
HW-STALKER: A Machine Learning-based

System for Transforming QURE-Pagelets to

XML

Vladimir Kovalev a, Sourav S Bhowmick a and Sanjay Madria b

aSchool of Computer Engineering, Division of Information Systems, Nanyang
Technological University, Singapore 639798

bDepartment of Computer Science, University of Missouri-Rolla, Rolla 65409

Abstract

In this paper, we address the problem of extracting and transforming dynamically
generated hyperlinked hidden web query results to XML. Our approach is based
on the stalker approach. As stalker was designed to extract data from a single
web page, it cannot handle a set of hyperlinked pages. We propose an algorithm
called HW-Transform for transforming hidden web query results (also called QURE-
Pagelets) to XML format using machine learning by extending stalker to handle
hyperlinked hidden web pages. One of the key features of our approach is that we
identify and transform key attributes of query results into XML attributes. These
key attributes facilitate applications such as change detection and data integration
by efficiently identifying related or identical results. Based on the proposed algo-
rithm, we have implemented a prototype system called hw-stalker using Java.
Our experiments demonstrate that HW-Transform shows acceptable performance
for transforming QURE-pagelets to XML.

Key words: Hidden Web, dynamic content, identifiers, facilitators, stalker,
XML, QURE-Pagelets.

1 Introduction

Current-day web crawlers retrieve content only from a portion of the Web,
called the publicly indexable Web (PIW) [16]. This refers to the set of web pages
reachable exclusively by following hypertext links, ignoring search forms and
pages required authorization or registration. However, recent studies [17,10]
observed that a significant fraction of Web content lies outside the PIW. A

Email addresses: assourav@ntu.edu.sg, madrias@umr.edu (Sanjay Madria).

Preprint submitted to Elsevier Science 3 January 2005

great portion of the Web is “hidden” in databases and can only be accessed by
posing queries over these databases using search forms (lots of databases are
available only through HTML forms)[10]. This portion of the Web is known as
the hidden Web or the deep Web [10]. Pages in the hidden Web are dynamically
generated in response to queries submitted via the search forms. We illustrate
such hidden web queries with an example.

Example 1 AutoTrader.com (at http://www.autotrader.com) is the largest
used car web site with over 2 million new and used vehicles listed for sale by
private owners, dealers, and manufacturers. To get any information on the
listed vehicles, a user should first specify search conditions. Figure 1 depicts
the search interface available on the AutoTrader.com site. This interface is
composed from two consecutive pages. In the first page, a user specifies the
car make he is searching for. In the second page, a user specifies the details of
the car such as model, year, price range, color, etc. After submitting the search
query, a user gets a list of cars relevant to this query. Figure 2 represents a set
of pages returned as the result of searching for Ford cars at AutoTrader.com
on 02 July, 2003. There are 500 car descriptions returned to a user. The first
page contains short descriptions of 25 cars. Each such short description pro-
vides a link to a separate page containing more details on the particular car.
There is also a link to a page containing the next 25 car descriptions that
is formatted in a similar way as the first page. The second page is linked to
the third page, and so on. Note that all the pages in this set are generated
dynamically. This means that every time a user queries AutoTrader.com with
the same query, all the resulting pages and the links that connect them to
one another are generated from the hidden web database anew. As the re-
sults are always ordered by some criteria (e.g. price, year, mileage, year, etc.),
the description of the same car may appear in different positions each time a
particular query is executed.

The task of harvesting information from the hidden web can be divided into
following four steps.

(1) Formulate a query or search task description;
(2) Discover sources that pertain to the task;
(3) For each potentially useful source, fill in the source’s search form and

execute the query;
(4) Extract query results from result pages as useful data is embedded into

the HTML code.

In this paper, we will assume that the task is formulated clearly (Step 1).
Step 2, source discovery, usually begins with a keyword search on one of the
search engines or a query to one of the web directory services. The works
in [4,18,6] address the resource discovery problem and describe the design
of topic-specific PIW crawlers. Techniques for automatically querying hidden

2

(a) Step 1 of 2.

(b) Step 2 of 2.

Fig. 1. AutoTrader.com: Search interface.

web search forms (Step 3) has been proposed in [12,21,19,9]. These techniques
allow a user to specify complex queries to hidden web sites that are executed
as combination of real queries. In this paper, we focus on Step 4.

3

��������	
��������
��
����

�
�����������
����

���

�
�����������
����

���

�
�����������������	
��������
���
����

Fig. 2. A set of pages returned as the result of searching for Ford on 2 July, 2003.

4

1.1 Motivation

Dynamically generated web pages typically consist of a handful of presentation
region types. Three common examples include [3]:

• The query-result regions, which present the primary content directly related
to a query posed on the search interface of the content provider. Some web
sites support multiple primary content regions.

• The advertisement region, which presents the information about other prod-
ucts offered by the content provider or about related products offered by
other companies.

• The navigational region, which presents a collection of navigational links,
often to other web sites provided by the same content provider.

In this paper, we focus on the transformation of data in query-result regions to
XML. We introduce the concept of QUery-REsult Pagelet 1 (QURE-Pagelet
for short) to refer to the query results related content region in a dynamic
page generated by the execution of a query on a hidden web site. Extracting
relevant results automatically from QURE-pagelets is a challenging problem.
First, the search and the extraction of the required data from the dynamic
pages are highly complicated tasks as each web form interface is designed
for human consumption and, hence, has its own method of formatting and
layout of elements on the page. For instance, Figure 2 depicts the original
AutoTrader result page with formatting and non-informative elements (such
as banners, advertisements, etc.). Accordingly, extraction tools must be able to
filter out the relevant QURE-Pagelets from the pages. Second, is the structural
complexity of hidden web query results. The search query usually returns not
a single HTML page, but a set of HTML pages. Most hidden web sites use
hyperlinks to connect these HTML pages. However, some sites use client-side
scripts like JavaScript for this purposes. These scripts are used to generate
hyperlinks on-demand based on parameters provided by user on submission.
Unfortunately, it is computationally hard to automatically analyze client-side
scripts.

We present hw-stalker, a prototype system for extracting relevant QURE-
pagelets and transforming them to XML using machine learning technique.
Our motivation to transform QURE-pagelets to XML is the following. Hid-
den web data is HTML-formatted and every hidden web site generates it in
its own fashion. Thus it becomes extremely difficult and cumbersome to de-
velop generalized techniques that can be used for hidden web data integration,
change detection to hidden web data [13], warehousing hidden web data etc.
Consequently, it is important to develop a technique for transforming hidden

1 The term pagelet was first introduced in [1] to describe a region of a web page that is distinct in terms
of its subject matter or its content

5

web data to more structured format (eg. XML) so that we can develop such
generalized techniques for hidden web data. A shorter version of this paper
appeared in [14].

1.2 Overview

We propose an algorithm called HW-Transform for transforming QURE-pagelets
to XML format. Our approach is based on the stalker technique [11,20]. We
use stalker because apart from being easy to use, in most cases it needs
only couple of examples to learn extraction rules, even for documents contain-
ing lists. The extraction rules are typically very small, and consequently, they
are easy to induce. This is a crucial feature because from the user’s perspec-
tive it makes the wrapper induction process both fast and painless. Moreover,
stalker models a page as unordered tree and many hidden web query results
are unordered. However, stalker was designed to extract data from a single
web page and cannot handle a set of hyperlinked pages. Hence, we need to
extend the stalker technique to extract results from a set of dynamically
generated hyperlinked web pages.

We use machine learning-based technique to induce the rules for this trans-
formation. The process of transforming QURE-pagelets from HTML to XML
can be divided into three steps:

(1) Constructing extended EC description [11,20] describing the hidden web
query results. In contrast to the stalker approach, on of the key feature
of our approach is that a user maps special key attributes (identifiers and
facilitators) of query results into XML attributes. These key attributes
facilitate change detection, data integration etc. by efficiently identifying
related or identical results. We shall elaborate on the importance of these
key attributes in the context of change detection to hidden web data in
Section 3.

(2) Learn extraction rules based on examples labeled by the user. A GUI
allows a user to mark up several pages on a site, and the system then
generates a set of extraction rules that accurately extract the required
information. We do not discuss this step here as it is similar to that of
stalker approach.

(3) Transforming QURE-pagelets from HTML to XML using extended EC
tree with assigned rules. We discuss this step in Section 4. Note that we
do not address transformation related to client-side scripts in this paper.

The rest of the paper is organized as follows. Section 2 discuss briefly the
stalker approach. In Section 3, we propose how to adapt the stalker ap-
proach to model and transform hyperlinked QURE-pagelets to XML. Section 4
presents HW-Transform, a formal algorithm for transforming QURE-pagelets
to XML format. We discuss the implementation of hw-stalker and highlight

6

Fig. 3. Search results for canon.

some experimental results in Section 5. Section 6 discusses related research
in this area. Finally, the last section concludes the paper.

2 STALKER Approach

In this section, we present the stalker approach for wrapper construction
that enables users to turn web pages into relational information sources [11,20].
stalker is a machine learning based approach where Embedded Catalog(EC)
formalism is used to describe the content of a web page. The EC description of
a page is a tree-like structure (also called EC tree) in which the leaves represent
the relevant data. The internal nodes (elements) of the EC tree represent lists
of k-tuples, where each item in the k-tuple can be either a leaf l or another
list L (in which case L is called an embedded list). For example, Figure 4
displays the sample EC description of Yahoo!Auctions (Figure 3). At the top
level this page contains 3 tuples: a total number of auctions denoted by leaf
element Total, a search keyword denoted by leaf element Keyword, and an
embedded list of Auctions, respectively.

2.1 Extracting Data from a Document

In order to extract the items of interest, a wrapper uses the EC description
of the document and a set of extraction rules. For each node in the tree,
the wrapper needs a rule that extracts that particular node from its parent.

7

Auctions_Document

Total Keyword LIST(Auction)

Price Time_LeftTitle Bids

Fig. 4. EC description of Yahoo!Auctions list of auctions from Figure 3.

���������������		�
������
�������
��������		���������������������������

�����������������	� ����
���!�"�����#���
�������		���������������������������

������$%&'�&(#��%&)&�*�	+���,�-��./%*0�����1�	�		��������,������1������2����

����������� �3
�*����*�4	�4���-���������&
3�����,��		����������������������������

Fig. 5. Four examples of auction descriptions.

Additionally, for each list node, the wrapper requires a list iteration rule that
decomposes the list into individual tuples. Given the EC tree and the rules,
item can be extracted by simply determining the path P from the root to
the corresponding node and by successively extracting each node in P from
its parent. If a parent of a node x is a list, the wrapper first applies the list
iteration rule and then applies the x’s extraction rule to each extracted tuple.

In the stalker framework, a document is treated as a sequence of tokens
S (e.g. words, HTML tags, wildcards, etc.). The content of the root node in
EC tree is the whole sequence S, while the content of each of its children is
a subsequence of S respectively. Generally, the content of an arbitrary node
represents a subsequence of the content of its parent.

A key idea of stalker approach is that the extraction rules are based on
“landmarks” that enable a wrapper to locate the start and end of the item
within the page. For example, let us consider the four examples of auction
descriptions in Figure 5. In order to identify the beginning of the price, we
can use the rule

R1 = SkipTo()

which has the following meaning: start from the beginning of the document
and skip everything until you find the landmark. Note that R1 is applied
to the content of the node’s parent, which in this particular case is the auction
list. R1 is called a start rule because it identifies the beginning of the price.
One can write a similar end rule that finds the end of the price from the end
of the document towards its beginning. These rules are not unique. That is,
R1 is by no means the only way to identify the beginning of the price.

8

To deal with variations in the format of the documents, the stalker extrac-
tion rules allow the use of disjunctions. For example, let us assume that the
auctions that do not have any bid appears in italic (see E1 and E2 in Figure 5),
while the other ones are displayed as bold (eg. E3, E4). stalker can extract
all the bids based on the disjunctive start rule

either SkipTo(<i>)
or SkipTo()

Disjunctive rules are ordered lists of individual disjuncts. Applying a disjunc-
tive rule is a straightforward process in stalker: the wrapper successively
applies each disjunct in the list until it finds the first one that matches.

2.2 Learning Extraction Rules

The authors have developed a hierarchical wrapper induction algorithm that
learns extraction rules based on examples labeled by the user. A GUI allows a
user to mark up several pages on a site, and the system then generates a set of
extraction rules that accurately extract the required information. Specifically,
the input to stalker algorithm consists of sequences of token representing the
prefixes that must be consumed by the induced rule. To create such training
examples, the user has to select a few sample pages and use GUI to mark up
the relevant data (i.e., the leaves of the EC tree). Once a page is marked up,
the GUI generates the sequences of tokens that represent the content of the
parent p, together with the index of the token that represents the start of item
x and uniquely identifies the prefix to be consumed.

stalker exploits the hierarchical structure of the source to constrain the
learning problem. For instance, instead of using one complex rule that extracts
all auctions, titles, bids, price, etc. from a page, stalker takes a hierarchical
approach. First it applies a rule that extracts the whole list of auctions; then
it use another rule to break the list into tuples that correspond to individual
auctions; finally, from each such tuple the algorithm extracts the title, price,
bids, and time left of the corresponding auction.

To generate a rule that extracts an item x from its parent p, stalker takes
a list of pairs (Ti, Idxi) as input, where each sequence of tokens Ti is the
content of an instance of p, and Ti[Idx1] is the token that represents the
start of x within p. Any sequence S ::= Ti[l], Ti[2], . . . , Ti[Idxi − 1] (i.e., any
instance of prefix of p with respect to x) represents a positive example, while
any other sub-sequence or super-sequence of S represents a negative example.
stalker, tries to generate a rule that accepts all positive examples and rejects
all negative ones.

stalker is a sequential covering algorithm that, given the training examples

9

E, tries to learn a minimal number of perfect disjuncts that cover all examples
in E. By definition, a perfect disjunct is a rule that covers at least one training
example and on any example the rule matches it produces the correct result.
stalker first creates an initial set of candidate-rules C and then repeatedly
applies the following three steps until it generates a perfect disjunct:

• select most promising candidate from C
• refine the candidate
• add the resulting refinements to C

Once stalker obtains a perfect disjunct P , it removes from E all examples
on which P is correct, and the whole process is repeated until there are no
more training examples in E. stalker uses two types of refinements: landmark
refinements and topology refinements. The former makes the rule more specific
by adding a token to one of the existing landmarks, while the latter adds a
new 1-token landmark to the rule. More details on this algorithm can be found
in [20].

Example 2 Let us consider the auction list from Figure 3. Figure 5 depicts
four examples (E1, E2, E3, E4) of auction descriptions matching Auction
node in the EC tree in Figure 4. We want to learn a start rule for the bids.
stalker proceeds as follows. First, it selects an example, say E1, to guide
the search. Second, it generates a set of initial candidates, which are rules
that consist of a single 1-token landmark; these landmarks are chosen so that
they match the token that immediately precedes the beginning of the bids in
the guiding example. The last token to be consumed in E1 is “<i>”. HtmlTag
and Anything are the wildcards that match this token. Consequently, stalker
creates three initial candidates:

• R1=SkipTo(<i>)
• R2=SkipTo(HtmlTag) (stops as soon as it encounters an HTML tag)
• R3=SkipTo(Anything)

As R1 is a perfect disjunct, stalker returns Rl and the first iteration ends.
During the second iteration, the algorithm is invoked with the uncovered train-
ing examples E3 and E4. After this step, it returns rule R4=SkipTo()
covering both examples. Consequently, stalker stops the learning process
and returns the disjunctive rule either R1 or R4.

2.3 Summary

In summary, stalker has the ability to wrap a large variety of sources. The
experimental results described in [20] show that in most cases stalker needs
only couple of examples to learn extraction rules, even for documents contain-
ing lists. The number of required examples is small because the EC description

10

(a) Chain links on AutoTrader.com. (b) Chain links on ArchitectureWeek.com.

(c) Chain links on CiteSeer.com. (d) Chain links on IMDb.com.

Fig. 6. Chains links on different hidden web sites.

of a page simplifies the problem tremendously: as the web pages are intended
to be human readable, the EC structure is generally reflected by actual land-
marks on the page. stalker merely has to find the landmarks, which are
generally in the close proximity of the items to be extracted. In other words,
the extraction rules are typically very small, and consequently, they are easy
to induce. This is a crucial feature because from the user’s perspective it makes
the wrapper induction process both fast and painless.

3 Transforming QURE-Pagelets

In this section, we present our approach to transform the hidden web query
results or QURE-pagelets to XML format. Our approach is based on the
stalker technique [11,20]. Recall that we use the stalker because apart
from being easy to use, in most cases it needs only couple of examples to
learn the extraction rules, even for documents containing lists. Moreover, the
stalker models a page as unordered tree and many hidden web query results
are unordered. However, the stalker was designed to extract data from a sin-
gle web page and cannot handle a set of hyperlinked pages. Hence, we need
to extend the stalker technique to extract results from a set of dynamically
generated hyperlinked web pages.

As mentioned in Section 1, the process of transforming the hidden web query
results to XML can be divided into three steps: (1) Constructing the extended
EC tree [11,20] describing the hidden web query results. (2) Learning extrac-
tion rules to precisely locate relevant information from a page by providing
learning examples. We do not discuss this step here as it is similar to that

11

��������	����������	��	
����	����	���	
���������

��
����

��������	����������	���	��	
����

��������	����������	���	���	
�	���

(a) Page 1.

��������	����������	�
�	�����
��	��
��	���	
��������	
���

��������	����������	��	���
��	��
��	���	
��������

��������	����������	�
��	��	
����

��
����

��������	����������	�
��	 �	
����

��������	����������	�
��	���	
�����

(b) Page 2.

��������	����������	�
�	�����
��	��
��	����	
��������	
���

��������	����������	��	���
��	��
��	����	
��������

��������	����������	�
��	��	
����

��������	����������	�
��	��	
����

���

��������	����������	�
��	 ��	
�����

�
����

��������	����������	�
��	���	
�����

(c) Page 19.

��������	����������	�
�	�����
��	��
��	����	
��������	
���

��������	����������	�
��	��	
����

��������	����������	�
��	��	
����

���

��������	����������	�
��	 ��	
����

�
����

(d) Page 20.

Fig. 7. AutoTrader.com: chain links in query results.

of the stalker approach. (3) Transforming the results from HTML to XML
using extended EC tree with assigned rules. We now elaborate on Steps (1)
and (3).

3.1 Modelling QURE-Pagelets

As the hidden web results are distributed between a set of pages, we need a
general model to represent these pages. In other words, we should model the
links between a collection of hyperlinked hidden web pages. We distinguish
these links into two types - the chain links and the fanout links. When the
pages returned by a query are linked to one another by a set of links, we
say that the links between them are the chain links. Examples of chain links
in results from four different sites are depicted in Figure 6. When the result
returned by a query contains hyperlinks to pages with additional information,
we say that these links are the fanout links. For example, consider the Figure 2.
As there are 500 result matches, these results are distributed in 20 pages.
These pages are connected by chain links - each page contains links to the
next (except the last page) and to the previous page (except the first page)
in the set. However, these pages only contain short summary of each result.
The full details of each result can be found in an additional page by clicking
on the hyperlink in each result (e.g., the link labeled “2002 Ford Expedition
Eddie Bauer 4 Door 4 × 4” in Figure 2). This link is called the fanout link.

12

3.2 Constructing HW-EC Tree

The stalker uses Embedded Catalog(EC) formalism to model an HTML page.
This formalism is used to compose tree-like structure of the page based on
List and Element nodes. The EC tree nodes are unordered. Thus, to be able
to apply the stalker to a set of pages we should extend the EC formalism
for modelling a set of pages. We add three new types of nodes (chain, fanout,
and semantic nodes) to the EC tree formalism. The new formalism is called
the Hidden Web Embedded Catalog (HW − EC). The chain and the fanout
nodes are assigned with descriptions of the chain and the fanout links in the
results. The semantic nodes are used to facilitate result/entity identification
in different versions of QURE-Pagelet. We now elaborate on these three types
of nodes.

Fanout Node: The fanout node models a fanout of pages. The node should
be assigned with the stalker extraction rules for extracting the fanout links.
This node should be nested at the List node, so that the rules for searching a
fanout link are applied inside each element of this List. The fanout node does
not appear in the output XML document. All the nodes that are nested at the
fanout node appear nested at each element of the List which is the ancestor
of the particular fanout node.

Chain Node: The chain node models a chain of pages. The node should
be assigned with the stalker extraction rules for extracting the chain links.
The chain node should be nested at the element node so that the rules for
searching a chain link are applied inside each next page with results. The chain
node does not appear in the output XML document. All the nodes that are
nested at the chain node appear nested at the element that is the ancestor of
the particular chain node. There is also a parameter called ChainType that
should be specified. This parameter can be assigned with only two possible
values: “RightChain” or “LeftChain”. We elaborate on this parameter below.

All the hidden web sites compose the chain links in their own way. The main
type of chain link that is common for most of the sites is the link to the “next”
page containing a set of results. For example, reconsider the AutoTrader.com

query results. Figure 2 shows the first page with results. We can see that the
“next” link is followed by the text “1” and the text is followed by 19 links to
other pages containing results. The “next” in the second page (see Figure 7(a))
is followed by a link to the first page. This link is followed by the text “2”,
and the text is followed by 18 links to other pages containing results. And so
on for all the pages in the chain except the last page (Figure 7(d)). Thus, the
“next” is followed by different suffix in every page of the results except the
last.

13

The stalker extraction rules are rules for locating the beginning and the
end, i.e., the prefix and suffix of the piece of data to be extracted. These
rules may contain real tags and real text data or wildcards for them. In order
to be extracted, a piece of information should be always surrounded by the
same prefix and suffix. Some elements are surrounded by different prefixes and
suffixes in different results, for these elements, several alternative prefixes and
suffixes should be specified using sufficient number of learning examples. As
we have noticed above, to extract a chain of results, we need to extract the
“next” link from every page in the chain. Moreover, we have shown that for
the “next” link it is common to be followed by (or follow) a block of links to
every other page with results (see Figures 6(a) and (b)). Let us illustrate this
issue with an example.

Example 3 Figure 7 shows the chain navigation links in several pages with
results from AutoTrader.com. There are 20 pages totally in the chain. Fig-
ure 7(a) shows the first page with results. We can see that the “next” link is
followed by the text “1” and the text is followed by 19 links to other pages
with results. “Next” in the second page (see Figure 7(b)) is followed by one
link (to the first page with results), that link is followed by the text “2”, and
the text is followed by 18 links to other pages with results and so on for all
the pages in the chain. Thus, “next” is followed by a different suffix in every
page of the results. According to stalker technique, a user should provide
20 examples (one example per page from the chain) to learn extraction rules
for the “next” link in the results from this site.

As we can notice (see Figures 6), the “next” link along with the block of links
to every other page with results are usually surrounded by the environment
(decorative elements and links) that seems to be not changing through different
pages with results. To decrease the number of learning examples for extracting
the “next” link, we ask a user to specify learning examples for extracting the
“next” link along with the block of links to every other page and also to
specify whether the “next” link is followed by (see Figure 7(a)) or follows (see
Figure 7(b)) the block of links to every other page. We call the first choice
LeftChain and the second choice RightChain.

Semantic Node: Due to the dynamic nature of the hidden web, the underly-
ing databases change at any time and in any way. Hence, the QURE-Pagelets
returned by a specific query executed at different time points may change also.
Often each query result in the QURE-Pagelet represents a distinct real world
entity/object. For instance, each result in Figure 2 represents a car entity.
Hence, it is necessary to be able to identify a particular entity in different
versions of the query results to facilitate hidden web data integration, change
detection, etc. For example, we may wish to determine whether the first car en-
tity (Ford F350 1 Ton Truck 4×4 Crew Cab) in Figure 2 occurs in another
version of the query results. The semantic node is used to capture necessary

14

Cars

CHAIN
Type: Left chain

LIST (Car)

Model Color Price Miles SEMANTIC
Name: VIN
Type: Identifier
ParentNode: Car
isOnlyAttribute: True

SEMANTIC
Name: Year
Type: Facillitator
ParentNode: Car
isOnlyAttribute: False

FANOUT

Fig. 8. HW − EC description.

<Cars>
 <!-- Car 1.1 -->
 <Car Id="SAJDA42B52PA2375" F1="*">
 <Model>Jaguar XKR</Model>
 <Price>$63950</Price>
 <Miles>12150</Miles>
 </Car>
 <!-- Car 1.2 -->
 <Car Id="SAJDA42CO1NA17712" F1="2001">
 <Model>Jaguar XK8</Model>
 <Color>Platinum</Color>
 <Year>2001</Year>
 <Price>$49499</Price>
 <Miles>19586</Miles>
 </Car>
 <!-- Car 1.3 -->
 <Car F1="2001">
 <Model>Jaguar S-Type</Model>
 <Year>2001</Year>
 <Color>Bronze</Color>
 <Price>$40299</Price>
 <Miles>26567</Miles>
 </Car>
 <!-- Car 1.4 -->
 <Car F1="2000">
 <Model>Jaguar XKR</Model>
 <Year>2000</Year>
 <Color>Bronze</Color>
 <Price>$49595</Price>
 <Miles>30340</Miles>
 </Car>
</Cars>

<Cars>
 <!-- Car 2.1 -->
 <Car F1="2001">
 <Model>Jaguar XK8</Model>
 <Year>2001</Year>
 <Color>Bronze</Color>
 <Price>$50995</Price>
 <Miles>2650</Miles>
 </Car>
 <!-- Car 2.2 -->
 <Car Id="SAJDA42B52PA2375" F1="2002">
 <Model>Jaguar XKR</Model>
 <Year>2002</Year>
 <Color>Anthracite</Color>
 <Price>$63950</Price>
 <Miles>12150</Miles>
 </Car>
 <!-- Car 2.3 -->
 <Car Id="SAJDA42CO1NA17712" F1="2001">
 <Model>Jaguar XK8</Model>
 <Color>Platinum</Color>
 <Year>2001</Year>
 <Price>$49499</Price>
 <Miles>19586</Miles>
 </Car>
 <!-- Car 2.4 -->
 <Car F1="2000">
 <Model>Jaguar XKR</Model>
 <Year>2000</Year>
 <Color>Bronze</Color>
 <Price>$38995</Price>
 <Miles>1039</Miles>
 </Car>
</Cars>

(a) Version 1
(b) Version 2

Fig. 9. XML representation of query results.

information from the query results to facilitate such entity identification.

Semantic node is a leaf node in theHW − EC tree. It is transformed to an XML
attribute in the output XML file. It can be used to identify a result/entity in
a QURE-Pagelet uniquely (identifier) or it may provide enough information
to determine which results are related and has the potential to be identical
(facilitator) in the old and new versions of the QURE-Pagelet. There are
four parameters that needs to be specified for the semantic nodes in order
to facilitate such entity identification and representation: ParentNode, Type,
Name, and the isOnlyAttribute. The ParentNode parameter is the link to the
particular node in the HW − EC description that should be assigned with

15

this attribute in the output XML file. The Type parameter is for defining the
type of an attribute (it can be of only two types: identifier or facilitator).
We discuss these two types in the following subsections. The Name denotes
the name of this node. The isOnlyAttribute contains a boolean value. If the
isOnlyAttribute is set to “true” then it denotes that the piece of data extracted
for this node should only appear in output XML as an attribute/value pair.
Otherwise, it should appear both as an attribute and as an element. So if this
information is needed as a part of an XML document then the isOnlyAttribute
parameter is set to “false” so that the node appears as an element. Following
is the example illustrating the HW − EC formalism and mapping of a set of
hidden web pages to XML.

Example 4 Consider the AutoTrader.com. Suppose a user wishes to search
for Jaguar cars on 2nd and 5th July, 2003 respectively. The results are pre-
sented as a list of cars. Each result contains car details such as Model, Year,
Price, Color, Seller, Vehicle Identification Number (VIN), etc. Fig-
ure 8 depicts a partial HW − EC tree for the QURE-pagelets and Figure 9
depicts the two versions of XML representation of the results according to the
tree. For clarity and space, we only show a subset of the element set E in
each result of the query. The root Cars node is established for uniting all the
other nodes. The next node Chain models the set of pages connected with the
“left” chain links. The List(Car) node is assigned with an iterative rule for
extracting the elements of the Car. The fanout node denotes that each Car

element contains a link to the page with extra data. The fanout is assigned
with rules for extracting this link from the piece of HTML document that was
extracted for each Car element in the previous step. The next level of the tree
contains six elements. Four of them are Element nodes. The last two nodes
are semantic nodes, each containing four parameters as discussed above. We
can see in Figure 9 that the VIN is extracted only once for each Car as the
value of attribute Id (isOnlyAttribute is set to true). It does not appear as a
child element of a Car node. The rest of the elements are nested in the output
XML the same way they are nested in the tree.

3.3 Identifier

Some elements in a set of query results can serve as a unique identifier for
the particular result, distinguishing them from other results. For example, the
Auction Id uniquely characterizes every Auction information returned as
the result of querying an on-line auction site. The VIN uniquely characterizes
every Car in the query results from a car database. These elements are called
identifiers. Table 1 contains examples of Identifiers in query results from some
hidden web sites. An identifier may be either automatically generated by
the hidden web database (like the Auction Id) or stored in the database
along with the data (like the VIN). In this work we assume that the identifier,

16

Jaguar XKR

$63950

12150

Id "SAJDA42B52PA2375"

Cars

Car

Model Price Miles

2

(a) T1 (Version 1)

F1="*"

6 8 9

25

27

28

90

91

Jaguar XK8

$49499

19586

Id="SAJDA42CO1NA17712"

Car

Model

Price

Miles

3

F1="2001"

10

13 14

29

32

33 92

93

2001

Year

Platinum

Color
11

30

12

31 Jaguar S-Type

$40299

26757

Car

Model

Price

Miles

4

F1="2001"

15

18 19

34

37

38

94

2001

Year

Bronze

Color
16

35

17

36 Jaguar XKR

$49595

30340

Car

Model

Price

Miles

5

F1="2000"

20

23 24

39

42

43

95

2000

Year

Bronze

Color
21

40

22

41

1

Cars

(b) T2 (Version 2)

44

Jaguar XK8

$50995

2650

Car

Model

Price

Miles

45

F1="2001"

49

52 53

70

73

74

96

2001

Year

Bronze

Color
50

71

51

72 Jaguar XK8

$49499

19586

Id="SAJDA42CO1NA17712"

Car

Model

Price

Miles

47

F1="2001"

59

62 63

80

83

84 99

100

2001

Year

Platinum

Color
60

81

61

82Jaguar XKR

$63950

12150

Id="SAJDA42B52PA2375"

Car

Model

Price

Miles

46

F1="2002"

54

57 58

75

78

79 97

98

2002

Year

Anthracite

Color
55

76

56

77 Jaguar XKR

$38995

1039

Car

Model

Price

Miles

48

F1="2000"

64

67 68

85

88

89

101

2000

Year

Bronze

Color
65

86

66

87

Fig. 10. Tree representation of two XML documents from Figures 9.

being assigned to a particular query result, does not change for this result
through different versions of the query results. That is, an identifier behaves
like an unique identifier or “key” for the result. However, it is possible for
the identifier to be missing in a result. Also, if an identifier is specified (not
specified) for a node in the initial version of the query results or when the
node appeared for the first time in the results, then it will remain specified
(not specified) throughout all versions, until the node is deleted. This reflects
the case for most web sites we have studied. Note that we allow specifying
only one identifier for each result. As each result is transformed into a subtree
in the XML representation of the hidden web query results, we model the
identifier of a particular node in the subtree as an XML attribute with name
Id and the identifier information as value. We now illustrate with an example
the usefulness of the identifiers in change detection. Note that details of the
change detection problem is beyond the scope of this paper. The readers may
refer to [13] for further details.

Example 5 Consider the QURE-pagelets of Autotrader (Figure 2). Given the
query results and our understanding of its semantics, we may wish to state
the following constraints:

• The VIN in the results uniquely identifies a particular car entity. Note that
VIN may not be present for some results. For instance, the third car in the
results depicted in Figure 9(a) has no VIN specified. However, if it exists
then it will not be removed from the subsequent versions of query results
involving the particular car.

• The year of manufacturing and the model of each car do not get modified
in different versions. That is, a “mercedes” cannot be updated to “jaguar”
or if the manufacturing year of a car is “2001” then it cannot be modified

17

Site Query Element Identifier Presence

www.autotrader.com
(Buying cars, etc.)

Search for
cars

Car (siblings: Model,
Color, Year, etc.)

VIN (Vehicle Iden-
tification Number)

Optional

www.autobytel.com
(Buying cars, etc.)

Search for
cars

Car (siblings: Model,
Color, Year, etc.)

VIN (Vehicle Iden-
tification Number)

Optional

www.travelocity.com
(Booking hotels, flights,
cars, etc.)

Search for
flights

Flight (siblings: Depar-
ture, Arrival, Airline, etc.)

Flight Number Compulsory

www.ebookers.com
(Booking hotels, flights,
cars, etc.)

Search for
flights

Flight (siblings: Depar-
ture, Arrival, Airline, etc.)

Flight Number Compulsory

libweb.ntu.edu.sg
(NTU library)

Search for ti-
tles

Title (siblings: Status,
Authors, Location)

Call Number Compulsory

www.pubmed.org
(Medical publications)

Search for
publications

Publication (siblings: Ti-
tle, Authors, Date, etc.)

PMID (PubMed
ID)

Compulsory

www.auctions.yahoo.com
(On-line auctions)

Search for
auctions

Auction (siblings: Title,
Seller, Price, etc.)

Yahoo! Auction ID Compulsory

www.ebay.com
(On-line auctions)

Search for
auctions

Auction (siblings: Title,
Seller, Price, etc.)

Ebay Auction ID Compulsory

www.nationjob.com
(Job database)

Search for
jobs

Job (siblings: Descrip-
tion, Requirements, Con-
tact, etc.)

NationJob Job ID Compulsory

ads.harvard.edu
(Database of astronomy
abstracts)

Search for ab-
stracts

Abstract (siblings: Au-
thors, Journal, Date, etc.)

NASA Biblio-
graphic Code

Compulsory

www.uspto.gov
(US Patent Full Text
Database)

Search for
patents

Patent (siblings: Patent
Number, Title, etc.)

Patent Number Compulsory

www.architectureweek.com
(Architecture magazine)

Search for ar-
ticles

Article (siblings: Authors,
Issue, Pages, etc.)

Article ID Compulsory

Table 1
Examples of Identifiers in query results from different hidden web sites.

to “2002” or any other year in the subsequent versions.
• Similarly, the seller attribute of a car does not get modified in different

versions for the same car entity.

In particular, the VIN is the unique identifier for a specific car. If we use
the VINs as identifiers for the cars in the list, then we can distinguish cars
with VINs effectively. A sample of tree representations of the documents in
Figure 9 are shown in Figure 10. The Car nodes in T1 and T2 have child
attributes with name Id and value equal to the VIN. Intuitively, if we wish to
detect the changes between the two versions of the query results, then we can
match the Car nodes between two subtrees by comparing the Id values. For
instance, the node 2 in T1 matches the node 46 in T2 and the node 3 in T1

matches the node 47 in T2 (same VIN values). However, the nodes 2 and 3 do
not match the node 45 as it does not have any identifier attribute.

18

Site Query Result Item Facilitator Presence

www.autotrader.com
(Buying cars, etc.)

Search for cars Car (siblings: Model,
Color, Year, etc.)

Seller Compulsory

Search for cars Car (siblings: Model,
Color, Year, etc.)

Year Optional

www.cbooks.com
(buying computer books,
etc.)

Search for books Book (siblings: Author,
Title, Price, etc.)

Title Compulsory

Search for books Book (siblings: Author,
Title, Price, etc.)

Publisher Optional

www.imdb.com
(information on movies,
actors, etc.)

Search for movies Movie (siblings: Title,
Status, Year, Crew, etc.)

Title Compulsory

Search for movies Movie (siblings: Title,
Status, Year, Crew, etc.)

Status Optional

www.travelocity.com
(booking hotels, flights,
cars, etc.)

Search for hotels Hotel (siblings: Title,
Address, Rooms, Rates,
etc.)

Title Compulsory

Search for cars to rent Car (siblings: Model,
Rental price, Agency,
etc.)

Agency Compulsory

www.stanford.edu Search for people in
Stanford

Person (siblings: Name,
Status, Department, etc.)

Designation Compulsory

Search for people in
Stanford

Person (siblings: Name,
Status, Department, etc.)

Name Compulsory

star-www.rl.ac.uk (”Per-
sons in Astronomy”
database)

Search for astronomy
related persons

Person (siblings: Name,
Institution, E-mail, etc.)

Name Compulsory

www.hoovers.com
(Hoover’s – company
intelligence)

Search for companies Company (siblings: Title,
Address, Phone, Com-
pany News, etc.)

Title Compulsory

Search for companies Company (siblings: Title,
Address, Phone, Com-
pany News, etc.)

Phone Optional

www.ipl.org
(IPL Association Finder)

Search for associations Association (siblings:
Title, Description, URL,
etc.)

Title Compulsory

www.kiplinger.com
(Kiplinger financial
publications)

Search for publications Publication (siblings: Ti-
tle, Date, Abstract, Num-
ber of words, etc.)

Date Optional

Table 2
Examples of Facilitators in query results from different hidden web sites.

3.4 Facilitator

One or more elements in the result of the hidden web query result set can serve
as non-unique characteristics for distinguishing the results from one another.
This is particularly important when the results do not have any identifier at-
tribute. Two results that have the same characteristics (same attribute/value
pair) can be matched with each other. While results that have different char-
acteristics can not be matched with each other. Examples of types of such
characteristics are: the Year or Model of a Car node in the query results from

19

car trading site, the Title or Year for a Movie node in the query results from
movie database, the Title or Publisher for a Book node in the query results
from an online book catalog. These non-unique elements are called facilitators.
Note that these elements may not identify a result (entity) uniquely. But they
may provide enough information to identify results that do not refer to the
same entities. For example , if we wish to match the last result (node 5) in
Figure 10(a) with the first result (node 45) in Figure 10(b) then these two cars
are not same entities in the two versions as they have different manufacturing
year.

We allow specifying any number of facilitators on a node. The facilitators are
denoted by node attributes with names F1, F2, . . . , Fn for all n facilitator
attributes specified for a particular node. If a node does not have a facilitator
attribute (the subelement may be missing) then the facilitator value is set to
“*”. Note that the facilitator attribute for a node can appear in any version of
the query results, but once it appears we assume that it will not disappear in
the future versions. As we never know which facilitator may appear for a node
in the future, a node with missing facilitator attribute should be matched with
nodes having facilitators. This statement reflects the case for most hidden web
sites we have studied. Table 2 depicts some examples of facilitators in query
results from different hidden web sites. In particular, this table shows us that
the presence of facilitators is not always compulsory.

The choice of facilitators made by the user is based on the following two
guidelines.

(1) Let Ri(Ak) and Ri(Vk) be the attribute set and its corresponding value set
in a hidden web query result Ri. Let R1 and R2 be two query results for a
given query. If R1(Vk) 6= R2(Vk) indicates that R1 and R2 represents two
distinct objects then Ak can be considered as a possible facilitator. Note
that, unlike identifiers, if R1(Vk) = R2(Vk) then it does not necessarily
indicate that R1 and R2 represents two identical objects. For example,
consider the year of manufacturing of a car. If two query results have
different manufacturing year then definitely the two cars cannot be iden-
tical. On the other hand, if the manufacturing years are identical then it
does not necessarily indicate that the cars are identical. However, consider
the price attribute of a car. If the price values of two results are distinct
then it does not necessarily indicate that they represent two distinct car
objects as the price of the car can be updated. Hence, choosing year of
manufacturing over price as facilitator is a better choice as it can po-
tentially reduce number of comparisons required to identify identical car
entities/objects.

(2) Let Ak1, Ak2, . . ., Akn be the set of possible facilitators identified from the
above step and C1, C2, . . ., Cn be the number of distinct possible values
of the facilitators in the query results for n > 1. Then, Aki is chosen as

20

the facilitator if Ci ≥ Cj for j 6= i and ∀ 0 < j ≤ n. Intuitively, we choose
the facilitator that has largest number of distinct values. This is because
the larger the number of distinct values the potentially lesser number to
results that needs to be compared to identify identical/related objects.
For example, consider the attributes year of manufacturing and number

of doors of a car object. Note that if the values of these attributes
are not identical in a pair of query results then definitely they represent
distinct car objects. Generally, the potential number of distinct values
for year is much larger than that of number of doors. Hence, if we
use year rather than number of doors as facilitator, then matching by
facilitators becomes more effective as the number of object comparison
will be much lesser.

We now illustrate with an example how the facilitators can be useful for the
change detection problem.

Example 6 Reconsider the Figure 9. We can find several candidates for fa-
cilitators, i.e., Color, Year, or Model. However, based on the above guidelines,
it is reasonable to use the Year or Model as the facilitator. Figure 10 shows
the facilitators for various nodes. There is one facilitator specified: the Year

as an attribute with name F1 for every Car node. Note that if a Car node
does not have an subelement Year then F1 is set to “*”. Now let us match the
node 45 in T2 with all the nodes in T1. Observe that node 45 does not have
a VIN. Therefore, it cannot match with nodes 2 and 3. Hence we do not need
to compare node 45 with these nodes. Using F1 we also observe that the node
45 cannot match with node 5 as the facilitators do not match. We can see
that the node 45 only matches node 4 in T1 as it does no have any VIN and
its F1=“2001”. However, this is not sufficient information to confirm whether
these two nodes represent the same car entity. But if we use both the Year

and Model as facilitators then we can answer this question by comparing the
Model of node 45 with that of node 4. As the Model of nodes 4 and 45 are not
identical, we can say that these nodes do not represent the same car entity.
Thus, we can state that the node 45 is inserted in T2 as none of the car entities
in T1 matches the car entity described by node 45.

4 Algorithm HW-Transform

Figure 11 depicts the HW-Transform algorithm for transforming QURE-pagelets
to XML format. This algorithm takes as input the first page of the results and
the HW − EC description of these results, and returns the XML representa-
tion of the results. There are three main steps in the algorithm. The first step
is to extract information from query results and generate tree T storing ex-
tracted information in hierarchical order according to the HW − EC descrip-
tion of these results. Lines 8-11 in Figure 11 describe this step. In the tree
T , all the attributes are presented as leaf nodes, according to the HW − EC

21

Input: Index, /* index page of query results */
 HW-EC /* HW-EC description of these results */
Output: Doc /* XML representation of query results */

 1 T: tree /* for storing tree representation of
 query results */
 2 Ta: tree /* which is enabled to store attributes
 for every node */
 3 [Te]: set of trees
 4 Doc: XML document
 5 set T, Ta, [Te], and Doc empty
 6 let Root be the root of HW-EC
 7 add Root as a root to T

/* extract information from query results */
 8 for all Ch that is a child of Root in HW-EC do
 9 add ExtractNode(Index, Ch) to [Te]
10 end for
11 add every Te from [Te] as a child of root node to T
 /* assign attributes */
12 Ta = AssignAttributes(T, HW-EC)
 /* generate XML */
13 Doc = GenerateXML(Ta)
14 Return Doc

Fig. 11. The algorithm HW-Transform.

Input: Doc, /* a piece of source code */
 HW-EC, /* HW-EC description of query results */
 N /* node in HW-EC to be extracted from Doc */
Outoput: [Te] /* a set of trees */

 1 [Te]: set of trees
 2 set [Te] empty
 /* extract Element or Attribute */
 3 if (N.Type=="Element" or N.Type=="Attribute")
 4 add ExtractElement(Doc, HW-EC, N) to [Te]
 5 Return [Te]
 6 end if
 /* extract List */
 7 if (N.Type=="List")
 8 add ExtractList(Doc, HW-EC, N) to [Te]
 9 Return [Te]
10 end if
 /* extract Chain */
11 if (N.Type=="Chain")
12 repeat

13 for all Ch that is a child of N in HW-EC do
14 add ExtractList(Doc, HW-EC, Ch) to [Te]
15 end for
 /* load next page in the chain using rule
 assigned to N to extract its URL */
16 Doc = Doc.NextPage
17 until (Doc.NextPage==)
18 Return [Te]
19 end if
 /* extract Fanout */
20 if (N.Type=="Fanout")
 /* load fanout page in the chain using rule
 assigned to N to extract its URL */
21 Doc = Doc.GetFanoutPage
22 for all Ch that is a child of N in HW-EC do
23 add ExtractNode(Doc, HW-EC, Ch) to [Te]
24 end for
25 Return [Te]
26 end if

Fig. 12. The algorithm ExtractNode.

description. The next step is to traverse tree T in order to assign attributes
to the nodes. Line 12 in Figure 11 describe this step. The final step is to gen-
erate XML representation of the results. Line 13 in Figure 11 describe
this step. We elaborate on these steps now.

4.1 Extracting Information

ExtractNode is a recursive algorithm for extracting pieces of data from query
results corresponding node N in the HW − EC description of the results. As
output, ExtractNode returns a set (one or more) of trees representing com-

22

Input: T, /* tree representation of query results */
 HW-EC /* HW-EC description of results */
Output: Ta /* tree with attributes assigned to nodes */

 1 Ta: tree /* which is enabled to store attributes for every node */
 2 M, N, A1, A2 ... An: nodes in HW-EC
 3 p: integer
 4 Ta = T
 5 for all N in HW-EC which has at least one attribute defined do
 6 let A1, A2 ... An denote all the nodes that are attributes for N
 7 if (N is the ancestor for all its attributes in HW-EC)
 8 M = N
 9 else
10 let M be the least common ancestor of N, A1, A2 ... An
11 end if
12 for all Node of type M in Ta do
13 p=1
 /* extract Attribute */
14 for all Ak, 1 <= k <= n do
15 if (there is node Attr of type Ak
 in subtree of Ta rooted at Node)
 /* assign Identifier attribute */
16 if (Attr.AttributeType=="Identifier")

17 add attribute with name Id and
 value Hash(Attr.Value) to Node
18 if (Ak.isOnlyAttribute) then delete Attr from Ta endif
 /* assign Facilitator attribute */
19 else if(Attr.AttributeType=="Facilitator")
20 add attribute with name "F_"+p and
 value Hash(Attr.Value) to Node
21 if (Ak.isOnlyAttribute) then delete Attr from Ta endif
22 p=p+1
 /* assign common attribute */
23 else
24 add attribute with name Attr.Name and
 value Attr.Value to Node
25 if (Ak.isOnlyAttribute) then delete Attr from Ta endif
26 end if
 /* substitute Facilitator attribute that is not found */
27 else if(Attr.AttributeType=="Facilitator")
28 add attribute with name "F_"+p and value "*" to Node
29 p=p+1
30 end if
31 end for
32 end for
33 end for
34 Return Ta

Fig. 13. The algorithm AssignAttributes.

plete set of data corresponding to node N extracted from the query results.
In this data set Attribute nodes are extracted as Element nodes.

The ExtractNode algorithm is based on functions ExtractList and Ex-
tractElement (see Section 2) designed for iterating Lists and extracting El-
ements according EC description of the page. The ExtractNode algorithm is
designed to provide the superstructure that enables us to work with a set of
pages. So all the procedures used in this algorithm are based on ExtractList
and ExtractElement.

Let us now go to Figure 12 showing the ExtractNode algorithm. Lines 1,2
contain initialization of the set trees Te that is to be grown by further steps and
finally returned as output. Lines 3-6 contain procedures that will be executed if
input node is Element or Attribute. Lines 7-10 contain procedures that should
be executed if input node is List. Lines 11-19 contain procedures that will be
executed if input node is Chain. These procedures include downloading all the
pages from a Chain. Lines 20-26 contain procedures that should be executed if
input node is Fanout. These procedures include downloading a Fanout page. If
a particular List or Element extracted by ExtractList or ExtractElement is
still the ancestor of any Chains or Fanouts, ExtractNode is called recursively.

4.2 Assigning Attributes

In the tree T , all the attributes are presented as leaf nodes, according to the
HW − EC description. The next step is traverse tree T in order to assign
attributes to the nodes. Line 12 in Figure 11 describes this step. Note that

23

we do not assign attributes to particular nodes while first parsing the tree in
the previous step as attributes can be located in different parts of the tree.
It is faster to assign all attributes doing one traversal in a separate step than
doing a lot of additional traversals in the previous step. Figure 13 shows the
algorithm for assigning attributes.

The algorithm traverses tree T generated by the previous step and assigns
attributes in tree T according to the HW − EC description of the query re-
sults. First, the algorithm localizes the least common ancestor of the node and
its attribute, and then localizes the attribute by the relative path from this
ancestor. This procedure runs until all the nodes that are assigned with any
attributes in the HW − EC description are traversed in this manner.

Let us now go through the algorithm (Figure 13) step by step. Lines 1-4 contain
initialization and description of the variables used in the algorithm. Lines 5-33
contain the main cycle going through all the nodes that have any attributes
assigned in the HW − EC. The embedded cycle in lines 12-32 goes through
last common ancestors of such nodes and their attributes. Inside this cycle
there are three conditions: for assigning Identifier attributes in lines 16-18,
for assigning Facilitator attributes in lines 19-22, and for assigning common
attributes in lines 23-26. The last action inside this cycle is filling values of
facilitator attributes that are not found with “∗”.

The final step is to generate XML representation of the results. To
generate XML document from the tree, we use simple depth/breadth-first
traversal of tree starting from the root.

5 Implementation

We used Microsoft Windows 2000 Professional as operating system. We have
implemented hw-stalker using Java. We first briefly describe our system
architecture and then present some performance results.

5.1 Architecture

As shown in Figure 14, our prototype system consists of two main modules
namely Extraction Module and Change Detection Module, and Repository for
storing intermediate data and system output.

• Extraction Module. This module is designed for extracting information
from original HTML-formatted hidden web query results and for transform-
ing it into XML format. XML versions of query results are to be stored in
Repository. There are three inner modules in Extraction Module. User In-

24

Web

Extraction Module

Rule Induction Module

HTML to XML Transformation
Module

Change Detection Module

 Parsing Module

(Parsing XML to trees and hashing)

Tree Comparison Module
(Detecting changes between two
trees)

Change Representation Module

Repository

 Descriptions Repository

(HW-EC trees assigned with
extraction rules)

Results Repository (XML versions
of all the results)

Changes Repository

User Interface
(Constructing HW-EC trees and
providing samples for rule
induction)

Fig. 14. The system architecture.

terface is designed to assist a user in constructing HW − EC tree for a
set of pages with hidden web query results. User Interface is also designed
for marking examples that are further used for rule induction. The result-
ing tree is to be stored in Repository. Rule Induction Module is designed
to induce extraction rules being provided with the examples mapped by
a user and HW − EC tree constructed by a user that are both stored in
the Repository. Rule induction is based on the stalker algorithm as dis-
cussed earlier. HTML to XML Transformation Module is designed to trans-
form QURE-pagelets into XML format being provided with extraction rules
HW − EC tree that are taken from the Repository. This module is based on
the HW-Transform algorithm (Section 4).

• Change Detection Module. This module is designed to detect changes
between different versions of query results. It is based on the HW-Diff al-
gorithm [13]. Note that this module is beyond the scope of this paper.
The XML versions of these changes are to be stored in Repository. There
are three inner modules in Change Detection Module. Parsing Module is
designed for converting XML to trees and hashing tree nodes. Tree Com-

25

Fig. 15. Main menus of User Interface from Extraction Module.

(a) Results general structure.

(b) Assigning attributes.

Fig. 16. Constructing HW − EC description of results from AutoTrader.com.

parison Module is designed for detecting changes between two trees repre-
senting query results. Change Representation Module is designed to convert
the changes detected between two trees to XML format.

• Repository. Repository is aimed to store HW − EC trees, XML versions
of query results, and the changes that are detected to hidden web data. In
the current implementation Repository is simply based on file system.

26

(a) Chain selection.

(b) Element selection.

Fig. 17. Sample selections in results from AutoTrader.com.
27

Let us now illustrate the transformation of QURE-pagelets to XML step by
step.

(1) The first step is to specify HW − EC tree describing query results from
this site. The User Interface in our system has two main areas. One area
is for composing HW − EC trees and other area is for marking training
examples. Main menu of User Interface is depicted in Figure 15. Figure 16
shows a tree composed to describe query results from AutoTrader.com.
This figure also shows how a user can assign some node in HW − EC tree
as an attribute of another node.

(2) The next step is to induce extraction rules by studying examples of
queries. Figures 17 shows examples of assigning training examples to
the nodes of the HW − EC tree composed at the previous step. After all
the examples are assigned, a user starts rule induction process by going
to Analyse → AnalyseTree in main menu (see Figure 15). After all the
rules are induced, a user can save HW − EC tree with assigned rules and
use this tree later to extract query results.

(3) Finally, a user uses a HW − EC created at the previous step to trans-
form the QURE-pagelets to XML and stores them in the Repository. At
this step a user uses the same User Interface (See the Main menu from
Figure 15: File → LoadTree and Analyse → HTMLtoXML).

5.2 Performance Study

In this section, we present performance analysis of our prototype system.
All the experiments have been performed on a Pentium 4 CPU 2.4 GHz
with 512 MB of RAM. We use the data from the following six hidden web
sites for our experiments: AutoTrader.com, Amazon.com, Architecture.com,
NationJob.com, IMDb.com, and CiteSeer.org.

5.2.1 Extraction Time

To evaluate the performance of the extraction of relevant data from hidden web
pages to XML format, we have to evaluate the performance of rule induction
mechanism and the performance of HTML to XML transformation mecha-
nism. Performance of the rule induction system is determined by the time a
user spends on creatingHW − EC tree. It is also determined by the time a user
needs to provide examples of data for each element of HW − EC tree. This
time dramatically depends on the number of examples a user should provide
for each element of results to learn correct extraction rules. The HW − EC
trees that were composed to describe results of sample sites are presented in
Figure 18. The variable Peci denotes the facilitator in this figure. The number
of training examples for some of the elements of the hidden web data that was
used in our experiments are shown in Table 3. Observe that we only need one
example to learn extraction rules for one element for 40% of elements in the

28

AutoTrader.com

Searching for cars with wide range
of car parameters

http://www.autotrader.com/findacar
/index.jtmpl?ac_afflt=none

<!ELEMENT AutoTrader (Car)*>
<!ELEMENT Car (Model, Year, VIN, Price, Color, Miles)>
<!-- VIN -->
<!ATTLIST Car Id CDATA #IMPLIED>
<!-- Model -->
<!ATTLIST Car Pec_1 CDATA #IMPLIED>
<!-- Year -->
<!ATTLIST Car Pec_2 CDATA #IMPLIED>
<!-- Color -->
<!ATTLIST Car Pec_3 CDATA #IMPLIED>
<!ELEMENT Model (#PCDATA)>
<!ELEMENT Year (#PCDATA)>
<!ELEMENT VIN (#PCDATA) >
<!ELEMENT Price (#PCDATA)>
<!ELEMENT Color (#PCDATA)>
<!ELEMENT Miles (#PCDATA)>

Amazon.com

Searching for books with keyword

http://www.amazon.com

<!ELEMENT Amazon (Book)*>
<!ELEMENT Book (ISBN, Title, Price, Year, Authors,
Availability)>
<!-- ISBN -->
<!ATTLIST Book Id CDATA #IMPLIED>
<!-- Year -->
<!ATTLIST Book Pec_1 CDATA #IMPLIED>
<!ELEMENT ISBN (#PCDATA)>
<!ELEMENT Title (#PCDATA)>
<!ELEMENT Price (#PCDATA)>
<!ELEMENT Year (#PCDATA)>
<!ELEMENT Authors (#PCDATA)>
<!ELEMENT Availability (#PCDATA)>

ArchitectureWeek.com

Searching for exhibitions,
references, articles, etc. with
keyword

http://www.architectureweek.com
/search.html

<!ELEMENT ArchitectureWeek (Record)*>
<!ELEMENT Record (Title, Description, Date, Size)>
<!-- Description -->
<!ATTLIST Record Id CDATA #IMPLIED>
<!-- Date -->
<!ATTLIST Record Pec_1 CDATA #IMPLIED>
<!-- Size -->
<!ATTLIST Record Pec_2 CDATA #IMPLIED>
<!ELEMENT Title (#PCDATA)>
<!ELEMENT Description (#PCDATA)>
<!ELEMENT Date (#PCDATA)>
<!ELEMENT Size (#PCDATA)>

NationJob.com

Searching for jobs with wide range
of parameters

http://www.nationjob.com

<!ELEMENT NationJob (Job)*>
<!ELEMENT Job (Company, Position, Location,
Qualifications, Salary)>
<!-- Company -->
<!ATTLIST Job Pec_1 CDATA #IMPLIED>
<!-- Position -->
<!ATTLIST Job Pec_2 CDATA #IMPLIED>
<!ELEMENT Company (#PCDATA)>
<!ELEMENT Position (#PCDATA)>
<!ELEMENT Location (#PCDATA)>
<!ELEMENT Qualifications (#PCDATA)>
<!ELEMENT Salary (#PCDATA)>

IMDb.com

Searching for user comments with
movie title

http://www.imdb.com

<!ELEMENT IMDB_Comments (Comment)*>
<!ELEMENT Comment (Author, From, Date, Summary)>
<!-- Author -->
<!ATTLIST Comment Pec_1 CDATA #IMPLIED>
<!-- Date -->
<!ATTLIST Comment Pec_2 CDATA #IMPLIED>
<!ELEMENT Author (#PCDATA)>
<!ELEMENT From (#PCDATA)>
<!ELEMENT Date (#PCDATA)>
<!ELEMENT Summary (#PCDATA)>

CiteSeer.org

Searching for on-line scientific
papers with keyword

http://citeseer.nj.nec.com/cs

<!ELEMENT CiteSeer (Paper)*>
<!ELEMENT Parper (Title, Year, Authors, Conference,
Abstract)>
<!-- Abstract -->
<!ATTLIST Paper Id CDATA #IMPLIED>
<!-- Title -->
<!ATTLIST Comment Pec_1 CDATA #IMPLIED>
<!-- Year -->
<!ATTLIST Comment Pec_2 CDATA #IMPLIED>
<!-- Authors -->
<!ATTLIST Comment Pec_3 CDATA #IMPLIED>
<!ELEMENT Title (#PCDATA)>
<!ELEMENT Year (#PCDATA)>
<!ELEMENT Authors (#PCDATA)>
<!ELEMENT Conference (#PCDATA)>
<!ELEMENT Abstract (#PCDATA)>

Fig. 18. HW − EC descriptions and DTDs for modelling query results from different
sites.

29

Site Element Number
of sam-
ples

Site Element Number
of sam-
ples

AutoTrader.com AutoTrader 1 Amazon.com Amazon 1

Car 8 Book 6

Model 5 ISBN 2

Year 5 Title 1

VIN 1 Price 1

Price 1 Year 1

Color 1 Authors 3

Miles 2 Availability 1

CHAIN 5 CHAIN 6

FANOUT 3

ArchitectureWeek.com ArchitectureWeek 2 NationJob.com NationJob 1

Record 4 Job 2

Title 2 Company 1

Description 2 Position 1

Date 3 Location 2

Size 2 Qualifications 2

CHAIN 3 Salary 3

FANOUT 1

IMDb.com IMDB Comments 2 CiteSeer.org CiteSeer 2

Comment 3 Parper 3

Author 2 Title 1

From 2 Year 1

Date 1 Authors 1

Summary 1 Conference 1

CHAIN 3 Abstract 1

CHAIN 4

FANOUT 3

Table 3
Number of samples needed to learn extraction rules.

query results. We need more than five examples for one element for only 5% of
the elements. The number of results needed to learn extraction rules for par-
ticular element is determined by the number of different HTML-environments
which can be found for this element in different results [11].

To evaluate the performance of the Transformation Module that is based
on the HW-Transform algorithm, we have extracted the results of different
queries from the six hidden web sites. The list of queries that we have used in
this experiment is shown in Table 4. The complete results of this experiment
is shown in Table 5. The summary of this experiment is shown in Figure 19.
This figure demonstrates us that the dependence between extraction time and
number of extracted results can be approximated as linear function.

30

Site Query Number
of results

Number
of CHAIN
pages

Number of
FANOUT
pages

AutoTrader.com 2000-2004 Acura of any model within
25 miles from ZIP 00501

48 2 -

1983-2004 Ford Escort within 25 Miles
from ZIP 10001

120 5 -

1983-2004 Jaguar of any model within
50 Miles from ZIP 00501

202 9 -

1983-2004 Land Rover Range Rover
within 200 Miles from ZIP 00501

310 13 -

1990-2004 Cadillac with mileage under
75,000 within 50 Miles from ZIP10001

430 18 -

1991-2004 Toyota with price range from
10,000 to 15,000 within 50 Miles from
ZIP 10001

472 19 -

1983-2004 Ford of any model within 25
Miles from ZIP 10001

500 20 -

Amazon.com Search for “gardenia” 21 2 21

Search for “snooker” 190 19 190

Search for “intranet” 431 44 431

Search for “dock” 599 60 599

Search for “dot” 1001 101 1001

ArchitectureWeek.com Search for “chalet” 35 4 -

Search for “tall building” 311 32 -

Search for “column” 619 62 -

Search for “street” 780 78 -

Search for “environment” 1053 106 -

NationJob.com Computers/I.T./Telecommunications:
Computer Operator

10 - 10

Computers/I.T./Telecommunications:
Software Design/Project Management

121 - 121

Accounting/Finance/Insurance: Bank-
ing

693 - 693

Education/Teaching/Child Care 1478 - 1478

IMDb.com User comments to “Arrival” 58 3 -

User comments to “Once Upon a Time
in Mexico”

201 11 -

User comments to “Star Wars V” 746 38 -

User comments to “Harry Potter and
the Sorcerer’s Stone”

1212 61 -

CiteSeer.org Search for “hidden web” 38 2 38

Search for “google” 523 27 523

Search for “p2p” 754 38 754

Search for “web” 1000 50 1000

Table 4
Different queries to sample sites.

31

Site Query Number
of
results

XML file
size, KB

Transformation
time, ms

AutoTrader.com 2000-2004 Acura of any model within
25 miles from ZIP 00501

48 11 6376

1983-2004 Ford Escort within 25 Miles
from ZIP 10001

120 36 17657

1983-2004 Jaguar of any model within
50 Miles from ZIP 00501

202 55 34141

1983-2004 Land Rover Range Rover
within 200 Miles from ZIP 00501

310 87 174863

1990-2004 Cadillac with mileage under
75,000 within 50 Miles from ZIP10001

430 113 225767

1991-2004 Toyota with price range
from 10,000 to 15,000 within 50 Miles
from ZIP 10001

472 139 264660

1983-2004 Ford of any model within
25 Miles from ZIP 10001

500 152 289084

Amazon.com Search for “gardenia” 21 5 3032

Search for “snooker” 190 51 100455

Search for “intranet” 431 112 204034

Search for “dock” 599 130 423400

Search for “dot” 1001 234 702333

ArchitectureWeek.com Search for “chalet” 35 17 50994

Search for “tall building” 311 159 324437

Search for “column” 619 312 572231

Search for “street” 780 394 730452

Search for “environment” 1053 473 852432

NationJob.com Computers/I.T./Telecommunications:
Computer Operator

10 3 8094

Computers/I.T./Telecommunications:
Software Design/Project Management

121 45 64484

Accounting/Finance/Insurance: Bank-
ing

693 203 454328

Education/Teaching/Child Care 1478 567 773671

IMDb.com User comments to “Arrival” 58 19 5034

User comments to “Once Upon a Time
in Mexico”

201 66 15443

User comments to “Star Wars V” 746 257 244543

User comments to “Harry Potter and
the Sorcerer’s Stone”

1212 485 384254

CiteSeer.org Search for “hidden web” 38 16 70343

Search for “google” 523 237 173799

Search for “p2p” 754 390 262405

Search for “web” 1000 561 400541

Table 5
Time needed to transform results of sample queries.

5.2.2 Extraction Accuracy

Since the goal of our hw-stalker is to extract query results from the QURE-
Pagelets and transform them to XML, we adopt precision and recall as our

32

0

100000

200000

300000

400000

500000

600000

700000

800000

900000

0 200 400 600 800 1000 1200 1400 1600

Number of results

T
r
a
n
s
f
o
r
m
a
t
i
o
n

t
i
m
e
,

m
s

AutoTrader.com

NationJob.com

Amazon.com

ArchitectureWeek.com

CiteSeer.org

IMDb.com

Fig. 19. Number of hidden web query results vs. extraction time.

Site No. of
Queries

No. of Query
Results

No. of trans-
formed XML
Results

Recall
(%)

Precision
(%)

www.autotrader.com 7 2082 2468 81 96

Amazon.com 5 2242 2469 87 79

ArchitectureWeek.com 5 2798 2768 91 92

NationJob.com 4 2302 2452 98 92

IMDb.com 4 2217 1914 82 95

CiteSeer.org 4 2315 2240 90 93

RealEstate.yahoo.com 6 4004 4335 88 81

PubMed.com 9 3145 3191 100 98

Table 6
Precision and recall related to number of query results extracted.

Site No. of
Queries

No. of chain
links in query
results

No. of ex-
tracted chain
links

Recall
(%)

Precision
(%)

www.autotrader.com 7 79 101 100 78

Amazon.com 5 221 193 84 96

ArchitectureWeek.com 5 277 274 91 92

RealEstate.yahoo.com 6 267 293 99 90

IMDb.com 4 109 98 89 99

CiteSeer.org 4 113 124 88 80

Table 7
Precision and recall related to chain link extraction.

performance measurement of extraction accuracy. For each set of query results,
we manually extract the results and compare with the ones extracted by hw-
stalker. We measure the results in the following three ways.

33

Site No. of
Queries

No. of fanout
links in query
results

No. of ex-
tracted
fanout links

Recall
(%)

Precision
(%)

PubMmed.org 9 3145 3171 100 99

Amazon.com 5 2242 2494 99 89

NationJob.com 4 2302 2423 100 95

RealEstate.yahoo.com 6 4004 4299 97 90

CiteSeer.org 4 2315 2239 88 91

Table 8
Precision and recall related to fanout link extraction.

• Number of results returned: Let Qs denote the set of query results returned
by the hidden web site. Let Qh be the set of transformed results in XML
format using hw-stalker. Then the following formula Pq and Rq calculate
the precision and recall respectively.

Pq =
Qs ∩Qh

Qh

, Rq =
Qs ∩Qh

Qs

Table 6 summarizes the results for the six hidden web sites.
• Chain links extraction: Let Cs denote the set of chain links in the query

results returned by the hidden web site. Let Ch be the set of chain links
extracted by hw-stalker. Then the following formula Pc and Rc calculate
the precision and recall respectively.

Pc =
Cs ∩ Ch

Ch

, Rc =
Cs ∩ Ch

Cs

Table 7 summarizes the results for the six hidden web sites.
• Fanout links extraction: Let Fs denote the set of fanout links in the query

results returned by the hidden web site. Let Fh be the set of fanout links
extracted by hw-stalker. Then the following formula Pf and Rf calculate
the precision and recall respectively.

Pf =
Fs ∩ Fh

Fh

, Rf =
Fs ∩ Fh

Fs

Table 8 summarizes the results for the six hidden web sites.

Note that we do not measure the accuracy of extraction of different attributes
in a query result as such effort has already been reported in [11,20]. We only
report accuracy of those features that are unique to hw-stalker. Also, the
results from this set of experiments show that we can achieve reasonably good
performance across heterogeneous hidden web sites. Our results show rela-
tively few items are extracted or transformed incorrectly. This is mainly due
to the heterogeneous nature of HTML format. The server-side applications
sometimes generate unexpected markup, provide incomplete information, or

34

Fig. 20. Query results containing 3 banners.

sometimes due to the existence of banners in unexpected places. For exam-
ple, consider the Autotrader web site. Suppose we wish to search for "toyota
within 50 miles from zip 10001". The query returns around 500 results
and most of these results contain at the most two banners. However, there are
two results that contain 3 banners (Figure 20). In this case, hw-stalker fails
to perform correct extraction as it is only trained for case with 0 to 2 banners.

6 Related Work

The machine learning community has carried out research on learning ex-
traction rules which occurred in mainly two contexts: creating wrappers for
information agents and developing general purpose information extraction sys-
tems for natural language text. We review some of these technologies here.
WIEN [15] takes as input a set of example pages where data of interest is la-
belled, and the output is a wrapper that is consistent with each labelled page.
A specific induction heuristics is used to generate specific wrappers. The pages
to be wrapped are assumed to have the same predefined structure as the exam-
ples. WIEN do not support nesting objects. In WIEN, items are expected to
be always presented and ordered in the same manner. The work in [8] presents
a language for wrapper development as part of TSIMMIS project. The main
shortcoming of this work is that a user must examine the document and find
the HTML tags that separate the objects of interest, and then write a program
to separate the object regions. The whole process of discovering object bound-
aries is carried out manually . SRV [7] is an approach for wrapper generation
based on the Natural Language Processing (NLP). SRV is a tool for learning
extraction rules of text documents, based on a given set of training examples.
It also relies on a set of token-oriented features that can be either simple or
relational, thus it can be applied to extract information from HTML. SRV
distinguishes a number of HTML-specific features related to HTML tags, e.g.,
in-p or after-b, This makes SRV able to extract data from HTML documents
effectively. SRV is a single-slot tool, like WIEN, thus it supports neither nest-
ing nor semistructured objects. A technique for supervised wrapper generation
based on a logic-based declarative language called Elog is presented in [2]. This

35

technique is implemented in a system called Lixto which assists the user to
semi-automatically create wrapper programs by providing a fully visual and
interactive user interface. With Lixto, expressive visual wrapper generation is
possible.

Compared to WIEN, which extracts all items at one time, in our approach we
use several single slot rules based on stalker. Also, we support nesting unlike
WIEN and SRV. Compared to Lixto, our approach is much more user-friendly
as it is based on stalker. As user should define extraction rules himself in
Lixto, it is a complicated task even using GUI. Another significant strength
of stalker compared to Lixto is that a user does not need to know HTML
or to construct any extraction rules by himself. The only task for user is to
construct EC description of the page that can be done without looking into a
source code of the page and to mark several sample pieces of information in
HTML using GUI. The flexibility and universality of stalker extraction rules
is based on usage of the wildcards, including domain-specified wildcards. Like
Lixto extraction rules, stalker extraction rules are iterative and designed to
extract nested information. However, stalker is able to construct wrappers
only for single HTML pages but not for the sets of pages. Unlike the above
approaches, hw-stalker is developed specifically for hidden web data and
hence is able to extract key attributes (identifiers and facilitators) from the
query results. Our system is also focused on extracting data from dynamically
generated hyperlinked web pages only.

RoadRunner [5] is the HTML-aware tool for automatic wrapper generation
based on the inherent features of HTML documents. RoadRunner runs by
comparing the HTML structure of two (or more) sample pages believed to
have similar structures, and as a result, generates a schema for the data con-
tained in the pages. From this schema, a grammar is inferred which is capable
of recognizing instances of the attributes identified in the sample pages. The
extraction process is based on an algorithm that compares the tag structure
of the sample pages and generates regular expressions handling structural
mismatches found between the two structures. The unique feature that dis-
tinguishes RoadRunner from all other approaches is that the process of
wrapper generation is fully automatic and no user intervention is requested.
However, such flexibility poses disadvantage as far as extracting hidden web
data is concerned as it cannot extract identifiers and facilitators automatically.

Caverlee et al. [3] introduce the concept of a QA-Pagelet to refer to the con-
tent region in a dynamic page that contains query matches. Our notion of
QURE-Pagelet is similar to this. The authors present a system called THOR
that focus on discovering and extracting QA-Pagelets from the hidden Web.
First, pages from each web site are grouped into clusters of structurally sim-
ilar pages. Then, pages from the top-ranked clusters are examined through a
subtree filtering algorithm. Our approach differs in the following ways. First,

36

we use machine learning-based mechanism to transform query results to XML
format. Second, we identify the semantic constraints associated with the data
values (using identifiers and facilitators) during the transformation process.
THOR does not exploit such semantic constraints. Such semantic constraints
are useful in several applications such as change detection, hidden web data
integration etc.

7 Conclusions

In this paper, we present a machine learning-based approach for extracting
relevant hidden web query results and transforming them to XML. We pro-
pose an algorithm called HW-Transform for transforming QURE-pagelets to
XML format. In our approach, we extend the stalker technique to extract
results from a set of dynamically generated hyperlinked web pages. The XML
representation of query results encapsulates only the data that a user is in-
terested in. One of the key features of our approach is that a user maps
special key attributes in query results, called identifiers and facilitators, into
XML attributes. These attributes facilitate change detection, data integration
etc. by efficiently identifying related results. As a proof of concept, we have
implemented a prototype system called hw-stalker using Java. Our exper-
iments demonstrate that HW-Transform shows acceptable performance for
transforming QURE-pagelets to XML.

References

[1] Z. Bar-Yossef and S. Rajagopalan. Template Detection via Data Mining and
its Applications. In Proceedings of the World Wide Web Conference, 2002.

[2] R. Baumgartner, S. Flesca, and G. Gottlob. Visual Web Information Extraction
with Lixto. In Proceedings of the 27th VLDB Conference, Roma, Italy, 2001.

[3] J. Caverlee, L. Liu, and D. Buttler. Probe, Cluster, and Discover: Focus
Extraction of QA-Pagelets from the Deep Web. In Proceedings of the
International Conference on Data Engineering (ICDE), 2004.

[4] S. Chakrabarti, M. van den Berg, and B. Dom. Focused Crawling: A New
Approach to Topic-Specific Web Resource Discovery. In 8th World Wide Web
Conference, May 1999.

[5] V. Crescenzi, G. Mecca, and P. Merialdo. RoadRunner: Towards Automatic
Data Extraction from Large Web Sites. In Proceedings of the 26th International
Conference on Very Large Database Systems, pages 109–118, Roma, Italy, 2001.

[6] M. Diligenti, F. Coetzee, S. Lawrence, C. L. Giles, and M. Gori. Focused
Crawling using Context Graphs. In 26th International Conference on Very
Large Databases, VLDB 2000, September 2000.

37

[7] D. Freitag. Machine Learning for Information Extraction in Informal Domains.
Machine Learning, 39, 2/3:169–202, 2000.

[8] J. Hammer, H. Garcia-Molina, S.Nesterov, R. Yerneni, M. Breunig, and
V. Vassalos. Template-Based Wrappers in the TSIMMIS System. SIGMOD
Record, 26, 2:532–535, 1997.

[9] H.Davulku, J.Freire, M.Kifer, and I.V.Ramakrishnan. A Layered Architecture
for Querying Dynamic Web Content. In ACM Conference on Management of
Data (SIGMOD), June 1999.

[10] M. K.Bergman. The Deep Web: Surfacing Hidden Value, September 2001.
http://www.brightplanet.com/deepcontent/tutorials/DeepWeb/deepwebwhitepaper.pdf.

[11] C. A. Knoblock, K. Lerman, S. Minton, and I. Muslea. Accurately and Reliably
Extracting Data from the Web: A Machine Learning Approach. IEEE Data
Engineering Bulletin, 23(4):33–41, 2000.

[12] D. Konopnicki and O. Shmueli. Information Gathering in the World-Wide
Web: The W3QL Query Language and the W3QS System. ACM Transactions
on Database Systems, 23(4):369–410, 1998.

[13] V. Kovalev. Change detection to the hidden web. Master’s thesis, School of
Computer Engineering, Nanyang Technological University (Singapore), 2003.

[14] V. Kovalev, S. S. Bhowmick, and S. Madria. HW-STALKER: A Machine
Learning-based Approach to Transform Hidden Web Data to XML. In
Proceedings of the 15th International Conference on Database and Expert
Systems Applications (DEXA 2004), 2004.

[15] N. Kushmerick. Wrapper Induction: Efficiency and Expressiveness. Artificial
Intelligence Journal, 118, 1-2:15–68, 2000.

[16] S. Lawrence and C. L. Giles. Searching the World Wide Web. Science,
280(5360):98–100, April 1998.

[17] S. Lawrence and C. L. Giles. Accessibility of Information on the Web. Nature,
400:107–109, July 1999.

[18] A. McCallum, K. Nigam, J. Rennie, and K. Seymore. Building Domain-specific
Search Engines with Machine Learning Techniques. In Proc. AAAI-99 Spring
Symposium on Intelligent Agents in Cyberspace, 1999.

[19] G. Mecca, P. Atzeni, A. Masci, P. Merialdo, and G. Sindoni. The ARANEUS
Web-base Management System. In Proceedings of the International Conference
on Management of Data, pages 544–546, 1998.

[20] I. Muslea, S. Minton, and C. A. Knoblock. Hierarchical Wrapper Induction
for Semistructured Information Sources. Autonomous Agents and Multi-Agent
Systems, 4(1/2):93–114, 2001.

[21] D. Shestakov, S. S. Bhowmick, and E.-P. Lim. DEQUE: Querying the Deep
Web. Data and Knowledge Engineering Journal, 52(3):273–311, 2005.

38

