that are can-
didates to be the root nodes of moved subtrees. The possible moved subtrees
have the Flag attribute equal to “1”. This indicates that subtrees P (in the
old version) and Q (in the new version) rooted at nodes p and q respectively
are matching subtrees, but parent(p) 6m parent(q). parent(p) and parent(q)
are detected as deleted and inserted internal nodes respectively. Hence, nodes
p and q are also determined as deleted and inserted internal nodes. The SQL
query in Figure 17(a) is used to detect the internal nodes that are moved to
different parent nodes. The result of the SQL query is stored in the MOV INT

table. The next step is to find all the leaf nodes that are in moved subtrees.
These leaf nodes can be found in the DEL LEAF and INS LEAF tables. The infor-
mation on the leaf nodes that are in moved subtrees is stored in the MOV LEAF

table. The attributes of the MOV INT and MOV LEAF tables are depicted in Fig-
ures 12(d) and (e).

31

1 SELECT
2 D.DID1, D.DID2, T.LEVEL, I.NAME,
3 D.LOCALORDER, I.LOCALORDER,
4 D.MINSO, D.MAXSO, I.MINSO, I.MAXSO
5 FROM TEMPMATCHING AS T, INS_INT AS I,
6 DEL_INT AS D
7 WHERE
8 T.FLAG = 1 AND I.NAME = D.NAME AND
9 I.DID1 = did1 AND I.DID2 = did2 AND
10 D.DID1 = did1 AND D.DID2 = did2 AND
11 T.MINSO1 = D.MINSO AND
12 T.MAXSO1 = D.MAXSO AND
13 T.MINSO2 = I.MINSO AND
14 T.MAXSO2 = I.MAXSO AND
15 T.LEVEL = I.LEVEL AND
16 T.LEVEL = D.LEVEL

(a) Detecting Moved Internal Nodes

1 SELECT
2 D.DID1, I.DID2, D.LEVEL, D.PATH_ID, D.LOCALORDER,
3 I.LOCALORDER, D.SIBLINGORDER, I.SIBLINGORDER,
4 I.VALUE
5 FROM DEL_LEAF AS D, INS_LEAF AS I,
6 MATCHING AS C1, MATCHING AS C2
7 WHERE
8 D.DID1 = did1 AND D.DID2 = did2 AND
9 I.DID1 = did1 AND I.DID2 = did2 AND
10 C1.DID1 = did1 AND C1.DID2 = did2 AND
11 C2.DID1 = did1 AND C2.DID2 = did2 AND
12 D.PATH_ID = I.PATH_ID AND D.VALUE = I.VALUE AND
13 D.LEVEL = C1.LEVEL+1 AND I.LEVEL = C2.LEVEL+1 AND
14 C1.LEVEL = C2.LEVEL AND
15 D.MINSO >= C1.MINSO1 AND D.MAXSO <= C1.MAXSO1 AND
16 I.MINSO >= C2.MINSO2 AND I.MAXSO <= C2.MAXSO2

(b) Detecting Moved Leaf Nodes

Fig. 17. Move To Different Parent Nodes: SQL Queries.

In the top-down approach, finding the internal nodes that are moved to differ-
ent parent nodes is a time-consuming process. Suppose we have two subtrees
P (in the old version) and Q (in the new version) rooted at nodes p and q
respectively. When parent(p) has no matching subtree in the new version, all
subtrees in the subtree rooted at parent(p) (including subtree P) will not be
compared to the subtrees in the new version. Similarly, when parent(q) has
no matching subtree in the old version, all subtrees in the subtree rooted at
parent(q) (including subtree Q) will not be compared to the subtrees in the
old version. That is, we do not have information on the matching subtrees
that are in the subtrees rooted at parent(p) and parent(q). This leads us to
find the information on the matching subtrees that are in the subtrees rooted
at parent(p) and parent(q). Hence, in the top-down approach, the moved in-
ternal nodes are detected as pairs of deleted and inserted internal nodes in
order not to sacrifice the performance of the top-down approach.

The leaf nodes are also able to be moved to different parent nodes. Both
approaches in Xandy are able to detect these moved leaf nodes. The SQL
query depicted in Figure 17(b) is used to find the leaf nodes that are moved
to different parent nodes. We also use the Matching table in order to make
sure that the parent nodes of these moved leaf nodes are in both versions.
Lines 13-16 are used to guarantee that the parent nodes of these moved leaf
nodes are in both versions. Line 12 is used to ensure that these leaf nodes are
matching leaf nodes. The result of the query is stored in the MOV LEAF table.

5 Experimental Results

In this section, we examine the performance of Xandy approaches. The top-
down and bottom-up approaches are implemented in Java. We ran the ex-
periments on a Microsoft Windows 2000 Professional machine having Intel
Pentium 4 1.7 GHz processor with 512 MB of memory. The database system
we used was IBM DB2 UDB 8.1. We create two databases, one is for the top-
down approach, and another is for the bottom-up approach. We specify the
query workload to the Design Advisor, and the indexes on the relations are
created based on the advice of The Design Advisor.

32

Dataset

TCSD-01
TCSD-02
TCSD-03
TCSD-04

TCSD-05
TCSD-06
TCSD-07

Size
(KB)

51
75

212

686
1,075

129 1,745

Number of
Nodes

1,239
1,821
3,062
5,100

16,526
25,844
41,803

Dataset

SIGMOD-01
SIGMOD-02
SIGMOD-03
SIGMOD-04
SIGMOD-05
SIGMOD-06

SIGMOD-07

Size
(KB)

13
21

70
104
180

34

337

Number of
Nodes

331
544
890

1,826
2,718
4,717

8,794
SIGMOD-08 72118,866
SIGMOD-09 1,44437,725
SIGMOD-10 3,43189,323
SIGMOD-11 6,635172,754
SIGMOD-12 11,167290,539 TCSD-08 2,84269,043

(a) SIGMOD Record (b) Dictionary

Dataset
Size
(KB)

Number of
Nodes

Dataset Size
(KB)

Number of
Nodes

Fig. 18. Dataset.

There are two synthetic data sets based on the SIGMOD Record DTD 1 (SIG-
MOD Data sets) and Oxford English Dictionary 2 (TCSD Data sets) [16].
SIGMOD data sets are represented the data-centric documents, and TCSD
data sets are represented the text-centric documents. We generated the second
version of each XML document by using our own change generator. We dis-
tributed the percentage changes equally for each type of changes. Figures 18(a)
and (b) show the characteristics of the SIGMOD and TCSD data sets respec-
tively. Note that we focus on the number of nodes in our data sets as the
higher the number of nodes in a tree the database engine will involve more
number of tuples for processing.

We also studied the performance of the state-of-the-art approaches. Unfortu-
nately, despite our best efforts (including contacting the authors), we could
not get the Java version of XyDiff [4]. Hence, we compared our approaches to
the Java version of X-Diff[15] 3 . In addition, we also show the performance
of the C version of XyDiff in order to know the performance of XyDiff in
detecting the changes on our data sets. The C version of XyDiff was run in a
Pentium 4 1.7 GHz processor with 512 MB of memory with Red Hat Linux 9
operating system.

5.1 Execution Time vs Number of Nodes

In these sets of experiments, we study the performance of our approaches for
various sizes of XML documents. We use two data sets: SIGMOD data sets
and TCSD data sets. We set the percentages of changes to “3%” and “9%”
for the SIGMOD data sets, and to 3% for the TCSD data sets.

In the first set of experiments, we study the performance of the approaches by
using SIGMOD data sets. Figures 19(a) and (d) depict the performance of the
first phase (“Finding the best matching subtrees”) of our approaches when the
percentages of changes are set to “3%” and “9%” respectively. The bottom-up
approach has a better performance than the top-down approach. In average,
the performance of the bottom-up approach is about 5 times faster than the
top-down approach. Figures 19(b) and (e) depict the performance of the second
phase (“Detecting the changes”) of our approaches when the percentages of
changes are set to “3%” and “9%” respectively. We notice that the bottom-up

1 http://www.acm.org/sigmod/record/xml/
2 http://www.oed.com
3 Downloaded from http://www.cs.wisc.edu/∼yuanwang/xdiff.html

33

1

10

100

1000

10000

100000

100 1000 10000 100000 1000000

Number of Nodes

E
xe

cu
tio

n
 T

im
e

(s
) Top-Down

Bottom-up

0.1

1

10

100

1000

10000

100 1,000 10,000 100,000 1,000,000

Number of Nodes

E
xe

cu
tio

n
 T

im
e

(s
)

Top-Down

Top-Down (with move)

Bottom-Up

Bottom-Up (with move)

0.1

1

10

100

1000

10000

100000

100 1,000 10,000 100,000 1,000,000

Number of Nodes

E
xe

cu
tio

n
 T

im
e

(s
)

Top-Down
Top-Down (with move)
Bottom-Up
Bottom-Up (with move)
X-Diff
XyDiff

1

10

100

1000

10000

100000

100 1000 10000 100000 1000000

Number of Nodes

E
xe

cu
tio

n
 T

im
e

(s
)

Top-Down

Bottom-up

0.1

1

10

100

1000

10000

100 1,000 10,000 100,000 1,000,000

Number of Nodes

E
xe

cu
tio

n
 T

im
e

(s
)

Top-Down

Top-Down (with move)

Bottom-Up

Bottom-Up (with move)

0.1

1

10

100

1000

10000

100000

100 1,000 10,000 100,000 1,000,000

Number of Nodes

E
xe

cu
tio

n
 T

im
e

(s
)

Top-Down
Top-Down (with move)
Bottom-Up
Bottom-Up (with move)
X-Diff
XyDiff

(a) Phase 1: Finding Best Matching Subtrees (3%)

(d) Phase 1: Finding Best Matching Subtrees (9%)

(b) Phase 2: Detecting The Changes (3%)

(e) Phase 2: Detecting The Changes (9%)

(c) Overall Performance (3%)

(f) Overall Performance (9%)

Fig. 19. Sigmod Data Sets - Execution Time vs Number of Nodes (Log Scale) .

approach is up to 3 times faster than the top-down approach. Note that the
greedy approximation in the first phase of the top-down approach influence
the performance in the second phase as the greedy approximation may match
two subtrees that may not be best matching subtrees. Figures 19(c) and (f)
depict the overall performance of our approaches, X-Diff, and XyDiff when
the percentages of changes are set to “3%” and “9%” respectively. We notice
that the bottom-up approach is faster than the top-down approach. X-Diff
is faster than the bottom-up approach for the first four data sets when the
percentage of changes is 3%. When 9% of the documents are changed, X-Diff
is faster than the bottom-up approach for the first three data sets. Then, for
the larger data sets, the bottom-up approach is up to 10 times faster than
X-Diff. Compared to the top-down approach; X-Diff is faster than the top-
down approach for the first five data sets when the percentages of changes are
3% and 9%. For the larger data sets, the top-down approach is up to 3 times
faster than X-Diff. Observe that although XyDiff shows a better response
time than our approach, it still suffers from scalability problem. XyDiff fails

34

0

3

6

9

12

15

18

3% 9% 3% 9% 3% 9%

1 1 2 2 3 3

Data sets

E
xe

cu
tio

n
 ti

m
e

(s
)

Internal Child
Nodes

Number of Leaf
Nodes

ShiftedLeafNodes

FixedLeafNodes

Extend Identical
Subtrees

0

1

2

3

4

3% 9% 3% 9% 3% 9%

1 1 2 2 3 3

Data sets

E
xe

cu
tio

n
 ti

m
e

(s
)

Populate Best
Matching Nodes

maximizeSimilarity
Score

Posible Matching
Internal Nodes

Matching
SiblingOrder

ShiftedLeafNodes

FixedLeafNodes

(a) The Top-down Approach (b) The Bottom-up Approach

Fig. 20. Sigmod Data Sets - Execution Time vs Number of nodes (2).

0

0.3

0.6

0.9

1.2

1.5

1.8

331 544 890

Number of Nodes

E
xe

cu
ti

o
n

 T
im

e
(s

)

Update

Deletion Leaf Nodes

Insertion Leaf Nodes

Deletion Internal Nodes

Insertion Internal Nodes

X-Diff

`

0

2

4

6

8

10

12

14

16

890 1826 2718

Number of Nodes

E
xe

cu
tio

n
 T

im
e

(s
)

Update
Deletion Leaf Nodes
Insertion Leaf Nodes
Deletion Internal Nodes
Insertion Internal Nodes
Finding Best Matching Subtrees
X-Diff

38.655

(a) Phase 2: Detecting Changes (b) Overall Performance

Fig. 21. Sigmod Data Sets - Execution Time vs Number of nodes (3).

to detect XDelta for “SIGMOD-12” as the process was killed by the kernel.
Note that XyDiff is written in C and runs in Linux. We believe that the Java
version of XyDiff will be much slower and less scalable than the C version and
hence will adversely affect the response time and scalability further. Note that
“SIGMOD-12” is almost two times larger than “SIGMOD-11”.

Figure 20(a) depicts the comparison between execution time of different SQL
queries in the top-down approach for finding best matching subtrees. We notice
that SQL query for calculating number of shifted leaf nodes (Figure 5(b)) takes
up to 50% of the total execution time. Figure 20(b) depicts the comparison
between execution time of different SQL queries in the bottom-up approach
for finding best matching subtrees. The execution time of the algorithm for
finding best matching configuration takes up to 42% of the total execution
time. We also observe that the SQL queries for finding possible matching
internal nodes takes up to 41% of the total execution time.

Figure 21(a) depicts the comparison between execution time for detecting
each type of changes in the bottom-up approach and X-Diff. We noticed that
most of the execution time of the second phase in the bottom-up approach are
taken by the execution time for detecting deleted leaf nodes (around 31%) and
inserted the leaf nodes (around 25%). Recall that we use two SQL queries as
depicted in Figures 11(b) and (c) to detect the insertion/deletion of leaf nodes.
The query cost of the SQL query in Figure 11(c) is higher than the one of
the SQL query in Figure 11(b). The SQL query in Figure 11(b) only joins the
LeafValue and INS INT tables. The SQL query in Figure 11(c) contains three

35

(a) Phase 1: Finding Matching Subtrees (3%) (b) Phase 2: Detecting The Changes (3%)

(c) Overall Performance (3%)

1

10

100

1,000

10,000

100,000

1,000 10,000 100,000

Number of Nodes

E
xe

cu
tio

n
 T

im
e

(s
) Top-Down

Bottom-Up

0.1

1

10

100

1000

10000

1000 10000 100000

Number of Nodes

E
xe

cu
tio

n
 T

im
e

(s
)

Top-Down

Top-Down (with move)

Bottom-Up

Bottom-Up (with move)

1

10

100

1000

10000

100000

1000 10000 100000

Number of Nodes

E
xe

cu
tio

n
 T

im
e

(s
)

Top-Down
Top-Down (with move)
Bottom-Up
Bottom-Up (with move)
X-Diff

Fig. 22. TCSD Data Sets - Execution Time vs Number of Nodes.

queries. The second and first ones are in lines 5-13 and 15-23 respectively.
These two queries are joined by using EXCEPT ALL statement. The result of
the query in lines 5-23 is joined again with the LeafValue table in order to
get the final result. It is obvious that the SQL query in Figure 11(c) is more
expensive then the one in Figure 11(b). Figure 21(b) depicts the comparison
between execution time for finding the best matching subtrees and detecting
each type of changes in the bottom-up approach and X-Diff. We observed that
the Finding Best Matching Subtrees phase (Phase 1) takes up to 81% of the
overall execution time in average.

Based on the experiments, we study that the relational-based approach is more
scalable than the memory-based approach. That is, X-Diff cannot detect the
changes on “SIGMOD-07” and other larger data sets due to lack of memory,
while our approaches are able to detect the changes to larger documents.

In this set of experiments, we study the performance of the approaches by
using TCSD data sets. Figure 22(a) depicts the performance of the first phase
(“Finding the best matching subtrees”) of our approaches when the percentage
of changes is set to “3%”. We observe that the bottom-up approach is from
1.2 up to 20 times faster in average. Figure 22(b) depicts the performance
of the second phase (“Detecting the changes”) of our approaches when the
percentage of changes is set to “3%”. In average, the bottom-up approach
is around 2.5 times faster than the top-down approach. Figure 22(c) depicts
the overall performance of our approaches and X-Diff when the percentage
of changes is set to “3%”. We observe that the top-down approach is slower
than X-Diff and the bottom-up approach. X-Diff is faster than the bottom-

36

0

10

20

30

40

0 20 40 60 80

Percentage of Changes (%)

E
xe

cu
tio

n
 T

im
e

(s
) Top-down

Bottom-up

0

1

2

3

4

5

6

7

8

0 20 40 60 80

Percentage of Changes (%)

E
xe

cu
tio

n
 T

im
e

(s
)

Top-down

Bottom-up

Top-down (with move)

Bottom-up (with move)

0

10

20

30

40

50

0 10 20 30 40 50 60 70

Percentage of Changes (%)

E
xe

cu
tio

n
 T

im
e

(s
)

X-Diff
Top-down
Bottom-up
Top-down (with move)
Bottom-up (with move)

(a) Phase 1: Finding Best Matching Subtrees (3%) (b) Phase 2: Detecting The Changes (3%)

(c) Overall Performance (3%)

Fig. 23. Execution Time vs Percentage of Changes.

up approach when the number of nodes is less than 3000 nodes. When the
number of nodes is greater than 3000 nodes, the bottom-up approach is up to
1.5 times faster than X-Diff. We also notice that X-Diff becomes less scalable.
This is because text-centric documents contain actual text data. That is, we
need more memory space to store the text data of text-centric documents.
We also observed that the performances of detecting the changes on text-
centric documents are worse than the performances of detecting the changes
on data-centric documents.

5.2 Execution Time vs Percentage of Changes

In the following set of experiments, we study the performance of our ap-
proaches for various percentages of changes by using “SIGMOD-03”. We com-
pare the performance of X-Diff, and our approaches.

Figure 23(a) depicts the performance of the first phase of both approaches. The
top-down approach is negatively influenced by the percentages of changes. This
means that when the documents are changed significantly, the performance of
the top-down approach becomes worse. This is because there are more sub-
tree comparisons. On the other hand, the bottom-up approach is positively
influenced by the percentages of changes. When we increase the percentage
of changes, the execution time of the bottom-up approach is faster. In this
case, there is fewer matching leaf nodes. Hence, we shall find lesser number of
possible matching subtrees when the algorithm moves upward in order to find
best matching subtrees. That is, there will be lesser number of subtree com-
parisons. Figure 23(b) depicts the performance of the second phase of both
approaches. We observe that the performances of both approaches are influ-

37

(a) Xandy vs X-Diff

0

1

2

3

4

5

0 2 4 6 8 10 12

Percentage of Changes (%)

R
es

u
lt

Q
ua

lit
y

XyDiff

XANDY

(b) Xandy vs XyDiff

0.8

1.0

1.2

1.4

1.6

0 5 10 15 20 25 30 35

Percentage of Changes (%)

R
es

u
lt

 Q
u

al
ity

X-Diff

X-Diff-O

XANDY

Fig. 24. Result Quality.

(a) Example (1)

User

ID Name

G145 John

T1 T21

2 3

5

(b) Example (2)

User

ID Name

T350 Mary

6 7

paper

title sPage ePage authors

author authorXML
Indexing

1 10

Mark Don

T1 T21

2

3

4 5

6 7

paper

title sPage ePage authors

author authorXML
Indexing

20 30

John Ane

11

12

13

14 15

17 18

Fig. 25. Examples of Result Quality(1).

enced by the percentage of changes. The top-down approach is significantly
influenced because of the greedy approximation in the first phase. Figure 23(c)
depicts the overall performance of both approaches and X-Diff.

5.3 Result Quality

In the next set of experiments, the result quality of each approach is compared.
The result quality is defined as the ratio between the number of edit operations
in XDelta detected by an approach and the one in optimal XDelta. Note that
we use the bottom-up approach of Xandy in these experiments as the result
quality of the bottom-up approach is better than the result quality of the
top-down approach. The top-down approach may not return optimal XDeltas
in some cases due to the greedy approximation.

First, we compare the result quality of Xandy and of X-Diff. We used data set
“SIGMOD-02”, and constructed the second versions with various percentages
of changes. We set the threshold Θ equal to “0.00”. Figure 24(a) depicts the
result quality of Xandy compared to of X-Diff. We study that the result
quality of Xandy is comparable to X-Diff. Let us elaborate on this further.
We notice that, in some cases, the result quality of X-Diff is better than of
Xandy. Consider the example depicted in Figure 25(a). Xandy shall detect
an XDeltas that consists of two update operations (nodes 3 and 4), a deletion
of a subtree (subtree rooted at node 5), and an insertion of a subtree (subtree
rooted at node 15). X-Diff shall detect an XDeltas that consists of a deletion
of a subtree (subtree rooted at 1) and an insertion of a subtree (subtree rooted
at node 11). We notice that, in some other cases, the result quality of Xandy
is better than of X-Diff. Consider the example depicted in Figure 25(b). X-Diff

38

division

staff

name rank research

interestTom Assoc
Prof

Data Mining XML Mining Indexing

interestinterest

staff

name rank research

interestJane Asst
Prof

Data Mining XML Mining Indexing

interest

divisionT2T1

0

1

2 3

4

5 6 7

8

9

10

11

12 13 14

0

interest

staff

name rank research

interestJane Assoc
Prof

Data Mining XML Mining Indexing

interest

1

2

3

4

5 6 7

interest

Fig. 26. Examples of Result Quality (2).

shall detect as two update operations (nodes 2 and 3). Note that updating the
node “ID” is not semantically correct as ID number should not be updated.
However, Xandy shall detect as a deletion of a subtree rooted at node 1 and
an insertion of a subtree rooted at node 5. That is, X-Diff detects as a set of
update operations, and Xandy detects as a pair of deletion and insertion of
subtrees.

Next, we compare the result quality of Xandy and of XyDiff. We generate
a set of XML documents based on the DTD of XML documents depicted in
Figure 1. We generate the second versions with various percentages of changes.
We set the threshold Θ equal to “0.00”. We compare the results of Xandy
and XyDiff with the optimal XDeltas. The ratios are depicted in Figure 24(b).
We observed that, generally, Xandy has better result quality than XyDiff.
Consider the example depicted in Figure 26. The delta detected by Xandy
contains delete(1) and update(10, “Asst Prof”, “Assoc Prof”). However, the
delta generated by XyDiff contains move(9, 1, 2) 4 , delete(8), and delete(2).
Note that the delta detected by Xandy is optimal delta.

6 Conclusions

The relational-based approach for ordered XML change detection system in
this article is motivated by the scalability problem of existing memory-based
approaches. We have shown that the relational approach is able to handle XML
documents that are much larger than the ones detected by using main-memory
approaches. We also report on the performance of two relational approaches in
Xandy, the top-down and the bottom-up approaches, on two different kinds
of data sets, the data-centric and the text-centric. We compare our approach
to the published algorithm, X-Diff. We also show the performance of the C
version of XyDiff in detecting the changes on our data sets. Our bottom-up
approach has better performance compared to the top-down approach. The
bottom-up approach is up to 4.5 times faster than the top-down approach.
X-Diff outperforms our approaches for small XML data sets. For the larger
XML data sets, the bottom-up approach is up to 10 times faster than X-Diff.
We also notice that the type of data sets shall influence the performance and
scalability of the approaches. The studies on the result quality have also been
done in order to see the quality of deltas produced by our approaches. Our

4 This operation means “move node 9 to the second child node of node 1”

39

bottom-up approach produces the deltas that are comparable to X-Diff and
better than XyDiff.

References

[1] S. Chawathe, H. Garcia-Molina. Meaningful Change Detection in
Structured Data. In the Proceedings of the ACM SIGMOD, 1997.

[2] S. Chawathe, A. Rajaraman, H. Garcia-Molina, J. Widom. Change
Detection in Hierarchically Structured Information. In the Proceedings of the
ACM SIGMOD, 1996.

[3] Y. Chen, S. Madria, S. S. Bhowmick. DiffXML: Change Detection in XML
Data. In the Proceedings of the 9th International Conference Database Systems
for Advances Applications (DASFAA 2004), Jeju Island, Korea, 2004.

[4] G. Cobena, S. Abiteboul, A. Marian. Detecting Changes in XML
Documents. In the Proceedings of the 18th International Conference on Data
Engineering (ICDE 2002), San Jose, 2002.

[5] Curbera, D. A. Epstein. Fast Difference and Update of XML Documents.
XTech’99, San Jose, 1999.

[6] D. Florescu, D. Kossmann. Storing and Querying XML Data Using an
RDMBS. IEEE Data Engineering Bulletin, 22(3):27-34, 1999.

[7] H. Jiang, H. Lu, W. Wang, J. Xu Yu. Path Materialization Revisited: An
Efficient Storage Model for XML Data. In Proceedings of Australasian Database
Conference, Melbourne, Australia, 2002.

[8] Erwin Leonardi, S. S. Bhowmick, T. S. Dharma, S. Madria. Detecting
Content Changes on Ordered XML Documents Using Relational Databases.
In Proceedings of 15th International Conference Database and Expert Systems
Applications (DEXA 2004), Zaragoza, Spain, 2004.

[9] M. Nicola, J. John. XML Parsing: A Threat to Database Performance. In
the Proceedings of the 12th ACM International Conference on Information and
Knowledge Management (ACM CIKM 2003), New Orleans, USA, Nov 2003.

[10] H. Maruyama, K. Tamura, R. Uramoto. Digest Value for DOM
(DOMHash). IBM, 2000.
http://www.research.ibm.com/trl/projects/xml/xss4j/docs/rfc2803.html

[11] Online Computer Library Center. Introduction to the Dewey Decimal
Classification. http://www.oclc.org/oclc/fp/about/about the ddc.htm .

[12] S. Prakash, S. S. Bhowmick, S. Mardia. SUCXENT: An Efficient Path-
based Approach to Store and Query XML Documents. In Proceedings of 15th
International Conference Database and Expert Systems Applications (DEXA
2004), Zaragoza, Spain, 2004.

40

[13] J. Shanmugasundaram, K. Tufte, C. Zhang, G. He, D. J. DeWitt,
J. F. Naughton. Relational Databases for Querying XML Documents:
Limitations and Opportunities. In Proceedings of 25th International Conference
on Very Large Data Bases (VLDB 1999), Edinburgh, Scotland, UK, 1999.

[14] T. F. Smith, M. S. Waterman. Identification of Common Molecular
Subsequences. In the Proceedings of Journal Molecular Biology 147:195-197,
1981.

[15] Y. Wang, D. J. DeWitt, J. Cai. X-Diff: An Effective Change Detection
Algorithm for XML Documents. In the Proceedings of the 19th International
Conference on Data Engineering (ICDE 2003), Bangalore, 2003.

[16] B. B. Yao, M. T. Özsu, N. Khandelwal. XBench Benchmark and
Performance Testing of XML DBMSs. In the Proceedings of the 20th
International Conference on Data Engineering (ICDE 2004), Boston, USA,
2004.

[17] M. Yoshikawa, T. Amagasa, T. Shimura, S. Uemura. XRel: A Path-
based Approach to Storage and Retrieval of XML Documents Using Relational
Databases. In the Proceedings of ACM Transactions on Internet Technology,
1(1):110-141, 2001.

41

