
SINBAD: Towards Structure-Independent Querying
of Common Neighbors in XML Databases

Ba Quan Truong1, Sourav S. Bhowmick1, and Curtis Dyreson2

1 School of Computer Engineering, Nanyang Technological University, Singapore
2 Department of Computer Science, Utah State University, USA

{bqtruong,assourav}@ntu.edu.sg, curtis.dyreson@usu.edu

Abstract. XML query languages use directional path expressions to locate data
in an XML data collection. They are tightly coupled to the structure of a data
collection, and can fail when evaluated on the same data in a different structure.
This paper extends XPath expressions with a new structure-independent, non-
directional axis called the neighborhood axis. Given a pair of context nodes, the
neighborhood axis returns those nodes that are common neighbors of the context
nodes in any direction. Such axis finds its usefulness in structure-independent
query formulation as well as supporting relevant results computation in design-
independent XML keyword search. We propose an algorithm called SINBAD that
exploits the novel notion of node locality and small size of XML structure tree to
efficiently determine the common neighbors of the context nodes. Our empirical
study demonstrates that SINBAD, built on top of an existing path materialization-
based relational storage scheme, has promising query performance.

1 Introduction

A wealth of existing literature has extensively studied evaluation of various navigational
axes in XPath expressions [6]. A key common feature of these axes is that they are all
directional in nature. That is, they locate nodes in a fixed direction relative to a context
node (e.g., the descendent axis corresponds to the “down” direction). Unfortunately,
queries that rely on directional axes become dependent on the data being in the specified
direction, even though data has no “natural” direction and can be organized in different
hierarchies. Users who are unfamiliar with a document structure or are knowledgeable
about a structure which subsequently changes will sometimes formulate unsatisfiable
queries, which are queries that fail to produce desired results. These queries are difficult
to debug since they run to completion and produce a result, though not the desired one.

As an example, consider the XML document in Figure 1(a). It contains league
information organized by teams. Each team consists of a set of players. Suppose that
a basketball commentator, John, wishes to find the common team of a player, Hill,
and a manager, Antoni. John can issue any one of the following XPath queries to re-
trieve desired information: Q1: //player[name=‘Hill’]/ancestor::team[
/descendant ::manager[name=‘Antoni’]] or Q2: //manager[name=
‘Antoni’]/ancestor::team[/descendant::player[name=‘Hill’]].

To correctly formulate the aforementioned queries, John has to know something
about the hierarchical structure of the XML data. For instance, he must know that a

S.-g. Lee et al. (Eds.): DASFAA 2012, Part I, LNCS 7238, pp. 156–171, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

SINBAD: Towards Structure-Independent Querying of Common Neighbors 157

Fig. 1. XML documents

team element is an ancestor of player and manager elements. Furthermore, the
team subtree also includes information related to the team. But if John misunderstands
the structure or if the structure changes over time then this partial knowledge may not
be useful anymore for formulating satisfiable queries as demonstrated below.

Assume that the XML document in Figure 1(a) is now reorganized to the structure
depicted in Figure 1(b). Specifically, the document in Figure 1(b) has same data but
the structural relationships of the elements are different. Now the league information
is organized according to head managers instead of teams. Both documents contain the
same data and same element labels but they have different hierarchical relationships.
Such structural change is real because database administrators may revise the design
over time to address issues such as redundancy, space overhead, performance, and us-
ability [4,12]. Unfortunately, due to the lack of non-directional axes in XPath, for some
queries different path expressions are needed to query each hierarchy. Consequently,Q1

and Q2 may become unsatisfiable on the document in Figure 1(b) as the team element
is no more an ancestor of player or manager elements.

Note that it is unrealistic to expect users to be “structure-aware” as it does not scale
with increasing structural heterogeneity. Is it possible to retrieve the above information
using a single query without being aware of the underlying structural heterogeneities of
elements? Ideally, such a query technique should work even if the document structure
is reorganized. In order to answer this question affirmatively, in this paper we propose
a new non-directional XPath axis called neighborhood axis, which enables us to
locates all common nodes of two context nodes in any direction.

Specifically, the XPath language is extended with a non-directional locator, called
the neighborhood axis, to support non-directional exploitation of XML data. The
proposed axis allows a user to formulate precise queries knowing only the labels of
nodes and unaware of the exact hierarchy. Informally, given two context nodes, the

158 B.Q. Truong, S.S. Bhowmick, and C. Dyreson

neighborhood axis returns those nodes that are common nodes to these context
nodes. For example, reconsider the query posed by John. The relevant team node must
be related to both the player node containing Hill and the manager node containing
Antoni. Accordingly, John can reformulate his query using the neighborhood axis as
follows:Q3://player[name =‘Hill’]/neighborhood{//manager[name
=‘Antoni’]}::team.

Note that Q3 will retrieve the same information when it is evaluated over Figure 1(b)
as well. More importantly, a user does not need to be aware of the structural relation-
ship between the context and test nodes. In this case, John only needs to know that a
team could employ a player and a manager (real-world employment relationship). He
does not need to know the relative hierarchical relationship among them (e.g., team is
ancestor or descendant of manager) in the document.

The neighborhood axis has practical significance in at least two applications.
Firstly, it can complement classical approach to query XML data by enabling users
to formulate structure-independent queries to seek common nodes of a pair of con-
text nodes. Note that classical XPath axes fail to formulate such structure-independent
queries. Secondly, it can provide a framework to support design-independent XML key-
word search [11] by finding relevant nodes that are semantically related to a set of nodes
containing matching query keywords. These nodes can be returned with the result set
in order to ensure that the results of XML keyword search are informative.

We propose a novel and generic algorithm called SINBAD (Structure Independent
commoN neighBors Abstraction proceDure) to evaluate neighborhood axis by ex-
ploiting the notion of node locality. Informally, given a context node c, the locality of c
is a set of nodes that are semantically related to c (detailed in Section 3). The intuition
behind node locality is that users (queries) are typically interested in nodes within the
locality and rarely refer to nodes outside of the locality. As we shall see later, the eval-
uation of neighborhood axis is equivalent to finding the intersection region of two
node localities.

In summary, this paper makes three main contributions. First, we extend classi-
cal XPath query language with a non-directional neighborhood axis in Section 4.
Secondly, in Section 5 we present a novel algorithm called SINBAD to evaluate neigh-
borhood axis queries by exploiting the notion of node locality. Thirdly, through an
experimental study on synthetic and real data sets, in Section 6, we show that our ap-
proach can retrieve common neighbors efficiently .

2 Related Work

Our objective to flexibly issue XML queries independent of the structure is shared by
several recent papers. [3] presents a semantic search engine for XML. The search relies
on an interconnection relationship to decide whether nodes are semantically related.
Two nodes are interconnected if and only if the path between them contains no other
node that has the same label as the two nodes. [7] proposes a schema-free XQuery,
facilitated by a Meaningful Lowest Common Ancestor Structure (MLCAS) operation.
Unlike neighborhood axis, these approaches do not retrieve common neighbors of
two context nodes.

SINBAD: Towards Structure-Independent Querying of Common Neighbors 159

Recently, several XML keyword search techniques [8, 9, 13] have been proposed to
offer more user-friendly solution for retrieving relevant results. Essentially, these ap-
proaches return variants of the subtree rooted at the lowest common ancestor (e.g.,
VLCA, SLCA) of all the keywords. Due to the lack of expressivity and inherent ambigu-
ity of keyword search, several techniques have also been developed to infer and retrieve
relevant results for a search query [8, 9, 11]. Our work differs from the keyword search
paradigm in the following ways. First, we retrieve nodes based on common locality
of a pair of context nodes and not the entire LCA-variant of all the keywords. Note
that LCA and its variants make use of some common ancestors of the context nodes
and therefore rely on the hierarchical relationships. Consequently, these techniques are
not structure-independent. Secondly, as a neighborhood query is an extension of con-
ventional XPath query, it can impose more complex predicates compared to keyword
search queries. Furthermore, it does not suffer from expressivity and ambiguity issues
similar to keyword search.

More germane to this work is our previous efforts in [1, 15]. In [15], we extended
the XPath language with a symmetric locator, called the closest axis, which lo-
cates nodes that are closest to a context node. Here closest is measured by the dis-
tance from the context node in any direction in the XML tree. In [1], we proposed
rank-distance axis, which is a more generic non-directional axis compared to
the closest axis. Specifically, given a context node and two parameters α and β, the
rank-distance axis returns those nodes that are ranked between α and β in terms
of closeness from the context node. Not only it can find closest node(s) (by setting α and
β to one) but also nodes that are further away from the context node. In contrast, here
we focus on a new axis, called neighborhood, which computes common neighbors
of two context nodes.

Note that common neighbors cannot be computed using closest axis. For exam-
ple, reconsider the query in Section 1 for finding the common team of Hill and An-
toni. At first glance, it may seem that this query may be expressed as follows: Q4:
//player[name=‘Hill’]/closest::team[closest::manager[name=
‘Antoni’]]. Unfortunately, Q4 returns empty result set. The fragment
//player[name=‘Hill’]/closest::teamwill return the team of Hill (which
is New York Knicks). Hence, when the context node is at this team node, the closest
manager node is, unfortunately, not Antoni but manager Walsh. Note that we cannot
use rank-distance axis to select Antoni here as it demands knowledge of structural
relationship between manager nodes (Antoni is a second-level manager) from the user
in order to assign appropriate values to the parameters α and β.

3 Node Locality

In this section, we introduce the notion of node locality that we shall be using to define
neighborhood axis. We begin by briefly introducing the XML data model considered in
this paper.

We model XML documents as ordered, labeled trees as follows. A tree is a tuple
(N , E , Σ,L,F,T,S), where (a) N is the node set. r ∈ N is a special node called the
root of the tree, (b) let O be the domain of ordinals. Then E ⊆ O×N×N is the edge set

160 B.Q. Truong, S.S. Bhowmick, and C. Dyreson

such that (i) each edge has an ordinal oi ∈ O to represent ordering among the children;
(ii) there is a path between every pair of nodes; (iii) there is no cycle among the edges;
and (iv) every edge has a single incoming edge, except r, which has no incoming edge,
(c) Σ is an alphabet of labels and text values, (d) L : N → Σ is a label function that
maps each node to its label, (e) F : N → Σ ∪ {ε} is a value function that maps a node
to its value, in which F(n) = ε if node n has an empty value, and (f) T : N → S is a
type function that maps each node to a type within the type set S.

This simple model, which is sufficient for this paper, ignores comments, attributes,
processing instructions and namespaces. The model distinguishes between labels and
types. The label function maps each node to its label, that is, its element tag. The type
function specifies the type of each node, where two nodes with the same label could
have different types. The type could be defined in various ways, we assume only that
each node has a known type. In this paper, the type of a node n ∈ N is defined as the
root-to-node path of n (i.e., the concatenation of the labels on the path from the root to
n). For example, suppose that there exist name nodes in subtrees rooted at team and
player nodes. Then the path from the root to a team name node and a player name
node differs; therefore they are of different types.

3.1 Intuition

Given a context node, the node locality (locality for brevity) is the set of nodes that are
semantically related to the context node. A node within the locality is called a local
node. For example, the filled nodes in Figure 1(a) depict the locality of the first team
node (New York Knicks). For instance, the league node describes Knicks’ league.
The two player nodes are Knicks’ players. The name node Walsh is Knicks’ head
manager. Notably, the context node itself is also within the locality.

A key characteristic of node locality is that it is structure-independent. That is, when
the document structure changes1, the locality does not change. For instance, all lo-
cal nodes of team New York Knicks in Figure 1(a) are also local nodes of New York
Knicks in Figure 1(b). Observe that when the document structure changes, the position
of all player nodes change but the locality of the team node still contains these two
player nodes.

3.2 Defining Node Locality

Based on the aforementioned discussion, it is evident that a key issue associated with
node locality is the identification of local nodes for a context node. In [15], we in-
troduced the notion of locality as follows. A node n whose T(n) = tn is local to
the context node c whose T(c) = tc if, among all pairs of nodes with type tn and
type tc respectively, the distance2 of n to c is minimum. That is, n is local to c iff
Distance(n, c) = min{Distance(n′, c′)|c′, n′ ∈ N ,T(n′) = T(n),T(c′) = T(c)}.

1 In this paper, we assume that the original and modified documents must have same content,
same element labels, and real-world semantic relationships are maintained in both documents.

2 The distance between nodes u and c is the number of edges in the unique, simple undirected
path between u and c.

SINBAD: Towards Structure-Independent Querying of Common Neighbors 161

Note that based on this definition we can identify all the local nodes of the team node
in Figures 1(a) and 1(b).

Although the aforementioned definition of local nodes works for many cases, for
certain scenario it may fail to identify the local nodes correctly. Let us illustrate this
by modifying the documents in Figure 1. Assume that there exists a predecessor
node with value San Diego Clippers as a fourth child of the second team node in
Figure 1(a). Similarly, the predecessor node is added as the second child of the
second team node in Figure 1(b). Let us now consider the context node to be the
championship node. Regardless of the structure of the XML document, the local-
ity of a championship should include the team, the managers, the players, the league
and the predecessor. Observe that the aforementioned definition of node locality now
identifies the predecessor node (San Diego Clippers) as one of its local node. Se-
mantically, San Diego Clippers is the predecessor node of Los Angeles Clippers
and is not related to the championship node of New York Knicks. Hence, the locality
of Knicks’ championship node should exclude this predecessor node.

The reason the locality definition of [15] fails is because both championship
and predecessor are optional nodes in this example. In fact, there is only one
championship node and only one predecessor node. Therefore, they are clearly
at the minimum distance of the pair of their types. Consequently, the predecessor
node is always local to the championship node. In the following, we present a novel
definition of node locality that addresses this limitation.

We first introduce some terminology to facilitate our exposition. For each type t ∈ S
where S is the set of all types in the XML document D, the sub-type set of t, denoted
as St, is a subset of S including the types of all child nodes of all nodes with type t
in D. That is, St = {t′ ∈ S|∃n, n′ ∈ N , n = Parent(n′),T(n) = t,T(n′) = t′}.
For example, considering the type team. There are two teams in the modified version
of Figure 1(a). The child nodes of the first team (New York Knicks) are of types name,
player, manager, championship and @founded. The child nodes of second
one (Los Angeles Clippers) are of types name, player, manager, predecessor
and @founded. Therefore, Steam = {name, player,manager, championship,
predecessor,@founded}. Note that St can be computed while parsing the XML doc-
ument if schema is not available. Otherwise, it can be computed from its schema/DTD.

In an XML document, a node n whose type is t is called a full node, denoted as
FullNode(n), if for all types in St, n has at least one child of that type. That is, ∀t′ ∈
St, ∃n′ ∈ N , n = Parent(n′)∧T(n′) = t′. If we denote the set of all types of all child
nodes of n as Tn, then the above definition is equivalent to: FullNode(n) = true
⇐⇒ St ⊆ Tn. Moreover, it is obvious that Tn ⊆ St. Therefore, FullNode(n) =
true ⇐⇒ St = Tn. For example, since Splayer consists of only player’s name and
all nodes of type player in the modified document of Figure 1(a) has a child node
with type player’s name, all of them are full nodes. On the other hand, both team
nodes are not full.

An XML document D is considered full (denoted by Full(D)) iff all of its nodes are
full. That is, ∀n ∈ N , FullNode(n) = true. Clearly in a full document, there are
no optional nodes. Consequently, in a full document we can use minimum distance to

162 B.Q. Truong, S.S. Bhowmick, and C. Dyreson

Fig. 2. Full document of predecessor-enhanced version of Figure 1(a)

identify node locality. That is, a node n whose T(n) = t is local to the context node c
if, among all nodes with type t, the distance of n to c is minimum.

Definition 1. [Node Locality] The locality of a node c in an XML document D, denoted
as Locality(c), is a set of nodes in the full document Full(D) in which each node n
satisfies the following conditions: (a) n is in Full(D); (b) ∀n′ in Full(D), T(n′) =
T(n) =⇒ Distance(c, n′) ≥ Distance(c, n).

Next, we shall discuss how to convert any XML document D to a corresponding full
document Full(D). It is achieved by adding ghost nodes to D. For each node n with
type t and each type t′ ∈ St that n has no child nodes of type t′, a new node n′

with type t′ is conceptually added to D as a child node of n. n′ is called a ghost node
since it does not actually exists in D. For example, in the modified version of Fig-
ure 1(a), a predecessor node (ghost node) is added as the child of the first team
node and a championship node is added as the child of the second team (Los Ange-
les Clippers). Notably, since Schampionship has type year, the championship node
also has a ghost node year. Note that only one year node is sufficient to make the
championship node full. Similarly, an assistant manager node (with accompany-
ing name node) is added as the child of the second manager node (Hughes). Figure 2
depicts the full document (ghost nodes are shown in dotted blue rectangles). Note that
no value nodes are added in the transformation as a full document does not require value
nodes.

We can now compute locality of a node correctly using Definition 1. For instance,
the predecessor node is no longer optional. Therefore, the predecessor node
(San Diego Clippers) is now excluded from the locality of Knicks’ championship
node. Instead, the predecessor node with minimum distance to the context node is
now the corresponding ghost node, which can be filtered out in the final results.

Definition 1 offers a straightforward method to compute the locality of a node c
in document D by converting D to Full(D) and finding the nodes in Full(D) with
minimal distance to c. However, this naive method has two drawbacks. First, Full(D)
is less space-efficient than D and may require updates every time D is updated. Second,
locating the nodes with minimal distance to c requires traversal all nodes in Full(D)
at least once which is expensive when Full(D) is large. In Section 5, we shall address
these drawbacks by adopting an efficient strategy to evaluate the locality of c without
transforming D to Full(D) and with minimal node traversal.

SINBAD: Towards Structure-Independent Querying of Common Neighbors 163

4 Neighborhood Axis

The neighborhood axis is used to select common nodes of two context nodes. Infor-
mally, a node that is common to two nodes is semantically related to these nodes even
when the document structure changes. Recall that the locality of a node is the set of
all related (local) nodes to the context node. Therefore, the common nodes selected by
the neighborhood axis should be in the locality of both input nodes. Observe that
since node locality is structure-independent, the common locality of the two context
nodes are identical even when structure of the document changes. For example, if John
is interested in the common team of Hill and Antoni, the result should be the only team
node in the common locality (team New York Knicks). On the other hand, if John asks
for common name nodes associated to Hill and Antoni, then this query is ambiguous.
In this case, the neighborhood axis should return all name nodes in the common
locality of these two nodes.

Definition 2. Let c1 and c2 be two context nodes and � be the name test of the step. The
neighborhood nodes of c1 and c2 with label �, denoted as neighborhood(c1, c2, �), is
a list of nodes [n1, n2, . . . , nj] where:

– n1, n2, . . . , nj ∈ N and j ≥ 1
– ∀ni ∈ neighborhood(c1, c2, �),L(ni) = �
– ∀ni ∈ neighborhood(c1, c2, �), ni ∈ Locality(c1) ∧ ni ∈ Locality(c2)
– ∀p, q, 1 ≤ p < q ≤ j, np precedes nq in document order

The syntax for expressing neighborhood axis should consist of two input nodes
(context nodes). One of them is the context node specified by the previous step. We
refer to it as left context node. The other input node is a parameter (can be expressed
as path expression), which we refer to as right context node. Hence, the BNF rules for
neighborhood axis is as follow. First, the neighborhood is added into
“NonDirectionalStep”3. Next, additional rules are specified to describe the
neighborhood axis.

NonDirectionalStep ::= ClosestStep|RankDistanceStep|NeighborhoodStep

NeighborhoodStep ::= NeighborhoodAxis NodeTest

NeighborhoodAxis ::= "neighborhood""{"PathExpression"}" "::"

Reconsider Figure 1 to find the common team of players Hill and Curry. Then, this
query can be formulated as follows: Q5: //player [name=‘Hill’]/
neighborhood{//player[name=‘Curry’]}::team. Observe that the query
consists of three parts: (a) //player[name=‘Hill’] is used to select the player
Hill (left context node). (b) //player[name=‘Curry’] is used to select the player
Curry (right context node). (c) A neighborhood step with name test of team is used
to find the common team of the two players. Observe that for both documents in Fig-
ure 1, Q5 will return the team node whose name is “New York Knicks”.

3 We have introduced two additional non-directional axes, namely closest and
rank-distance, in [15] and [1], respectively.

164 B.Q. Truong, S.S. Bhowmick, and C. Dyreson

Fig. 3. Structure trees of modified versions of the XML documents in Figure 1

The neighborhood axis can also be used with a predicate. Suppose John now
wishes to find the teammates of player Hill. Intuitively, a teammate is a player in
the same team. Therefore, the XPath for this query can be expressed as follows: Q6:
//player[neighborhood{//player[name=‘Hill’]}::team].This query
will return the player node whose name is “Curry” in both Figures 1(a) and 1(b).

5 Evaluation of Neighborhood Axis

In this section, we present a generic algorithm called SINBAD for evaluating neighbor-
hood axis by exploiting node locality information. We begin by briefly introducing the
terminology that we shall subsequently to describe the algorithm.

We denote the root-to-node path of a node n in an XML tree as Path(n). That is,
Path(n) is a concatenation of the labels on the path from the root to n. Observe that
Path(n) is equivalent to the type of n (T(n)). In the sequel, we shall use these two con-
cepts interchangeably. Next we define the notion of structure tree. Given an XML docu-
ment D, the structure tree of D, denoted as SD, is a DataGuide structural summary [5]
representing all unique paths in D. That is, each unique path p in D is represented in SD

by a node whose path from the root node to this node is p. Further, every unique label
path of D is described exactly once, regardless of the number of times it appears in D.
The structure tree encodes no path that does not appear in D. Note that a structure tree
can be computed in linear time for tree-structured data [5]. Figure 3 depicts the struc-
ture trees of the modified predecessor-enhanced documents in Figure 1 (the nodes
are encoded with their Dewey labels). Intuitively, a document D and its full document
version Full(D) share a common structure tree.

Lemma 1. Given a document D, the structure trees of D and Full(D) are identical.

Proof. (Sketch) According to the definition of full documents, for any type t ∈ S, its
subtype set is identical in D and in Full(D). In the structure tree, each type t corre-
sponds to a path p and each subtype of t corresponds to a child of p. Thus, in both D

and Full(D), the children list of all nodes in the structure tree are identical. Hence,
their structure trees are identical.

SINBAD: Towards Structure-Independent Querying of Common Neighbors 165

For example, Figure 3(a) depicts the structure tree of both the document in Figure 1(a)
and its full document in Figure 2.

Given two paths p1 and p2 in SD, the path distance between p1 and p2, denoted
as Distance(p1, p2), is the length of path connecting the nodes represented by p1 and
p2. The level of p1, denoted as Level(p1), is the length of p1. The LCA of p1 and p2,
denoted as LCA(p1, p2), is the longest common prefix of p1 and p2. Finally, the LCA

level of p1 and p2, denoted as LCALevel(p1, p2), is the level of the LCA(p1, p2). That
is, LCALevel(p1, p2) = Level(LCA(p1, p2)).

5.1 Evaluation of Locality

In this section, we present a set of properties that shall be exploited by Algorithm SIN-
BAD (Section 5.2) to efficiently check whether a node is in the locality of a context
node.

Lemma 2. Let n1 and n2 be two nodes in a document D and p1 = Path(n1) and
p2 = Path(n2) in structure tree SD. Then,

Distance(n1, n2) = Level(n1) + Level(n2)− 2× LCALevel(n1, n2)

Distance(p1, p2) = Level(p1) + Level(p2)− 2× LCALevel(p1, p2)

Proof. (Sketch) The path connecting two nodes n1 and n2 in a tree is unique and this
path must pass through the LCA(n1, n2). Therefore, we can divide this path into two
parts: one from n1 to LCA(n1, n2) and another fromLCA(n1, n2) to n2. The length of
the path from n1 to LCA(n1, n2) is equal to Level(n1)−LCALevel(n1, n2) while the
length of the path from LCA(n1, n2) to n2 is Level(n2)−LCALevel(n1, n2). Hence,
Distance(n1, n2) is equal to the sum of these two subparts and is equal to Level(n1)
+ Level(n2)− 2× LCALevel(n1, n2). The proof is similar for Distance(p1, p2).

Theorem 1. Let n1 and n2 be two nodes in a document D. Let p1 = Path(n1) and
p2 = Path(n2) be two paths in SD . Then, (i)LCALevel(n1, n2) ≤ LCALevel(p1, p2)
and (ii) Distance(n1, n2) ≥ Distance(p1, p2).

Proof. (Sketch) From Lemma 2, it is clear that (i) and (ii) are equivalent (notice that
Level(n) = Level(path(n))∀n). Thus, we only need to prove (i).

Let n be LCA(n1, n2) and p = Path(n). Since n is an ancestor of both n1 and n2,
p is a prefix of both p1 and p2. Therefore, p is an ancestor of both p1 and p2. Based
on the definition of LCA level, we have: Level(p) ≤ LCALevel(p1, p2). Therefore:
LCALevel(n1, n2) = Level(n) = Level(p) ≤ LCALevel(p1, p2).

For example, in Figure 2, let n1 and n2 be nodes whose Dewey codes are 0.0.1
and 0.1.4, respectively. Then LCALevel(n1, n2) = 1 and Distance(n1, n2) = 4.
In Figure 3(a), the paths of n1 and n2 (p1, p2) are nodes whose Dewey codes are
0.0.1 and 0.0.4, respectively. Their LCA level is 2 and their distance is 2. Hence,
LCALevel(n1, n2) < LCALevel(p1, p2) andDistance(n1, n2) > Distance(p1, p2).

Theorem 2. Let c be a node in the full document Full(D) (Path(c) = pc). Then, for
any path pn in SD, there exists a node n ∈ Full(D) whose path is pn such that (i)
LCALevel(c, n) = LCALevel(pc, pn) and (ii) Distance(c, n) = Distance(pc, pn).

166 B.Q. Truong, S.S. Bhowmick, and C. Dyreson

Proof. (Sketch) Following Lemma 2, (i) and (ii) are equivalent. Thus, we only need to
prove (i). Let � = LCALevel(pc, pn). Note that � ≤ Level(pc) = Level(c). Let a� be
the ancestor (or self) of c at level �. Choose a�+1 as a child of a� whose tag is equal to
the tag of pn at level �+ 1 of the structure tree SD. Since � = LCALevel(pc, pn), this
tag is not in pc and therefore, is not the tag of the ancestor of c at level �+1. Therefore,
the chosen a�+1 is not the ancestor of c at level �+ 1.

Similarly, a�+2 is selected as a child of a�+1 whose tag is the tag of pn at level �+2.
Continue this process repeatedly until k = Level(pn) where ak is the node n that we
need to find. Obviously, Path(ak) = pn. Moreover, since a� is a common ancestor at
level � of c and ak and their ancestors at level �+1 are different (since they have different
tags), a� = LCA(c, ak). Hence, � = LCALevel(c, ak). So, LCALevel(pc, pn) = � =
LCALevel(c, ak).

For example, consider the full document in Figure 2 and the corresponding structure
tree in Figure 3(a). Let c be the node whose Dewey code is 0.0.3. Hence, pc is
league.team.manager which has a Dewey code of 0.0.2 in the structure tree.
Let’s choose pn as league.team.predecessor (Dewey code is 0.0.4 in Fig-
ure 3(a)). In the structure tree, LCALevel(pc, pn) = 2. Then p2 = LCA(pc, pn) is the
path league.team representing the type team. Observe that the level 2 ancestor, a2,
of c is the node 0.0 (clearly, the path of a2 is p2).

The tag at level 3 of pn is predecessor. Let p3 be the level 3 ancestor of pn. Then
p3 is league.team.predecessor. Since p3 is a child of p2 in the structure tree,
there exists nodes which have path p3 and are the child nodes of nodes with path p2
in the full document. Hence, type predecessor is a type in the sub-type set of type
team. Consequently, a2 must have a child node with type predecessor (path p3).
Let a3 be this child node of a2. Then a3 is the node n we need to find. Observe that
a3 is a ghost node in Figure 2 with Dewey code of 0.0.5 and LCALevel(c, a3) =
LCALevel(pc, pn) = 2 and Distance(c, a3) = Distance(pc, pn) = 2.

Given a context node c whose path is pc and a set of nodes N in a full document
Full(D) whose path is pn, Theorem 1 shows that Distance(pc, pn) is a lower bound
of the distance between c and any nodes n ∈ N . On the other hand, Theorem 2 shows
that ∃n ∈ N,Distance(c, n) = Distance(pc, pn). Thus, Distance(pc, pn) is the
minimum distance between c and any nodes in N . Following Definition 1, all nodes
n ∈ Locality(c) must satisfy Distance(c, n) = Distance(pc, pn).

Theorem 3. Let c be the context node in document D. Then a node n ∈ Locality(c) iff
(a)Distance(c, n) = Distance(pc, pn) or (b)LCALevel(c, n) = LCALevel(pc, pn).

Proof. (Sketch) Condition (a) is a direct consequence of Definition 1, Theorem 1 and
Theorem 2. Condition (b) can be proved by exploiting Lemma 2. Since Distance(c, n)
= Distance(pc, pn), Level(c)+Level(n)−2LCALevel(c, n) = Level(pc)+Level
(pn)− 2LCALevel(pc, pn). Hence, LCALevel(c, n) = LCALevel(pc, pn).

For example, reconsidering Figure 2. Let c be the node whose Dewey code is 0.0.3
(the head manager node). Let us find the player nodes that are local to c. Here
pc = league.team.manager and pn = league.team.player. Therefore,
LCALevel(pc, pn) = 2. Observe that in Figure 2, there are three nodes having path pn.

SINBAD: Towards Structure-Independent Querying of Common Neighbors 167

Algorithm 1: The Algorithm SINBAD.
Input: A document D, context nodes c1 and c2 in D, name test �, set P of all paths in SD

Output: A set of neighborhood nodes Results

1 Initialize NeighborhoodPaths =∞ ;
2 Initialize Results =∞ ;
3 for (each p ∈ P) do
4 if (LastTag(p) == �) then
5 Add p into NeighborhoodPaths;

6 for p ∈ NeighborhoodPaths do
7 a1 ← the ancestor (or self) of c1 at level LCALevel(Path(c1), p);
8 a2 ← the ancestor (or self) of c2 at level LCALevel(Path(c2), p);
9 if a1 is an ancestor-or-self of a2 or a2 is ancestor-or-self of a1 then

10 a← the descendant between a1 and a2;
11 Add all descendants-or-self of a in D whose path is p into Results;

12 return Results

Their Dewey codes are 0.0.1, 0.0.2, and 0.1.1. Their LCALevel with c are 2, 2,
and 1, respectively. Hence, according to Theorem 3 only nodes 0.0.1 and 0.0.2 are
in the locality of c. Observe that these two nodes represent the players Curry and Hill
who are managed by the head manager Walsh.

Remark. Theorem 3 offers a very efficient technique to evaluate locality due to three
reasons. First, LCALevel(pc, pn) can be computed completely from the structure tree
SD whose size is significantly smaller than D in most practical cases. SD can also be
built directly from D without creating Full(D) (Lemma 1). Second, due to Theorem 1,
LCALevel(c, n) = LCALevel(pc, pn) = � is equivalent with n is a descendant (or
self) of the ancestor-or-self node a of c at level �. Notice that if our list of nodes are
sorted in document order, the descendant list of a are consecutive and usually small
so that traversing them is usually cheap. Third, observe that users are not interested in
ghost nodes. Hence, these nodes need to be filtered out in the output. Theorem 3 allows
us to accomplish this efficiently without transforming the original document D to a full
document. We only traverse the descendant list of a in the original document D so that
all result nodes are actual nodes. If a local node n (i.e., descendant of a) in the full
document is not returned, it means that n is a ghost node.

For example, let c be the node with Dewey code 0.0 (team node). We wish to
find the predecessor nodes that are local to c. Since pc = league.team and
pn = league.team.predecessor, LCALevel(pc, pn) = 2. The ancestor-or-
self of c at level 2 is c itself. In the full document there are two nodes with type pn
(0.0.5 and 0.1.4). However, since we only need to traverse the descendant list of
node 0.0 in the original document D, neither would be traversed and there does not
exist any predecessor node that is in the locality of c in the original document
(Fig.1). Notably, although node 0.0.5 is descendant of node 0.0 and local to c in the
full document, since we traverse only 0.0’s descendant list in the original document
(we do not transform it to a full document), node 0.0.5 would not be returned.

168 B.Q. Truong, S.S. Bhowmick, and C. Dyreson

5.2 Algorithm SINBAD

Algorithm 1 outlines the SINBAD algorithm. Most importantly, Algorithm 1 does not
take Full(D) as input or require Full(D) in any of its steps. We illustrate the steps with
an example. Reconsider the queryQ5 which selects the common team of player Hill and
manager Antoni. The two context nodes in this query are the player node (0.0.2)
and the manager node (0.0.3.1). Lines 3-5 are used to find all paths whose last
tag is the label team. In our example, the only such path is league.team. For each
path p ∈ NeighborhoodPaths, Lines 7-8 are used to find the ancestor of c1 and c2 at
level LCALevel(p, path(c1)) and LCALevel(p, path(c2)), respectively. According
to Theorem 3, all result nodes must be descendants of both ancestor nodes a1 and
a2. Hence, a1 and a2 must have ancestor-descendant relation (Line 9). Let a be the
descendant node between a1 and a2 (Line 10), all results must be descendants (or self)
of a (Line 11). Notice that Line 11 finds the descendants of a in D, not Full(D), due
to reasons mentioned in Section 5.1. Therefore, Algorithm 1 does not require Full(D)
or convert D to Full(D). Specifically, for our example, both a1 and a2 would be node
0.0 and the only descendant-or-self nodes with label team and descendant of 0.0 are
that node itself. It is our only result.

Time Complexity. Let k be the number of paths satisfying the neighborhood path con-
dition (Lines 3-5) and the Desc(p) be the set of descendant-or-self node of node a
produced in Lines 10-11. Assume that LCALevel() and ancestor-descendant eval-
uation could be computed in O(1) time. The time complexity of the algorithm is:
O(|P | + 3k +

∑
p∈P |Desc(p)|). Notice that both |P | and k are usually very small

so that the worst-case complexity is usually dominated by
∑

p∈P |Desc(p)|. Further-
more, since all nodes in Desc(p) have path p, all nodes in Results are unique and∑

p∈P |Desc(p)| happens to be our result size which is the expected lower bound of
our algorithm. Moreover, we can also notice that the input context nodes are only used
for LCA computation and ancestor-descendant checking, both can be achieved using
only the node identifiers (e.g., Dewey code). Hence, retrieving data for a context node
is cheaper than retrieving data for a result node.

6 Performance Study

We present the experiments conducted to evaluate the performance of our proposed
axis and report some of the results obtained. Note that SINBAD is independent of any
specific storage scheme for XML data. In this paper, we have realized it on top of a
path materialization-based [6] relational storage scheme called SUCXENT++ [10] in
Java JDK1.6. Due to space constraints, we do not discuss the implementation of SQL

translation strategy for SINBAD. Note that our implementation does not require any
invasion of the database kernel. All of our experiments are conducted on an Intel Core
2 Quad CPU 2.66GHz machine running on Windows XP Service Pack 3 with 2GB
RAM. The RDBMS used was MS SQL Server 2008 Developer Edition.

SINBAD: Towards Structure-Independent Querying of Common Neighbors 169

Fig. 4. Datasets

Fig. 5. Querysets

Data and Query Sets. We use XBench DCSD [14] as a synthetic data set and Uniprot/KB
XML4 as a real-world data set. We vary the size of XML documents from 10MB to
1GB for XBench DCSD data set. Since the original UNIPROT data is 2.8GB in size (de-
noted as U2843), we also truncated this document into smaller XML documents of sizes
28MB and 284MB (denoted as U28 and U284, respectively) to study scalability. Fig-
ure 4 depicts the characteristics of the data sets. Figure 5 depicts the query sets for
XBench DCSD (XQ1–XQ4) and Uniprot/KB data sets (UQ1–UQ4). Note that queries
XQ4 and UQ4 showcase usage of neighborhood axis with other non-directional
axis (i.e., closest [15]). We also consider equivalent directional XPath queries (same
results set) of XQ1–XQ4 (denoted as XQ1′ - XQ4′) and UQ1–UQ4 (UQ1′ - UQ4′) in or-
der to compare the performance of structure-independent queries with their directional
counterparts.

Test Methodology. Appropriate indexes were constructed for SUCXENT++. Prior to
our experiments, we ensured that statistics had been collected. The bufferpool of the

4 Downloaded from ftp://ftp.uniprot.org/pub/databases/uniprot/current
release/knowledgebase/complete/uniprot sprot.xml.gz

ftp://ftp.uniprot.org/pub/databases/uniprot/current_release/knowledgebase/complete/uniprot_sprot.xml.gz.
ftp://ftp.uniprot.org/pub/databases/uniprot/current_release/knowledgebase/complete/uniprot_sprot.xml.gz.

170 B.Q. Truong, S.S. Bhowmick, and C. Dyreson

Fig. 6. Performance results (in msec.)

RDBMS was cleared before each run. Each query was executed six times and the results
from the first run were always discarded.

Experimental Results. Figure 6 reports the performanceneighborhood axis queries.
We can make the following observations. Firstly, the execution time increases sub-
linearly with result size. Notice that XQ1 and UQ1 have identical context node set with
XQ2 and UQ2, respectively, but with different result sizes. In particular, the result size
of XQ2 is nearly 10 times larger than that of XQ1 and the result size of UQ2 is about 50
times larger than that of UQ1. However, the execution times grows at much slower rate
compared to the result size. Secondly, the execution time increases sub-linearly with the
number of right context nodes (recall from Section 4). For instance, although the num-
bers of right context nodes of XQ3 and UQ3 are significantly larger than XQ1 and UQ1,
respectively, there is not much difference in the corresponding execution times. This is
consistent with our discussion in Section 5.2. Thirdly, our proposed technique is scal-
able as the execution time increases linearly to the document size. Notice that for 75%
of queries, the execution time on even the largest dataset is less than 3 seconds. Lastly,
there are no significant performance difference between the neighborhood axis queries
and their corresponding directional counterparts (XQ1′ - XQ4′ and UQ1′ - UQ4′). This
highlights the strength of our approach as users can query in a structure-independent
manner without compromising on query performance.

7 Conclusions and Future Work

The quest for structure-independent querying of XML data has become more pressing
due to inability of end-users to be aware of structural details of underlying data. In
this paper, we present a novel structure-independent, non-directional XPath axis, called
the neighborhood axis, to locate common neighbors of two context nodes. We pro-
posed an algorithm called SINBAD that exploits the notion of node locality and small
size of XML structural summary to efficiently abstract the common nodes of a pair of
context nodes. Our empirical study on top of an existing path materialization-based re-
lational storage showed that SINBAD has excellent real-world performance. In future,
we plan to extend our approach to yet other non-directional axes, which we believe can
be supported using the techniques presented in this paper.

SINBAD: Towards Structure-Independent Querying of Common Neighbors 171

References

1. Bhowmick, S.S., Dyreson, C., et al.: Towards Non-Directional XPath Evaluation in a
RDBMS. In: CIKM (2009)

2. Brodianskiy, T., Cohen, S.: Self-Correcting Queries in XML. In: CIKM (2007)
3. Cohen, S., Mamou, J., Kanza, Y., Sagiv, Y.: XSEarch: A Semantic Search Engine for XML.

In: VLDB (2003)
4. Curino, C.A., Moon, H.J., Zaniolo, C.: Graceful Database Schema Evolution: The Prism

Workbench. In: VLDB (2008)
5. Goldman, R., Widom, J.: DataGuides: Enabling Query Formulation and Optimization in

Semistructured Databases. In: VLDB (1997)
6. Gou, G., Chirkova, R.: Efficiently Querying Large XML Data Repositories: A Survey. IEEE

TKDE 19(10) (2007)
7. Li, Y., Yu, C., Jagadish, H.V.: Schema-Free XQuery. In: VLDB (2004)
8. Liu, Z., Chen, Y.: Identifying Meaningful Return Information for XML Keyword Search. In:

SIGMOD (2007)
9. Liu, Z., Chen, Y.: Reasoning and Identifying Relevant Matches for XML Keyword Search.

In: VLDB (2007)
10. Soh, K.H., Bhowmick, S.S.: Efficient Evaluation of not-Twig Queries in A Tree-Unaware

RDBMS. In: Yu, J.X., Kim, M.H., Unland, R. (eds.) DASFAA 2011, Part I. LNCS, vol. 6587,
pp. 511–527. Springer, Heidelberg (2011)

11. Termehchy, A., Winslett, M., Chodpathumwan, Y.: How Schema Independent Are Schema
Free Query Interfaces? In: ICDE (2011)

12. Velegrakis, Y., Miller, R.J., Popa, L.: Mapping Adaptation Under Evolving Schemas. In:
VLDB (2003)

13. Xu, Y., Papakonstantinou, Y.: Efficient Keyword Search for Smallest LCAs in XML
Databases. In: SIGMOD (2005)

14. Yao, B., Tamer Özsu, M., Khandelwal, N.: XBench: Benchmark and Performance Testing of
XML DBMSs. In: ICDE (2004)

15. Zhang, S., Dyreson, C.: Symmetrically Exploiting XML. In: WWW (2006)

	SINBAD: Towards Structure-Independent Querying of Common Neighbors in XML Databases
	Introduction
	Related Work
	Node Locality
	Intuition
	Defining Node Locality

	Neighborhood Axis
	Evaluation of Neighborhood Axis
	Evaluation of Locality
	Algorithm SINBAD

	Performance Study
	Conclusions and Future Work

