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Abstract

In the past few years, the fast proliferation of available XML documents has stim-
ulated a great deal of interest in discovering hidden and nontrivial knowledge from
XML repositories. However, to the best of our knowledge, none of existing work
on XML mining has taken into account the dynamic nature of XML documents as
online information. The present article proposes a novel type of frequent pattern,
namely, FRequently And Concurrently muTating substructUREs (FRACTURE ),
that is mined from the evolution of an XML document. A discovered FRACTURE
is a set of substructures of an XML document that frequently change together.
Knowledge obtained from FRACTURE is useful in applications such as XML in-
dexing, XML clustering etc. In order to keep the result patterns concise and explicit,
we further formulate the problem of maximal FRACTURE mining. Two algorithms,
which employ the level-wise and divide-and-conquer strategies respectively, are de-
signed to mine the set of FRACTUREs. The second algorithm, which is more effi-
cient, is also optimized to discover the set of maximal FRACTUREs. Experiments
involving a wide range of synthetic and real-life datasets verify the efficiency and
scalability of the developed algorithms.
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1 Introduction

Developed under auspices of W3C in 1998, XML is rapidly emerging as the
de facto standard for data representation and exchange on the Web. The self-
describing property empowers XML to represent information without loss of
semantics. The semi-structured nature allows XML to model a wide variety
of databases. Not surprisingly, industries are indeed enthusiastic about XML,
which leads to the fast proliferation of XML data.

Preprint submitted to Elsevier Science 14 August 2005



<Travel Agent>
  <Name> Lets Go </Name>
  <Tel> 64388880 </Tel>
  <Tours>
    <Europe Fantasy>
      <Location> Europe </Location>
      <Price> $ 2888 </Price>
      <Itinerary>
         <City> Berne </City>
         <City> Paris </City>
         <City> London </City>
      </Itinerary>
      <Flight> SwissAir </Flight>
    </Europe Fantasy>
    <Europe Marvel>
      <Location> Europe </Location>
      <Price> $3388 </Price>
      <Itinerary>
         <City> Florence </City>
         <City> Venice </City>
         <City> Milan </City>
         <City> Paris </City>
      </Itinerary>
      <Flight> Air France </Flight>
    </Europe Marvel>
  </Tours>
</Travel Agent> (a)
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Fig. 1. XML Document and Tree Representation

With the ever-increasing amount of available XML data, data mining com-
munity has been motivated to discover underlying but interesting knowledge
from XML. For example, recently, there has been increasing research effort in
classifying XML documents [26]; clustering XML data [14] [16]; and mining
sequential patterns [15] or frequent patterns [5][20] from XML repositories.
Currently, two types of data in XML has been studied to find frequent pat-
terns: XML content and XML structure. The former aims to discover patterns
of frequent data values [5]; the latter focuses on discovering patterns of fre-
quent substructures [20].

Besides the self-describing and semi-structured properties, XML has another
feature that it is dynamic. As online information, XML may change at any
time in any way. Consequently, issues related to detecting changes to XML
documents received considerable attention recently [23][8]. Detected changes
can be used in XML query systems, search engines etc [23]. Actually, the
changes to XML documents can be further studied. Since changes to XML
documents do not just occur randomly, there may be interesting and nontrivial
knowledge hidden in these changes. Thus, the changes to XML documents can
be exploited by data mining techniques to discover novel knowledge. In this
paper, we consider a sequence of historical versions of an XML document to
discover knowledge from the sequence of corresponding changes. We illustrate
various novel knowledge that can be discovered from a sequence of changes to
an XML document with the following motivating example.

1.1 Motivation

An XML document can be represented as a tree according to Document Object
Model (DOM) specification. For example, consider the XML file in Figure 1
(a) which describes the information of a travel agent. It can be modeled as
a tree as shown in Figure 1 (b). The itineraries provided by a travel agent
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Fig. 2. A Sequence of Historical Versions

might be adjusted from time to time according to factors such as seasons and
profits etc. Figure 2 presents another four historical versions of the XML tree
along the time sequence. The black nodes and grey nodes in the figure depict
the insertion and deletion of elements respectively, while the nodes with thick
boundaries depict the modification of element values.

Before discussing the knowledge that can be discovered from the sequence
of changes to an XML document, we first investigate the different types of
changes to XML. Corresponding to the classification on XML data, changes
to XML can be divided into the following two categories.

• Changes to XML structure (also called structural deltas). Struc-
tural deltas mean the changes in the hierarchical topology composed of
nodes and edges in an XML tree, which are usually resulted in by the change
operations of insertions and deletions. For example, the inserted node “City”
with its value of “Pisa” in the v3 of Figure 2 belongs to structural deltas.

• Changes to XML content (also called content deltas). Content deltas
mean the changes in the values of nodes, which are usually caused by the
change operations of modifying nodes. For example, the value of the node
“Price” under the itinerary of “Europe Marvel” is $2888 in v2 of Figure 2,
whereas the value of the node is $3188 in v3. Hence, the value of the node
is changed and the change belongs to content deltas.

Then, novel knowledge, such as sequential patterns and classification rules
based on different types of XML deltas, might be discovered from the sequence
of historical versions of an XML document. In the following, we enumerate the
novel frequent patterns that might be discovered from the sequence of changes
to an XML document.
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• Frequent patterns in structural deltas: A frequent pattern mined from
structural deltas is a set of subtrees whose structures frequently mutate
together. That is, we consider the structural deltas in terms of changed
subtrees. Once a node is inserted or deleted, the subtree containing it is
changed. Then, we aim to discover which subtrees frequently change to-
gether in their structures. For example, consider the sequence of structural
deltas in Figure 2. Since the nodes of “City” in the subtrees rooted at the
node “Europe Fantasy/Itinerary” and the node “Europe Marvel/Itinerary”
(highlighted by the dotted line) are inserted and deleted together frequently,
the two subtrees will be discovered as a frequent pattern. Since it is rather
common in an XML document that the structure of an object is designed to
reflect its semantics, we can glean the knowledge from such a pattern that
the two objects represented by the two subtrees may have some underlying
association. For example, the two itineraries are associated in the cities on
the routes.

• Frequent patterns in content deltas: A frequent pattern mined from
content deltas is a set of nodes whose values are frequently changed together.
For example, from the sequence of content deltas exhibited in Figure 2, we
observe that when the value of the node “Flight” of the itinerary “Europe
Marvel” was changed, the value of the node “Price” of the itinerary was
changed as well. Hence, the two nodes form a frequent pattern mined from
the content deltas. The knowledge that can be inferred from such a pattern
is that the set of nodes may have some underlying association. For example,
the flight may be a factor that influences the price of the itinerary.

• Frequent patterns in hybrid deltas: Certainly, frequent patterns can
also be mined from changes to XML documents without discriminating
content and structural deltas. Thus, a frequent pattern discovered from
hybrid deltas is a set of disjointed fragments of an XML document that
change together frequently in either data values or structures. For example,
we may discover a frequent pattern of the two fragments embedded in the
elements of “Europe Fantasy” and “Europe Marvel” respectively from the
above example. Knowledge can be obtained from such a pattern that the
two routes are related in prices, itineraries or flights.

Hence, considering the dynamic nature of XML documents, we identified a
new domain for XML mining. Namely, a sequence of changes to an XML
document. Novel and interesting knowledge can be discovered from them,
which can be used in a wide range of applications, such as native XML storage
and approximate XML change detection etc. The details will be discussed in
Section 6.

In this paper, we focus on the problem of mining the set of frequent pat-
terns from XML structural deltas, where each pattern is a set of subtrees
with their structures frequently mutating together. We call such a pattern as
a FRACTURE (FRequently And Concurrently muTating substructUREs). A
short version of the paper appeared in [7].
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FRACTURE mining is a challenging problem as existing techniques of XML
frequent pattern mining cannot be applied. This is due to the following two
reasons: (1) existing approaches aim to find frequently occurring substruc-
tures, whereas we need to search for frequently and concurrently mutating
substructures; (2) existing approaches find frequent patterns from the whole
collection of XML documents while we only need to consider the sequence
of structural deltas between each two historical documents, which should be
more space- and time-efficient.

1.2 Roadmap of the Paper

The remainder of the paper is organized as follows. Section 2 gives an overview
of our approach and presents the main contributions of the paper. Section 3
formally defines the problem of FRACTURE mining and maximal FRAC-
TURE mining. Section 4 describes the mining procedure and developed algo-
rithms, Apriori-FRACTURE and FPG-FRACTURE, and optimizing strate-
gies for maximal FRACTURE mining. Section 5 evaluates the performance
of the algorithms based on experimental results. We discuss the applications
of FRACTUREs in Section 6 and review related work in Section 7. The last
section concludes the paper.

2 Overview and Contributions

Given a sequence of historical versions of an XML document, we study the
sequence of structural deltas between each pair of successive versions. Changes
to the structures of an XML document are considered in terms of changed
subtrees. Then, the goal of FRACTURE mining is to discover subtrees that
frequently change together in their structures.

We treat an XML tree as a collection of subtrees and aim to discover fre-
quent patterns of subtrees from any level of the XML tree. Once a node is
inserted or deleted, all subtrees containing the node are changed. Thus, re-
quiring that subtrees should frequently change together to be a FRACTURE
will result in many FRACTURE s containing subtrees with ancestor relation-
ships. For example, in Figure 2, every time a node “City” under the node
“Europe Fantasy/Itinerary” is inserted or deleted, both the subtree rooted at
the node “Itinerary” and the subtree rooted at the node “Europe Fantasy”
are changed. However, discovering the two subtrees as a FRACTURE does
not make any sense as the knowledge that the two subtrees frequently change
together is too trivial. Actually, when a node is inserted or deleted, it has
different influence on changing the structures of different subtrees containing
it. For example, since the subtree rooted at the node “Europe Fantasy” con-
tains more structures (nodes) than the subtree rooted at the node “Itinerary”
does, inserting or deleting a small number of “City” nodes may not be sig-
nificant changes to the former subtree (the significance of changes will be
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Fig. 3. Overview of the Mining Process

defined in Section 3), whereas it may be significant to the latter. Hence, to
make a FRACTURE represent nontrivial knowledge, we formulate the notion
of FRACTURE in consideration of not only the frequency of change but also
the degree of change of a set of subtrees. In other words, we require the set
of subtrees of a FRACTURE should not only frequently change together but
also frequently change significantly when they change together.

After defining the FRACTURE in this manner, we observed a “subsumption”
relationship between some specific pair of subtree sets. That is, in such a spe-
cific pair, if a subtree set is a FRACTURE, we can infer directly that the other
set must be a FRACTURE as well. In order to prune redundancy, we further
define the notion of maximal FRACTURE based on the “subsumption” rela-
tionship. A FRACTURE is maximal only if it cannot be inferred from some
other FRACTURE s. Thus, the set of maximal FRACTURE s is more concise
than the set of FRACTURE s, while the complete set of FRACTURE s can be
inferred from the set of maximal FRACTURE s.

The discovery of the set of FRACTURE s is performed in two phases, as shown
in Figure 3. In the first phase, given an input of a sequence of historical ver-
sions of an XML document, we need to detect the sequence of structural
deltas and build a structural delta database. Each tuple of a structural delta
database is a triplet, <DID, SID, DoC>, where DID is the identifier of a
delta, which is a comparison of two successive historical versions, SID denotes
the identifier of a changed subtree and DoC records the degree of change for
the subtree in the two versions. For example, as shown in Figure 3, com-
paring the first two historical versions results in the first six entries in the
structural delta database where the delta ID is one. (we use the path leading
to the root of the subtree to identify a subtree, and the calculation of de-
gree of change for a changed subtree will be explained later). The constructed
structural delta database will be the input of the second phase. We developed
two algorithms, Apriori-FRACTURE and FPG-FRACTURE, to discover the
set of FRACTURE s from the database. The former is an apriori -like algo-
rithm that employs the level-wise strategy; while the latter is based on the
well-known FP-growth algorithm [10]. Both algorithms can discover the set
of FRACTURE s completely. Furthermore, we developed several optimization
techniques for the algorithm FPG-FRACTURE to efficiently discover the set
of maximal FRACTURE s.
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In summary, the main contributions of this paper are as follows.

• We considered the dynamic nature of XML documents to exploit the se-
quence of changes to an XML document as a new domain for XML mining.
We investigated different types of novel knowledge (frequent patterns) that
can be mined from this domain.

• We focused on the sequence of structural deltas to formally define the prob-
lem of FRACTURE mining. To keep the result patterns concise, we further
formulate the problem of maximal FRACTURE mining.

• We developed two algorithms based on different strategies to mine the set
of FRACTURE s and optimized the efficient algorithm FPG-FRACTURE
to discover the set of maximal FRACTURE s.

• We implemented all the algorithms and conducted experiments over a wide
range of synthetic and real-life datasets to evaluate their efficiency and scal-
ability.

3 Problem Statement

In this section, we first describe some preliminary concepts and basic change
operations that result in structural deltas. Then, we define the metrics to
measure the degree of change and the frequency of change for subtree sets.
Finally, the FRACTURE and maximal FRACTURE are defined based on the
metrics.

3.1 Preliminary Definitions

An XML document can be represented as a tree according to Document Object
Model (DOM) specification. Although DOM specifies that element nodes and
text nodes are ordered, XML documents can be treated as unordered trees
in many applications [23]. Hence, in this paper, we model the structure of an
XML document as an unordered tree T = (N, E ), where N is the set of nodes
and E is the set of edges. Then substructures in the XML document can be
modeled as subtrees. A tree t = (n, e) is a subtree of an XML tree T, denoted
as t ≺ T, if and only if n ⊂ N and for all (x, y) ∈ e, x is a parent of y in T.
Then, we treat an XML tree T as a forest which is a collection of subtrees t
≺ T. Furthermore, we call subtree t̂ an ancestor of subtree t if the root of t̂ is
an ancestor of the root of t. Conversely, subtree t is a descendant of subtree t̂.

Traditional XML change detection systems [23] [8] usually define three types
of basic change operations: insertion, deletion and modification. Since an op-
eration of “modification” only affects the value of a node, it does not cause any
structural changes. Hence, we consider the following basic change operations
that result in changes to XML structures.

• Insert(x(name, value), y): This operation creates a new node x, with node
name “name” and node value “value”, as a child node of node y in an XML
tree. The set of black nodes in Figure 2 represents this operation.
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• Delete(x): This operation is the inverse of the insertion one. It removes node
x from an XML tree. The grey nodes in Figure 2 illustrate this operation.

The two basic change operations can be combined to form composite opera-
tions such as Insert (tx, y) and Delete (tx), which insert a subtree tx rooted at
node x to node y and delete a subtree tx respectively. For example, a subtree
rooted at node “Europe Romance” was inserted to the node “Tours” in v2
of Figure 2. In the context of FRACTURE mining, only the defined change
operations will be taken into account. In other words, we consider the changes
caused by the operations defined above as structural deltas of an XML docu-
ment.

3.2 Metrics

Now we introduce the metrics we defined to measure the degree of change and
the frequency of change for subtree sets.

3.2.1 Degree of Change

As we mentioned above, once a node is inserted or deleted, all subtrees con-
taining it are changed. However, the change operation may have different
influence on changing the structures of different subtrees. We quantify the
degree of change for a subtree between two versions with a distance measure,
which is based on the concept of edit distance in change detection systems.
Edit distance is defined to be the minimum number of change operations re-
quired to transform one version to another [23]. Likewise, in the context of
FRACTURE mining, we define edit distance as the minimum number of basic
change operations (insert or delete) required to transform the structure of one
version to the structure of the other. Then, we normalize the distance by the
total number of unique nodes of the subtree in two versions so that the same
edit distance will have slighter influence on changing the structure of a subtree
containing larger number of nodes. The metric of degree of change (denoted
as DoC ) for a subtree is formally defined as follows:

Definition 1 [Degree of Change] Let <ti, ti+1> be the ith and the (i+1)th
historical versions of a subtree t in an XML tree structure T. Let |d(t, i, i+1)|
be the edit distance of t from the ith version to the (i+1)th version. Let ∪
be the operation which unions the nodes in two subtrees. Then, |ti∪ ti+1| is
the number of unique nodes of tree t in ith version and (i+1)th version. The
degree of change for subtree t from version i to version (i+1) is:

DoC(t, i, i+1) =
|d(t, i, i + 1)|
|ti ∪ ti+1|

If the subtree does not change in the two versions, then its DoC will be zero; if
the subtree is totally removed or newly inserted, then the DoC of the subtree
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will be one. Obviously, the greater the value of DoC, the more significantly
the subtree changed.

Example 1 Consider the first two versions of the subtree rooted at “Europe
Fantasy” in the motivating example, which is redrawn in Figure 4. Let t1 be
the subtree //Tours/EuropeFantasy. Then, DoC(t1, 1, 2)= 1/8=0.125 as there
are 8 unique nodes in the two versions of the subtree and only one node is
deleted. Let t2 be the subtree //Tours/EuropeFantasy/Itinerary, DoC(t2, 1,
2)=1/4=0.25. That is, the deletion of a node “City” changed the structure of
t2 more significantly than the structure of t1.

After defining the DoC for each subtree in a pair of successive historical ver-
sions, a structural delta database (denoted as SDDB) can be generated from
a sequence of historical versions. Each tuple of a SDDB is a triplet, <DID,
SID, DoC>, where DID is the identifier of a delta, which is a comparison
of two successive historical versions, SID denotes the identifier of a changed
subtree and DoC records the degree of change for the subtree in this delta.
For example, the SDDB generated from the five historical versions in Figure 1
and Figure 2 is shown in Table 1. The first entry means that the degree of
change of the subtree //Tours/EuropeFantasy from version v1 to version v2
is 0.13.

3.2.2 Frequency of Change

After measuring how significantly a subtree changed in two versions, we now
measure how frequently a subtree changed in a sequence of historical versions.
Clearly, for an individual subtree, its frequency of change (denoted as FoC )
can be defined as the fraction of the deltas in which the subtree changed. For
a set of subtrees, its FoC can be similarly defined as the fraction of the deltas
in which all subtrees in the set changed.

Definition 2 [Frequency of Change] Let <T1,T2,...Tn> be a sequence of
n historical versions of an XML tree structure T. Let ∆i be the set of subtrees
that changed between Ti and Ti+1. Then, <∆1,∆2,...∆n−1> is the sequence of
changed subtrees in each pair of successive versions. Let S be a set of subtrees,
S={t1, t2,... tm}, where ∀ j ∈ [1, m], ∃ i ∈ [1, n-1] s.t. tj ∈ ∆i. The FoC of
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Table 1
Structural Delta Database

DID SID DoC DID SID DoC

1 //Tours/EuropeFantasy 0.13 2 ... ...

1 //Tours/EuropeFantasy/Itinerary 0.25 3 //Tours/EuropeMarvel 0.11

1 //Tours/EuropeMarvel 0.22 3 //Tours/EuropeMarvel/Itinerary 0.2

1 /Tours/EuropeMarvel/Itinerary 0.4 3 ... ...

1 ... ... 4 //Tours/EuropeFantasy 0.13

2 //Tours/EuropeFantasy 0.13 4 //Tours/EuropeFantasy/Itinerary 0.25

2 //Tours/EuropeFantasy/Itinerary 0.25 4 //Tours/EuropeMarvel 0.11

2 //Tours/EuropeMarvel 0.22 4 //Tours/EuropeMarvel/Itinerary 0.2

2 //Tours/EuropeMarvel/Itinerary 0.4 4 ... ...

the set S is:

FoC(S) =

∑n−1
i=1 Vi

n− 1

where Vi =
m∏

j=1

Vji
and Vji

=





1, if DoC(tj, i, i + 1) 6= 0

0, if DoC(tj, i, i + 1) = 0
1 ≤ j ≤ m

The value of FoC also ranges from zero to one. When subtrees in a set never
change together, FoC of the set will be zero. When subtrees in a set change
together in every delta, FoC of the set will be one. The greater the value of
FoC, the more frequently the set of subtrees changed together.

Example 2 Consider the SDDB in Table 1. Let S be a set of two subtrees,
S={ //Tours/EuropeFantasy/Itinerary, //Tours/EuropeMarvel/Itinerary },
FoC(S) = 0.75 as the two subtrees changed together for three times in four
deltas.

3.2.3 Weight

As we mentioned in the Section 1, in order to make a FRACTURE capture
nontrivial knowledge, we require that subtrees of a FRACTURE should not
only frequently change together but also frequently change significantly when
they change together. Hence, we define the metric Weight to measure how
frequently subtrees in a set change significantly when they change together.
Basically, Weight of a set of subtrees can be defined as the ratio of the number
of deltas where all subtrees in the set changed significantly (compared with
some user-defined minimum DoC ) to the number of deltas where all subtrees
in the set changed together.

Definition 3 [Weight] Let <T1,T2,...Tn> be a sequence of n historical ver-
sions of an XML tree structure. Let <∆1,∆2,...∆n−1> be the sequence of
changed subtrees in each pair of successive historical versions. Let S be a set of
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subtrees, S={t1,t2,...tm}, where ∀ j ∈ [1, m], ∃ i ∈ [1, n-1] s.t. tj ∈ ∆i. Given
a user-defined minimum DoC α, we define the Weight of the set of subtrees
is:

Weight(S) =

∑n−1
i=1 Di

(n− 1) ∗ FoC(S)

where Di =
m∏

j=1

Dji
and Dji

=





1, if DoC(tj, i, i + 1) ≥ α

0, otherwise
1 ≤ j ≤ m 2

Therefore, if all subtrees in a set change significantly every time when they
change together, then the Weight of the set will be one; if subtrees in a set
never change significantly when they change together, then the Weight of the
set will be zero.

Example 3 Suppose the user-defined minimum DoC α is 0.25. Let S1 be a
set of two subtrees, S1 = { //Tours/EuropeFantasy/Itinerary, //Tours/Europe
Marvel/Itinerary }. Then, Weight(S1) = 2/3 = 0.66 because the two subtrees
change together in three deltas, while in two deltas both of their DoCs are
greater than α. Let S2 be another set of two subtrees, S2 = { //Tours/Europe
Fantasy, //Tours/EuropeMarvel }, which are ancestors of the two subtrees in
S1 respectively. Weight(S2) is zero as the two subtrees never change signifi-
cantly together.

3.3 FRACTURE

Based on the above discussion, given a sequence of historical versions of an
XML document, FRequently And Concurrently muTating substructUREs (de-
noted as FRACTURE ) can be identified by the two metrics, FoC and Weight,
as follows.

Definition 4 [FRACTURE] Let <T1,T2,...Tn> be a sequence of historical
versions of an XML tree structure. Let <∆1,∆2,...∆n−1> be the sequence of
changed subtrees. Let S be a set of subtrees, S={t1,t2,...tm}, where ∀ j ∈ [1, m],
∃ i ∈ [1, n-1] s.t. tj ∈ ∆i. Given the user-defined minimum DoC α, minimum
FoC β and minimum Weight γ, S is a FRACTURE if it satisfies the two
conditions: 1) FoC(S)≥ β, 2) Weight(S) ≥ γ. 2

According to the definitions of FoC and Weight, the semantics of a FRAC-
TURE can be understood as a set of XML subtrees that not only frequently
change together but also frequently change significantly when they change
together in a sequence of historical versions of an XML document.

Example 4 Consider the two subtree set S1 and S2 in Example 3 again. Sup-
pose the user-defined α is 0.25, both the user-defined β and γ are 0.5. S1 is a
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FRACTURE because FoC(S1)=0.75 ≥ β and Weight(S1)=0.66 ≥ γ. Although
FoC(S2)=0.75 ≥ β, S2 is not a FRACTURE because Weight(S2)=0 < γ.

Hence, by requiring the subtrees in a FRACTURE not only frequently change
together but also frequently change significantly, we can prune the subtree
sets carrying trivial knowledge from being FRACTURE s. However, we still
observed some redundancy existing in some specific pair of subtree sets. That
is, in such a pair, if one of the subtree sets is a FRACTURE, the other must
be a FRACTURE as well. The two subtree sets in such a specific pair has a
subsumption relationship, which is defined as follows.

Definition 5 [Subsumption] Given two subtree sets S and S’, where S’ =
S∪{t1, t2, ...,tn} and S∩{t1, t2, ...,tn} = ∅. If ∀ i (1≤i≤n), ∃ tj ∈ S s.t. tj≺ti,
we say S is subsumed by S’, or S’ subsumes S, denoted as S ≺ S’. 2

Example 5 Consider the motivating example again. Let S be a set of two
subtrees, S = { //Tours/EuropeFantasy/Itinerary, //Tours/EuropeMarvel/
Itinerary }, and S’ be a set of three subtrees, S’ = {//Tours/EuropeFantasy/
Itinerary, //Tours/EuropeMarvel/Itinerary, //Tours/ EuropeFantasy}. Then
S is subsumed by S’, S ≺ S’, because subtree //Tours/EuropeFantasy is an
ancestor of subtree //Tours/EuropeFantasy/Itinerary.

Then we have the following lemma between a pair of subtree sets that have
the subsumption relationship.

Lemma 1 Given two subtree sets S and S’ s.t. S ≺ S’. If S’ is a FRACTURE,
S is a FRACTURE as well.

Proof. Let |∆| be the total number of deltas, |∆c(S)| be the number of deltas
in which subtrees in S changed and |∆s(S)| be the number of deltas in which
subtrees in S changed significantly. Suppose the user-defined minimum FoC
is β and minimum Weight is γ. Since S ≺ S’, |∆c(S)|=|∆c(S

′)|, FoC (S ) =
|∆c(S)|
|∆| = FoC (S’ ) = |∆c(S′)|

|∆| ≥ β. Since S ≺ S’, then S ⊂ S’, |∆s(S)| ≥
|∆s(S

′)|. Hence, Weight(S ) = |∆s(S)|
|∆c(S)| ≥ Weight(S’ ) = |∆s(S′)|

|∆c(S′)| ≥ γ. Then S is
also a FRACTURE and we have the lemma.

According to the Lemma 1, if a subtree set is a FRACTURE, we can infer di-
rectly that all its subsumed subsets are FRACTURE s as well. In other words,
a FRACTURE can be represented by another FRACTURE that subsumes it.
Then the notion of maximal FRACTURE can be defined as follows.

Definition 6 [maximal FRACTURE] A set of subtrees is a maximal FRAC-
TURE, if it is a FRACTURE, it is not subsumed by any other FRACTURE. 2

Example 6 Consider the two subtree sets S and S’ in Example 5 again. If
both S and S’ are FRACTURE, S is not a maximal FRACTURE since it is
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subsumed by S’.

Obviously, the set of maximal FRACTURE s is a tightened set of the com-
plete set of FRACTURE s, {maximal FRACTURE} ⊆ {FRACTURE}, and
the complete set of FRACTURE s can be inferred from the set of maximal
FRACTURE s.

3.4 Problem Definition

The problem of FRACTURE mining and maximal FRACTURE mining can
be formally stated as follows: Let <T1,T2,... Tn> be a sequence of histor-
ical versions of an XML tree structure. Let <∆1, ∆2, ...,∆n−1> be the se-
quence of structural deltas in terms of changed subtrees. A Structural Delta
DataBase SDDB can be constructed from the sequence of deltas, where each
tuple <DID, SID, DoC> comprises of a delta identifier, a subtree identifier
and a degree of change for the subtree in the delta. Let S={t1,t2,...tm} be the
set of changed subtrees such that each ∆i ⊆ S (1≤∆i≤n-1 ). Given an SDDB,
a DoC threshold α, an FoC threshold β and a Weight threshold γ, a subtree
set X ⊆ S is a FRACTURE if FoC(X) ≥ β and Weight(X) ≥ γ. A subtree
set Y ⊆ S is a maximal FRACTURE if it is a FRACTURE and it does
not subsumed by any other FRACTURE. The problem of FRACTURE
mining is to find the set of all FRACTURE s and the problem of maximal
FRACTURE mining is to find the set of all maximal FRACTURE s.

4 Algorithms

In this section, we present the procedure of mining FRACTURE s and maximal
FRACTURE s. Given a sequence of historical versions of an XML document,
two phases are involved in the mining procedure.

• Phase I: SDDB construction. This phase takes the sequence of histor-
ical versions of an XML document as input and generates the Structural
Delta DataBase (SDDB). Since existing change detection systems [23][8]
can detect all change operations resulting in structural changes (insert and
delete), changed subtrees in each pair of successive versions can be identified
directly. That is, if a node has any inserted or deleted descendants, then it
is the root of a changed subtree. The degree of change for this subtree can
be calculated immediately according to the definition of DoC.

• Phase II: FRACTURE and maximal FRACTURE mining. In this
phase, we mine the set of FRACTURE s or maximal FRACTURE s with the
input of the constructed SDDB and user-defined thresholds of DoC, FoC
and Weight.

Since the first phase can be handled in a straightforward way based on the
known conditions, subsequent discussion will be focused on the Phase II to
mine the FRACTURE s and maximal FRACTURE s.
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4.1 FRACTURE Mining

We developed two algorithms, Apriori-FRACTURE and FPG-FRACTURE,
to mine the set of FRACTURE s. Apriori-FRACTURE is an apriori-like algo-
rithm that searches the set of FRACTURE s with the level-wise strategy; while
FPG-FRACTURE is developed from the well known algorithm FP-growth [10]
which employs the divide-and-conquer strategy.

4.1.1 Apriori-FRACTURE

The basic idea of Apriori-FRACTURE is that all nonempty subsets of a sub-
tree set satisfying the threshold of FoC satisfy the threshold as well. That is,
the property of “downward closure” holds with respect to the metric FoC.

Property 1 Given a structural delta database SDDB and user-defined mini-
mum FoC β, if a subtree set S’ satisfies the threshold, FoC(S’) ≥ β, for ∀ S
⊆ S’, FoC(S) ≥ β.

Unfortunately, the “downward closure” property does not hold with respect
to the metric Weight. That is, even if a subtree set satisfies the user-defined
threshold for Weight, it is not necessary that all of its subsets satisfy the
threshold as well (this can be simply obtained from the definition of Weight).
Hence, only the metric FoC, rather than the metric Weight, can be utilized to
prune candidates.

According to Property 1, candidate FRACTURE s can be generated in the
similar way as Apriori [2]. We call a subtree set containing k subtrees as a k-
subtree-set. Then two k-subtree-sets that satisfy the threshold of FoC and share
a prefix of k-1 subtrees can be joined to generate a candidate (k+1)-subtree-
set. For each generated candidate set, we need to check not only its FoC but
also its Weight. If both the FoC and the Weight of the candidate set satisfy
the respective thresholds, then it is a FRACTURE. If only the FoC of the
candidate set satisfies the threshold, then the candidate set will be reserved for
generating candidate sets in the next round. If neither the FoC nor the Weight
of the candidate set satisfies the respective thresholds, the candidate set will
be discarded. Note that Apriori [2] generates candidate patterns of the next
round only from the frequent patterns discovered in this round. By contrast,
we need to generate candidate subtree sets not only from the FRACTURE s
discovered in the round but also the candidate sets satisfying the threshold of
FoC. The reason is that even if a subtree set does not satisfy the threshold of
Weight, it is possible that some of its supersets satisfy the threshold.

In order to further prune the search space, we utilize the following lemma
which is based on the product of FoC and Weight.

Lemma 2 Given a structural delta database SDDB, a user-defined minimum
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FoC β and a minimum Weight γ, if a subtree set S satisfies the condition
that FoC(S) × Weight(S) < β × γ, then 1) S is not a FRACTURE; 2) any
superset of S is not a FRACTURE as well.

Proof. The first conclusion is obvious. If S is FRACTURE, then FoC (S )≥β
and Weight(S ) ≥ γ. Thus, FoC(S) × Weight(S) ≥ β × γ, which contradicts
the condition. We then prove the second conclusion. Let |∆| be the total
number of deltas in SDDB. Let |∆s(S)| be the number of deltas in which
subtrees in S changed significantly. According to the definition of FoC and
Weight, FoC(S) × Weight(S)= |∆s(S)|

|∆| . Let S’ be a subtree set s.t. S’ ⊇ S ,

|∆s(S
′)| ≤ |∆s(S)|. Then FoC(S’) × Weight(S’)= |4G(S′)|

|4| ≤ |4G(S)|
|4| =FoC(S)

× Weight(S) ≤ β × γ. Thus, S’ is not a FRACTURE.

Therefore, we do not need to generate candidate (k+1)-subtree-sets by joining
all k-subtree-sets that satisfy the threshold of FoC. Given a k-subtree-set S,
it will be used to generate candidate (k+1)-subtree-sets only if not only its
FoC is no less than β, but also the product of FoC (S ) × Weight(S ) is no less
than β × γ. The algorithm of Apriori-FRACTURE is shown in Figure 5. We
scan the SDDB for the first time to find the set of individual subtrees, Q1,
which satisfy the threshold of FoC and the condition stated in Lemma 2. The
function GenCandidatePatterns is called to generate candidate 2-subtree-sets
C2 from Q1. For each candidate set, we scan the SDDB again to compute
its FoC and Weight. Then, we find the FRACTURE s and the set of subtree
sets, Q2, which will be used to generate candidate sets in the next round. The
algorithm iteratively generates the candidate sets and finds FRACTURE s
until the set of Qk−1 is empty.

Theorem 1 The algorithm Apriori-FRACTURE discovers the complete set
of FRACTUREs.

The completeness of Apriori-FRACTURE follows from the Property 1 and
the Lemma 2.

Theorem 2 The complexity of Apriori-FRACTURE is O( Σk{ k·|Qk−1|3,
m·|∆|·|Ck|}), where m is the cost of checking whether all subtrees in ck changed
(significantly) in each delta.

Proof. Consider the function GenCandidatePatterns. The complexity of ex-
amining each pair of sets in Qk−1 is |Qk−1|2. For each generated candidate
set, we need to check whether it has k subsets in Qk−1, which is of complexity
k·|Qk−1|. Hence, the complexity of GenCandidatePatterns is k ·|Qk−1|3. Since m
is the cost of checking whether all subtrees in ck changed (significantly) in each
delta (basically, m depends on the length of each delta and the number of can-
didate sets in the delta). Then, the complexity of Apriori-FRACTURE from
line 5 is m·|∆|·|Ck|. Therefore, the total complexity of Apriori-FRACTURE
is O( Σk{k·|Qk−1|3, m·|∆|·|Ck|}).
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(a) Apriori-FRACTURE (b) GenCandidatePatterns

Input: SDDB ∆, thresholds α, β and γ

Output: The set of FRACTUREs P

Description:
1: Q1 = all individual subtrees with FoC ≥

β && (FoC×Weight)≥ (β × γ)
2: P1 = all individual subtrees with FoC ≥

β and Weight ≥ γ
3: for (k=2; Qk−1 6=∅; k++) do
4: Ck =GenCandidatePatterns(Qk−1)
5: for (i=1; i≤|∆|; i++) do
6: for each candidate pattern ck ∈ Ck

do
7: if (all subtrees in ck changed in

4i) then
8: ck.FoC count++
9: end if

10: if (all subtrees in ck changed sig-
nificantly in 4i)) then

11: ck.Weight count++
12: end if
13: end for
14: end for
15: Qk={ck∈Ck|ck.FoC count≥ (β × |4|)

&& (ck.FoC count × ck.Weight count)
≥ (β ×γ)}

16: Pk={ck∈Ck|ck.FoC count ≥ (β × |4|)
&&(ck.Weight count/ck.FoC count)≥γ}

17: end for

18: return
⋃

kPk

Input: The set of (k-1)-subtree-sets Qk−1, β

Output: The set of k-subtree-sets Ck

Description:
1: for each (k-1)-subtree-set {m1,m2,. . .,

mk−1}∈ Qk−1 do
2: for each (k-1)-subtree-set {n1,n2,. . .,

nk−1}∈ Qk−1 do
3: if (m1=n1)∧ . . . ∧(mk−2=nk−2)

∧(mk−1< nk−1) then
4: ck = (m1, ..., mk−2, mk−1, nk−1)
5: if ck has any subset with FoC <

β then
6: remove ck

7: else
8: set ck.FoC count=0;

set ck.Weight count=0;
add ckto Ck

9: end if
10: end if
11: end for

12: end for

Fig. 5. Algorithms of Apriori-FRACTURE and GenCandidatePatterns

The algorithm Apriori-FRACTURE can be optimized in several ways. Note
that after generating the set of candidate k-subtree-sets, the SDDB is scanned
to calculate the FoC and the Weight of them. However, if a candidate subtree
set does not satisfy the threshold of FoC, then we waste resource to compute its
Weight. Hence, we alternatively count the FoC and the Weight of candidate
sets in separate rounds. In other words, we calculate only the FoC of the
candidate k-subtree-sets in the kth round. Only if a candidate k-subtree-set
satisfies the threshold of FoC, its Weight will be calculated in the next round,
together with the calculating of the FoC of the candidate (k+1)-subtree-sets.
Referring to Figure 5, when line 7 computes the FoC of the candidate k-
subtree-sets, line 10 computes the Weight of the candidate (k-1)-subtree-sets.
Efficiency can be improved by computing the Weight for a tightened set of
candidate sets. However, Lemma 2 cannot be utilized to prune search space
as the Weight of the k-subtree-sets is unavailable until the (k+1 )th round.
Moreover, an extra scan of database is required to calculate the Weight of
the candidate sets generated in the last round. The detailed algorithm that
integrates this optimizing strategy with Apriori-FRACTURE is given in the
appendix. We evaluate the performance of this strategy in Section 5.

Due to the fact that when a subtree changes, all of its ancestor subtrees change
as well, another optimization can be applied. For example, we can compute
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the FoC for candidate sets containing subtrees rooted at higher-level nodes in
the XML tree first. If such a set does not satisfy the threshold of FoC, then
the sets containing their descendant subtrees cannot satisfy the threshold as
well. However, this strategy requires more than one scan of the database to
compute the FoC for all candidate k-subtree-sets. Hence, we do not study the
performance of this strategy in our experiments.

4.1.2 FPG-FRACTURE

Apriori-FRACTURE, similar to the algorithm Apriori [2], has the bottleneck
in generating the candidate sets and scanning database for multiple times.
To address the problem, we develop a divide-and-conquer algorithm, FPG-
FRACTURE, which is based on the algorithm FP-growth [10].

Data Structure FP-growth constructs a special data structure FP-tree which
contains compact information of frequent itemsets. Due to the space con-
straint, we briefly describe the fundamentals of FP-tree, interested readers
can refer to the work [10] for the details. First of all, only frequent individual
items will have nodes in the FP-tree. Transactions sharing common items share
prefix paths in the FP-tree. Each node registers the number of transactions in
which it occurs, together with nodes in its prefix path. Node links are used to
indicate the occurrences of an item in different paths. A head table maintains
the set of frequent individual items and pointers to their node links.

Obviously, an FP-tree can be used here directly to record the information
of FoC for subtree sets. That is, the information of which subtrees change
together in each delta. However, it cannot simultaneously maintain the infor-
mation of Weight for subtree sets, such as the information of which subtrees
change significantly together in each delta. A naive solution may be to con-
struct two FP-trees to record the information of FoC and Weight respectively
and intersect the results mined from the two FP-trees. Clearly, this is not
space-economical. Therefore, we study how to record the information of both
the FoC and the Weight of subtree sets in one FP-tree.

Consider that each subtree in a delta has two states: its DoC is either less
than the user-defined threshold of DoC α or no less than α. We use a pair of
identifiers to represent the two states of a subtree. Given a subtree ti, when
its DoC is less than α, we use an identifier -ti to represent it in this delta;
otherwise, we use the original identifier ti. For example, given an SDDB shown
in Figure 6 (a). Suppose the user-defined α is 0.15, it can be transformed into
the one shown in Figure 6 (b) (for ease of exposition, we also transformed the
schema of the table so that each delta has one tuple in the transformed table).

Now if we construct an FP-tree from the transformed SDDB by creating
different nodes for subtrees with different identifiers, the information of both
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DID SID DoC DID SID DoC DID SID DoC DID SID DoC

1 t1 0.2 2 t1 0.3 3 t1 0.22 4 t2 0.24

1 t2 0.05 2 t2 0.25 3 t2 0.25 4 t3 0.22

1 t3 0.1 2 t3 0.1 3 t4 0.3 5 t1 0.05

1 t4 0.25 2 t4 0.3 3 t5 0.05 5 t2 0.1

1 t5 0.3 2 t5 0.22 4 t1 0.1 5 t3 0.35

DID SIDs
1 t1, -t2 , -t3 , t4 , t5
2  t1 , t2 , -t3 , t4 , t5
3 t1 , t2 , t4 , -t5
4 -t1 , t2 , t3
5 -t1 , -t2 , t3

(a) (b)

Fig. 6. Transforming SDDB

the FoC and the Weight of subtree sets can be reserved. We call the resulting
tree Signed-FPtree. The method of constructing a Signed-FPtree is similar to
the construction of an FP-tree. The key difference between the Signed-FPtree
and the original FP-tree is that in a Signed-FPtree, node links should connect
nodes with identifiers as ti and -ti since they actually represent the same
changed subtree.

When deciding which subtrees will have nodes in the Signed-FPtree, we recall
the Property 1 and the Lemma 2. Thus, given the user-defined threshold of
FoC β and threshold of Weight γ, a subtree ti will be constructed in the Sighed-
FPtree if FoC (ti) ≥ β and (FoC (ti)×Weight(ti)) ≥ (β × γ). For example,
suppose the β is 0.4 and the γ is 0.5. The Signed-FPtree constructed from
Figure 6 (b) is presented in Figure 7 (a). The algorithm of constructing a
Signed-FPtree is given in Figure 8 (a). The completeness of the Signed-FPtree
can be justified by the following theorem.

Theorem 3 Given an SDDB, a threshold of FoC β and a threshold of Weight
γ, the constructed Signed-FPtree contains the complete information of SDDB
in relevance to FRACTURE mining.

Proof. According to the construction process of the Signed-FPtree, each delta
in the SDDB is mapped to one path in the Signed-FPtree. The two states of
a subtree in each delta is reserved by using nodes with different identifiers.
Hence, the information of FRACTURE s in each delta is completely stored in
the Signed-FPtree.

Mining Algorithm We now explain how to mine the set of FRACTURE s
from the Signed-FPtree. The algorithm of FPG-FRACTURE is shown in Fig-
ure 8 (b). The critical differences between FPG-FRACTURE and the original
FP-growth are the way we calculate the FoC and the Weight for subtree sets
and the way we construct the conditional Signed-FPtree. In the following, we
illustrate the algorithm and the differences with an example. Consider the
last subtree, t5, in header table of the Signed-FPtree in Figure 7 (Line 10).
The FoC(t5) is 3/5=0.6 since the total number of occurrences of t5 and -t5 in
the Signed-FPtree is three. The Weight(t5) is 2/3=0.66 since t5 occurs twice.
Hence, {t5} is a FRACTURE (Line 11-14). There are three paths related to
t5: <t1:1, -t2:1, -t3:1, t4:1, t5:1>, <t1:1, t2:1, -t3:1, t4:1, t5:1> and <t1:1, t2:1,
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subtrees

root

t1:3

-t2:1

-t3:1 -t3:1

-t1:2
t1

t2

t3

t4

t4:1

headlink

t5

t4:1

t5:1

t4:1 -t5:1

t2:1

t3:1

(a)

-t2:1

t3:1

t5:1

t2:2

root

t1:2

-t2:1

t4:1

-t1:1t1

t2

t4
t4:1

headlink

(b)

-t2:1

-t4:1

t2:2

subtrees

Fig. 7. Signed-FPtree

t4:1, -t5:1> (the number after colon indicates the number of deltas in which
the subtree changed together with t5). In order to mine FRACTURE s related
to t5, we need to construct its conditional Signed-FPtree. Since the β is 0.4 and
the γ is 0.5, subtree t3 should not be included in t5’s conditional Signed-FPtree
as (FoC (t3)×Weight(t3)) = 0 <(β×γ). Hence, we construct t5’s conditional
Signed-FPtree from the following three prefix paths:<t1:1, -t2:1, t4:1>, <t1:1,
t2:1, t4:1> and <t1:1, t2:1, t4:1> (Line 15). Note that in the third prefix
path, subtree t5 occurs as -t5, which means subtree t5 did not change signifi-
cantly with the subtrees t1, t2 and t4 in this delta. To record this fact, we need
to replace the identifiers of the three subtrees with -t1, -t2 and -t4. We shall
justify the correctness of this operation in the Lemma 3 in the below. Then
the conditional Signed-FPtree of t5 is shown in Figure 7 (b). Mining from it
(Line 16-17), we firstly generate the pattern {t4, t5}. Considering both occur-
rences of t4 and -t4 in Figure 7 (b), the FoC of {t4, t5} is 0.6. Considering
the occurrences of t4 only, its Weight is 0.66. Then the pattern {t4, t5} is a
FRACTURE. Other FRACTURE s can be mined similarly.

Lemma 3 Given a FRACTURE S={t1, t2, ...,tn}, where tn is the last subtree
that was discovered in the S, and a (conditional) Signed-FPtree A from which
S is discovered, when constructing conditional Signed-FPtree B from A to mine
FRACTUREs related to S, any subtree occurs as ti should be replaced with -ti
on paths where subtree tn occurs as -tn. The replacement does not affect the
correctness when recursively constructing conditional Signed-FPtrees from B.

Proof. On the paths in A where tn occurs as -tn, any subtree ti occurring as
ti did not change significantly together with tn. Hence, replacing ti with -ti
records the correct information of the Weight of S ∪ {ti} without affecting
the FoC of S ∪ {ti}. Suppose {S ∪ tn+1} is the FRACTURE mined from the
conditional Signed-FPtree B. Then, for a conditional Signed-FPtree C con-
structed from B, where FRACTURE s related to {S ∪ tn+1} will be mined,
the replacement does not affect the correctness of C because of the follow-
ing reason. If ti did not change significantly together with S in this delta, it
also did not change significantly together with {S ∪ tn+1}. Thus, we have the
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(a) Signed-FPtree Construction (b) FPG-FRACTURE

Input: A transformed SDDB ∆
′
, thresh-

olds β, γ

Output: Constructed Signed-FPtree

Description:
1: scan ∆′ once to find the set of Q1 = all

individual subtrees with FoC ≥ β &&
(FoC×Weight)≥ (β × γ)

2: Sort subtrees in Q1 in descending order
of their FoC as L, the list of potential
FRACTUREs.

3: Create the root of a Signed-FPtree A, and
label it as “null”.

4: for each ∆i ∈ ∆′ do
5: Select subtrees in L from ∆i and sort

them according to L. Represent the list
of selected and sorted subtrees in the
form of [m|M ], where m is the first sub-
tree and M is the remaining list. Call
INS TREE([m|M], A)

6: end for
7: function INS TREE([m|M], A)
8: if A has a child node n such that

n.identifier = m.identifier then
9: increment n’s count by 1

10: else
11: create a new node n, initialize its

count as 1, its parent node be A and
its node-link linking with nodes with
identifier as either m.identifier or -
m.identifier

12: end if
13: if M is not empty then
14: call INS TREE(M, n)
15: end if

16: end function

Input: Signed− FPtree A, thresholds β, γ
Output: P : A set of FRACTUREs
Description:

call FPG-FRACTURE(A, null)

1: function FPG-FRACTURE(A, a)
2: if A contains a single path P then
3: for each combination (denoted as b)

of the nodes in the path P do
4: generate pattern b∪a with

FoC (b∪a) = minimum FoC of
nodes in b and Weight(b∪a) =
minimum Weight of nodes in b

5: if Weight(b∪a)≥γ then
6: P = P∪(b∪a)
7: end if
8: end for
9: else

10: for each ti in the header of tree do
11: generate pattern b = ti∪a with

FoC (b) = FoC (ti) and Weight(b)
= Weight(ti)

12: if Weight(b)≥γ then
13: P = P∪b
14: end if
15: construct b’s conditional Signed-

FPtree treeb

16: if treeb 6= ∅ then
17: FPG-FRACTURE(treeb, b)
18: end if
19: end for
20: end if

21: end function

Fig. 8. Algorithms of Signed-FPtree Construction and FPG-FRACTURE

lemma.

Theorem 4 The algorithm FPG-FRACTURE discovers the set of FRAC-
TURE completely.

The correctness of FPG-FRACTURE comes from the completeness of Signed-
FPtree, the proved correctness FP-growth and the Lemma 3.

4.2 Maximal FRACTURE Mining

In this subsection, we discuss the problem of mining the set of maximal FRAC-
TURE s. Obviously, it is unscalable to discover all the FRACTURE s first and
then prune the non-maximal ones. Hence, we study how to integrate the prun-
ing techniques in the mining process. Note that the Apriori-FRACTURE al-
gorithm searches the FRACTURE s in the breath-first way, whereas the FPG-
FRACTURE employs the depth-first manner. Consider that if a FRACTURE
S is subsumed by a maximal FRACTURE S’, then the cardinality of S’ must
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(a)

DID SIDs
1 t1, -t2, -t3, t4, t5
2 t1, t2, -t3, t4, t5
3 t1, t2, t4, -t5
4 -t1, t2, t3
5 -t1, -t2, t3

(b)

root
t5:2

t4:1
t4:2

-t3:2

-t5:1
t3:2

t5

t4

t3

subtrees headlink

t2:1 -t2:1

-t2:1 t2:1
t2:1

t2

t1
t1:1

t1:1

t1:1

-t1:1-t1:1

root

t1

t2 t5

t4

t3

(c)

Fig. 9. Ordering Subtrees in the Head Table of Signed-FPtree

be larger than that of S. In order to efficiently discover the maximal FRAC-
TURE s without generating the non-maximal ones, subtree sets with larger
cardinality should be checked first. Hence, a depth-first algorithm is more ap-
propriate to be optimized to the discover the maximal FRACTURE s. Thus, we
focus on modifying the algorithm FPG-FRACTURE to discover the maximal
FRACTURE s.

4.2.1 Optimization of Subtree Ordering

As we discussed above, in order to efficiently discover the maximal FRAC-
TURE s, it is ideal to generate a subtree set S’ before another subtree set S
if S ≺ S’. Then, if the subtree set S’ is a FRACTURE, we do not need to ex-
amine the subtree set S as it will not be maximal. According to the definition
of the subsumption relationship, we have the following optimizing strategy.

Optimization 1 Given an ancestor relationship between changed subtrees,
a subtree set S should be generated earlier than those containing descendant
subtrees of subtrees in S.

Optimization 1 guides how to order the list of subtrees in the head table of
Signed-FPtree. For example, consider the transformed SDDB in Figure 6 (b),
which is redrawn in Figure 9 (a). Suppose the ancestor relationship between
the changed subtrees is shown in Figure 9 (b), which means t1 is an ancestor
subtree of t2, t2 is an ancestor subtree of t3 and so on. We can arrange them
either in descending order of the number of their ancestor subtrees (i.e. {t3:2,
t2:1, t5:1, t1:0, t4:0}, the number after the colon is the number of ancestor
subtrees of this subtree) or in the reverse order of depth-first traversal of the
ancestor relationship (i.e. {t5, t4, t3, t2, t1}). With either ordering scheme, a
subtree set will be mined earlier than those subsumed by it. For example, with
the former ordering scheme, all FRACTURE s related to t4 will be mined before
those related to t5 but t4, which are probably subsumed by the FRACTURE s
related to t4 and then are not maximal. Before deciding which ordering policy
should be employed, we examine the following property first.
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Property 2 Given two subtree sets, S and S’ s.t. S ≺ S’, the projected delta
sets of S’ are same as the projected delta sets of S.

The projected delta sets of a subtree set S is the set of deltas in which sub-
trees in S changed. If S ≺ S’, then FoC (S )= FoC (S’ ). That is, every delta
containing the subtree set S contains the subtree set S’ as well, vice versa.

According to the Property 2, we are presented with the opportunity to mine S
and S’ from the same conditional Signed-FPtree. Furthermore, FRACTURE s
related to S and S’ can also be mined from the same data structure. In
order to utilize the same conditional Signed-FPtree, FRACTURE s related
to subtree set S should be examined right after the FRACTURE s related
to subtree set S’. Then, we need to arrange the individual subtrees in the
head table in reverse order of a depth first traversal. For example, given the
ancestor relationship shown in Figure 9 (b), the Signed-FPtree is shown in
Figure 9 (c). Let S be the set {t2} and S’ be the set {t1, t2}. We can examine
both S and S’ from the conditional Signed-FPtree constructed for {t1} as
S ≺ S’. Then, we can skip the examination of S if S’ is discovered to be a
FRACTURE. Furthermore, the conditional Signed-FPtree constructed for {t1,
t2} can be used to mine not only all FRACTURE s related to S’ but also all
FRACTURE s related to S.

As explained in the algorithm FPG-FRACTURE, labels of some nodes in
conditional Signed-FPtree need to be shifted to record the correct information.
However, this may incurs the problem that a conditional Signed-FPtree cannot
be sharable. For example, suppose we examine the FRACTURE s related to
{t2} from the conditional Signed-FPtree constructed for {t1, t2}. Consider the
second path from the left in the Signed-FPtree shown in Figure 9 (c). Since the
subtree t1 occurs as -t1, the subtree t3 should be replaced as -t3. Nevertheless,
t3 changed significantly with t2 in the delta. Then, the Weight of {t2, t3} will be
computed wrongly from the conditional Signed-FPtree constructed for {t1, t2}.
Therefore, we propose an alternative technique of shifting node labels. When
constructing a conditional Signed-FPtree for a subtree set S, we append a tag
to each path in the conditional Signed-FPtree, which indicates the states of
subtrees in S. For example, Figure 10 (a) shows the conditional Signed-FPtree
for {t1}. Each path is appended with a tag: “1” indicates that t1 changed
significantly in this path while “-1” indicates it changed insignificantly in this
path. Obviously, the modified conditional Signed-FPtree records the complete
information of FoC and Weight of subtree sets without affecting the states
of any subtree in the paths. Thus, the modified conditional Signed-FPtree is
sharable. For example, consider the conditional Signed-FPtree constructed for
{t1, t2} which is shown in Figure 10 (b). When mining FRACTURE s related to
{t1, t2}, we consider every bit in each path’s tag. When mining FRACTURE s
related to {t2} but {t1}, we only consider the last bit in the tags.
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4.2.2 Optimization of Selectively Examining Subtrees

Based on the Property 2 and the technique making the conditional Signed-
FPtree sharable, we do not need to construct the conditional Signed-FPtree
for a subtree set S to mine FRACTURE s related to it if it is subsumed by any
subtree set S’, since FRACTURE s related to S can be mined from conditional
Signed-FPtree where FRACTURE s related to S’ can be mined. Then we have
the following optimization.

Optimization 2 From the head table of (conditional) Signed-FPtree, only
the last subtree and subtrees which are not descendants of the subtree whose
patterns are just examined in the previous round need to be examined.

For example, from the original Signed-FPtree where the head table contains
the subtrees in the list as <t5, t4, t3, t2, t1>, we only need to construct condi-
tional Signed-FPtree for subtree t1 and t4 since t2 ≺ t1, t3 ≺ t1, t4 ⊀ t1 and t5
≺ t4. The set {t2} can be examined at the same time when examining the set
{t1, t2}. The set {t3} can be examined at the same time when examining the
set {t1, t2, t3}. The sets related to t2 but t1 can be mined from the conditional
Signed-FPtree constructed for {t1, t2} and the sets related to t3 but t1 or t2
can be mined from the conditional Signed-FPtree constructed for {t1, t2, t3}.
Similarly, from the conditional Signed-FPtree of {t1} in Figure 10 (a), we only
need to mine t2 and t4.

Recall that in the algorithm FPG-FRACTURE, we need to maintain a Weight
count for each subtree in the head table of the (conditional) Signed-FPtree.
The Weight count records the number of times the subtree changed signifi-
cantly with subtrees in the set that the data structure is constructed for. Now,
since we examine subtree sets related to both subtree set S’ and subtree set S
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s.t. S ≺ S’ from the same data structure, we need to maintain more than one
Weight count for some subtrees in the head table. For example, consider the
conditional Signed-FPtree for {t1} as in Figure 10 (a), we need to maintain two
Weight counts for t2, one records the Weight count for the set {t1, t2} and the
other records the Weight count for the set {t2}. Similarly, for the conditional
Signed-FPtree constructed for {t1, t2} as in Figure 10 (b), consider the last
subtree t3. Besides examining the set {t1, t2, t3}, we examine the other three
sets subsumed by it, {t1, t3}, {t2, t3} and {t3}. Hence, there are four Weight
counts should be maintained for subtree t3.

As an induction, the number of Weight counts that each subtree in the head
table of a conditional Signed-FPtree should maintain can be calculated as
follows.

Definition 7 [Number of Weight Counts] Let Si=<t1, t2, ..., tn> be a
list of subtrees s.t. ∀ j ∈[1, n-1], tj≺tj+1. Let FT(Si) be the first subtree and
LT(Si) be the last subtree in Si. Let P =S1∪S2∪...∪Sm, where ∀ i, j (1≤i, j≤m,
i 6= j), Si∩Sj = ∅ and ∀ k(1≤k≤m-1), LT(Sk)⊀FT(Sk+1). Suppose subtree sets
related to P are mined from current conditional Signed-FPtree. The number of
Weight counts we need to maintain for subtree t in the head table is as follows.

Number of Weight Counts =





∏m−1
i=1 2|Si|−1 · 2|Sm| if t ≺ LT(Sm)

∏m
i=1 2|Si|−1 if t ⊀ LT(Sm)

2

For example, consider the conditional Signed-FPtree in Figure 10 (c). P = S1

= <t1, t2, t3>. Since t4⊀t3, the number of Weight count we need to maintain
for t4 is 23−1=4. The four Weight counts record the Weight information for
subtree sets {t1, t2, t3, t4}, {t1, t3, t4}, {t2, t3, t4} and {t3, t4} respectively.
Consider the conditional Signed-FPtree in Figure 10 (d). P = S1∪S2 = <t1,
t2, t3>∪<t4>. Since t5≺t4, we need to maintain 23−1·21=8 Weight counts for
subtree t5.

Note that, the checking for maximal FRACTURE s can be performed after
examining each subtree in the head table of a (conditional) Signed-FPtree. For
example, after examining the subtree t3 in the head table of the conditional
Signed-FPtree in Figure 10 (b), we generate four subtree sets: {t1, t2, t3}, {t1,
t3}, {t2, t3} and {t3}. Then, we only need to find maximal FRACTURE s from
the four subtree sets rather than compare each subtree set with all previously
discovered FRACTURE s and incoming FRACTURE s to verify whether it is
maximal.

4.2.3 Optimization of Mining Signed-FPtree of Single Path

When the data structure contains a single path, we have the following opti-
mization strategy.
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Table 2
Parameters List

|∆| Number of deltas 10000

S Average size of each delta 20

I Average size of subtree sets potentially satisfying minimum FoC 6

P Number of subtree sets potentially satisfying minimum FoC 2000

W Mean value of the fraction of subtrees satisfying minimum Weight in a delta 0.75

N Number of changed subtrees 1000

L Average depth of each ancestor relationship 5

F Average fanout of each ancestor relationship 5

Optimization 3 If the (conditional) Signed-FPtree contains a single path,
maximal FRACTUREs can be generated directly from the subtrees in the head
table which are 1) with their node identifier as ti rather than -ti in the path and
2) either last subtree or not descendant of the subtree mined in the previous
round.

For a (conditional) Signed-FPtree with a single path, if a subtree occurs with
the identifier -ti, every set related to this subtree will have its Weight be
zero. Thus, we have the first condition. The second condition is similar to
Optimization 2.

According to the FPG-FRACTURE algorithm in Figure 8 (b), the three op-
timization techniques can be employed in Line 15, Line 11 and Line 2 respec-
tively. The detailed algorithm is given in the appendix.

5 Experimental Results

In this section, we first evaluate the performance of the developed algorithms
for mining FRACTURE s and maximal FRACTURE s by conducting experi-
ments over the synthetically generated XML structural deltas in Section 4.1.
Then, we examine the novel knowledge that can be discovered by FRAC-
TURE s with experiments on real-life datasets in Section 4.2. Algorithms are
implemented in Java language. All experiments are conducted on a Pentium
IV 2.8GHz PC with 512 MB memory. The operating system is Windows 2000
professional.

5.1 Experiments on Synthetic Datasets

We first describe the process of generating synthetic structural deltas of XML
documents. Then, we study the performance of the algorithms for mining
FRACTURE s and maximal FRACTURE s respectively.

5.1.1 Datasets

In order to evaluate the algorithms of mining FRACTURE s and maximal
FRACTURE s, an SDDB is required. We implemented a structural delta gen-
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erator by extending the one that is used to generate transaction datasets in
[2]. Parameters of the synthetic structural delta generating process are shown
in Table 2, with default values in the third column. Four steps are involved in
the process of generating synthetic structural deltas.

• Organizing all N subtrees into ancestor relationships with the given average
depth L and average fanout F.

• Generating subtree sets which potentially satisfy minimum FoC β.
• Picking subtrees from these patterns, together with all their ancestor sub-

trees, to form every delta.
• Assign DoC to subtrees in each delta. In each delta, the number of subtrees

whose DoC is no less than the minimum DoC is picked from a Poisson
distribution with a specified mean value W. In all experiments, we set the
minimum DoC α as 0.15.

5.1.2 Methodology & Results for Algorithms of FRACTURE mining

In evaluating the algorithms of mining FRACTURE s, we carried out four ex-
periments for algorithms: Apriori-FRACTURE, Apriori-FRACTURE-I (op-
timized Apriori-FRACTURE ) and FPG-FRACTURE.

• Scalability Study: We test the scale-up features of all the three algorithms
against the number of deltas, which is varied from 1K to 30K. The user-
defined thresholds for FoC β and Weight γ are set as 0.75% and 60% respec-
tively. Figure 11 (a) shows the results of the experiment. The performance of
Apriori-FRACTURE degrades quickly when the number of deltas increases
while the algorithm FPG-FRACTURE scales well with the increasing of the
number of deltas. The scalability of the optimized Apriori-FRACTURE-I
is better than the algorithm Apriori-FRACTURE.

• Efficiency Study I: We compare the execution time of each algorithm to
discover FRACTURE s by varying the minimum FoC β from 0.35% to 2%.
The user-defined γ is set as 60%. The results are shown in Figure 11 (b).
Again, the efficiency of the algorithm FPG-FRACTURE outperforms the
algorithms Apriori-FRACTURE and Apriori-FRACTURE-I. And the opti-
mized Apriori-FRACTURE-I is more efficient than the Apriori-FRACTURE
although it scans database one more time than the Apriori-FRACTURE
does.

• Efficiency Study II: We measure the execution time of each algorithm to
discover FRACTURE s by varying the γ from 30% to 80%. The β is set
as 0.75%. As shown in Figure 12 (a), the variation of the minimum Weight
does not affect the performance of the algorithms. This is true because none
of the algorithms utilize this constraint to prune search space.

• Optimizing Strategy for Apriori-FRACTURE : We measure the effectiveness
of the optimizing strategy for Apriori-FRACTURE by comparing the gap
between the execution time of the Apriori-FRACTURE and the Apriori-
FRACTURE-I against both the number of deltas and minimum FoC β.
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Fig. 12. Experiment Results II

Since Apriori-FRACTURE-I tries to gain efficiency by counting Weight for
a tightened set of candidate sets, both the size of database and the β may
affect its performance. Three sets of data are used: DBI(1K), DBII(5K) and
DBIII(10K). The β ranges from 0.5% to 3%. As shown in Figure 12 (b),
when the size of the dataset turns to be larger and the β turns to be smaller,
where the Apriori-FRACTURE algorithm cannot perform well, the gap
between the Apriori-FRACTURE-I and Apriori-FRACTURE increases.

5.1.3 Methodology & Results for Algorithms of maximal FRACTURE Mining

In this section, we first carried out experiments to show how the set of max-
imal FRACTURE s is more concise than the complete set of FRACTURE s.
Subsequently, we evaluated the performance of the modified algorithm FPG-
FRACTURE by comparing it with a naive algorithm for maximal FRAC-
TURE mining. Basically, the naive algorithm finds the complete set of FRAC-
TURE s first and then prune the non-maximal ones. Since the naive algorithm
is really unscalable, we also optimized it slightly so that a new FRACTURE is
only need to be compared with previously discovered FRACTURE s to verify
whether it is maximal or not.

• Conciseness of maximal FRACTURE s: Firstly, we contrast the size of the
set of maximal FRACTURE s with the size of the complete set of FRAC-
TURE s by adjusting the average depth and fanout of the ancestor rela-
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tionships. As shown in Figure 13 (a), the set of maximal FRACTURE s is
apparently more tighter then the set of FRACTURE s. When the average
depth and fanout of ancestor relationships are larger, more FRACTURE s
might be subsumed by their supersets. Hence, the compression ratio turns
to be greater.

• Efficiency Study: We compare the execution time of the naive algorithm and
the optimized FPG-FRACTURE. As shown in Figure 12 (a), the threshold
γ does not affect the efficiency of the mining algorithms, we conducted this
experiment by varying the threshold β from 2% to 10%. As shown in Fig-
ure 13 (b), when the threshold is smaller, the optimized FPG-FRACTURE
is more efficient. This is because when the threshold is smaller, more FRAC-
TURE s will be generated. Hence, the naive algorithm needs to check more
FRACTURE s to verify whether they are maximal or not.

• Scalability Study I: We test the scale-up features of the two algorithms
against the number of deltas, which is varied from 8K to 80K. Figure 14
(a) shows that the optimized FPG-FRACTURE has the better scalability
than the naive one. Moreover, when the number of deltas is larger, the gap
between the two algorithms is greater.

• Scalability Study II: We also observe the scalability of the two algorithms
with respect to the number of discovered maximal FRACTURE s. As pre-
sented in Figure 14 (b), when mining the same number of maximal FRAC-
TURE s, the optimized FPG-FRACTURE is faster than the naive algo-
rithm. Furthermore, when the size of the set of maximal FRACTURE s
increases, the optimized FPG-FRACTURE scales even better.
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5.2 Experiments on Real-life Datasets

In this section, we conduct experiments on real-life data sets. Note that, since
the performance of the approaches has been evaluated with the experiments on
synthetic data, we focus on examining the knowledge that can be discovered
by FRACTURE s with the experiments on real-life data sets. Two sets of real-
life data, DBLP data and Web access log data, are used in these experiments.
In the following, we describe the two sets of data and experiments respectively.

5.2.1 Methodology & Results on DBLP Data

The DBLP data is the bibliographic information on major computer science
journals and proceedings provided by the DBLP server [17]. The basic DTD
structure of the document dblp.xml is shown in Figure 15 (a). It can be ob-
served that dblp.xml has eight distinct elements under the root: article, in-
proceedings, proceedings, book, incollection, phdthesis, mastersthesis, and www.
With the evolution of dblp.xml, new instances of these elements will be added
incrementally. Hence, it is hopeful to discover some structural associations
from these elements. For example, new instances of inproceedings and proceed-
ings may be frequently added together. In order to discover FRACTURE s
indicating such structural associations, we reorganized the dblp.xml file in the
following two steps: (1) all instances of each child element of the root are
organized under a newly inserted element (black nodes in Figure 15 (b)) cor-
responding to the original element. The resulted DTD structure is shown in
Figure 15 (b); (2) historical versions of dblp.xml are generated according to
the element year (gray node in Figure 15 (b)) of the instances. For example, a
resulted historical version dblp1970.xml contains all instances whose element
year has a value less than or equal to “1970”.

We totally generated 30 historical versions of dblp.xml from year 1971 to year
2000. Experiments are conducted not only on the total 30 versions but also on
every 10 versions. For experiments on the whole 30 versions, we set the mini-
mum DoC α, minimum FoC β and minimum Weight γ as 0.15, 0.2 and 0.4
respectively. For experiments on every 10 versions, the three thresholds are set
as 0.15, 0.3 and 0.5 respectively. The results are shown in Table 3. It can be ob-
served that discovered FRACTURE s contain not only individual subtrees but
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Table 3
Results on DBLP Data

1971-2000 1971-1980

dblp/total-proceedings/ dblp/total-proceedings/

dblp/total-article/ dblp/total-inproceedings/

dblp/total-phdthesis/ dblp/total-article/

dblp/total-inproceedings/ {dblp/total-proceedings/, dblp/total-inproceedings/}
{dblp/total-inproceedings/, dblp/total-article/} {dblp/total-inproceedings/, dblp/total-article/}

1981-1990 1991-2000

dblp/total-proceedings

dblp/total-proceedings dblp/total-phdthesis

dblp/total-phdthesis dblp/total-masterthesis

{dblp/total-proceedings, dblp/total-phdthesis} dblp/total-www

{dblp/total-masterthesis, dblp/total-www}

also pairs of subtrees. For example, from the FRACTURE s discovered from
the whole 30 versions, we noticed that the subtrees dblp/total-inproceedings
and dblp/total-article frequently and concurrently change together. We may
infer from the FRACTURE that from year 1971 to 2000, new instances of
inproceedings (conference papers) and articles (journal papers) are frequently
added together.

Although the FRACTUREs discovered from the dblp.xml indicate structural
associations, the semantical associations are not obvious. For example, it is
hard to explain the semantical association in the FRACTURE {dblp/total-
masterthesis, dblp/total-www} discovered from year 1991 to year 2000. Fur-
thermore, since the depth of dblp.xml is small, we can only discover FRAC-
TUREs from the child elements of the root. To overcome these two deficien-
cies, we conducted experiments on another set of real-life dataset in the next
subsection.

5.2.2 Methodology & Results on Web Log Data

Recently, there are proposals [12] [11] on designing Log Markup Language
(LOGML), which is XML 1.0 application, to describe the log reports of web
servers. The main motivation is that although it is easy to extract simple in-
formation from web logs, it is quite challenging to mine complex structural
information. In our experiments, we also represent the access logs of a web
user in a single day as an XML document since both of them can be mod-
eled as a tree structure. For example, given the access logs of a web user in
Figure 16 (a), we represent it as an XML document in Figure 16 (b). Thus,
the structural information of the access logs of web users can be captured
by the structure of the XML documents. Then, given a sequence of historical
versions of XML documents representing a web user’s historical access logs,
we can mine FRACTURE s from them to discover associated interests of the
web user or associated substructures of the web site.
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[18/Sep/2004:13:09:40 ] "GET /Elearning/images/login/dart.gif HTTP/1.1"
[18/Sep/2004:13:09:55 ] "GET /Elearning/css/search_library.css HTTP/1.1"
[18/Sep/2004:13:10:01 ] "GET /Elearning/Lesson/control.html HTTP/1.1"
[18/Sep/2004:13:10:01 ] "GET /Elearning/Lesson/lesson_frameset.html
[18/Sep/2004:13:10:04 ] "GET /Elearning/Lesson/Main_Frame.swf HTTP/1.1"

<Elearning>
    <images>
        <login>
            <dart.gif/>
        </login>
    </image>
    <css>
        <search_library.css/>
    </css>
    <Lesson>
         <control.html/>
         <lesson_framset.html/>
         <Main_Frame.swf/>
    </Lesson>
 </Elearning>

(a)

(b)

{Elearning/images/drseries, Elearning/Learning_Objects/x186}
{Elearning/imgaes/drseries, Elearning/css}
{Elearning/images/drseries, Elearning/js/lesson_builder.js}

(c)

Fig. 16. Web Log and XML

We observed the historical access logs of a particular web user visiting an
E-learning Web site [1] during September 2004. Then, we generated XML
documents for her access logs in each day. Since the user may not access the
Web site every day, there are totally 23 historical versions of XML documents
are collected. The maximal depth of the generated XML documents is 5, we are
then allowed to discover FRACTURE s from the subtrees rooted at different
levels of the XML documents.

We conducted the experiments by varying the thresholds, minimum DoC α,
minimum FoC β and minimum Weight γ, to find the set of meaningful FRAC-
TURE s (Setting loose thresholds gets too many FRACTURE s while setting
strict thresholds gets FRACTURE s containing only individual subtrees). Fig-
ure 16 (c) shows the FRACTURE s when setting the α, β and γ as 0.5, 0.6 and
0.7 respectively (Due to constraint space, only FRACTURE s containing more
than one subtrees are shown). Users with certain knowledge of the Web site
can infer the semantical associations from the results. For example, the first
FRACTURE may indicate that the web user frequently visited the learning
objects under the node “x186”, which use the different images under the node
“drseries”.

6 Applications

Discovered FRACTURE s can be used in a wide range of applications. We
enumerate some of them in this section.

Native XML Storage. Native XML storage usually views an XML docu-
ment as a tree and partitions the XML tree into distinct records containing
disjoint connected subtrees, such as Natix [13]. These distinct records are then
stored in disk pages. Natix did not employ any particular strategy to parti-
tion an XML tree or store the records. Actually, the knowledge inferred from
FRACTURE s can be used as a guide so that when XML document changes,
the updating process can be more efficient in locating changed records.
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Fig. 17. Distribution of XML tree onto records

For example, given an XML tree as shown in Figure 17 (a). One possibility
of Natix for partitioning the logical tree into four physical trees, r1, r2, r3, r4,
which will be stored in disk pages is shown in Figure 17 (b). Nodes marked by
dashed ovals are added to link the physical trees together. Now, suppose two
subtrees rooted at nodes f2 and f7 are discovered as a FRACTURE. Based on
the knowledge inferred from the FRACTURE that the two subtrees frequently
change together, we can partition the XML tree so that the two subtrees reside
in the same physical tree if they fit in a disk page (Otherwise, we can partition
them into different physical trees and store them in adjacent disk pages). In
subsequent versions of the XML document, the two subtrees very likely change
together again as they are discovered as an FRACTURE. When updating the
records containing the two subtrees, with the partition as in Figure 17 (b), we
need to search the locations of two records r2 and r4. Nevertheless, with the
strategy based on FRACTURE s, we only need to search the location for one
record as the two subtrees are in the same disk page (or adjacent disk pages).

Approximate XML Change Detection. Given a dynamic XML docu-
ment, when users are not interested in the exact changes to the document 1 ,
FRACTURE s can be used to facilitate the approximate XML change detec-
tion. X-DIFF [23] is one of the XML change detection algorithms that detect
changes most accurately. It detects changes to XML documents in the top-
down fashion. For example, Figure 18 (a) shows two versions, t1 and t2, of an
XML tree. After comparing the signatures of the two nodes labelled as a, we
may know that the subtree rooted at node a is changed. Suppose the subtree
rooted at node a and the subtree rooted at node b has been discovered as a
FRACTURE. Then, the approximate change detection algorithm may expe-
diently compare the signatures of the nodes labelled as b and skip comparing
the subtrees rooted at nodes c and d. Certainly, there is a tradeoff between
efficiency and accuracy.

As FRACTURE s are discovered from a sequence of historical versions of a
(XML) tree, they can be useful in not only XML-related applications but also

1 For example, users may want to know the rough changes before inquiring the
exact changes.
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Fig. 18. Distribution of XML tree onto records

other applications where data has hierarchical structures.

Web Crawling. Pages of a particular web site can be organized as a tree
according to the paths in their URL addresses. Figure 18 (b) shows an exam-
ple hierarchy of pages in a web site at www.abc.com. As a web site might be
updated frequently (i.e, some pages may be inserted while some pages may be
deleted), FRACTURE s can be mined from a sequence of historical versions
of the web structure likewise. Discovered FRACTURE s can be used by a web
crawler in designing intelligent crawling strategies. Consider the example in
Figure 18. Suppose the two subtrees rooted at nodes “Products” and “Train-
ing” are discovered as a FRACTURE. It can be inferred that pages in the
two subtrees frequently change together (i.e., when some new products are
released, some new training courses are added as well). Thus, a corresponding
crawling strategy can be designed that once the crawler detects that pages
under the “Products” change significantly, it will automatically create a new
copy of pages under the “Training” because these pages very likely change as
well according to the discovered FRACTURE.

Market Basket Analysis. As pointed out in [18], in most cases, there ex-
ists taxonomies over transaction items. For example, Figure 18 (c) shows an
example taxonomy, which indicates that outwear is-a clothes and shoes is-a
footwear etc. Once an item is purchased, it corresponds to the insertion of a
leaf node to the node representing its category (i.e., the nodes labelled as i
in Figure 18 (c)). Such a hierarchy can be updated every certain time period
according to the transactions in the period. Thus, FRACTURE s can be mined
from the sequence of its historical versions. Knowledge gathered from the dis-
covered FRACTURE s can be used for market basket analysis. For example, if
the subtree rooted at node “clothes” and the subtree rooted at node “shoes”
are discovered as a FRACTURE, then it can be inferred that when the sales
of items of clothes increases, the sales of items of shoes frequently increases
as well. Thus, once the merchant sees a rise in the sales of clothes, he may
indent more shoes if they are low in stock. Note that, traditional frequent pat-
terns [18] fails to discover such association if the support of clothes or shoes
does not satisfy some pre-defined threshold. While FRACTURE s can discover
it only if the increase of support of clothes and shoes is significant enough.
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7 Related Works

Our proposed FRACTURE mining system is largely influenced by several re-
cent technologies by two major research communities in data mining. On one
hand, the XML mining community has largely focused on mining frequent sub-
structures from a collection of static XML document collection. On the other
hand, the association rule mining community has paid considerable attention
to designing efficient and scalable algorithms for finding frequent patterns. In
this section, we compare our approach with these approaches and highlight
the novelty of our work.

7.1 XML Structure Mining

Since XML documents are typically viewed as semi-structured data, they
do not have rigid structure. Major work on XML structure mining focuses
on discovering frequent substructures from a collection of XML documents
[22] [3] [25] [20]. Wang and Liu [22] developed an Apriori-like algorithm to
mine frequent substructures based on the “downward closure” property. They
first found the frequent 1-tree-expressions that are frequent individual label
paths. Discovered frequent 1-tree-expressions are joined to generate candidate
2-tree-expressions. The process is executed iteratively till no candidate k-tree-
expressions is generated. Asai et al. [3] developed another algorithm, FREQT,
to discover all frequent tree patterns from large semi-structured data. They
modeled the semi-structured data as labeled ordered tree and discover frequent
trees level by level. At each level, only the rightmost branch is extended to dis-
cover frequent trees of the next level. Thus, efficiency can be obtained without
generating duplicate candidate frequent trees. TreeMinerH and TreeMinerV
[25] are two algorithms for mining frequent trees in a forest. As the name
of the algorithm indicates, TreeMinerH is an Apriori-like algorithm based on
a horizontal database format. In order to efficiently generate candidate trees
and count their frequency, a smart string encoding is proposed to represent
the trees. In contrast, TreeMinerV uses vertical scope-list to represent a tree.
Frequent trees are searched in depth-first way and the frequency of gener-
ated candidate trees are counted by joining scope-lists. TreeFinder [20] is an
algorithm to find frequent trees that are approximately rather than exactly
embedded in a collection of tree-structured data modeling XML documents.
Each labelled tree is described in relaxed relational description which main-
tains ancestor-descendant relationship of nodes. Input trees are clustered if
their atoms of relaxed relational description occur together frequently enough.
Then maximal common trees are found in each cluster by using algorithm
of least general generalization. Recently, there is another line of work that
employs the pattern-growth algorithm to discover frequent subtrees [21] [24].

The principal character that distinguishes our study from existing XML struc-
ture mining is that we aim to discover frequent patterns in terms of changed
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subtrees. Specifically, we treat a comparison of two versions of an XML struc-
ture as a “transaction” and changed subtrees in the two versions as “items”,
whereas existing XML structure mining treats the structure of each XML doc-
ument as a “transaction” and the edges, nodes or paths of each structure as
“items”. In addition, existing work on XML structure mining considers only
snapshot structure of an XML document, whereas we consider the dynamic
nature of the structures in an XML document.

7.2 Frequent Pattern Mining

There has been increasing research efforts in frequent pattern mining by the
data mining community. Frequent pattern mining can be considered as a crit-
ical subproblem of the association rule mining problem. Basically, the state-
of-art approaches of frequent pattern mining consists of two lines of works,
for which the Apriori [2] algorithm and the FP-Growth [10] algorithm are
the representatives respectively. A frequent pattern is a set of items that fre-
quently occur together. In our research, a FRACTURE is a set of trees that
frequently change significantly together. Thus, the notion of FRACTURE is
similar to frequent pattern as far as the frequency of co-occurrence of “items”
is concerned. However, the critical difference between our study and classical
frequent pattern mining problem is that in our research, a frequent pattern is
defined based on not only the frequency of the pattern but also the weight of
the pattern. Furthermore, in classical frequent pattern mining, items are in-
dependent from each other. However, “items” have some inherent relationship
in our study. That is, when a subtree changes, all its ancestor subtrees change
as well. This feature makes our problem similar to the generalized association
rule mining [18]. Hence, our study shares the common redundancy problem
with generalized association rule mining in finding patterns of “items” with
ancestor relationships. We filter the redundant patterns by capturing not only
the FoC of a FRACTURE but also the weight of a FRACTURE. In addition,
since each subtree is associated with the DoC to indicate its change degree
in a delta, our study has some connection with the weighted association rule
mining [19]. However, items are associated with fixed weight in weighted asso-
ciation rule mining whereas in our approach subtrees may have different DoC
in different deltas.

7.3 Maximal Frequent Pattern Mining

Maximal frequent pattern mining is an interesting problem as it discovers a
concise set of frequent patterns. MaxMiner [4] applies a breath-first strategy
to mine maximal patterns. It employs the “look ahead” technique to discover
longer frequent patterns first so that the shorter non-maximal frequent pat-
terns can be skipped. Mafia [6] and GenMax [9] are two algorithms using the
depth-first strategy to mine maximal patterns and incorporating a series of
optimizing strategies.

35



Since our definition of the maximal FRACTURE is fundamentally different
from the classical definition of maximal frequent pattern mining, our algo-
rithms for searching the set of maximal patterns are also different from ex-
isting approaches. Essentially, we capture the ancestor relationship between
changed subtrees to optimize the mining algorithm.

8 Conclusions and Future Work

This paper proposed a novel problem of frequent pattern mining called FRAC-
TURE mining, which is based on changes to XML structures. Discovered
FRACTURE s imply that some subtrees in an XML structure frequently change
together. Knowledge obtained from FRACTURE s can be useful in appli-
cations such as XML indexing, XML clustering etc. In order to make the
result patterns concise, we further defined the problem of maximal FRAC-
TURE mining. Two different algorithms, Apriori-FRACTURE and FPG-
FRACTURE, were designed to mine the set of FRACTURE s. We then mod-
ified the algorithm FPG-FRACTURE to handle the problem of maximal
FRACTURE mining. Experiment results demonstrated that both algorithms
can discover the complete set of FRACTURE s with certain efficiency and
scalability, the optimizing strategies work effectively in improving the perfor-
mance of the algorithms, and the modified algorithm can discover the set of
maximal FRACTURE s efficiently. As future work, we are interested in inves-
tigating the problem of mining frequent patterns from XML content deltas
and hybrid deltas.
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APPENDIX

The optimized version of Apriori-FRACTURE for FRACTURE mining and
the optimized version of FPG-FRACTURE for maximal FRACTURE mining
are described in the Figure A.1 (a) and (b) respectively.

(a) Optimized Apriori-FRACTURE (b) Optimized FPG-FRACTURE

Input: SDDB ∆, thresholds α, β and γ

Output: The set of FRACTUREs P

Description:
1: Q1 = all individual subtrees with FoC ≥ β
2: for (k=2; Qk−1 6=∅; k++) do
3: Ck = GenCandidatePatterns(Qk−1)
4: for (i=1; i≤|∆|; i++) do
5: for each candidate pattern ck ∈ Ck do
6: if (all subtrees in ck changed in 4i)

then
7: ck.FoC count++
8: end if
9: end for

10: for each subtree set qk−1 ∈ Qk−1 do
11: if (all subtrees in qk−1 changed sig-

nificantly in 4i)) then
12: qk−1.Weight count++
13: end if
14: end for
15: end for
16: Pk−1 = {qk−1 ∈ Qk−1 |

(qk−1.Weight count / qk−1.FoC count)
≥ γ}

17: Qk = {ck ∈ Ck | ck.FoC count≥(β ×
|4|)}

18: end for

19: return
⋃

k−1Pk−1

Input:
Signed-FPtree, thresholds β,γ

Output:
P : A set of maximal FRACTUREs

Description:

call OFPG FRACTURE(Signed-FPtree,

null)

1: function OFPG FRACTURE(tree, a)
2: if tree contains a single path P then
3: generate set b based on Optimization 3
4: if Weight(b∪a) ≥ γ && b∪a is maxi-

mal then
5: P = P∪(b∪a)
6: end if
7: else
8: for each ai in the header of tree do
9: generate set b=ai∪a and its sub-

sumed sets based on Optimization 2
10: for each subsumed set c do
11: if Weight(c) ≥ γ && c is maximal

then
12: P = P∪c
13: end if
14: end for
15: construct b’s conditional Signed-

FPtree treeb based on the ordering
in Optimization 1

16: if treeb 6= ∅ then
17: OFPG FRACTURE(treeb, b)
18: end if
19: end for
20: end if

21: end function

Fig. A.1. Optimized Apriori-FRACTURE and Optimized FPG-FRACTURE
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