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Abstract. Existing xml query pattern-based caching strategies focus
on extracting the set of frequently issued query pattern trees (qpt) based
on the support of the qpts in the history. These approaches ignore the
evolutionary features of the qpts. In this paper, we propose a novel type
of query pattern called conserved query paths (cqp) for efficient caching
by integrating the support and evolutionary features together. cqps are
paths in qpts that never change or do not change significantly most of
the time (if not always) in terms of their support values during a specific
time period. We proposed a set of algorithms to extract frequent cqps
(fcqps) and infrequent cqps (icqps) and rank these query paths using
evolution-conscious ranking functions. Then, these ranked query paths
are used in evolution-conscious caching strategy for efficient xml query
processing. Finally, we report our experimental results to show that our
strategy is superior to previous qpt-based caching approaches.

1 Introduction

In a xml data repository, a collection of xml queries may be issued by different
users over a period of time. These queries can be represented as a collection of
query pattern trees (qpts) [12]. Given such a query collection, a frequent xml
query pattern refers to a rooted qpt that is a subtree of at least minsup fraction
of xml queries. Recently, several algorithms [11,12,13] have been proposed to
mine these frequent patterns from the historical query log and cache the corre-
sponding query results to reduce the response time for future queries that are
the same or similar. These techniques are primarily designed for static collection
of xml queries and cannot handle evolution of query workload efficiently. Conse-
quently, several incremental algorithms [4,6] have been proposed to address the
issue of efficiently maintaining the frequent query patterns.

Our initial investigation revealed that existing frequent query pattern-based
caching strategies are solely based on the concept of frequency without taking
into account the temporal features of the evolving query workload. Every occur-
rence of a query subtree contributes equally to the caching strategy regardless
of when the query was issued. Consequently, this may not always be an effective
approach in many real-life applications. For instance, consider the two queries,
QPT2 and QPT4, in Figure 1. Assume that QPT2 had been issued many times in
the past but rarely in recent times whereas QPT4 is only formulated frequently
in recent times. Interestingly, QPT2 may still remain as a frequent query over

X. Zhou et al. (Eds.): DASFAA 2009, LNCS 5463, pp. 527–542, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



528 S.S. Bhowmick

book

title author price publisher

book

title

//

book

author

section

title

figure

book

price

section

title

//

(a) QPT1 (b) QPT2 (c) QPT3 (d) QPT4

3/3

3/3 2/3 1/3 1/3

book

title // price publisher

1/3

1/3

2/3title

figure

section

 

book

title

author

price publisher

title

figure

section

<3/3,1/1>

<3/3,0/1>

<2/3,0/1>

<1/3,1/1> <1/3,0/1>

<1/3,1/1>

<1/3,1/1>

<2/3,1/1>

(e) QPG-Tree (f) HQPG-Tree

2/3

author

 
//

<2/3,1/1>

Fig. 1. QPTs, QPG-tree and HQPG-tree

the entire query collection due to its popularity in the past. On the other hand,
in spite of its recent popularity, QPT4 may be considered as infrequent with re-
spect to the entire query collection in the history due to its lack of popularity in
the past. Note that, it is indeed possible that more queries similar to QPT4 are
expected to be issued in the near future compared to queries similar to QPT2.

In this paper, we propose a more effective and novel caching strat-
egy that incorporates the evolutionary patterns of xml queries. In our
approach, each qpt consists of a set of rooted query paths (rqps). Informally, a
rqp in a qpt is a path starting from the root. For example, /book/section/figure
is a rqp of the xml query shown in Figure 1(c). In our approach, we first dis-
cover two groups of rqps, the frequent conserved query paths (fcqp) and the
infrequent conserved query paths ( icqp), from the historical xml queries. Intu-
itively, conserved query paths (cqp) are rqps whose support values never change
or do not change significantly most of the times (if not always) during a time
period. Here support represents the fraction of qpts in the query collection that
includes a specific rqp. Hereafter, whenever we say changes to the rqps/qpts,
we refer to the changes to the support of the rqps.

The second step of our approach is to build a more efficient evolution-conscious
caching strategy using the discovered cqps (fcqps and icqps). Our strategy is
based on the following principles. For rqps that are fcqp, the corresponding
query results should have higher priority to be cached since the support values
of the rqps is not expected to change significantly in the near future and the
rqps will be issued frequently in the future as well. Similarly, for rqps that are
icqp, the corresponding query results should have lower caching priority.

We adopt a path-level caching strategy for xml queries instead of twig-level
(subtree-level) caching. However, it does not hinder us in evaluating twig queries
as such queries can be decomposed into query paths. In fact, decomposing twig
queries into constituent paths has been used by several holistic twig join algo-
rithms. Our focus in this paper is to explore how evolutionary characteristics of
xml queries can enable us to design more efficient caching strategies. Our path-
level, evolution-conscious caching approach can easily be extended to twig-level
caching and we leave this as our future work. Importantly, we shall show later
that our caching strategy can outperform a state-of-the-art twig-level, evolution-
unaware caching approach [13].

Compared to existing caching strategies for xml data [5,2,12,13], our work dif-
fers as follows. Firstly, we use frequent and infrequent conserved rqps instead of
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frequentqpts for caching strategies. Secondly, not only the frequency of therqps is
considered, but also the evolution patterns of their support values are incorporated
to make the caching strategy evolution-conscious. In summary, the main contribu-
tions of this paper are as follows. (a) We propose a set of metrics to measure the
evolutionary features of qpts (Section 2). (b) Based on the evolution metrics, two
algorithms (D-CQP-Miner and R-CQP-Miner) are presented in Section 3 to
discover novel patterns, namely frequent and infrequent conserved query paths. (c)
A novel path-level evolution-conscious caching strategy is proposed in Section 4
that is based on the discovered cqps. (d) Extensive experiments are conducted in
Section 5 to show the efficiency and scalability of the CQP-Miner algorithms as
well as effectiveness of our caching strategy.

2 Modeling Historical XML Queries

We begin by defining some terminology that we shall use later for representing
historical xml queries. A calendar schema is a relational schema R with a con-
straint C, where R = (fn : Dn, fn−1 : Dn−1, · · · , f1 : D1), fi is the name for
a calendar unit such as year, month, and day, Di is a finite subset of positive
integers for fi, C is a Boolean-valued constraint on Dn × Dn−1 × · · · × D1 that
specifies which combinations of the values in Dn × Dn−1 · · ·D1 are valid. For
example, suppose we have a calendar schema (year: {2000, 2001, 2002}, month:
{1, 2, 3, · · · ,12}, day: {1, 2, 3, · · · , 31}) with the constraint that evaluate
〈y, m, d〉 to be “true” only if the combination gives a valid date. Then, it is evi-
dent that 〈2000, 2, 15〉 is valid while 〈2000, 2, 30〉 is invalid. Hereafter, we use
∗ to represent any integer value that is valid based on the constraint.

Given a calendar schema R with the constraints C, a calendar pattern, de-
noted as P, is a valid tuple on R of the form 〈dn, dn−1, · · · , d1〉 where di ∈
Di ∪ {∗}. For example, given a calendar schema 〈year, month, day〉, the calen-
dar pattern 〈∗, 1, 1 〉 refers to the time intervals “the first day of the first month
of every year”. Next we introduce the notion of temporal containment. Given
a calendar pattern 〈dn, dn−1, · · · , d1〉 denoted as Pi with the corresponding cal-
endar schema R, a timestamp tj is represented as 〈d′n, d′n−1, · · · , d′1〉 according
to R. The timestamp tj is contained in Pi, denoted as tj � Pi, if and only if ∀
1 ≤ l ≤ n, d′l ∈ dl.

2.1 Representation of an XML Query

We adopt the query pattern trees (qpts) [12,13] representation method in this
paper. A query pattern tree is a rooted tree QPT = 〈V, E〉, where V is a set
of vertex and E is the edge set. The root of the tree is denoted by root(QPT ).
Each edge e = (v1, v2) indicates node v1 is the parent of node v2. Each vertex
v’s label, denoted as v.label, is a tag value such that v.label is in {“//”, “*”}
∪ tagSet, where tagSet is the set of all element and attribute names in the
schema. Furthermore, if v ∈ V and v.label ∈ {“//”, “ ∗ ”} then there must be a
v′ ∈ V such that v′ ∈ tagSet and is a child of v if v.label = “//”.
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A qpt is a tree structure that represents the hierarchy structure of the pred-
icates, result elements, and attributes in the xml query. Based on the definition
of qpt, in existing approaches the rooted subtree of a qpt is defined to capture
the common subtrees in a collection of xml queries [11,13]. However, in this pa-
per, we are interested in rooted query paths, which can provide a finer granularity
for caching than rooted subtrees. Rooted query paths are special cases of rooted
subtrees. Given a qpt QPT = 〈V, E〉, RQP = 〈V ′, E′〉 is a rooted query path of
QPT , denoted as RQP ⊆ QPT , such that (1) Root(QPT ) = Root(RQP ) and (2)
V ′ ⊆ V , E′ ⊆ E, and RQP is a path in QPT . For example, /book/section/figure
is a rqp in Figure 1(c).

2.2 Representation of XML Query History

Each qpt is represented as a pair (QPTi, ti), where ti is the timestamp recording
the time when QPTi was issued. As a result, the collection of queries (qpts) can
be represented as a sequence 〈 (QPT1, t1), (QPT2, t2), · · · , (QPTn, tn) 〉, where
t1 ≤ t2 ≤ . . . ≤ tn. Then, a Query Pattern Group (qpg) is a bag of qpts [(QPTi,
ti), (QPTi+k, ti+k), · · · , (QPTj, tj)] such that 1 ≤ (i, j) ≤ n and ∀ m (i ≤ m
≤ j), tm � Px where Px is the user-defined calendar pattern. Observe that the
qpts in a specific qpg are issued within the same calendar pattern according to
the calendar schema. Users can define their own time granularity according to
the workload and application-specific requirements.

The sequence of qpts can now be partitioned into a sequence of query pattern
groups denoted as 〈QPG1, QPG2, · · · , QPGk〉. The occurrences of all qpts in
a qpg are considered to be equally important. In our approach, we compactly
represent each qpg as a query pattern group tree (qpg-tree).

Definition 1. Query Pattern Group Tree (QPG-tree):LetQPG = [QPTi,
QPTi+1, · · · ,QPTj] be a query pattern group. A query pattern group tree is a 3-tuple
tree, denoted as TG = 〈 V, E, ℵ 〉, where V is the vertex set, E is the edge set, and ℵ
is a function that maps each vertex to the support value of the corresponding rooted
query path (rqp), such that ∀ RQP ⊆ QPTk, i ≤ k ≤ j, there exists a rooted query
path, RQP ′ ⊆ TG, that is extended included to RQP .

Consider the three qpts in Figures 1(a), (b), and (c). The corresponding qpg-
tree is shown in Figure 1(e). The qpg-tree includes all rqps and records the
support values (the values inside the nodes of the rqps in the figure). Given a
query pattern group QPGi, the support of a rqp in QPGi is defined as Φi(RQP)
= K / L, where K denotes the number of times the rqp is extended included in
the qpts in QPGi and L denotes the number of qpts in QPGi. When the rqp
is obvious from the context, the support is denoted as Φi. Note that the tradi-
tional notion of subtree inclusion [9] is too restrictive for qpts where handling of
wildcards and relative paths are necessary. Hence, the concept of extended sub-
tree inclusion, a sound approach to testing containment of query pattern trees,
was proposed by Yang et al. [11] to count the occurrence of a tree pattern in
the database. Here, we adopt this concept in the context of rqps. Given two
rooted query paths, RQP1 and RQP2, RQP1 ≺ RQP2 denotes that RQP1 is
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extended included in RQP2. Our definition of extended inclusion is similar to
that of Yang et al. [11]. The only difference is that we assume the subtrees are
rqps. The formal definition is given in [15].

Since there can be a sequence of qpgs in the history, the mean support value of
a rqp is represented as Group Support Mean (gsm). That is, let 〈QPG1, QPG2,
· · · , QPGn〉 be a sequence of qpgs in the history. The gsm of a rooted query
path, RQP ⊆ QPGi (0 ≤ i ≤ n), denoted as Φ(RQP), is defined as 1

n

∑n
i=1 Φi.

To facilitate discovery of specific patterns from the evolution history of the
rqps in the qpg-trees, we propose to merge the sequence of qpg-trees into a
“global” tree called historical qpg-tree (hqpg-tree). It is similar to the idea
of qpg-tree except for the function ℵ. In qpg-tree, the ℵ function is used to
map each vertex to a single support value of the rooted path at that vertex. In
the definition of hqpg-tree, ℵ is replaced by Ψ function which is used to map
each vertex to a sequence of support values. For example, Figure 1(f) shows
an example hqpg-tree by partitioning the qpts in Figures 1(a), (b), (c), and
(d) into two qpgs. The first three qpts are in one group, while the last is in
another group. The sequence of values associated with each vertex in Figure 1(f)
corresponds to the support values. The formal definition is given in [15].

2.3 Evolution Metrics

Given a sequence of historical support values of a rqp, we can undertake two
approaches to measure its evolutionary characteristics. First, in the regression-
based approach, the evolution metric computes the “degree” of evolution (or
conservation) from the sequence directly. Second, in the delta-based approach,
we first compute the changes to consecutive support values in the sequence and
then quantify the evolution characteristics of the rqp using a set of delta-based
evolution metrics.
Regression-based Evolution Metric: Intuitively, the evolutionary pattern of
a rqp can be modeled using regression models [10]. We propose a metric called
query conservation rate to monitor the changes to supports of query paths using
the linear regression model:Φt(RQP ) = Φ0(RQP ) + λt, where 1 ≤ t ≤ n.
Here the idea is to find a “best-fit” straight line through a set of n data points
{(Φ1(RQP ), 1), (Φ2(RQP ), 2), · · · , (Φn(RQP ), n)}, where Φ0(RQP ) and λ
are constants called support intercept and support slope, respectively. The most
common method for fitting a regression line is the method of least-squares [10].
By applying the statistical treatment known as linear regression to the data
points, the two constants, Φ0(RQP ) and λ, can be determined. The correlation
coefficient, denoted as r, can then be used to evaluate how the regression fits the
data points actually.

Definition 2. Query Conservation Rate: Let 〈 Φ1, Φ2, · · · , Φn〉 be the
sequence of historical support values of the rooted query path rqp. The query con-
servation rate of rqp is defined as R(RQP ) = r2 − |λ| where λ =∑ n

i=1 iΦi−
∑n

i=1 Φi

∑ n
i=1 i

n
∑

n
i=1 i2−(

∑
n
i=1 i)2 and r = n

∑ n
i=1 (Φi∗i)−(

∑n
i=1 Φi)(

∑ n
i=1 i)√

[n
∑ n

i=1 (Φi)2−(
∑ n

i=1 Φi)2][n
∑ n

i=1 i2−(
∑ n

i=1 i)2]
.
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Note that the larger the absolute value of the support slope, the more signifi-
cantly the support changes over time. At the same time, the larger the value of
r2, the more accurate is the regression model. Hence, the larger the query con-
servation rate R(RQP ), the support values of the rqp change less significantly
or are more conserved. Also it can be inferred that 0 ≤ R(RQP ) ≤ 1.
Delta-based Evolution Metrics: We now define a set of evolution metrics that
are defined based on the changes to the support values of a rqp in consecutive
qpg pairs. We begin by defining the notion of support delta. Let QPGi and
QPGi+1 be any two consecutive qpgs. For any rooted query path, RQP , the
support delta of RQP from ith qpg to (i + 1)th qpg, denoted as δi(RQP ), is
defined as δi(RQP ) = |Φi+1(RQP ) − Φi(RQP )|.

The support delta measures the changes to support of a rqp between any two
consecutive qpgs. Obviously, a low δi is important for a rqp to be conserved.
Hence, we define the support conservation factor metric to measure the percent-
age of qpgs where the support of a specific rqp changes significantly from the
preceding qpg.

Definition 3. Support Conservation Factor: Let 〈 QPG1, · · · , QPGn 〉 be
a sequence of qpgs . For any rooted query path, RQP , the support conserva-
tion factor in this sequence, denoted as S(α, RQP ), where α is the user-defined

threshold for support delta, is defined as S(α, RQP ) =
∑ n−1

i=1 di

n−1 where (a) if
δi(RQP ) ≥ α then di = 1; (b) if δi(RQP ) < α then di = 0.

Observe that the smaller the value of S(α, RQP ) is, the less significant is the
change to the support values of the RQP . Consequently, at first glance, it may
seem that a low S(α, RQP ) implies that the RQP is conserved. However, this
may not be always true as small changes to the support values in the history
may have significant effect on the evolutionary behavior of a rqp over time. We
define the aggregated support delta metric to address this.

Definition 4. Aggregated Support Delta: Let 〈QPG1, QPG2, · · · , QPGn〉
be a sequence of qpgs in the history. The aggregated support delta of RQP ,

denoted as Δ(RQP ), is defined as: Δ(RQP ) =
√

1
n−1

∑n−1
i=1 (Φi − Φi+1)

2.

3 CQP-Miner Algorithms

We begin by formally presenting two definitions for cqps by using the regression-
based metric and delta-based metrics, respectively.

Definition 5. Conserved Query Path (CQP): A RQP is a conserved
query path in a sequence of qpgs iff any one of the following conditions is
true: (a) R(RQP ) ≤ ζ where ζ is the threshold for query conservation rate; (b)
S(α, RQP ) ≤ β and Δ(RQP ) ≤ γ where α, β, and γ are the thresholds for
support delta, support conservation factor, and aggregated support delta, respec-
tively.
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Algorithm 1: QPG-tree Construction
Input:  A bag of QPTs: 
          [QPT1, QPT2, ..., QPTn] 
Output: The QPG tree: TG

1:  Description
2:  Initialize TG as the first QPT QPT1
3:  for all 2   I   n do
4:     for all RQP   QPTi do
5:        for all RQP’   TG do
6:           if RQP’   RQP then 
                 update the support of RQP’
7:           if RQP   TG then 
                 Insert RQP to TG
8:        end for
9:     end for
10: end for
11: Return(TG)

Algorithm 2: D-CQP-Extract
Input:  An HQPQ tree: TH
        The user-defined thresholds

Output: Sets of FCQPs and ICPQs: F and I

1: Description
2: for all RQP   TH (top-down)
3:    if  <   <  then
        prune all the children of this RQP
4:    if                  
        and           then 
5:    if                 
        and ?(RQP) ? ? then 
6: end for
7: Return (F, I )

Algorithm 3: R-CQP-Extract
Input:  An HQPQ-tree: TH
        The user-defined thresholds 

Output: Sets of FCQPs and ICPQs: F and I

1: Description
2: for all RQP   TH (top-down)
3:   if         then 
        prune all the children of this RQP
4:   if and           then

5:   if      and           then

6: end for
7: Return (F, I )

(a) QPG-tree Contruction Algorithm (b) D-CQP-Extract Algorithm (c) R-CQP-Exxtract Algorithm

Fig. 2. Algorithms for cqp mining

There are two variants of cqps, frequent conserved query paths (fcqps) and
infrequent conserved query paths(icqps), which are important for our caching
strategy. Both of them have the following characteristics: (a) the support values
of the rqps are either large enough or small enough; and (b) their support values
do not evolve significantly in the history.

Definition 6. FCQP and ICQP: Let rqp be a conserved query path. Let ξ
and ξ′ be the minimum and maximum group support mean (gsm) thresholds,
respectively. Also, ξ > ξ′. Then, (a) rqp is a Frequent Conserved Query Path
(fcqp) iff Φ(RQP ) ≥ ξ; (b) rqp is an Infrequent Conserved Query Path ( icqp)
iff Φ(RQP ) ≤ ξ′.

3.1 Mining Algorithms

Given a collection of historical xml queries, the objective of conserved query
paths mining problem is to extract the frequent and infrequent cqps. Using the
delta-based and regression-based evolution metrics, we present two algorithms
to extract the sets of fcqps and icqps. We refer to these algorithms as D-
CQP-Miner and R-CQP-Miner, respectively. Each algorithm consists of the
following two major phases.
HQPG-tree Construction Phase: Given a collection of xml queries, an
hqpg-tree is constructed in the following way. Firstly, the queries are trans-
formed into qpts. Then, the qpts are partitioned into groups based on the
timestamps and user-defined calendar pattern, where each qpg is represented as
a qpg-tree. Next, the sequence of qpg-trees are merged together into an hqpg-
tree. We elaborate on the construction of the qpg-tree and merging qpg-trees.
The algorithm of constructing the qpg-tree is shown in Figure 2(a).

The algorithm of merging the sequence of qpg-trees into the hqpg-tree is
similar to the above algorithm. The only difference is that rather than increas-
ing the support values of the corresponding rqps, a vector that represents the
historical support values is created for each rqp. If the rqp does not exist in the
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hqpg-tree, then the vector of supports for this rqp should be a vector starting
with i-1 number of 0 s, where i is the ID of the current query pattern group.
CQP Extraction Phase: Given the hqpg-tree, the fcqps and icqps are ex-
tracted based on the user-defined thresholds for the corresponding evolution
metric(s). Corresponding to the two definitions of cqps, two algorithms are pre-
sented. The first algorithm is based on the delta-based evolution metrics and the
second one is based on the regression-based evolution metric. We refer to these
two algorithms as D-CQP-Extract and R-CQP-Extract, respectively. In both
algorithms, the top-down traversal strategy is used to enumerate all candidates
of both frequent and infrequent cqps. We use the top-down traversal strategy
based on the downward closure property of the gsm values for rqps.

Lemma 1. Let RQP1 and RQP2 be two rooted query paths in an hqpg-tree.
If RQP1 is included in RQP2, then Φ(RQP1) ≥ Φ(RQP2) .

Due to space constraints, the proof is given in [15]. Based on the above lemma, we
can prune the hqpg-tree during the top-down traversal. That is, for rqps whose
Φ are smaller than ξ, no extensions of the rqps can be fcqps. Similarly, for rqps
whose Φ are smaller than ξ′, all of their extensions also satisfy this condition
to be icqps. The D-CQP-Extract algorithm is shown in Figure 2(b). We first
compare the values of Φ with the thresholds of gsm. In this case, some candidates
can be pruned. After that, the value of S(α, RQP ) is calculated and compared
with β. Note that as S(RQP ) is expensive to compute, it is only calculated for
the candidates that satisfy all other constraints. The R-CQP-Extract algorithm
(Figure 2(c)) is similar to the D-CQP-Extract, the only difference being the
usage of different metrics.

4 Evolution-Conscious Caching

We now present how to utilize the discovered cqps to build the evolution-
conscious cache strategy. There are two major phases, the cqp ranking phase
and the evolution-conscious caching (ECC) strategy phase.

4.1 The CQP Ranking Phase

In this phase, we rank the cqps discovered by the CQP-Miner algorithm using
a ranking function. The intuitive idea is to assign high rank scores to query paths
that are expected to be issued frequently. Note that there are other factors such
as the query evaluation cost and the query result size that are important for
designing effective caching strategy [11,12].

Definition 7. Ranking Functions: Let the cost of evaluating a rqp (de-
noted as Costeval(RQP )) is the time to execute this query against the xml
data source without any caching strategy, while the size of the result (denoted as
|result(RQP )|) is the actual size of the view that stores the result. Then the rank-
ing function, R, is defined as: (a) If D-CQP-Miner is used to extract icqps and
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Algorithm 4: Cache-Conscious Query Evaluation
Input:  A new XML query: qx , 
        Ranked FCQPs and ICQPs in descending 
        order: Fp and Ip

1:  Description:
2:  
3:   if 
4:     choose a sequence of ordered          based on 
           their ranking
5:     decompose
6:   end if
7:   evaluate the query by combining the results
8:   for all 
9:     update 
10:    if <      
11:      evict the cached result of RQPi from caching
12:    end if
13:   end for

Algorithm 5: Evolution-Conscious Cache Maintenance Policy
Input:  Q,    , K be the set of queries that have been 
        cached

1: Description:

2:   Compute q = 

3:   if q ? ?

4:     Regenerate Ip and Fp.

5:     if 

6:       evict RQP 2 M0

7:     end if

8:     while there is space left in the cache

9:       cache the RQP with maximum rank 

               but not in the cache

10:    end while

11:   end if

(a) Cache-Conscious Query Evaluation Algorithm
(b) Evolution-Conscious Cache Maintenance Policy Algorithm

Fig. 3. Algorithms for evolution-conscious caching

fcqps, then R(RQP ) = Costeval(RQP )×Φ(RQP )
S(α,RQP )×Δ(RQP )×|result(RQP )| ; (b) If R-CQP-Miner

is used to extract icqps and fcqps, then R(RQP ) = Costeval(RQP )×Φ(RQP )
R(RQP )×|result(RQP )| .

Observe that we have two variants of the ranking function as our ranking strategy
depends on the two sets of evolution metrics used in the regression-based (R-
CQP-Miner) and delta-based (D-CQP-Miner) cqps discovery approaches.
Particularly, these evolution metrics are used to estimate the expected number
of occurrences of the query paths. The remaining factors are used in the similar
way as they are used in other cache strategies [3,8,12].

4.2 The ECC Strategy Phase

The goal of this phase is to construct an evolution-conscious caching strategy
that utilizes the ranked fcqps and icqps in such a way that the query processing
cost for future incoming queries is minimized. As the cache space is limited, the
basic strategy is to cache the results for the fcqps with the largest rank scores
by replacing the cached results of the rqps with smaller rank scores.

We first introduce the notion of composing query. Suppose at time t1, the
cache contains a set of views V = {V1, V2, · · · , Vn} and the corresponding
queries are Q = {Q1, Q2, · · · , Qn}. When a new query Qn+1 comes, it inspects
each view Vi in V and determines whether it is possible to answer Qn+1 from
Vi. View Vi answers query Qn+1 if there exists another query C which, when
executed on the result of Qi, gives the result of Qn+1. It is denoted by C◦Qi =
Qn+1, where C is called the composing query (CQ). When a view answers the
new query, we have a hit, otherwise we have a miss.
Cache-conscious query evaluation: Figure 3(a) describes the query eval-
uation strategy. When a new query qx appears, it may match to more than
one of the rqps in the set of fcqps (which are denoted as M). Hence, qx can
be considered to be the join of many RQPs and the composing query q′x. For-
mally, qx = RQP1 ◦ RQP2 · · · , RQPj ◦ q′x, where RQP1, RQP2, · · · , RQPj are
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the cached rqps with the highest rank scores and are contained in qx, q′x is
the composing query that does not contain any of the rqps in the cache. The
answers are obtained by evaluating the composing query and joining the corre-
sponding results (Lines 2-7). Next, for all RQPs that are contained in M , the
corresponding ranks are updated with respect to the changes of Φ (Lines 8-9).
If the rank for any of these RQPs falls below the minimum value of these rqps
in the cache, then the corresponding query results will be evicted (Lines 10-12).
Note that we do not update the values of evolution metrics of icqps and fcqps
during the caching process. Rather, it is done off-line as discussed below.
Evolution-conscious cache maintenance policy: One can observe that un-
der heavy query workload, mining fcqps and icqps frequently during evaluation
of every new query can be impractical. Hence, rather than computing new sets
of fcqps and icqps whenever a new query appears, we recompute these cqps
only when the number of new queries that have been issued, in comparison with
the set of historical queries, is larger than some factor q. Note that this mining
process can be performed off-line.

Formally, let tp be the most recent time when we computed the sets of fcqps
and icqps in the history. Let |Q| denote the number of xml queries in the
collection at tp. Assume that we recompute the sets of fcqps and icqps at time
tn where tn > tp. Let |ΔQ| be the set of new queries that are added during tp

and tn. Then, q = |ΔQ|
|Q| .

The algorithm for query evaluation is shown in Figure 3(b). First, it computes
the q value. If q is greater than or equal to some threshold ε then the fcqps
and icqps are updated off-line. In Section 5.2, we shall empirically show that
ε = 0.5 produces good results. If the rqps that have been cached are in the
list of regenerated icqps, then the corresponding results in the cache have to be
evicted (Lines 5-7). Consequently, there may be some space in the cache available
that can be utilized. If the space is enough, then cache those rqps in Fp having
maximum rank but have not been cached yet (Lines 8-10).

5 Performance Evaluation

The mining algorithms and the caching strategy are implemented in Java. All the
experiments were conducted on a Pentium IV PC with a 1.7Ghz cpu and 512mb
ram, running MS Windows 2000. We use two set of synthetic datasets gener-
ated based on the dblp.dtd (http://dblp.uni-trier.de/xml/dblp.dtd) and SS-
Play.dtd (http://www.kelschindexing.com/shakesDTD.html). Firstly, a dtd
graph is converted into a dtd tree by introducing some “//” and “*” nodes.
Then, all possible rooted query paths are enumerated. Similar to [6,12,13], the
collection of qpts is generated based on the set of rqps using the Zipfian dis-
tribution and these qpts are randomly distributed in the temporal dimension.
Example of two sets of qpts in the dblp and SSPlay datasets is given in [15].
Each basic dataset consists of up to 3,000,000 qpts, which are divided into 1000
qpgs. The characteristics of the datasets are shown in Figure 4(a).



On the Discovery of Conserved XML Query Patterns 537

Datasets DBLP SSPlay

QPT
In

DB

Avg # of 
Nodes

Max Depth

Max Fanout

12.4

10

15

9.5

9

11

(a) Characteristics of datasets

(b) D-CQP-Miner (1) (c) D-CQP-Miner (2)

(d) D-CQP-Miner (3) (e) R-CQP-Miner

Fig. 4. Datasets and performance of CQP-Miner

5.1 CQP-Miner

Algorithm Efficiency: We evaluate the efficiency by varying the average size
of qpgs and the number of qpgs (the size of the time window). Figures 4(b) and
(c) show the running time of the D-CQP-Miner when the size of the dataset
increases. In the first case, the number of qpgs is increased while the average size
of each qpg is fixed. In the second case, the average size of each qpg increases
while the number of qpgs is fixed. The dblp dataset is used and the parameters
are fixed as follows: α = 0.02, β = 0.05, γ = 0.02, and ξ = 0.25. Also, we set
ξ′ = ξ/10. It can be observed that when the size of the dataset increases, the
running time increases as well. The reason is intuitive as the size of the hqpg-
tree becomes larger, it requires more time for the tree construction and handling
large number of candidate cqps. The running time of the R-CQP-Miner shows
a similar trend. Due to space constraints, the reader may refer to [15] for details.
Effects of Thresholds: As there are four thresholds: α, β, γ, and ζ for the
D-CQP-Miner, experiments are conducted by varying one of the them and
fixing the others. For instance, in Figure 4(d), “α = 0.01 ∗ k, β=0.01, γ=0.02,
ξ=0.1” means that we fix the values of β, γ and ξ, and vary α from 0.01 to 0.05
by varying k from 1 to 5. In this experiment, the dblp dataset with 300,000
queries is used. The results in Figure 4(d) show that the running time of D-
CQP-Miner increases with the threshold values. Observed that the changes to
ξ and α have more significant effect on the running time than the changes to β
and γ. This is because ξ affect the total number of fcqps and icqps and the
values of α affect both support deltas and support conservation factors.
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Fig. 6. Performance of caching strategies

Similarly, the thresholds, ζ and ξ, are varied to evaluate their effects on the
running time of the R-CQP-Miner. The results are shown in Figure 4(e). The
SSPlay dataset with 900,000 queries is used. It can be observed that the running
time increases with the thresholds. The reason is that when the values for any
of the two parameters increase, the number of cqps increases.
Comparison of Mining Results: As the two algorithms use different evolution
metrics, to compare the mining results, we define the notion of overlap metric.
Let FD and ID be the sets of fcqps and icqps, respectively, in the D-CQP-
Miner mining results. Let FR and IR be the sets of fcqps and icqps in the
R-CQP-Miner mining results. The overlap between the two sets of mining
results is defined as: Overlap = 1

2 × ( |FD∩FR|
|FD∪FR| + |ID∩IR|

|ID∪IR| ).
Basically, the overlap value is defined as the number of shared cqps divided by

the total number of unique cqps in both mining results. Based on this definition,
it is evident that the larger the overlap value, the more similar the mining
results are. In this definition all the cqps in the mining results are taken into
consideration. However, in caching, only the top-k frequent/infrequent cqps in
the results are important. Hence, we define the notion of overlap@k metric.
Let CD(k) and CR(k) be the sets of top-k conserved query paths in the D-
CQP-Miner and R-CQP-Miner results, respectively, where CD(k) ⊆ FD ∪ID

and CR(k) ⊆ FR ∪ IR. The overlap@k (denoted as o@k) is defined as: o@k =
|CD(k)∩CR(k)|
|CD(k)∪CR(k)| .
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The experimental results with the SSPlay dataset is shown in Figure 5(a). We
vary the thresholds of the evolution metrics and compute the overall and over-
all@k. Interestingly, the overlap value can be very close to 1 when the threshold
values are appropriately set. This indicates that both algorithms share a large
number of cqps even though they are based on different evolution metrics. More-
over, it can be observed that the top-10 cqps are exactly the same. Even for
the top-60 cqps, the two categories of evolution metrics can produce identical
sets of cqps under appropriate threshold values. This is indeed encouraging as it
indicates that both the regression-based and delta-based evolution metrics can
effectively identify the top-k cqps that are important for our caching strategy.
Comparison of Running Times: We now compare the running times of
the two algorithms when they produce identical top-k cqps under appropriate
thresholds. We choose the three sets of threshold values shown in Figure 5(a)
that can produce identical top-60 cqps (shaded region in the table). Figure 5(b)
shows the comparison of the running time. The dblp dataset is used and ξ is set
to 0.1. It can be observed that D-CQP-Miner is faster than R-CQP-Miner
when they produce the same top-60 cqps.

5.2 Evolution-Conscious Caching

We have implemented the caching strategy by modifying the replacement policies
of lru with the knowledge of fcqps and icqps as stated in the previous section.
From the original collections of qpts, some qpts are chosen as the basic query
paths and are extended to form the future queries. To select the basic query
paths, queries that are issued more recently have a higher possibility of being
chosen. That is, given a sequence of n qpgs, n−i

2i+1−n qpts are selected from
the ith group. Then, the set of selected queries are extended according to the
corresponding dtd. The future queries are generated by extending the previous
query paths with the randomly selected query paths. Note that for each of the
following experiments, 10 sets of queries are generated for evaluation and the
figures show the average performance. The qpts used for generating examples
of the 10 sets of queries are given in [15].

We use the same storage scheme as in [12]. That is, we use the index scheme
of [7] to populate the SQL Server 2000 database and create the corresponding
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indexes. The system accepts tree-patterns as its queries, and utilizes structural
join method [1] to produce the result. No optimization techniques are used.

Basically, six caching strategies are implemented: the D-CQP-Miner and
R-CQP-Miner-based strategies (denoted as dcqp and rcqp, respectively), D-
CQP-Miner and R-CQP-Miner-based strategies without a ranking function
(denoted as dcqp-r and rcqp-r, respectively), the original lru-based caching
strategy (denoted as lru), and the state-of-the-art frequent query pattern-based
caching strategy (2PX-Miner [13] based caching strategy denoted as qp). Note
that the fcqps and icqps used in the following experiments are discovered using
the D-CQP-Miner and R-CQP-Miner, by setting α = 0.02, β=0.02, γ=0.01,
ζ=0.01, and ξ = 0.2.
Average Response Time: The average response time is the average time taken
to answer a query. It is defined as the ratio of total response time for answering
a set of queries to the total number of queries in this set. Note that the query
response time includes the time for ranking the cqps (The cqp ranking phase).
Figure 6(a) shows the average response time of the six approaches while varying
the number of queries from 10,000 to 50,000 with the cache size fixed at 40mb.
We make the following observations. First, as the number of queries increases,
the average response time decreases. This is because when the number of queries
increases, more historical behaviors can be incorporated and the frequent query
patterns and conserved query paths can be more accurate. Second, dcqp, dcqp-
r, rcqp, and rcqp-r perform better than qp and lru. Particularly, when the
number of queries increases, the gaps between our approaches and the existing
approaches increases as well. For instance, our caching strategies can be up to
5 times faster than the qp approach and 10 times faster than the lru approach
when the number of queries is up to 50,000. Third, the rank-based evolution-
conscious caching strategies outperform the rank-unconscious caching strategies
highlighting the benefits of using the ranking functions.
Cost ratio: The cost ratio represents the query response time using different
types of caching strategies against the response time without any caching strat-
egy for all query examples. Figure 6(b) shows the performance of the six caching
strategies in terms of the cost ratio measure. The number of queries is fixed at
2000, while the cache size varies from 20mb to 100mb (for the SSPlay dataset).
It can be observed that dcqp, dcqp-r, rcqp, and rcqp-r perform better than
qp and lru. Particularly, observe that the ratio difference between state-of-the-
art qp approach and lru is between 0.09 ∼ 0.12. If we consider this as the
benchmark then observed further difference of 0.1 ∼ 0.13 between our approach
and qp is significant. In other words, the idea of including evolutionary feature
of queries for caching is an effective strategy.
Number of QPGs: Figures 7(a) and (b) show how the average response time
and cost ratio change when the number of qpgs increases. The SSPlay dataset
is used and the average size of each qpg is 300. We vary the number of qpgs
from 3,000 to 15,000. Observe that the evolution-conscious caching strategies
perform better when there are more qpgs. This is because when the number of
qpgs is large, our cqps are more accurate.
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Maintenance cost of ICQPs and FCQPs: As mention in Section 4.2, the
sets of fcqps and icqps need to be updated after certain number of queries are
issued. In this experiment, we empirically determine the threshold value ε such
that as long as q < ε we do not need to update the icqps and fcqps. We first
vary q to study its effect on the quality of our caching strategy. Note that from
the running cost point of view, the larger the value of q, the lesser is the overhead.
Figure 8(a) shows the performance of our proposed approaches compared to the
lru and qp approaches (in terms of cost ratio). We set |Q| = 45000000 (9000
qpgs) and the cache size is fixed to 50mb. It can be observed that the cost
ratio increases with the increase in q for all approaches except the lru-based
approach. For the qp approach, rather than repeatedly updating the frequent
query patterns whenever new queries are issued, the same strategy of periodically
updating the mining results is used. It can be observed that the performance of
our proposed rcqp-r and dcqp-r are better than the qp approach for any q
value. Furthermore, rcqp-r and dcqp-r are better than the lru approach in
most cases when q < 0.5.

In Figure 8(b) we vary |Q| and the cache size to study the effect of q on the
cost ratio. It can be observed that our approaches produce good performance in
most cases when q < 0.5 (ε = 0.5). That is, our approach can improve the query
performance without updating the fcqps and icqps as long as |ΔQ| < |Q|

2 .

6 Conclusions and Future Work

In this paper, we proposed a novel type of xml query pattern named conserved
query paths (cqps) for efficient caching. To the best of our knowledge, this is
the first approach that integrates evolutionary features of xml queries along
with frequency of occurrences for building an efficient caching strategy. Con-
served query paths are rooted query paths (rqps) in qpts that never change
or do not change significantly most of the time in terms of their support val-
ues during a specific time period. Based on two evolution metrics, we presented
two algorithms (D-CQP-Miner and R-CQP-Miner) that extract frequent and
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infrequent cqps from the historical collection of qpts. These cqps are ranked
according to our proposed ranking function and used to build the evolution-
conscious caching strategy. Experimental results showed that the proposed algo-
rithms can be effectively used to build more efficient caching strategies compared
to state-of-the-art caching strategies. In future, we wish to explore how calendar
pattern selection can be automated. Also, we would like to extend our framework
to provide a more sophisticated probabilistic ranking function. Finally, we plan
to investigate strategies to automate the maintenance of icqps and fcqps.
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