
Formulating Disjunctive Coupling Queries in a

Web Warehouse

Sourav S Bhowmick a, Ang Kho Kiong a and Sanjay Madria b

aSchool of Computer Engineering, Nanyang Technological University, Singapore
639798

bDepartment of Computer Science, University of Missouri-Rolla, Rolla 65409

Abstract

We describe how to formulate a coupling query to glean relevant Web data in
the context of our web warehousing system called Whoweda (W arehouse O f Web
Data). Coupling query may be used for querying both HTML and XML documents.
One of the important feature of our query mechanism is the ability to express
conjunctive as well as disjunctive query conditions compactly. We describe how to
formulate a coupling query in text form as well as pictorially using the coupling text
and the coupling graph respectively. We explore the limitations of coupling graph
with respect to the coupling text. We found out that AND , OR and AND/OR-
coupling graphs are less expressive than their textual counterparts. To address this
shortcoming we introduce the notion of hybrid graph which is a special type of p-
connected coupling graph. Finally, we discuss the implementation of a GUI-based
system called VISCOUS (VISual COupling QU ery System) for formulating such
queries.

Key words: Web join, web warehouse, coupling query, coupling graph, query
formulation, viscous

1 Introduction

The Web has invaded our lives. The exponential growth of the Web in the last
few years had a significant impact on the traditional techniques used for data
management during the last few decades. This has compelled the database
community to reuse traditional techniques wherever possible to manage Web
data. Unfortunately, due to the very nature of Web data, it is not always

Email addresses: {assourav}@ntu.edu.sg, madrias@umr.edu (Sanjay Madria).

Preprint submitted to Elsevier Science 14 October 2002

System Query Query Querying Sub-page Partial Querying Control Preserve

HTML XML hyper- Querying knowledge tags, tag query result

links attributes exec. structure

Coupling Yes Yes Yes Yes Yes Yes Yes Yes

Query

W3QS Yes No Limited Limited Limited No No No

WebSQL Yes No Limited No No No No No

WebLog Yes No Limited No No No No No

NetQL Yes No Limited Limited Limited No Yes No

FLORID Yes No Limited Limited Limited No No No

ARANEUS Yes No Limited Limited Limited No No No

WebOQL Yes No Limited Yes Yes No No Yes

Lorel No Yes Not HTML Yes Yes Yes No Yes

link

XML-QL No Yes Not HTML Yes Yes Yes No Yes

link

YATL No Yes Not HTML Yes Yes Yes No Yes

link

Table 1
Comparison of web query systems.

possible to reuse conventional techniques effectively. This has led the database
community to rethink and reuse existing techniques in a new way to address
the current challenges. For instance, the database research community has
devoted considerable attention to extend database querying techniques to data
on the Web.

In this paper, we describe some of the features of a query mechanism for
populating a data warehouse specifically for Web data, i.e., web warehouse.
Broadly, we are interested in the three components of a web query mechanism:

(1) Determining the components, syntax, semantics and expressive power of
the query language;

(2) Formulation techniques of a web query; and
(3) Evaluation procedure of the query.

We have studied (1) in [10] and (3) in [6,22] in the context of the global web
coupling operation. This paper addresses the component (2). We introduce
the notion of a coupling query to express a web query and show how it is
formulated in the context of our web warehousing system, called Whoweda
(W arehouse O f Web Data) [5,22]. Note that the scope of this work is limited
to textual documents. It does not include querying of images, video or other
multimedia objects in the Web. Also this query mechanism cannot express
constraints on forms that invoke CGI scripts. A shorter version of this paper
appeared in [7].

2

1.1 Motivation

Currently, majority of Web data are in HTML format. However, in the near
future more and more XML documents will coexist with HTML documents.
Consequently, querying the Web implies querying large collection if interlinked
HTML and XML documents. As a result a large body of research has been
motivated by the attempt to extend database manipulation techniques to data
on the Web [12,13,17,18] and several web query mechanisms such as W3QS
[19], WebSQL [24], WebLog [20], RAW [16], NetQL [21], WebOQL [3], ULIXES
in ARANEUS system [4], XML-QL [13], Lorel [18] and YATL [12] have been
proposed so far. However, none of these query mechanisms completely address
all the important features of a web query system. Table 1 gives a summary
of the features of different web query systems. This led us to the design of
coupling query which incorporates different important features of a web query
mechanism into a single system. Note that in this paper our intention is not
to perform an exhaustive comparison between the pros and cons of different
web query systems with respect to the coupling query. We only highlight those
features (discussed below) which are pivotal issues in this paper. The reader
may refer to [10] for a detailed discussion on the comparison between existing
web query techniques and coupling query.

Formulating web queries Intuitively, a web query represents a graph-like
structure with constraints on some of its vertices and edges which are matched
against the Web. Conventionally, graphs can be represented in text form as
well as pictorially. Consequently, a web query may take both textual and
pictorial forms. Textual formulation of web query enables us to express any
complex web query accurately. As a result, most of the contemporary web
query mechanism as well as query languages for semistructured data focused
on a text-based query languages. However, text-based queries has some dis-
advantages. To express such queries, a user must be completely familiar with
the syntax of the query language, and must be able to express his/her needs
accurately in a syntactically correct form. Otherwise, a text-based query may
be error-prone and may contain superfluous query conditions. Also due to the
nature of Web data, specifying such query in text form requires considerable
effort. For instance, query languages such as XML-QL, Lorel, YATL, WebOQL
and FLORID, although are powerful languages, but is definitely not easy to
formulate in textual form. Although, it is possible to apply syntactic sugar
on these languages, but issues involved with such effort are not discussed in
[13,18,12,3,23]. W3QS [19] allows us to use query templates to minimize the
complexity associated with the formulation of web queries. Note that research
on visual querying has been done in traditional database research [15,26]. To
a greater or lesser extent, all these research focused on devising novel visual
querying schemes to replace data retrieval aspects of SQL language. Specifi-

3

cally, forms have been popular building blocks for visual querying mechanism
as well. For instance, Embley [15] proposed the NFQL as a communication
language between humans and database systems. It uses forms in a strictly
nonprocedural manner to represent query. As shall be seen in Section 4, we
allow a user to formulate a coupling query both in text form and pictorially.

Disjunctive constraints on hyperlinked documents Hyperlinks are
perhaps most important for relating parts of data that are not near each
other in terms of prose flow. In the Web environment, the authors inclination
to create many small pages, rather than single monolithic documents makes
this even more important. Authors are motivated to create small pages to
keep retrieval latencies low [25]. However, the structure of hyperlinked docu-
ments is irregular. Hence, it is important for a web query language to express
disjunctive constraints on the hyperlinked structure compactly.

Informally, such disjunctive query may be decomposed into a set of conjunctive
queries which are in disjunction to one another. A set of documents satisfies
such disjunctive query if they satisfy any one of the conjunctive query con-
ditions. Consequently, one may argue the justification of disjunctive queries
because such queries can be represented by conjunctive query sets which are
relatively easier to formulate. However, we believe that it is necessary for a web
query mechanism to express disjunctive conditions for the following reasons:

• First, disjunctive queries allow us to overcome the limitations of irregular
structure of inter-linked Web documents and pose meaningful queries over
it.

• Second, sometimes query evaluation is relatively less expensive if a query is
formulated and evaluated using disjunctive constraints rather than repeated
evaluation of each query in the equivalent conjunctive query set.

• Third, expressing all possible set of conjunctive query accurately for a dis-
junctive condition incurs significant cognitive overhead which may result in
erroneous query.

• Finally, a disjunctive query can be expressed compactly using regular ex-
pression. Expressing all possible set of conjunctive queries can be quite
cumbersome and frustrating.

Although the importance of imposing disjunctive constraints on inter-document
structure is undeniable, most of the web query systems support limited [12,13,17–
19,24,20,16,21,3,4] form of disjunctive constraints, if any, on the inter-document
structure of the Web. NetQL, WebSQL, W3QS, WebLog and FLORID do not
address the issue of such constraints on interlinked documents extensively.
A limited form of disjunctive condition which involves the variability of the
depth of traversal of a query can be expressed by these languages. Addition-
ally, these systems do not support querying of XML data. Query systems

4

for semistructured data and XML query languages such as XML-QL, Lorel,
YATL also support limited form of disjunctive constraints on the inter-linked
structure of Web documents. Query languages for semistructured data such
as Lorel [1], UnQL [11] were not specifically developed for the Web, and do
not distinguish between graph edges that represent the connection between a
document and one of its parts and edges that represent a hyperlink from one
Web document to another. On the other hand, XML query languages such
as XML-QL, Lorel, YATL support disjunctive conditions. However, whether
these languages can express disjunctive conditions on the hyperlink structure
of Web documents are not evident in [1,12,13,18]. Our coupling query allows
us to express disjunctive constraints extensively using regular expressions in
connectivities and predicates .

1.2 Paper Organization

The rest of the paper is organized as follows: In Section 2, we formally define
coupling query. In Section 3, we introduce two types of coupling queries, i.e.,
canonical and non-canonical . Next, in Section 4 we discuss how to formu-
late canonical and non-canonical queries in text form and pictorially. These
two forms of queries are called coupling text and coupling graph respectively.
In Section 5, we discuss the implementation of a GUI-based system called
VISCOUS (VISual COupling qU ery System) for formulating such queries.
Finally, we conclude by summarizing this paper.

2 Coupling Query

We now formally introduce the notion of a coupling query . We begin by briefly
describing the underlying data model of our web warehousing system. Then,
we describe a model of information on the Web. Next, we illustrate with
examples the components of a coupling query for expressing various query
conditions. In Section 2.4, we formally define coupling query. In Section 3, we
shall discuss two flavours of coupling query; canonical and non-canonical .

2.1 Data Model of Whoweda

Since our goal is to populate a web warehouse, we use as a starting point
the Whoweda system. In a data warehouse designed for Web information
it is imperative to represent and store relevant hyperlink Web documents
effectively for further querying and manipulation. The WareHouse Object Model

5

Node Link

Web
Schema

Type Type

Attributes
Structural
Attributes

Link
Reference
IdentifierAttributes

Node
Structural
Attributes

Node Metadata Link Metadata

Fig. 1. Class Hierarchy.

attribute

Node Object

Node data
Tree

Web Table

Web Tuple

Link Object

Link data
Treeattributes

value pairs value pairs

Reference
Identifier

Node metadata Link metadata

Fig. 2. Instance Hierarchy.

(WHOM) [5] serves as the basic data model for our web warehousing system.
WHOM, like any other data model, consists of two components: a set of web
objects and a set of web operators [5]. WHOM defines the logical structure of
a set of objects in the web warehouse and the way these objects are accessed
and manipulated.

Informally, our web warehouse can be conceived of as a collection of web tables .
A set of web tuples is materialized in a web table. A web tuple is a directed
graph consisting of sets of node and link objects (hereafter, referred to as nodes
and links respectively for brevity).

In Whoweda, nodes and links are instances of node type and link type re-

6

spectively. A node type consists of a name, a set of node metadata attributes
and a set of node structural attributes . Node metadata attributes are used to
capture the metadata information associated with Web documents (excluding
hyperlinks) such as URL, date of last modification and size. Note that URL

can be further decomposed into the following attributes: server, protocol,
path, filename and port. On the other hand, the node structural attributes
are used to represent the content and hierarchical structure of Web pages.
Intuitively, a node represents the metadata associated with a Web document
and the content and structure of the document (excluding hyperlinks in the
document). Specifically, it consists of two components: a set of node metadata
trees to represent values of different metadata associated with the document
and a node data tree (directed labeled tree) to represent the content and struc-
ture of the document. A node metadata tree is an instance of a node metadata
attribute and a node data tree is a set of node structural objects satisfying cer-
tain dependency constraints . The node structural objects are instances of node
structural attributes. The notion of dependency constraints play an important
role in determining the hierarchical relationships among node structural ob-
jects in a HTML or XML document. Similarly, a link type consist of a name,
a set of link metadata attributes , a set of link structural attributes and a ref-
erence identifier . Thus, a link consists of a set of link meta-attribute/value
pairs (such as target URL, source URL and link type) represented as link
metadata trees , a link data tree (instance of link structural attributes) and an
unique reference identifier. Link data tree is a directed labeled tree to represent
the structure and content of a HTML or XML link 1 . The reference identifier
is used to associate the location of links in a particular Web document or node.
Informally, one can think of a location as a portion of a document or a position
in it. Observe that although a hyperlink is embedded in a Web document, we
logically separate hyperlinks from Web documents while modeling HTML and
XML data in WHOM. Figures 1 and 2 provide a pictorial representation of
the hierarchical structure of the web objects in WHOM. Figure 3 represent
the relationship between the web objects and its instances.

To facilitate manipulation of Web data stored in web tables, we have defined
a set of web algebraic operators (i.e., global web coupling , web join, web select
etc.) with web semantics. These web operators enables us to build new web
tables by extracting relevant data from the Web and generate new web tables
from the existing ones. Table 2 summarizes comparison of WHOM with respect
to other web data models. The reader may refer to [5,9] for complete discussion
on how Web data is represented and manipulated in the warehouse.

1 We only consider simple and extended XML links.

7

System Model Model Data Internal Metadata Content Hyper- Order tag Mixed

HTML XML Model structure modeling modeling link attri- tag

modeling -bute

WHOM Yes Yes Labeled Yes Yes Yes Yes Yes Yes Yes

tree

W3QS Yes No Labeled Yes Yes Yes Yes No No No

multigraph

WebSQL Yes No Relational No Yes Yes Yes No No No

WebLog Yes No Relational No Yes Yes Yes No No No

FLORID Yes No F-Logic Yes Yes Yes Yes No No No

ARANEUS Yes No Page Yes Yes Yes Yes No No No

scheme

WebOQL Yes No Hypertrees Yes No Yes Yes Yes No No

STRUDEL Yes No Labeled Yes No Yes Yes Yes No No

graph

Lore No Yes Labeled Yes No Yes XML- Yes Yes No

graph link

XML-QL No Yes Labeled Yes No Yes XML- Yes Yes Yes

graph link

Table 2
Comparison of web data models.

Web
Schema Type

Node
 Type

Link
Attributes Attributes

Node
Structural
Attributes

Link
Structural
Attributes

Node Metadata Link Metadata

Web
Tuples

Web
Documents

Hyperlinks Attribute/
Value Pairs

Attribute/
Value Pairs

Node Data
Tree

Link Data
Tree

Web
Table

Link MetadataNode Metadata

Fig. 3. Relationship between logical and instance level.

2.2 The Information Space

The WWW involves a large number of information spaces ranging from simple
files to complex service providers that are distributed over the Internet. In
order to formally deal with information, we need to define a conceptually
unified information space against which users can formulate queries. We view
the WWW as a directed graph. The entire graph topology is unknown but
can be partly deduced by navigating the Web. The vertices and edges of the
graph are defined by every possible WWW navigation activity.

We assume that the WWW is deterministic [19]. By this, we mean that the
WWW structure, content and programs (i.e., CGI scripts) are static and that
programs are deterministic and time independent. This is clearly a simplifica-
tion of the WWW. However, it allows us to assume that the WWW does not
change during the execution of a query. The following definition captures the

8

hypertext structure of WWW accessible information.

Definition 1 A WWW Graph G(WWW) = (V, E) is a pair where V and
E are sets of node and link objects on the Web and E ⊆ V × V . Each edge
e ∈ E is a hyperlink from a node object v ∈ V to u ∈ V such that there is a
link object from a node object v to

• any node object corresponding to a file accessible by clicking on a valid hy-
perlink in v,

• any node object corresponding to the data returned by filling a form in v
and

• the default error HTML message (Error 404) obtained by clicking on an
invalid hyperlink in v.

Observe that the previous definition captures a simplified model of the ac-
tual WWW. This is done for the sake of simplicity. Our model can be easily
extended to include data accessible through protocols other than http and
more complex HTML constructs such as frames. Although, we do not discuss
the querying and processing of HTML forms in this paper, our model can be
extended to handle them.

2.3 Components of a Coupling Query

A coupling query consists of the following five components:

A set of node and link type identifiers Xn and X` respectively. Each nominal
identifier in Xn or X` represents a set of documents or hyperlinks (possibly
empty) retrieved from the Web (also called node and link objects). Each iden-
tifier in Xn or X` may be either bound or free. The set of node or link objects
represented by a bound type identifier share some common properties in terms
of their metadata, content or structure. Some of these properties are expressed
explicitly in the query using a set of predicates . To elaborate further, let G be
a coupling query and P be the set of predicates in G. Let d1, d2, . . ., dn be a
set of documents represented by a node type identifier d ∈ Xn in G. Then d is
bound type identifier if there exist a set of predicates Pd ⊆ P defined over d.
Each predicate in Pd specifies metadata, content or structural characteristics
shared by the documents d1, d2, . . ., dn. On the other hand, a free type iden-
tifier do not have any predicate defined over it in the coupling query. That is,
there are no conditions in terms of metadata, content or structure imposed
by the user on the nodes or links represented by the free type identifier. In
Whoweda, we denote such free node and link type identifiers by using the
special symbols ‘#’ and ‘-’ respectively. Note that the instances of free type
identifiers represent arbitrary nodes or links.

9

A set of predicates P on the node and link type identifiers to express the
conditions defined by a user that must be satisfied by the relevant documents
and hyperlinks of the corresponding identifiers. The following is a form of a
predicate p on x:

p(x)≡ predicate qualifier::x{[attribute path exp]}
predicate operator "V "

where x, the argument of p, is a node or link type identifier depending on
the application of constraints on Web documents or hyperlinks respectively.
The component predicate qualifier determines the scope of the predicate.
It can have any one of the following values: “METADATA”, “CONTENT” and
“STRUCTURE”. It indicates whether the predicate is to be used to impose con-
straints on the metadata, textual content or structure of instances of x. The
component attribute path exp is essentially a sequence of tags which may
include wild cards and regular expression operators. It is used to specify con-
straints on specific position(s) of a Web document and hyperlink. It may also
be used to impose structural constraints on Web data. Predicate operator

represents operators such as EQUALS, ATTR ENCL, NON-ATTR ENCL, ATTR CONT,
NON-ATTR CONT and CONT to test for string regular expression matching. The
operators containing the strings ATTR and NON-ATTR are used to distinguish
between the attribute/value pairs associated with tags of HTML or XML el-
ements and the textual content between tagged elements when desired. The
strings CONT and ENCL in these operators are used to further distinguish be-
tween partial and complete data segments in an element or in the attribute set
associated with an element. Operators such as SATISFIES and EXISTS IN are
used to impose conditions on the structure. The operator SATISFIES checks
if the instances of a node or link type identifier satisfies a particular ele-
ment structure. The operator EXISTS IN is specifically used on link objects
and checks if instances of a link type identifier exist in the specified portion
of source documents. V is called the value of the predicate and is a regu-
lar expression over the ASCII character set when the predicate qualifier

is either METADATA or CONTENT. When the qualifier is STRUCTURE, V may be
an attribute path expression or a collection of tag element names. The curly
brackets are used to indicate 0 or 1 occurrence of the components.

A collection of connectivities C (in conjunctive or disjunctive form) 2 to ex-
press the hyperlink structure the relevant documents must satisfy with respect
to the user’s query. Informally, a connectivity is a predicate on the inter-
document relationship of one or two classes of Web documents. To define a

2 Traditionally, in the field of graph theory, the term connectivity of a connected
graph refers to the minimum number of vertices whose removal disconnects the
graph or reduces the graph to a single vertex. However, in this paper, we do not use
the notion of connectivities in this context.

10

connectivity element, one first categorizes the set of documents and hyper-
links into different types by using a set of predicates. Then connectivities are
defined by using the type identifiers of these documents and hyperlinks. A
connectivity k is an expression of the form: k ≡ s〈ρ〉t where s is the source
node type identifier (source identifier in short), t is the target node type iden-
tifier (target identifier in short) and ρ is called a link path expression which
is essentially a sequence of link type identifiers which may include regular
expressions, e.g., e, efg, ef{1, 3}. The angle brackets around ρ are used for
delimitation purposes only. Note that the connectivity s〈ρ〉t specifies how the
instances of s are connected to the instances of t. The interlinked structure
between an instance of s and t identifier is specified by the link path expres-
sion. Throughout this paper, we denote the source and target identifiers of
a connectivity k as lnode(k) and rnode(k) respectively. The set of link type
identifiers in ρ is denoted as link(k).

A connectivity element is categorized into two types—simple and complex . A
simple connectivity contains only simple link path expression. By simple link
path expression we mean that there is no regular expressions defined over it.
Hence, a simple connectivity contains only one link type identifier in the link
path expression. For instance, x〈e〉y is a simple connectivity. On the other
hand, in a complex connectivity, the link path expression may contain regular
expressions. For instance, x〈efgh〉y, x〈(ef?)|(g-)〉y, x〈e-{1, 5}〉y are examples
of complex connectivities.

A set of conditions Q on the coupling query to control the execution of the
query for retrieving relevant data.

2.3.1 Our Approach

We now illustrate these components by formulating a coupling query. Consider
the NCI Web site at rex.nci.nih.gov. Suppose a user wishes to retrieve
information related to treatment of different types of cancer. This site pro-
vides information about specific types of cancer, including information about
diagnosis, staging, treatment, follow-up care and coping. Specifically, links
in the Web page at rex.nci.nih.gov/PATIENTS/SITES TYPES.html provide
links to information related to different types of cancer. The link “treatment
statement” points to a page containing a list of links to cancer-related dis-
eases (Figure 4(b)). Each of these links point to a page containing informa-
tion on diagnosis, treatments and so on of a particular disease. There are
also hyperlinks labeled “bladder”, “brain”, and so on in the Web page at
rex.nci.nih.gov/PATIENTS/SITES TYPES.html (Figure 4(a)) which directly
connects to a page containing details of these diseases. Observe that some of
the links such as “AIDS-related lymphoma”, “Anal Cancer”, “Endometri-
cal Cancer” and so on in Figure 4(b) are not available in the Web page at

11

(a) Treatment for cancer. (b) List of cancer related disease.

Fig. 4. Web pages of NCI Web site.

http://rex.nci.nih.gov/PATIENTS/SITES TYPES.html. Similarly, links re-
lated to “Non-Hodgkin’s Lymphoma”, “Hodgkin’s Disease”, “Stomach” in the
Web page in Figure 4(a) are not listed in the Web page in Figure 4(b). How-
ever, links related to “Larynx”, “Melanoma” and so on are available in both
Web pages. Hence, in order to retrieve a complete list of treatment details of
various types of cancer we need to exploit the link “treatment statement” and
links related to different cancers in the Web page in Figure 4(a). In order to
express this query, we need:

• A starting point for the search (Web page at
rex.nci.nih.gov/PATIENTS/SITES TYPES.html)

• to scan the pages accessible from the starting page by following links having
the specific characteristics as described above.

Therefore,

(1) We search for a path in the Web hypertext structure, beginning at the
Web page at rex.nci.nih.gov/PATIENTS/SITES TYPES.html and end-
ing at a page containing the keyword “treatment” by following only hy-
pertext links that satisfies the above conditions. Such hypertext path can
be expressed in the coupling query by the connectivity x〈(ef)|(gh)〉y. Here
x, y are node type identifiers and e, f , g and h are link type identifiers .
Observe that the expression (ef)|(gh) enables us to express disjunctive
conditions in a coupling query, i.e., either follow the links of types e and
f or follow the links of types g and h.

(2) Instances of x is the first vertex of the path and corresponds to the page at

12

x0

 http://rex.nci.nih.gov/PATIENTS/SITES_TYPES.html

Bladder

/WTNK_PUBS/bladder/index.htm

Treatment

e0 f0
y0

"treatment"

(4)

(5)

(6)

http://rex.nci.nih.gov/PATIENTS/SITES_TYPES.html

http://rex.nci.nih.gov/PATIENTS/SITES_TYPES.html

http://rex.nci.nih.gov/PATIENTS/SITES_TYPES.html

wwwicic.nci.nih.gov/clinpdq/pif.htmlx0

 "treatment"

Treatment Statement

Breast Cancer

y4

x0

 "treatment"

Treatment Statement

Anal Cancer

x0

 "treatment"

Treatment Statement

AIDS-related lymphoma

y3

g1

h1

h2

h3

g1

g1

y5

x0

 http://rex.nci.nih.gov/PATIENTS/SITES_TYPES.html
Treatment

"treatment"

Brain e1

/WTNK_PUBS/brain/index.htm

f1

x0

 http://rex.nci.nih.gov/PATIENTS/SITES_TYPES.html "treatment"

Hodgkin’s Disease

Treating Hodgkin’s Disease

/WTNK_PUBS/hodgkin/index.htm

f2

e2

y2

y1

(1)

(2)

(3)

wwwicic.nci.nih.gov/clinpdq/pif.html

Fig. 5. Results of the query in Example 2

rex.nci.nih.gov/PATIENTS/SITES TYPES.html. Coupling query allows
the mapping of specific pages to a node type identifier. This is written in
the form of a predicate:

p11(x)≡ METADATA::x[url] EQUALS
"rex[.]nci[.]nih[.]gov/PATIENTS/SITES TYPES[.]html "

(3) The link type identifiers e, f , g and h must satisfy the above conditions.
These conditions are expressed as following predicates:

p13(f)≡ STRUCTURE::f[A] EXISTS IN "body.p "
p14(e)≡ CONTENT::e[A] NON-ATTR ENCL "Treatment Statements "
p15(h)≡ CONTENT::h[A] ATTR CONT

"{(href, MATCH(:BEGIN STR: + treat.* + :END STR:)}"
p16(g)≡ STRUCTURE::g SATISFIES "A "
p17(g)≡ STRUCTURE::g[A] EXISTS IN "table(.%)+.p "

The first predicate specifies that the instances of f exist in a para-
graph contained in the body element of the source documents. The next
predicate specifies that the anchor text of instances of e is Treatment

Statements . The predicate p15(h) says that the instances of h must con-
tain the element A having an attribute labeled href. The value of href
must match the regular expression treat.* . That is, the target URL of
the hyperlinks must contain the string “treat”. The last two predicates
indicate that g is a link type identifier and specifies that instances of g
exist in a paragraph contained in the table elements of the source doc-
uments. Note that similar to node type identifier, specific hyperlinks are
mapped to a link type identifier. Also, observe that the predicates allow
us to impose constraints on specific portions of Web documents or hy-

13

perlinks, on attributes associated with HTML or XML elements and on
the hierarchical structure of Web documents based on partial knowledge
of the structure of the documents.

(4) The last vertex y must contain the keyword “treatment” anywhere in the
document and is expressed by the following predicate:

p12(y)≡ CONTENT::y[html(.%)+] NON-ATTR CONT
":BEGIN WORD: + treatment + :END WORD:"

(5) In order not to overload the rex.nci.nih.gov HTTP server, we limit the
time taken for the search. The search stops after 20 minutes and returns
the result retrieved so far. Also we make sure that all the documents
retrieved by the search belongs to the Web site of NCI. This is done by
defining the following coupling query predicates :

q1(G1)≡ COUPLING QUERY::G1.time EQUALS "20 min "
q2(G1)≡ COUPLING QUERY::G1.host EQUALS "rex.nci.nih.gov "

Note that coupling query predicates enables us to control the execution
of a query.

The query is then expressed as:

Example 2 Let the coupling query be G1 = 〈Xn1q , X`1q , C1q, P1q, Q1q〉

Xn1q = {x, y}
X`1q = {e, f, g, h}
C1q ≡ x〈(ef)|(gh)〉y

P1q = {p1, p2, p3, p4, p5, p6, p7} where

p11(x)≡ METADATA::x[url] EQUALS
"rex[.]nci[.]nih[.]gov/PATIENTS/SITES TYPES[.]html "

p12(y)≡ CONTENT::y[html(.%)+] NON-ATTR CONT
":BEGIN WORD: + treatment + :END WORD:"

p13(f)≡ STRUCTURE::f[A] EXISTS IN "body.p "
p14(e)≡ CONTENT::e[A] NON-ATTR ENCL "Treatment Statements "
p15(h)≡ CONTENT::h[A] ATTR CONT

"{(href, MATCH(:BEGIN WORD: + treat.* + :END WORD:)}"
p16(g)≡ STRUCTURE::g SATISFIES "A "
p17(g)≡ STRUCTURE::g[A] EXISTS IN "table(.%)+.p "

and Q1q = {q1, q2} where

q1(G1)≡ COUPLING QUERY::G2.time EQUALS "20 min "
q2(G1)≡ COUPLING QUERY::G1.host EQUALS "rex.nci.nih.gov "

The set of query results is shown in Figure 5. Observe that the results are
directed connected graph and preserves the hyperlinked structure of the rel-

14

evant documents that satisfies the query conditions. These graphs are called
web tuples . Intuitively, a web tuple t is a subgraph of G(WWW) and the set
of documents and hyperlinks in t satisfies the connectivities and predicates
defined in a query G.

2.4 Definition of Coupling Query

We now formally define a coupling query. Note that although a coupling query
consists of five components as described in the preceding section, any arbitrary
sets of node and link type identifiers, connectivities and predicates do not
represent a valid coupling query. The following conditions must be satisfied
by the components of a coupling query:

Conditions on Node and Link Type Identifiers The conditions out-
lined below must be satisfied by the Xn and X` components of the coupling
query.

• The set of node type identifiers Xn is always non-empty and must contain
at least one bound node type identifier. That is, Xn 6= ∅.

• The identifiers used to represent node objects in the coupling query must
be nominally dissimilar to those used to represent link objects. That is, the
components Xn and X` must not overlap; i.e., Xn ∩X` = ∅.

Conditions on Connectivities We now identify the constraints imposed
on the collection of connectivities in a coupling query.

• The set of node and link type identifiers in the collection of connectivities
must match with the set of node and link type identifiers specified in the
components of Xn and X`.

• The next condition specifies the only case when a coupling query may not
contain any connectivities. This is possible only when the set of node objects
are represented by a single node type identifier. In this case the predicate
set is non-empty as the node type identifier cannot be a free type identifier.

• If C1 and C2 represents two conjunctive connectivity collections in the cou-
pling query and C1∨C2 then C1 and C2 must not contain the same collection
of connectivities.

Condition on Predicates Finally, the predicate set in a coupling query
must satisfy the following condition: The argument of each predicate in the
predicate set must be a node or link type identifiers in Xn or X`.

15

y z
e f

g

x y
e

f

x y

y

e

e

(e)

x y z

e

x y
e

e

(c)(b)(a)

(d)

x y

e

a

f

(f)

Fig. 6. Graphical representation of invalid coupling queries.

Topological Conditions on the Coupling Query A connectivity can be
visualized as a directed connected acyclic graph. As a coupling query contains
a collection of connectivities, it can also be visualized as a directed graph,
where a vertex and an edge of the graph are labeled by a node and link
type identifier respectively and a set of predicates, if any, on these identifiers.
Furthermore, to simplify formulation of coupling query and for its efficient
computation we pose certain constraints on the graphical form of a coupling
query as outlined below:

• The graphical view of a coupling query must be a directed connected acyclic
graph. This indicates that not only each connectivity in a coupling query is
a connected DAG, but also the union of all the connectivities in a coupling
query must also be a connected DAG. We do not allow coupling query to
be disconnected as such queries may not be computable [2]. For instance,
Figure 6(a) is an example of disconnected graph and hence does not repre-
sent a valid coupling query. Also we do not allow cycles in a coupling query
in order to simplify the evaluation of the query. Figure 6(b) represents an
invalid coupling query containing a cycle.

It may seem that forbidding cycles in a coupling query would significantly
hinder the expressiveness of a web query. This is indeed true as cycles are
very common in the Web. Web sites may specifically be designed to dis-
tribute information across pages, and provide extensive links to lead the
user back and forth across these pages. In fact, proper usage of cycles in
a Web site is considered to be one of the important feature for good Web
site design. Hence, to address this problem we follow a two-level approach.
At the first level, we use an acyclic coupling query to gather relevant doc-
uments from the Web and materialize them in our web warehouse. In the
second level, we use the web select operation to impose cyclic constraints
on the materialized query results [5].

• The graphical representation of a coupling query must have a single source
vertex. That is, there must be only one vertex with zero in-degree. We

16

disregard queries with multiple source vertices to simplify formulation and
evaluation of coupling queries. Figure 6(f) is an example of an invalid query
with multiple source vertices.

• The source vertex of the query must always be bound. That is, the node
type identifier in the query representing the source vertex must always be
associated with a set of non-trivial predicates defined over it. This is to
ensure computability of the query. Figure 6(c) is an example of an invalid
query with free source vertex.

• The labels of two edges in the graph are identical only if the start and end
vertices pair of each edge is not identical to one another. Hence, the query
in Figure 6(d) is invalid.

• The labels of two vertices in the graph can be identical only if the labels of
the incoming edges and their start vertices are not identical. The query in
Figure 6(e) is invalid because of the violation of this rule.

Based on the above features, a coupling query can be formally defined as
follows:

Definition 3 [Coupling Query] A coupling query is a 5-tuple
G = 〈Xn, X`, C, P, Q〉 where Xn is a set of node type identifiers, X` is a
set of link type identifiers, C is a collection (possibly empty) of connectivi-
ties in conjunctive or disjunctive form defined over Xn and X`, P is a set of
predicates defined over Xn and X` and Q is a set (possibly empty) of coupling
query predicates such that the following conditions are true:

• Xn 6= ∅, P 6= ∅, Xn ∩X` = ∅;
• If |Xn| = 1 then X` = ∅, C = ∅ and P 6= ∅;
• Let Xnc and X`c be the set of node and link type identifiers in C respectively.

Then Xnc = Xn and X`c = X`;
• There must not exist conjunctive connectivity collection Ca ≡ ka1 ∧ ka2 ∧
· · · ∧ kan and Cb ≡ kb1 ∧ kb2 ∧ · · · ∧ kbn such that Ca ∨ Cb and kax = kbx ∀
0 < x 6 n;

• Let p(x) ∈ P . Then x ∈ (Xn ∪X`);
• Let G(C) be the graphical representation of C. Then G(C) must be a di-

rected connected acyclic graph with single source vertex. Further, let x be the
identifier of the source vertex in G(C). Then, there must exist a non-trivial
predicate p(x) ∈ P .

3 Canonical and Non-canonical Coupling Queries

A coupling query is categorized into two types: canonical and non-canonical .
This categorization is based on the type of connectivities in the query and
their relationship with one another. We elaborate on this further.

17

We say that a coupling query is canonical if it contains a set (possibly empty)
of simple connectivities in Disjunctive Normal Form (DNF). For example, if
G = 〈Xn, X`, C, P, Q〉, C ≡ C1 ∨ C2 where C1 ≡ k1 ∧ k2, C2 ≡ k3 k1 ≡ x〈e〉y,
k2 ≡ y〈f〉z and k3 ≡ x〈e〉z then G is a canonical coupling query. C1 and
C2 are called conjunctive connectivity sets . Based on the above definition of
canonical coupling query, we classify canonical queries into the following five
types. Let Gc = 〈Xn, X`, C, P, Q〉 be a canonical coupling query. Then,

• Type 1: Gc does not contain any connectivities. That is, |Xn| = 1, X` = ∅
and C = ∅. Note that this is the simplest form of coupling query.

• Type 2: Gc contains a single simple connectivity. That is, |Xn| = 2, |X`| =
1, C ≡ k where k is a simple connectivity.

• Type 3: Gc contains more than one simple connectivities and these con-
nectivities are in conjunction. That is, C ≡ k1 ∧ k2 ∧ · · · ∧ kr where ki is a
simple connectivity for all 1 < i 6 r.

• Type 4: Gc contains more than one simple connectivities and these con-
nectivities are in disjunction. That is, C ≡ k1 ∨ k2 ∨ · · · ∨ kr where ki is a
simple for all 1 < i 6 r.

• Type 5: Gc contains more than one simple connectivities and these connec-
tivities are in DNF. That is, C ≡ C1∨C2∨· · ·∨Cr where Ci is a conjunctive
connectivity set for all 1 < i 6 r.

A non-canonical coupling query , on the other hand, may contain simple or
complex connectivities and these connectivities may not be in DNF. For in-
stance, if C ≡ k1 ∧ k2, k1 ≡ x〈e|f〉y and k2 ≡ y〈g〉z then G is a non-canonical
coupling query. This is because k1 is a complex connectivity. We classify non-
canonical queries into the following four types. Let Gnc = 〈Xn, X`, C, P, Q〉 be
a non-canonical coupling query. Then,

• Type 1: Gnc contains a single complex connectivity. That is, |Xn| = 2,
X` 6= ∅, C ≡ k where k is a complex connectivity.

• Type 2: Gnc contains more than one connectivity and at least one of them
is complex. Further, these connectivities are in conjunction. That is, C ≡
k1 ∧ k2 ∧ · · · ∧ kr where ki is complex for 1 < i 6 r.

• Type 3: Gnc contains more than one connectivity and at least one of them
is complex. Further, these connectivities are in disjunction. That is, C ≡
k1 ∨ k2 ∨ · · · ∨ kr where ki is complex for 1 < i 6 r.

• Type 4: Gnc contains more than one simple or complex connectivities and
these connectivities are in conjunction and in disjunction to one another.

Note that a user may specify any form of coupling query to harness relevant
documents from the Web. For brevity, different types of canonical and non-
canonical coupling queries are denoted as Gt

c or Gt
nc respectively where 0 <

t 6 5 and indicates Gc or Gnc is of Type t.

18

We now illustrate canonical and non-canonical coupling queries with examples.

Example 4 Consider the query in Example 2. Recall that a user wishes to
retrieve information related to treatment of different types of cancer from the
NCI Web site. This query is non-canonical as the connectivity is complex in
nature.

Next, we provide an example of canonical form of coupling queries.

Example 5 Consider the non-canonical coupling query in Example 2. This
can be expressed as a canonical query by reducing the complex connectivities
into sets of simple connectivities in DNF. The formal representation of the
query is as follows: Let the canonical coupling query be
G2 = 〈Xn2q , X`2q , C2q, P2q, Q2q〉 where Xn2q = {x, y, #1, #2}, X`2q = {e, f, g, h},
C2q ≡ Ca ∨ Cb, Ca ≡ x〈e〉#1 ∧ #1〈f〉y, Cb ≡ x〈g〉#2 ∧ #2〈h〉y, P2q = P1q and
Q2q = Q1q. Notice that this is an example of canonical Type 5-coupling query
as all the connectivities are simple and are in DNF.

3.1 Valid Canonical Coupling Query

A valid canonical coupling query is necessary for generating web schemas [8]
of a set of web tuples retrieved from the Web. Moreover, this form is also nec-
essary for global web coupling operation [22]. Informally, a canonical coupling
query is valid if each conjunctive connectivity set in the query represents a
directed connected acyclic graph with single source vertex. Hence, a canonical
query must satisfy the following conditions;

Directed Connected Graph with Single Source Vertex Each conjunc-
tive connectivity set must represent a directed connected graph with single
source vertex. We illustrate this condition with an example. Consider C1 to
be a conjunctive connectivity set in a canonical coupling query. Let k1 ≡ a〈e〉b
be a connectivity in C1. Then there must exist another connectivity of the form
a〈f〉z, x〈f〉b or x〈f〉a in C1 if the number of simple connectivities in C1 is more
than one. Furthermore, if a represents the source vertex then x〈f〉b or x〈f〉a
cannot exist in C1. Also the node type identifier represented by the source
vertex must be bound.

Acyclic Condition on Connectivities Each conjunctive connectivity set
must represent an acyclic graph. Hence, if x〈e〉y is a connectivity in Ci then
there must not exist another connectivity y〈f〉x in Ci. Observe that these two
connectivities create a cycle. Secondly, if k1 ≡ x〈e〉y be a connectivity such

19

that there exist another connectivity k5 ≡ z〈f〉x then this may result in a
cycle if k1 is connected to k5 through a collection of connectivities (say k2, k3

and k4).

Acyclic Conditions on Predicates Next, we discuss conditions on pred-
icates in a coupling query for ensuring the query to be acyclic in nature. We
first illustrate the conditions with an example. Let x and y be two node type
identifiers such that |Px| > 1 or |Py| > 1, p1(x) ∈ Px, p1(y) ∈ Py and

p1(x)≡ METADATA::x[url] EQUALS "http://www[.]druginfonet[.]com"
p2(y)≡ METADATA::y[url] EQUALS "http://www[.]druginfonet[.]com"

Note that in this case the query may contain cyclic component if any one of
the following conditions is not satisfied:

• If x and y belongs to a conjunctive connectivity set Ci then x and y must
represent two adjacent identifiers. That is, if x and y are adjacent node type
identifiers then instances of x and y represent identical documents connected
by an interior link. Consequently, there must exist a simple connectivity
x〈`〉y in Ci to express adjacency of these node type identifiers.

• Otherwise, both x and y does not exist in Ci. That is if x ∈ Ci and y ∈ Cj

then i 6= j, i.e., Ci and Cj represent two conjunctive connectivity sets and
Ci ∨ Cj. Hence, Ci and Cj do not generate cyclic graphs.

3.2 Transformation of Non-Canonical Coupling Query

Recall that a user can express a coupling query in any form. In case, he/she
pose a non-canonical query, we transform the query to a canonical form and
prune it (if necessary) before it is evaluated by the global web coupling opera-
tion. For instance, the query in the Example 2 is transformed to its canonical
form as shown in Example 5 before they are evaluated. Note that we do not
discuss the procedure and issues involved with the transformation and pruning
of a non-canonical coupling query to a canonical form in this paper as these
issues will only increase the length of the paper without contributing substan-
tially to the discussion of the mechanism to populate a web warehouse. The
following proof is also omitted for space reasons. The reader may refer to [6]
for detailed discussion.

Theorem 1 Every non-canonical coupling query can be transformed to a valid
canonical coupling query.

20

4 Coupling Query Formulation

As a coupling query is defined by a user, the structure and content of a cou-
pling query depends on the following factors: First, the information a user
wishes to retrieve from the Web. Second, the user’s level of knowledge of the
content and structure of the Web site(s) containing the relevant information.
By default, a coupling query is formulated in text form. It may also be for-
mulated graphically. The textual representation of the query is called coupling
text and the pictorial representation of a coupling query is called coupling
graph.

In coupling text, the user specifies the five components Xn, X`, C, P and
Q in textual form. Coupling text is a flexible query formulation mechanism
and can be used to specify any meaningful query. In the remaining portion
of this paper we shall use coupling text and coupling query interchangeably.
Examples 2 and 5 are examples of coupling text.

Next, we describe the second mechanism for formulating coupling queries,
i.e., coupling graph. We begin by defining a coupling graph. Then we discuss
different types of coupling graph a user may wish to draw. Next, we discuss
the limitations associated with coupling graphs in expressing different forms of
query. Finally, in Section 4.4 we introduce the notion of hybrid graph in order
to resolve these limitations. Also note that, unless explicitly stated otherwise,
a canonical coupling query indicates a valid canonical query.

4.1 Definition of Coupling Graph

Informally, a coupling graph is a directed connected acyclic graph. This mech-
anism enables a user to specify a coupling query by drawing a graph. The label
of vertices of the graph are node type identifiers and predicates, if any, defined
over these identifiers. The label of the edges of the graph are link type identi-
fiers and predicates on these link type identifiers (if any). The predicates are
specified by clicking on the vertices and edges. The edges between the vertices
specifies the connectivity constraints. The set of coupling query predicates is
specified by clicking on the entire coupling graph.

A coupling graph is used to express queries containing simple connectivities
only. We justify the reasons behind this. Recall that complex connectivity
is a compact mechanism when expressed in text form for expressing a set of
simple connectivities which are in conjunction or in disjunction to one another.
Thus, coupling text containing complex connectivities enable a user to specify
a query tersely without having the overhead of expressing all possible form
of simple connectivities. However, this advantage of complex connectivities in

21

coupling text cannot be realized when formulating the query using coupling
graph. Essentially, a complex connectivity condense a set of node and link
type identifiers into a single expression. Such capability cannot be realized
when drawing a graph. To express the connectivities one has to draw all the
edges and vertices. For instance, to express the connectivity x〈(ef)|(gh)〉y
using coupling graph, the user has to draw all the vertices and edges as shown
in Figure 9(b). This is equivalent to specifying all the simple connectivities
which x〈(ef)|(gh)〉y represents. Hence, there is no additional advantage in
allowing a user to draw a complex connectivity. For this reason we do not allow
users to specify queries containing complex connectivities using a coupling
graph. We believe coupling text is the best mechanism to express queries
containing complex connectivities. Formally, the definition of a coupling graph
is as follows:

Definition 6 [Coupling Graph] A coupling graph Gcg = (Vq, Eq) for a
query G = 〈Xn, X`, C, P, Q〉 is a connected acyclic digraph with single source
vertex where

• C is a set of simple connectivities.
• Vq is a finite set of vertices. A vertex vq is labeled by a node type identifier

id(vq) ∈ Xn and a set (possibly empty) of predicates Pn ⊆ P on the node type
identifier. Furthermore, Vq = V (k1)∪V (k2)∪· · ·∪V (kn) where k1, k2, . . . , kn

are connectivities in C, G(ki) = (V (ki), E(ki)) ∀ 0 < i 6 n
• Eq is a finite set of directed edges such that Eq = E(k1)∪E(k2)∪· · ·∪E(kn).

An edge eq is labeled by the link type identifier id(eq) ∈ X` and a set (possibly
empty) of predicates P` ⊆ P .

• g : Eq → Vq × Vq is a function such that g(eq) = (vq1 , eq, vq2) if and only if
there exist a simple connectivity id(vq1) 〈 id(eq) 〉 id(vq2) in C.

4.2 Types of Coupling Graph

We classify coupling graphs into three categories, i.e., AND-coupling graph,
OR-coupling graph and AND/OR-coupling graph. We elaborate on these three
types of coupling graph.

4.2.1 AND-Coupling Graph

In an AND-coupling graph all the edges are AND together. It is used to ex-
press pictorially a coupling query containing a set of simple connectivities in
conjunction to one another (canonical queries of Types 2 and 3). Formally,
let Gcg = (Vq, Eq) be a coupling graph. Then Gcg is an AND-coupling graph
if eqi ∈ Eq and eqj ∈ Eq and eqi ∧ eqj ∀ 0 < i, j 6 |Eq| and i 6= j. Note
that the graphical representation of canonical form of coupling text (of Types

22

(a)

a

b

c

d

#1

#2

f

g

h

k

m

(b) (c)

y

#2

x

#1
f

hg

e

x #1 #3#2 y
hgfe

Fig. 7. AND-Coupling Graphs.

2 and 3) is identical to the corresponding AND-coupling graph. For exam-
ple, Figures 7(a), 7(b) and 7(c) are examples of AND-coupling graphs ex-
pressing the sets of simple connectivities (x〈e〉#1 ∧ #1〈f〉#2 ∧ #2〈g〉#3 ∧ #3〈h〉y),
(x〈e〉#1∧#1〈f〉y∧x〈g〉#2∧#2〈h〉y) and (a〈f〉b∧a〈g〉c∧a〈h〉d∧b〈k〉#1∧c〈m〉#2)
respectively.

4.2.2 OR-Coupling Graph

An OR-coupling graph is used to formulate pictorially coupling queries in
which the connectivities are simple and are in disjunction to one another.
In an OR-coupling graph all the edges are OR’d together. Note that OR-
coupling graph cannot be linear as it requires at least two outgoing or in-
coming edges to be OR’d together. Furthermore, as we only allow coupling
graphs with single source vertex, OR-coupling graphs must not have more
than one vertex with no incoming edges. Consequently, OR-coupling graph
pictorially represents queries containing a set of simple connectivities having
identical source identifier. Moreover, these connectivities must generate a di-
rected connected acyclic graph. As we disregard formulation of non-canonical
coupling queries using coupling graphs, an OR-coupling graph is a picto-
rial representation of a canonical form of Type 4-coupling text. Formally,
let Gcg = (Vq, Eq) be a coupling graph. Then Gcg is an OR-coupling graph
if eqi ∈ Eq and eqj ∈ Eq and eqi ∨ eqj ∀ 0 < i, j 6 |Eq| and i 6= j. Ob-
serve that the depth of an OR-graph is always equal to one. This is because
each simple connectivity represents a path of length one. Hence, a set of sim-
ple connectivities in disjunction represents a graph having depth one. For

23

(b)

a b

u

v

(c)

x #

e

g

d

fx

y

z

w

v

e

f

g

h

(a)

Fig. 8. OR-Coupling Graphs.

example, Figures 8(a), 8(b) and 8(c) are examples of OR-coupling graphs ex-
pressing connectivities (x〈e〉y ∨ x〈f〉z ∨ x〈g〉w ∨ x〈h〉v), (a〈u〉b ∨ a〈v〉b) and
(x〈e〉# ∨ x〈f〉# ∨ x〈g〉d) respectively.

4.2.3 AND/OR-Coupling Graph

Informally, an AND/OR-coupling graph represents coupling queries in which
the connectivities are in conjunction as well as in disjunction to one another.
We first define the notion of AND-edges and OR-edges in order to elaborate
on this type of coupling graph. In a coupling graph, an edge (v1, e, v2) is an
AND-edge if the out-degree and in-degree of v1 and v2 respectively is equal to
one. For example, in Figure 9(a) edges (y, f, a) and (z, h, b) are AND-edges.
Otherwise, the edge is called an OR-edge. For instance, in Figure 9(a) the
out-degree of vertex x is two. Hence, edges (x, e, y) and (x, g, z) are OR-edges.
Now we define AND/OR-coupling graph. Let Gcg = (Vq, Eq) be a coupling
graph. Then, Gcg is an AND/OR graph if any one of the following conditions
is true:

• If all edges are OR-edges then the depth of the graph must be greater than
one. This is because if the depth is equal to one then the graph is an OR-
coupling graph.

• Gcg must contain AND and OR-edges.

The significance of the above restriction regarding the definition of an AND/OR-
coupling graph shall be best understood in Section 4.3.

Note that in an AND/OR-coupling graph all the outgoing or in-coming OR-
edges to a vertex is OR’d together. Furthermore, connectivities in each level
in the graph is AND together with the connectivities in the next level. For

24

x

y

z

a

b

e

g

f

h

x

e

g

f

h

#1

#2

y

m

n

x

y

a

b

z c

d

e

o

p

q

r

s

t

x

y

z

a c

b

e

f

g

j k

h

i

(a)
(b)

(c)

(e)(d)

x y z a b c

k

e f g h j

h

pm

Fig. 9. AND/OR-Coupling Graphs.

example, Figure 9 shows a set of AND/OR-coupling graphs. In this figure,
AND and OR-edges are shown by thick and thin arrows respectively. In Fig-
ure 9(a), the edges e and g are OR-edges and f and h are AND-edges. Hence,
it expresses a coupling query with the following connectivities: (x〈e〉y∧y〈f〉a)
∨ (x〈g〉z ∧ z〈h〉b). Similarly, Figure 9(b) is the pictorial representation of the
canonical coupling text in Example 5. Note that in this case all edges are
OR-edges. Figure 9(c) expresses a query with the following connectivities:
x〈e〉y∨(x〈f〉a ∧ a〈i〉c) ∨ (x〈g〉z ∧ z〈h〉a ∧ a〈i〉c) ∨ (x〈g〉z ∧ z〈k〉b) ∨ x〈j〉b.
Similarly, Figures 9(d) and 9(e) express the following connectivities: (x〈m〉y∧
y〈o〉a) ∨ (x〈m〉y ∧ y〈p〉b) ∨ (x〈m〉y ∧ y〈q〉c∧ c〈t〉e) ∨ (x〈m〉y ∧ y〈q〉c∧ c〈s〉d)
∨ (x〈n〉z∧z〈r〉c∧ c〈s〉d) ∨ (x〈n〉z∧z〈r〉c∧ c〈t〉e) and (x〈e〉y∧y〈f〉z∧x〈g〉a∧
a〈h〉b ∧ b〈j〉c) ∨ (x〈m〉z ∧ z〈g〉a ∧ a〈h〉b ∧ b〈j〉c) ∨ (x〈k〉a ∧ a〈h〉b ∧ b〈j〉c) ∨
(x〈e〉y ∧ y〈f〉z ∧ z〈p〉b ∧ b〈j〉c) ∨ (x〈e〉y ∧ y〈h〉a ∧ a〈h〉b ∧ b〈j〉c) respectively.

An AND/OR-coupling graph can be used to pictorially represent some types
of canonical coupling text of Type 5, but not all. This is due to the inher-
ent limitations of drawing an AND/OR-coupling graph to represent a unique
coupling query. We discuss this issue in detail in the next subsection.

4.3 Limitations of Coupling Graphs

In the preceding sections we have described how to draw a canonical coupling
query using coupling graph. In this section we explore the limitations of cou-

25

pling graphs in expressing canonical coupling queries compared to its textual
counterpart. In particular, we provide answer to the following question: Let
G be a coupling query. Then, is it possible to express G by a coupling graph?
That is, we explore the issue whether it is always possible to express any valid
coupling query using a coupling graph.

4.3.1 Criteria

We first identify the criteria which is important in determining the limitations
of coupling graph compared to its textual counterpart. Recall that predicates
in a coupling query facilitates imposing constraints on metadata, content or
structure of nodes and links. Furthermore, the ability to specify predicates in
a coupling text and coupling graph is same. Whatever predicates that may be
expressed in textual form in a coupling text, can also be expressed graphically
in a coupling graph. Hence, the predicates do not play pivotal role in differen-
tiating the expressiveness of these two types of query mechanism. For similar
reasons, coupling query predicates do not influence the differences between
the expressiveness of coupling text and coupling graph.

However, the connectivities in a coupling query plays a major role in the con-
text of expressive power of coupling text and coupling graph. This is because
coupling text allows us to express both simple and complex connectivities and
enables us to impose explicitly how these connectivities are associated to one
another. Consequently, it is possible to express the hyperlink structure pre-
cisely in a coupling text. On the other hand, the usage of connectivities in
a coupling graph is restricted due to certain limitations of drawing a query.
As a matter of fact, coupling graph can only express simple connectivities.
Further, as we shall see a coupling graph does not provide the flexibility of
expressing any combination of disjunctive relationship between a set of simple
connectivities. This has a direct impact on the expressiveness of a coupling
graph. In the following sections, we shall discuss the effect of connectivities on
coupling graphs.

4.3.2 Limitations

In this section, we discuss the limitations of the three types of coupling graphs
compared to their textual counterparts. We begin with AND-coupling graph.

AND-Coupling Graph Edges in an AND-coupling graph represents a set
of simple connectivities AND together. This is equivalent to a set of simple
connectivities in conjunction to one another in a canonical form of Types
2 and 3-coupling text. Hence, the expressiveness of AND-coupling graph is

26

x y z
e f

g

Fig. 10. Limitations of OR-coupling graph.

equivalent to the canonical form of Types 2 and 3-coupling text. Any query
that can be expressed by canonical form of Types 2 or 3-coupling text can
also be formulated using an AND-coupling graph.

OR-Coupling Graph An OR-coupling graph represent a set of simple con-
nectivities in disjunction to one another. This is equivalent to the canonical
form of Type 4-coupling text. Observe that each connectivity in the cou-
pling query must represent a path from the source vertex to a leaf vertex in
the OR-coupling graph. Hence, an OR-coupling graph cannot express those
simple connectivities which represents a path other than those between the
source vertex and leaf vertices in the graphical representation of the connec-
tivities. We elaborate on this with an example. Consider the connectivities
C ≡ k1 ∨ k2 ∨ k3 where k1 ≡ x〈e〉y, k2 ≡ y〈f〉z and k3 ≡ x〈g〉z. A query
containing these connectivities can be expressed by a canonical form of Type
4-coupling text. The graphical representation of this query is shown in Fig-
ure 10. However, this query cannot be composed using an OR-coupling graph.
This is because k2 represents a path between an interior vertex and a leaf ver-
tex in Figure 10. Typically, an OR-coupling graph is only capable of expressing
simple connectivities with identical source identifiers. If all the source identi-
fiers are not identical in the connectivities then there may exist a connectivity
which does not represent a path between the source and leaf vertex. Conse-
quently, we may conclude that the expressiveness of OR-coupling graph is not
equivalent to that of the canonical form of Type 4-coupling text. Formally,

Condition 1 Let C ≡ k1 ∨ k2 ∨ · · · ∨ kn be a set of simple connectivities
in a valid canonical coupling query G4

c. Then, G4
c cannot be expressed by an

OR-coupling graph if lnode(ki) 6= lnode(kj) for 0 < (i, j) 6 n and i 6= j.

AND/OR-Coupling Graph We now identify the limitations of AND/OR-
coupling graphs and illustrate them with examples. Within this context we
shall justify the reasons for the restrictive definition of an AND/OR-coupling
graph as highlighted in Section 4. We begin with the first limitation.

Case 1 Recall that in an AND/OR-coupling graph each path from the source
vertex to a leaf vertex represents a conjunctive connectivity set in the coupling

27

(a) (b)

x k

z

h

y

e

e

f

w

x

w

k

z

g

h

k

y

e

x

y

z

w

r

e

f

g

h

(c)

Fig. 11. Case 1.

query. In other words, if C ≡ C1∨C2∨· · ·∨Cn be a collection of connectivities
in a coupling query G and if Gcg be the AND/OR-coupling graph of G then
C1, C2, . . . , Cn represents such paths in Gcg. This indicates that an AND/OR-
coupling graph fails to express a collection of connectivities that can be visual-
ized as a non-linear structure, i.e., tree or a graph. For instance, an AND/OR-
coupling graph cannot express the following connectivities: C3 ≡ C31 ∨ C32

where C31 ≡ x〈e〉y ∧ x〈f〉z ∧ y〈g〉w and C32 ≡ x〈e〉y ∧ x〈f〉z ∧ y〈h〉r. Simi-
larly, it cannot express C4 ≡ C41 ∨ C42 where C41 ≡ x〈g〉w ∧ x〈h〉k ∧ x〈f〉z
and C42 ≡ x〈e〉y ∧ x〈g〉w ∧ x〈h〉k. Observe that C31, C32, C41 and C42 can be
visualized as trees.

One may argue that the above limitation arises because of the restrictive def-
inition of AND/OR-coupling graph. That is, in an AND/OR-coupling graph
if a vertex has more than one incoming or outgoing edges then these edges are
OR’d together. We only allow an edge e = (v1, `, v2) to be an AND-edge if the
out-degree and in-degree of v1 and v2 respectively is equal to one. However, in
order to accommodate the ability to express tree or graph structured connec-
tivities using AND/OR-coupling graph it is imperative to allow AND-edges
for vertices with more than one incoming or outgoing edges. It may seem that
by relaxing the definition of an AND/OR-coupling graph it may be possible
to resolve this limitation. For example, consider the graph in Figure 11(a).
Let edges with identifiers e and f be AND-edges in lieu of OR-edges. Then
C3 in the above example can be expressed by this AND/OR-coupling graph.
Similarly, the coupling graph in Figure 11(b) may be used to express the
connectivities C4.

Although it may seem that the resolution of this problem lies in the relax-
ation of the definition of AND and OR-edges, but so is not the case. Con-
sider the connectivities C5 ≡ C51 ∨ C52 where C51 ≡ x〈e〉w ∧ x〈h〉k and

28

x y z

e f

w

g

e

h

Fig. 12. Case 2.

C52 ≡ x〈f〉z ∧ x〈e〉y. The coupling graph of a query involving C5 is shown in
Figure 11(c). However, since all the edges are AND-edges, this graph actually
express (x〈e〉w∧x〈h〉k∧x〈f〉z∧x〈e〉y). This connectivity constraint cannot be
expressed even by relaxing the definition of AND-edges. Hence, allowing such
flexible definition of AND-edges may generate an AND/OR-coupling graph
which may not represent the intended connectivities when transformed to its
textual form. Due to this problem, we disallow AND-edges from vertices whose
in-degree or out-degree is more than one. Formally,

Condition 2 Let G5
c = 〈Xn, X`, C, P,Q〉 be a valid canonical form of Type

5-coupling text where C ≡ C1 ∨ C2 ∨ · · · ∨ Cr. Let G(Ci) = (Vi, Ei) be the
graphical representation of Ci for 0 < i 6 r. Then G5

c cannot be composed
using an AND/OR-coupling graph if G(Ci) is a tree or graph where |Vi| > 2.

Case 2 This shortcoming is similar to the one discussed in the context
of OR-coupling graph. An AND/OR-coupling graph, similar to OR-coupling
graph cannot express connectivity that represents a path in the graph other
than those from the source vertex to leaf vertices. For example, consider the
connectivities C6 ≡ C61 ∨ C62 ∨ C63 where C61 ≡ x〈e〉y ∧ y〈f〉z ∧ z〈g〉w,
C62 ≡ x〈h〉z ∧ z〈g〉w and C63 ≡ y〈e〉w. The graphical representation of these
connectivities is shown in Figure 12. Observe that a query containing these
connectivities cannot be expressed using an AND/OR-coupling graph. This
is because C63 represents a path from an interior vertex to a leaf vertex in
Figure 12. Formally,

Condition 3 Let G5
c = 〈Xn, X`, C, P,Q〉 be a valid canonical form of Type

5-coupling text where C ≡ C1 ∨ C2 ∨ · · · ∨ Cr. Let Ci ≡ ki1 ∧ ki2 ∧ · · · ∧ kiq

for all 0 < i 6 r. Let x = lnode(kij), 0 < j 6 q such that x 6= rnode(kis) ∀
0 < s 6 q and s 6= j. Then G5

c cannot be expressed by an AND/OR-coupling
graph if there exist Ct such that y = lnode(ktj), y 6= lnode(kts) and y 6= x,
t 6= i.

29

x y
e

g

f

z

w

x

e

w

h

k

x

e

y

z

fx y
e

f

z

h

r

(a) (b)

(c)

wy
e

f

x y z w

h

ge

Fig. 13. Hybrid graphs.

4.4 Hybrid Graph

We now introduce the notion of hybrid graph to resolve the limitations of OR
and AND/OR-coupling graphs discussed in the preceding section. Informally,
a hybrid graph is composed by drawing a p-connected coupling graph for p > 1
such that

• Each connected component 3 is an AND, OR or AND/OR-coupling graph.
Each connected component in the hybrid graph is a set of vertices such that
all vertices in the set are connected from the source vertex (reachable by
some path).

• the connected components are in disjunction to one another and
• If Gi = (Vi, Ei) and Gj = (Vj, Ej) be two connected components then

Vi ∩ Vj 6= ∅.

For example, Figure 13(a) represents a hybrid graph with two connected com-
ponents consisting of AND-coupling graphs. This hybrid graph represents the

3 Traditionally, given a graph G = (V, E), where V is a set of vertices (of size n)
and E is a set of edges (of size m), the connected components of G are the sets of
vertices such that all vertices in each set are mutually connected (reachable by some
path), and no two vertices in different sets are connected. However, in this paper
we do not consider this notion in this context.

30

(a) Interface for Xn, X` and C. (b) Specifying connectivity relationships.

Fig. 14. Interface for Coupling text

x y
e

y z

f

x y z w
e f g

h

e
w

(a) (b)

y

Fig. 15. Hybrid graphs.

connectivities C3 as depicted in Case 1 in the preceding section. Next, we
illustrate with examples how hybrid graphs can be used to resolve the short-
comings of drawing an OR or AND/OR-coupling graph.

Resolution of Case 1 AND-coupling graph can express connectivities which
can be visualized as trees or graphs. Hence, the limitations discussed in Case
1 of AND/OR-coupling graph can be eliminated by drawing a hybrid graph
containing AND-coupling graph. For instance, consider the connectivities C3

and C4 of Case 1 in Section 4.3.2. Queries containing these connectivities can
be expressed by the hybrid graphs in Figure 13(a) and 13(b) respectively.
Observe than these graphs are 2-connected graphs where all the components
are AND-coupling graphs. Further, in each hybrid graph the AND-coupling
graphs are in disjunction to one another. Similarly, the query containing the
connectivities C5 can be expressed by the hybrid graph in Figure 13(c).

31

(a) Screenshot for node predicates interface. (b) Screenshot for link predicates interface.

Fig. 16. Interface for Coupling text

Resolution of Case 2 We consider the case which is a limitation for both
OR-coupling graph and AND/OR-coupling graph. Consider the query con-
taining the connectivity C in OR-coupling graph as discussed earlier. This
query can be formulated using a 2-connected hybrid graph as shown in Fig-
ure 15(a). Similarly, consider the query containing the connectivities C6 as
described in Case 2. This can be expressed by a 2-connected hybrid graph
as depicted in Figure 15(b). Notice that it consist of an AND/OR and an
AND-coupling graph.

Observe that in all the above cases the connected components are in disjunc-
tion to one another. Also, a pair of connected components always share some
vertices with identical identifiers. This is because if Gi and Gj are two con-
nected components such that Vi ∩ Vj = ∅ then Gi and Gj can be expressed
by two distinct coupling graphs. Hence, there is no need to express Gi and Gj

using a hybrid graph.

5 Implementation of VISCOUS

We now discuss a visual query interface called VISCOUS that implements
the two forms of query formulation techniques discussed in the preceding sec-
tion.A preliminary version of this query formulation mechanism has been im-
plemented in Java using JDK 1.2.2 and Swing.

32

(a) Interface in coupling text. (b) Interface in coupling graph.

Fig. 17. Coupling query predicates

5.1 Formulating Query with Coupling Text

In coupling text, the user specifies the five components Xn, X`, C, P and Q in
a GUI as shown in Figures 14, 16 and 17(a). Coupling text is a flexible query
formulation mechanism and can be used to specify any meaningful query. We
now briefly illustrate step-by-step how to formulate a query using coupling
text. It must be noted that the walk-through serves as an outline for formu-
lating a coupling query using the GUI of the coupling text. It is not intended
to be an operation guide and therefore does not cover every function in the
GUI.

(1) We first enter the node and link type identifiers in the GUI shown in
Figure 14(a) by filling in the set of node and link type identifiers in the
node and link type identifiers text fields respectively.

(2) Next, we add the connectivity set using these identifiers. Each connectiv-
ity is entered as shown in Figure 14(a). We select the source and target
node type identifier using the node type identifier combo box. The link
type identifiers are entered in the link path expression text field. The
connectivity is then added to the collection of connectivities list. Fig-
ure 14(a) shows the screen after the above actions have been taken. The
combo box labeled “None” is used to specify the relationships between
the collection of connectivities (conjunction or disjunction) as depicted
in Figure 14(b).

Note that collection of connectivities in coupling text can be rather

33

(a) GUI for coupling graph. (b) Drawing a node in a coupling graph.

Fig. 18. Coupling graph

(a) (b)

Fig. 19. Drawing a coupling graph.

complex; the number of braces and use of AND and OR relationships
between the connectivity component can be intimating. For example, an
attempt to edit a connectivity such as (((a〈e|f〉b∧ c〈d|f |g〉a)∨ (b〈gh〉c∨
b〈g〉a)) ∧ a〈e〉z) is tedious and also error-prone. Therefore, we have im-
plemented tools for the user to rearrange and amend the connectivity
components.

(3) The collection of connectivities that is required for a coupling query is
completed at this phase. Next, the predicates on the node type identifiers

34

(a) AND-coupling graph. (b) OR-coupling graph.

Fig. 20. Coupling graph

are entered. In order to do that, we need to switch from the “Connectiv-
ities” panel to the “Node predicates” panel. This is achieved by clicking
on the“Node Predicates” pane on the coupling text tabbed pane. Fig-
ure 16(a) shows the GUI for entering predicates on node type identifiers.

(4) In order to add predicates on a node type identifier, the node type iden-
tifier is selected from the node type identifier combo box in Figure 16(a).
Predicate qualifier is selected from the predicate qualifier combo box,
and the predicate operator is selected from the predicate operator combo
box. The attribute path expression and the value of the predicate are
entered at the attribute path expression text field and value text field
respectively. Figure 16(a) shows the screen obtained after completing the
above-listed actions. Finally, the predicate is added to the predicate list
by clicking the “Add” button.

(5) The predicates on the link type identifiers and the set of coupling query
predicates are added similarly. Figure 16(b) and 17(a) shows the GUI for
adding predicates on link type identifiers and coupling query predicates
respectively.

5.2 Formulating Query with Coupling Graph

Next, we describe the second mechanism for formulating coupling queries, i.e.,
coupling graph. We show step-by-step how to formulate a coupling query using
the GUI of AND-coupling graph.

35

(a) AND/OR-coupling graph. (b) AND/OR-coupling graph.

Fig. 21. Coupling graph

(1) First step is to create a node in the drawing area of the coupling graph
GUI (Figure 18(a)) by clicking the appropriate button.

(2) Next click at any position on the drawing area. A dialog box will appear
as in Figure 18(b). Select the predicate qualifier and operator from the
predicate qualifier combo box and predicate operator combo box respec-
tively. Enter the attribute path expression and value into its respective
text field. Finally, the “Add” button is clicked to add the predicate to
the predicate list. Following which, the “OK” button can be clicked.

(3) The above step can be repeated to create another node. Figure 19(a)
shows a screenshot of the creation of two nodes.

(4) Next, click on the “AND Link” button and then click on the node that is
labeled N1 and then the node that is labeled N2. A link will be constructed
between these two nodes as shown in Figure 19(b).

(5) To add or amend the predicates on the node and link type identifiers,
double-click on the nodes and links whose predicates are to be modified. A
predicate dialog box similar to the one shown in Figure 18(b) will appear
for entering the components of the predicate on a node type identifier.

(6) The predicate for the query execution is entered using the coupling query
predicate dialog box. This dialog box is accessed by selecting Edit and
then CouplingQueryPredicate from the menu. The dialog box is shown
in Figure 17(b). The procedure for entering the coupling query predicates
is similar to the one that is followed in the coupling text interface.

The above procedure for drawing AND-coupling graph can be applied to draw
a coupling graph as shown in Figure 20(a). Note that this graph expresses a

36

(a) (b)

Fig. 22. Drawing a hybrid graph.

query with connectivities (N1〈L1〉N2 ∧ N2〈L2〉N3 ∧ N1〈L3〉N4 ∧ N4〈L4〉N3)
(identical to the AND-coupling graph in Figure 7(b)). We can follow sim-
ilar procedure to draw an OR and AND/OR-coupling graphs. The differ-
ence is the selectivity of the “AND Link” and “OR Link” buttons in the
different graph types. “OR Link” is available in OR-coupling graph drawing
mode and both links are available in AND/OR-coupling graph drawing mode.
Switching of graph type to be drawn is achieved by clicking on the respective
graph type tabbed pane. For instance, Figure 20(b) is an example of OR-
coupling graph expressing connectivities (N1〈L1〉N2∨N1〈L2〉N3∨N1〈L3〉N4∨
N1〈L4〉N5) (identical to the OR-coupling graph in Figure 8(a)). Figures 21(a)
and 21(b) shows two AND/OR-coupling graphs expressing the connectivities
(N1〈L1〉N2∧N2〈L2〉N4) ∨ (N1〈L3〉N3∧N3〈L4〉N4) and (N1〈L1〉N2∧N2〈L3〉N4)
∨ (N1〈L2〉N3 ∧ N3〈L4〉N5) respectively (identical to the AND/OR-coupling
graphs in Figures 9(b) and 9(a)). Note that in our GUI we represent an AND-
edge and an OR-edge with blue and green arrows respectively. For example,
in Figure 21(b) edges (N2, L3, N4) and (N3, L4, N5) are AND-edges. In Fig-
ure 21(a) the out-degree of vertex N1 is two. Hence, edges (N1, L1, N2) and
(N1, L2, N3) are OR-edges.

If the HYBRID graph type is selected, a window similar to that of Figure 22(a)
is displayed. Clicking on the “Create Subgraph” button and a screen similar
to Figure 22(b) will appear. Clicking on any one of these buttons will enable
the user to draw the corresponding coupling graph. For instance, clicking on
the “AND Subgraph” will allow us to draw an AND-coupling graph. The
procedure for drawing a particular connected component in the hybrid graph
is the same as discussed above. For example, Figure 23(a) represents a hybrid
graph with two connected components consisting of AND-coupling graphs.

37

(a) (b)

Fig. 23. Hybrid graph

This hybrid graph is identical to the one in Figure 13(c) where the node type
identifiers x, w, k, y and z are N1 (or N4), N2, N3, N5 and N6 respectively
and the link type identifiers e, h, f are L1 (or L3), L2 and L4 respectively.
Similarly, Figure 23(b) is identical to the graph in Figure 15(b) where the node
type identifiers x, y, z and w are N1 (or N5), N2, N3 and N4 respectively and
the link type identifiers e, f , g, h are L1 (or L5), L3, L4 and L2 respectively.
Note that it consist of an AND/OR and an AND-coupling graph.

5.3 Constraints

In Sections 2.4 to 4, we have elaborated on various constraints imposed on a
coupling query. In this section, we discuss how some of these constraints are
implemented.

Bound source vertex As discussed in Section 2.4, the node type identifier
for the source vertex in a coupling must be bound. That is, there must be at
least one predicate applied on the node type identifier. We now show how this
constraint is supported in a coupling graph in VISCOUS. Similar constraint is
also supported in the coupling text mode. In coupling graph mode, the node
predicate dialog box will appear automatically when the user attempt to add
the first vertex on the drawing area (Figure 18(b)). Figure 24(a) shows the
screen when the user click the “OK” button without adding any predicate to
the predicate list. In this case, the user returns to the node predicate dialog
box to enter the predicate. The screenshot in Figure 24(b) is fired when the

38

(a) (b)

Fig. 24. Bound source vertex.

user click the “Cancel” button or close the node predicate dialog box. In this
case, the user returns to the drawing area with no vertex created.

Constraints on Xn, X` and C As discussed in Section 2.4, the set of
node and link type identifiers must be disjoint. Furthermore, the set of link
type identifiers in connectivity set must be contained in X`. These constraints
are satisfied when a coupling query is formulated in the graphical form, i.e.,
coupling graph. However, these constraints can be breached when the query is
formulated in textual form, i.e., coupling text. In a coupling graph, the vertices
and edges that are added to the drawing area by the user will be issued unique
identifiers by the system. Furthermore, the problem of getting a mismatch
between the set of node and link type identifiers used in the collection of
connectivities with that present in the graph will not occur. This is because
the node and link type identifiers found in the collection of connectivities are
extracted from the graph consisting of vertices and edges added by the user.

In a coupling text, the user can decide the node and link type identifiers to
be used. Therefore, there is a possibility for the user to inadvertently define
an identifier x such that x ∈ (Xn ∩X`). To prevent such scenario, VISCOUS
checks for common type identifiers in Xn and X`. If an identifier is used in
both Xn and X`, then the user will get an alert message that is similar to the
one shown in Figure 25(a).

Also, the user is only allowed to select the node type identifier for the connec-
tivity from a combo box containing the list of node type identifiers entered
into the set (Figure 14). As coupling text support complex connectivities, we

39

(a) (b)

Fig. 25. Constraints on node and link type identifiers.

Fig. 26. Constraints on OR-coupling graph.

cannot apply the same technique to the link type identifiers. Consequently,
the user may use an undefined node or link type identifier, say y, such that
y /∈ X`. To prevent this, VISCOUS checks the link type identifiers entered
in a connectivity. When an unknown link type identifier is used for a connec-
tivity, the user will be informed through an error message that is shown in
Figure 25(b).

40

Fig. 27. Constraints on AND/OR-coupling graph.

Constraints on OR-coupling graph Recall that in an OR-coupling graph
we only allow OR-edges. Furthermore, the depth of an OR-coupling graph is
always one. These two features are supported in VISCOUS. In OR-coupling
graph drawing mode we do not allow the user to draw edges. After the cre-
ation of the source vertex all the remaining vertices created by the user are
automatically linked to the source vertex. Also, it is not possible to create an
OR-edge from a node other than the source vertex (Figure 26).

Constraints on AND/OR-coupling graph As discussed in Section 4,
in an AND/OR-coupling graph we disallow AND-edges from vertices whose
in-degree or out-degree is more than one. Hence, we prevent the user to draw
such invalid edges. For instance, Figure 27 shows an unsuccessful attempt to
create an AND edge from vertex N1. The edges L1 and L2 are OR-edges in
Figure 27.

Constraints on hybrid graphs Informally, in the hybrid graph, there is a
need to have at least one vertex in each connected component that is common
in another connected component. In VISCOUS, this is achieved by the relabel
dialog box as shown in Figure 28. Whenever a vertex that is the first in the
second and subsequent connected components is drawn, the dialog box will
appear to request the association of the new vertex with the others drawn
earlier. Using this manner, the new vertex drawn will be logically the same
as the one it is associated. However, it will be shown as two different vertices

41

Fig. 28. Relabeling in a hybrid graph.

physically on the drawing area (Figure 23). Such a vertex can be identified
by its dual labels. The label in braces refers to the node type identifier of the
vertex that it is associated with. For example, Figure 23(a) shows a vertex that
is associated with another vertex. Specifically, it can be seen that vertex N4

is associated with vertex N1. Similar the edges in each connected component
can be relabeled. For instance, the edge labeled L3 is associated with L1 in
Figure 23(a).

6 Conclusions & Future Work

In this paper, we described the formulation technique of a query mechanism
in Whoweda for harnessing relevant documents from the Web. We express
a web query in the form of a coupling query. We illustrated with examples
how to formulate coupling queries in text form as well as pictorially using
coupling text and coupling graph. Within this context we introduced two
types of coupling queries, i.e., canonical and non-canonical queries. We also
explored the limitations of coupling graph with respect to coupling text. We
found out that AND, OR and AND/OR-coupling graphs are less expressive
than their textual counterparts. To address this shortcoming we introduced
another query formulation technique called hybrid graph which is a special
type of p-connected coupling graph. Finally, we show how these formulation
techniques are implemented in Java.

42

As part of our future work we wish to do the followings:

• Currently, coupling queries are directed connected acyclic graphs having
single source vertex. We wish to generalize the coupling query into cyclic
graphs with multiple source vertices. Also, we wish to augment coupling
queries by allowing to impose conditions based on negation. Note that the
inclusion of cycles and negation introduces interesting challenges with re-
spect to the computability of the coupling query [2].

• Currently, we can either choose coupling text or coupling graph to formulate
a query. We would like to make VISCOUS a two-way tool such that one
can move from coupling text to coupling graph mode and vice versa while
formulating a web query.

• We wish to develop a mechanism to estimate the evaluation cost of a cou-
pling query over the Web. Such cost may help the user and query processor
to optimize the cost of global web coupling operation.

• Finally, in this paper we have ignored how to formulate query for processing
of forms in the Web. Many Web sites provide information by letting users fill
out forms. Search engines do not fill forms autonomously as the number of
possibilities is enormous, hence they are forced to miss interesting avenues
that humans might follow. We wish extend our notion of coupling query to
be able to autonomously fill out form and retrieve results by submission of
the forms and manipulate these results further.

References

[1] S. Abiteboul, D. Quass, J. McHugh, J. Widom, J. Weiner. The Lorel
Query Language for Semistructured Data. Journal of Digital Libraries, 1(1):68-
88, April 1997.

[2] S. Abiteboul, V. Vianu. Queries and Computation on the Web. Proceedings
of the 6th International Conference on Database Theory, pp. 262-275, Greece,
1997.

[3] G. Arocena, A. Mendelzon. WebOQL: Restructuring Documents,
Databases and Webs. Proceedings of ICDE 98 , pp. 24-33, Orlando, Florida,
February 1998.

[4] P. Atzeni, G. Mecca, P. Merialdo. Design and Maintenance of Data
Intensive Web Sites. Proceedings of the 6th International Conference on
Extending Database Technology (EDBT’98), pp. 436-450, Valencia, Spain, 1998.

[5] S. S. Bhowmick. WHOM: A Data Model and Algebra for a Web Warehouse.
PhD Dissertation, School of Computer Engineering, Nanyang Technological
University, Singapore, 2001. Available at www.ntu.edu.sg/home/assourav/ .

43

[6] S. S. Bhowmick, W. K. Ng, S. Madria. Imposing Disjunctive Constraints
on Inter-Document Structure Using Coupling Queries. Proceedings of the
12th International Conference on Database and Expert System Applications
(DEXA’01), Munich, September, 2001.

[7] S. S. Bhowmick, W. K. Ng, S. Madria. On Formulation of Disjunctive
Coupling Queries in Whoweda. Proceedings of the 12th International
Conference on Database and Expert System Applications (DEXA’01), Munich,
September, 2001.

[8] S. S. Bhowmick, W.-K. Ng, S. K. Madria . Schemas for Web Data:
A Reverse Engineering Approach. Data and Knowledge Engineering Journal
(DKE), 39(2), November, 2001.

[9] S. S. Bhowmick, W.-K. Ng, S. Madria. Representing Web Data in a Web
Warehouse.Computer Journal , Oxford University Press, Under revision.

[10] S. S. Bhowmick, W.-K. Ng, S. Madria. Anatomy of a Coupling Query
in a Web Warehouse. To appear in International Journal of Software and
Information Technology , Elsevier Science, 2002.

[11] P. Buneman, S. Davidson, M. Fernandez, D. Suciu. Adding Structure to
Unstructured Data. Proceedings of the International Conference on Database
Theory , pp. 336-350, Delphi, Greeece, 1997.

[12] S. Cluet, S. Jacqmin, J. Simeon. The New YATL: Design and Specifications.
Technical Report , INRIA, 1999.

[13] A. Deutsch, M. Fernandez, D. Florescu, A. Levy, D. Suciu. A Query
Language for XML. Proceedings of the 8th World Wide Web Conference, pp.
1155-1169, Toronto, Canada, May 1999.

[14] M. Fernandez, D. Florescu, A. Levy, D. Suciu. A Query Language and
Processor for a Web-Site Management Systems Proceedings in the Workshop of
Semi-structured Data, Tuscon, Arizona, May 1997.

[15] D. W. Embley. NFQL: The Natural Forms Query Language. ACM TODS ,
14(2):168-211.

[16] T. Fiebig, J. Weiss, G. Moerkotte. RAW: A Relational Algebra for the
Web. Workshop on Management of Semistructured Data (PODS/SIGMOD’97),
Tucson, Arizona, May 16, 1997.

[17] D. Florescu, A. Levy, A. Mendelzon. Database Techniques for the World-
Wide Web: A Survey. SIGMOD Records, 27(3):59-74, 1998.

[18] R. Goldman, J. McHugh, J. Widom. From Semistructured Data to XML:
Migrating the Lore Data Model and Query Language. Proceedings of WebDB
’99 , pp. 25-30, Philadelphia, Pennsylvania, June 1999.

[19] D. Konopnicki, O. Shmueli. Information Gathering in the World-Wide
Web: The W3QL Query Language and the W3QS System. Theory of Database
Systems (TODS) , 23(4):369-410, 1998.

44

[20] L.V.S. Lakshmanan, F. Sadri., I.N. Subramanian. A Declarative
Language for Querying and Restructuring the Web Proceedings of the Sixth
International Workshop on Research Issues in Data Engineering, pp. 12-21,
New Orleans, Louisiana, February, 1996.

[21] M. Liu, T. Guan, L. V. Saxton. Structured-Based Queries Over the World
Wide Web. Proceedings of the 17th International Conference on Conceptual
Modeling (ER’98), pp. 107-120, Singapore, 1998.

[22] A. K. Luah, W.-K. Ng, E.-P. Lim. Locating Web Information Using
Web Checkpoints. Proceedings of the International Workshop on Internet
Data Management (IDM’99), held in conjunction with the 10th International
Conference on Database and Expert System Applications (DEXA’99), Florence,
Italy, August 30-September 3, 1999.

[23] B. Ludascher, R. Himmeroder, G. Lausen et al. Managing
Semistructured Data with FLORID: A Deductive Object-oriented Perspective.
Information Systems, 23(8), 1998.

[24] G. A. Mihaila. WebSQL—A SQL-like Query Language for the World Wide
Web. Master’s Thesis, Department of Computer Science, University of Toronto,
1996.

[25] R. Weiss, B. Velez, M. Sheldon, C. Namprempre, P. Szilagyi, A.
Duda, D. Gifford. HyPursuit: A Hierarchical Network Search Engine that
Exploits Content-Link Hypertext Clustering. Proceedings of the Seventh ACM
Conference on Hypertext,, Washington DC, 16-20 March, pp. 180-193, ACM
Press, New York, 1996.

[26] C. Zloof. Query-by-Example: A Database Language. IBM System J.,
16(4):342-343.

45

