
Mining Maximal Frequently Changing Subtree
Patterns from XML Documents

Ling Chen, Sourav S. Bhowmick and Liang-Tien Chia

School of Computer Engineering,
Nanyang Technological University, Singapore, 639798, SINGAPORE

Abstract. Due to the dynamic nature of online information, XML doc-
uments typically evolve over time. The change of the data values or struc-
tures of an XML document may exhibit some particular patterns. In this
paper, we focus on the sequence of changes to the structures of an XML
document to find out which subtrees in the XML structure frequently
change together, which we call Frequently Changing Subtree Patterns
(FCSP). In order to keep the discovered patterns more concise, we fur-
ther define the problem of mining maximal FCSPs. An algorithm derived
from the FP-growth is developed to mine the set of maximal FCSPs. Ex-
periment results show that our algorithm is substantially faster than the
naive algorithm and it scales well with respect to the size of the XML
structure.

1 Introduction

With the fast proliferation of available XML documents, data mining
community has been motivated to discover knowledge from XML reposi-
tories. For example, recently, there has been increasing research effort in
mining association rules from XML documents[2]; classifying XML data
[8] and clustering XML[9]. One of the common features shared by existing
work on XML mining is that they usually mine from a collection of XML
documents at a certain time point.

Due to the dynamic nature of online information, XML documents
typically evolves over time. Consequently, issues related to detecting changes
to XML documents received considerable attention recently[13][5]. De-
tected changes to XML can be used in search engines, XML query sys-
tems etc, however, to the best of our knowledge, they have never been
used for data mining. In this paper, we propose to learn knowledge from
changes to XML. Particularly, we study mining frequent patterns from a
sequence of changes to an XML document.

Current work on mining frequent patterns from XML documents ex-
ploited two types of data in XML: XML content and XML structure.
The former discovers which data values occur together frequently[2]; the



latter finds out which substructures usually appear together in an XML
document[11]. Correspondingly, changes to XML documents can be di-
vided as changes to XML content (also called content deltas) and changes
to XML structure (also called structural deltas). Then, frequent patterns
mined from XML content deltas discover which data values frequently
change together, whereas frequent patterns mined from XML structural
deltas find out which substructures are usually adjusted together. In this
paper, we focus on the latter to mine frequent patterns from the changes
to XML structure.

Discovered frequently changing subtree patterns can be useful in a
wide range of applications. We enumerate some as follows.

– Structure-based Document Clustering: Clustering XML docu-
ments based on the structures embedded in documents is proposed
in [12]. However, it may not be accurate enough to cluster according
to structures existing in a particular snapshot only. In some cases,
the evolutionary patterns of the structures can distinguish documents
with higher precision. Then frequently changing subtree patterns mined
from historical versions of different XML documents can be used to
discriminate XML documents whose structures are similar in a snap-
shot but evolve differently.

– Semantic XML Search Engine: If two subtrees in an XML struc-
ture frequently change together, it is likely that the objects repre-
sented by the two subtrees have underlying semantic correlation. Then
frequently changing subtree patterns can be used by semantic XML
search engine [6], which returns semantically related document frag-
ments that satisfy users’ queries.

Therefore, novel knowledge obtained by mining changes to XML docu-
ments are useful. We then, in [4], proposed to mine Frequently Changing
Subtree Patterns (FCSP) from a sequence of changes to an XML doc-
ument. Given a sequence of historical versions of an XML document,
we discovered which subtrees of the XML structure frequently change
together. In order to keep the set of discovered FCSPs concise so that
knowledge can be understood easily, we define the notion of maximal FC-
SPs in this paper, which contains only concise information of FCSPs. Our
definition on maximal FCSPs is fundamentally different from the tradi-
tional definition on maximal frequent patterns because of the different
framework, which necessitates developing new mining solutions.

The main contributions of this paper are summarized as follows.



– A new problem of mining maximal frequent pattern from structural
changes to historical XML documents is formally defined. The inher-
ent relationship between discovered FCSPs is exploited to define the
concise set of maximal FCSPs.

– An algorithm, derived from the FP-growth algorithm, is developed to
mine the set of maximal FCSPs.

– Experiments are conducted to evaluate the efficiency and scalability
of the designed algorithm.

The remainder of the paper is organized as follows. We define the prob-
lem of maximal FCSP mining formally in Sections 2. Section 3 presents
the algorithm we developed for maximal FCSP mining. In Section 4, we
evaluate the performance of the algorithm based on some experimental
results. We conclude our work and discuss future work in Section 5.

2 Problem Statement

In this section, we first describe some preliminary concepts and basic
change operations resulting in structural changes. Then, we define sev-
eral metrics to measure the change degree and the change frequency of
substructures. Finally, the problem of maximal FCSP mining is defined
based on the metrics.

An XML document can be represented as a tree according to Doc-
ument Object Model (DOM) specification. In this paper, we model the
structure of an XML document as an unordered tree T = (N, E ), where
N is the set of nodes and E is the set of edges. Then substructures in the
XML document can be modelled as subtrees. A tree t = (n, e) is a subtree
of T, denoted as t ≺ T, if and only if n ⊂ N and for all (x, y) ∈ e, x is a
parent of y in T. Actually, we treat an XML tree T as a forest which is
a collection of subtrees t ≺ T. Furthermore, we call subtree t̂ an ancestor
of subtree t if the root of t̂ is an ancestor of the root of t. Conversely,
subtree t is a descendant of subtree t̂. In the context of FCSP mining,
we consider the following two basic change operations: Insert(X(name,
value), Y), which creates a new node X, with node name “name” and
node value “value”, as a child node of node Y in an XML tree structure
and Delete(X), which removes node X from an XML tree structure.

Now we introduce some metrics which are used to measure the degree
of change and the frequency of change for subtrees. Frequently changing
subtree patterns can then be identified based on these metrics.



Degree of Change Let <ti, ti+1> be two historical versions of a subtree
t in an XML tree structure T. Let |d(t, i, i+1)| be the number of basic
change operations which is required to change the structure of t from the
ith version to the (i+1 )th version. Let |ti∪ ti+1| be the number of unique
nodes of tree t in ith version and (i+1)th version. Then the degree of
change for subtree t from version i to version (i+1 ) is:

DoC(t, i, i+1) =
|d(t, i, i + 1)|
|ti ∪ ti+1|

ut
If the two versions are the same, DoC of the subtree will be zero;

if the two versions are completely different, DoC of the subtree will be
one. Obviously, the greater the value of DoC, the more dramatically the
subtree has changed.

Frequency of Change Let <T1,T2,...Tn> be a sequence of historical ver-
sions of an XML tree structure T. Let <∆1,∆2,...∆n−1> be the sequence
of deltas generated by comparing each pair of successive versions, where
∆i (1≤i≤n-1 ) consists of subtrees changed in two versions. Let S be a
set of subtrees, S={t1, t2,... tm}, DoC(tj, i, i+1) be the degree of change
for subtree tj from ith version to (i+1 )th version. The FoC of the set S
is:

FoC(S) =
∑n−1

i=1 Vi

n− 1

where Vi =
m∏

j=1

Vji and Vji =
{

1, if DoC(tj , i, i + 1) 6= 0
0, if DoC(tj , i, i + 1) = 0

1 ≤ j ≤ m ut

When subtrees in a set change together in every delta, FoC of the set will
be one; when subtrees in a set never change together, FoC of the set will
be zero.

Weight Let <T1,T2,...Tn> be a sequence of historical versions of an XML
tree structure. Let <∆1,∆2,...∆n−1> be the sequence of deltas. Let S be
a set of subtrees, S={t1,t2,...tm}, FoC (S ) be the frequency of change for
the set S. Suppose a user-defined minimum DoC for each subtree is α,
we define the Weight of the set of subtrees as follows:

Weight(S) =
∑n−1

i=1 Di

(n− 1) ∗ FoC(S)

where Di =
m∏

j=1

Dji and Dji =
{

1, if DoC(tj , i, i + 1) ≥ α
0, otherwise

1 ≤ j ≤ m ut



If all subtrees in a set change significantly every time they change to-
gether, the Weight of the set will be one; if subtrees in a set never change
significantly when they change together, the Weight of the set will be
zero.

Frequently Changing Subtree Pattern (FCSP) An FCSP is defined to be a
set of subtrees which not only frequently change together but also usually
change significantly when they change together.

Definition 1. : A set of subtrees S={t1, t2, ..., tm} is a Frequently
Changing Subtree Pattern if it satisfies the following two conditions:
– FoC of the set is no less than some user-defined minimum FoC β,

FoC(S) ≥ β.
– Weight of the set is no less than some user-defined minimum Weight

γ, Weight(S) ≥ γ. ut

Maximal Frequently Changing Subtree Pattern In classical frequent pat-
tern mining, all subsets of a frequent pattern are frequent as well. Maximal
patterns are defined to be those which do not have any frequent superset
[10]. Then the complete set of frequent patterns can be represented by
the concise set of maximal frequent patterns. However, in the context of
FCSP mining, maximal FCSPs cannot be defined in the same way be-
cause of the “Non Downward Closure” property. That is, a subset of an
FCSP is not necessary an FCSP as well. Then, even if we find a set of
FCSPs, in which each pattern does not have any frequent supersets, we
cannot use it to represent the complete set of FCSPs. Hence, we examine
first which FCSPs can be inferred from others.

Definition 2. Given two subtree sets S and S1, where S = S1 ∪ {t1, t2,
...,tn}. If ∀ i (1≤i≤n), ∃ tj ∈ S1 s.t. tj≺ ti, we say S1 is subsumed by S,
or S subsumes S1, denoted as S1 ≺ S. ut
Property 1. Given two subtree sets S and S1 s.t. S1 ≺ S. If subtree set S
is an FCSP, then S1 is an FCSP as well.

The proof is given [3]. Based on Property 1, we can infer that all subsumed
subsets of an FCSP are FCSPs as well. Then we define maximal FCSP
as follows.
Definition 3. A set of subtrees is a maximal FCSP if it is an FCSP and
it does not subsumed by any other FCSPs. ut
Obviously, the set of maximal FCSP is a tightened set of FCSP, {maximal
FCSP} ⊆ {FCSP}. Moreover, the complete set of {FCSP} can be inferred
from {maximal FCSP}.



Problem Definition The problem of maximal FCSP discovery can be
formally stated as follows: Let <T1,T2,... Tn> be a sequence of historical
versions of an XML tree structure. Let <∆1, ∆2, ...,∆n−1> be the se-
quence of deltas. A Structural Delta DataBase SDDB can be formed
from the set of deltas, where each tuple <DID, SID, DoC> comprises of a
delta identifer, a subtree identifier and a degree of change for the subtree.
Let S={t1,t2,...tm} be the set of changed subtrees such that each ∆ ⊆ S.
Given an SDDB, an FoC threshold β and a Weight threshold γ, a subtree
set X ⊆ S is a Frequently Changing Subtree Pattern if FoC(X) ≥
β and Weight(X) ≥ γ. A subtree set Y ⊆ S is a maximal Frequently
Changing Subtree Pattern if it is an FCSP and it does not subsumed
by any other FCSP. The problem of maximal FCSP discovery is to
find the set of all maximal frequently changing subtree patterns.

3 Algorithms

In this section, we present the algorithm to find the set of maximal FCSPs
efficiently. Before the mining process, the SDDB should be generated first
from the input of a sequence of historical XML versions. Since existing
change detection systems [13][5] can detect all change operations resulting
in structural changes (insert and delete), the SDDB can be constructed
in a straightforward way. Hence, the following discussion is focused on
the mining procedure, with the input of an SDDB.

3.1 Frequent Changing Subtree Pattern Discovery

We developed an algorithm in [4] to discover the set of FCSPs: Weighted-
FPgrowth, which is based on the well known FP-growth[7] for classical
frequent pattern mining. Basically, we construct a similar data struc-
ture as FPtree, where each node in the FPtree-like structure represents a
changed subtree and different labels are used to indicate whether a sub-
tree changes significantly or not in each delta. Interested readers can refer
to [4] for the details.

3.2 Maximal Frequently Changing Subtree Pattern Discovery

The search for the set of maximal FCSPs can be achieved by a few op-
timization strategies as explained below, based on Weighted-FPgrowth.
In order to mine the set of maximal FCSPs efficiently, it is advisable to
examine a pattern only if none of its superset which subsumes it is fre-
quent. Thus, a pattern S should be generated before any pattern S1 such
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Fig. 1. Ancestor Relationship and Modified Weighted-FPtree

that S1≺ S. According to the Definition 2 on subsumption relationship,
we have the following optimizing technique.

Optimization 1 FCSPs containing subtrees rooted at nodes of higher-
levels in an XML tree should be generated earlier than those containing
subtrees rooted at nodes of lower-levels.

Optimization 1 guides how to order the list of subtrees in the head table
of Weighted-FPtree. We decide to arrange individual changed subtrees
in the reverse order of depth-first first traversal in consideration of the
following property.

Property 2. Given two subtree sets, S1 and S, such that S1 ≺ S, the
projected delta sets of S is same as the projected delta sets of S1.

The proof of the property is given in [3]. According to Property 2, we
are presented with the opportunity to mine both S and S1 from a same
conditional Weighted-FPtree. For example, given the ancestor relationship
shown in Figure 1 (a), we arrange individual subtrees in reverse order
of depth-first traversal, such as {t5, t4, t3, t2, t1}, then the conditional
Weighted-FPtree constructed for subtree t1 can be used to mine not only
all patterns related to t1 but also all patterns related to t2 (or t3) but t1

As explained in [4], labels of some nodes in conditional Weighted-
FPtree need to be shifted to record correct information. In this case, a
conditional Weighted-FPtree may not be sharable. Hence, we propose an
alternative technique of shifting node labels. We append a tag to each
path in the conditional Weighted-FPtree, which indicates the states of



subtrees whose patterns are currently being mined. For example, given
a transformed structural delta database shown in Figure 1 (b), where
ti and ti’ mean subtree ti change significantly or insignificantly in this
delta, a Weighted-FPtree can be constructed as in Figure 1 (c). Figure 1
(d) shows the conditional Weighted-FPtree for subtree t1. Each path is
appended with a tag: “1” indicates that t1 changed significantly in this
path while “-1” indicates it changed insignificantly in this path.

Moreover, with the above scheme on ordering subtrees and the tech-
nique making conditional Weighted-FPtree shareable, we can quickly de-
cide whether or not to examine a pattern, depending on the state of the
pattern which subsumes it. For example, from the conditional Weighted-
FPtree shown in Figure 1 (d), we mine pattern {t1, t2} first. Only if {t1,
t2} is not an FCSP, we go on mining {t2} from the same data structure.
Otherwise, {t2} must be an FCSP but not maximal. As shown in Figure 1
(d), there are two counts maintained by t2 to record the Weight infor-
mation for {t1, t2} and {t2} respectively. Actually, all patterns related
to subtree t2 can be decided in the same way. Thus, we do not need to
mine patterns related to t2 from the original Weighted-FPtree and have
the following optimization.

Optimization 2 From the head table of (conditional) Weighted-FPtree,
only the last subtree and subtrees which are not descendant of the subtree
whose patterns are just examined in the previous turn need to be mined.

When the Weighted-FPtree contains a single path, we have the following
optimization strategy.

Optimization 3 If the (conditional) Weighted-FPtree contains single
path, maximal FCSPs can be generated directly from subtrees in the head
table which are 1) with their node identifier as ti and 2) either last subtree
or not descendant of the subtree mined in the previous turn.

4 Experiment Results

In this section, we study the performance of the proposed algorithms.
The algorithms are implemented in Java. Experiments are performed on
a Pentium IV 2.8GHz PC with 512 MB memory. The operating system is
Windows 2000 professional. We implemented a synthetic structural delta
generator by extending the one used in [1]. The default number of deltas
is 10000 and the number of changed subtrees is 1000.

We carried out four experiments to show the conciseness of maximal
FCSPs, the efficiency and scalability of designed algorithm compared with



a naive algorithm which discover the complete set of FCSPs first and then
filter non-maximal ones.

– Conciseness of maximal FCSPs: Firstly, we contrast the size of the
set of maximal FCSPs with the size of the complete set of FCSPs by
varying the average depth and fanout of the ancestor relationships.
As shown in Figure 2 (a), the gap between the two sizes is greater
when average depth and fanout of ancestor relationships are greater,
since more FCSPs might be subsumed by their supersets.

– Efficiency Study: We compare the execution time of the developed
algorithm against the naive algorithm by varying the threshold of
min FoC from 2% to 10%. As shown in Figure 2 (b), when the thresh-
old is lower, our algorithm is more efficient than the naive one because
the naive algorithm need to verify more patterns, on the contrary, de-
signed algorithm has the chance to skip checking more patterns.

– Scalability Study I: We test the scale-up features of the two algorithms
against the number of deltas, which is varied from 8K to 80K. Figure 2
(c) shows that, when the number of deltas is larger, the gap between
the two algorithms is greater, since the more subtrees potentially be
FCSPs.

– Scalability Study II: We also observed the scalability of the two al-
gorithms with respect to the number of discovered maximal FCSPs.
As presented in Figure 2 (d), for mining the same number of maxi-
mal FCSPs, the designed algorithm is faster than the naive one. Fur-
thermore, when the size of the set of maximal FCSPs increases, the
designed algorithm scales even better.

5 Conclusions & Future Work

This paper proposed a novel problem of mining maximal frequent pat-
terns based on changes to XML structures: maximal FCSP mining. An
algorithm, optimized Weighted-FPgrowth, is designed and implemented.
Preliminary experiment results demonstrated that the conciseness of the
set of maximal FCSPs. Moreover, the designed algorithm is significantly
more efficient than the naive algorithm.

As ongoing work, we would like to collect real life dataset to verify the
semantic meaning of discovered maximal FCSPs. In addition, we would
also like to investigate issues about mining frequent patterns from con-
tent deltas and hybrid (content and structural) deltas of historical XML
documents.
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