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Abstract. In this paper, we address the problem of efficient processing of
XQueries in single-user relational environment where the queries are formulated
using a user-friendly GUI. We take a novel and non-traditional approach to im-
proving query performance by prefetching data during the formulation of a query.
The latency offered by GUI-based query formulation is utilized to prefetch por-
tions of the query results. To realize this, we present an algorithm for prefetching
based on data synopses statistics and GUI actions during visual query formula-
tion. Experimental evaluation indicates that prefetching is viable as the combined
time taken by all the prefetching operations is not significantly more than normal
query execution time. Our experiments in the context of biological data show that
prefetching improves the query response time by 7-96% with a greater improve-
ment for larger data sets. Also, we show the impact of errors committed by users
during query formulation on the query performance.

1 Introduction

Querying XML data involves two key steps: query formulation and efficient processing
of the formulated query. However, due to the nature of XML data, formulating an XML
query using an XML query language such as XQuery requires considerable effort. A
user must be completely familiar with the syntax of the query language, and must be
able to express his/her needs accurately in a syntactically correct form. In many real life
applications (such as life sciences) it is not realistic to assume that users are proficient
in expressing such textual queries. Hence, there is a need for a user-friendly visual
querying schemes to replace data retrieval aspects of XQuery.

In this paper, we address the problem of efficient processing of XQueries in the
relational environment where the queries are formulated using a user-friendly GUI.
The work presented here is part of our ongoing research of building a system called
Da Vinci’s Notebook that would empower biologists to explore huge volumes of ex-
perimental biology data. We take a novel and non-traditional approach to improving
query performance by prefetching data during the formulation of a query in a single-
user environment. The latency offered by the GUI-based query formulation is utilized
to prefetch portions of the query results. In order to expedite XML query processing
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using such GUI-based prefetching two key tasks must be addressed. First, given a user-
friendly visual query interface, GUI actions that can be used as indicators to perform
prefetching need to be identified. Second, each GUI action can possibly lead to more
than one prefetching operation. Therefore, an algorithm needs to be designed to select
the “best” operation. In this paper, we address these issues in detail. A short overview
of this approach appeared as a poster paper in [3].

To the best of our knowledge, this is the first work that makes a strong connection
between prefetching-based XML query processing and GUI-based query formulation.
The key advantages of our approach are as follows. First, our optimization technique is
built outside the relational optimizer and is orthogonal to any other existing optimiza-
tion techniques. Hence, our approach provides us with the flexibility to “plug” it on top
of any existing optimization technique for processing XML data in relational environ-
ment. Second, our approach is not restricted by the underlying schema of the database.
As a result, it can easily be integrated with any relational storage approaches. Third, the
prefetching-based query processing is transparent from the user. Consequently, there
does not exist any additional cognitive overhead to the users while they formulate their
queries using the GUI. Finally, our non-traditional approach noticeably improve the per-
formance of XML query execution. As we shall see in Section 5, our experiments with
biological data indicate a performance improvement of 7% to 96% with an increasing
improvement as the size of the data grows. Moreover, we also show that errors commit-
ted by users while formulating queries do not significantly affect the query performance.

2 Visual Query Interface

In this section, we present the visual interface which we shall use in the rest of the
paper for formulating XML queries. Ideally, a full implementation of the GUI-driven
prefetching system would require a fully-functional XQuery support. However, it is also
true that a visual interface is useful when it serves the needs of the majority of the users
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(a) Query formulation.

for $b in /sptr/entry, $c in /enzyme/entry
where
  ($b/feature/@type='transmembrane region' or
   $b/organism/name='human') and
   $c/swissprot_reference/@swissprot_accession =
   $b/accession
return $b/sequence, $c/enzyme_id

(b) XQuery representation.

Fig. 1. Visual query interface and XQuery representation
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in expressing majority of their queries, which are typically simple [1]. A complete but
too complex graphical interface would fail both in replacing the textual language and
in addressing all the users’ needs [1]. Furthermore, the focus of this paper is to study
the effect of GUI-driven prefetching on XML query processing and not design of a
complete visual interface for formulating XML queries. Hence, we implemented an
interface that supports simpler types of XQuery. These queries are sufficient to justify
the positive contributions made by the GUI-based prefetching technique. Specifically,
the syntax of the basic XQuery query that can be formulated using our GUI is as follows.
Note that we assume that the DTDs/XML schemas of data sources are available to the
user during query formulation.

FOR x1 in p1, . . . , xn in pn

WHERE W
RETURN r1, r2, . . . , rk

where pi is a simple linear path expression, W is a set of predicates that are connected
by AND/OR operator(s). A predicate w ∈ W can be one of the two forms: si op c or
si op sj where si and sj are path expressions that may contain a selection predicates
and c is a constant. The variable ri is a simple path expression.

Our system allows the user to formulate visual queries in an intuitive manner without
having to learn any query language. The user interface (Figure 1(a)) is presented as an
adjustable multi-panel window comprising the following items. The Repositories View
(labelled A) occupies the left pane. It serves as a data source browser in which the
user can view the list of available data sources and their respective structures in terms
of a tree display of their DTD/XML Schema. Showing multiple data sources allows
the formulation of queries spanning more than one source. The data sources shown in
Figure 1(a) are SWISSPROT and ENZYME.

The Query Editors are stacked in the middle pane (labeled C), with tabs for navigat-
ing between queries. It enables the user to specify the WHERE clause. The user drags
the node to be queried from the Repositories View and drops it in a Query Editor. A
Condition Dialog (labeled E), appears and the user is expected to fill in the condi-
tion that should be satisfied by the selected node. In Figure 1(a), the selected node is
/sptr/entry/feature/@type and the condition is "=transmembrane
region" thus forming the predicate .sptr.entry.feature.@type= "
transmembrane region" (labeled 2). This expression is called Comparison
Expr and the visual representation of a ComparisonExpr type is referred to as
ExprBox.

The user can combine two or more visual components that represent the
ComparisonExpr by dragging a region around them and assigning an AND or OR
condition. In Figure 1(a), the first two ComparisonExpr (labeled 2 and 3) are com-
bined using the OR operator thus forming the QueryExpr (.sptr.entry.fea-
ture.@type="transmembrane region" OR .sptr.entry.organism.
name="human"). In order to specify a join condition two nodes, each representing
one side of the join condition are selected and dragged on to the Query Editor. This is
shown by the labels 4 and 5 in Figure 1(a). The visual representation of a QueryExpr
type is also referred to as ExprBox.
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The Selections View (labeled B) is a drop target for nodes dragged from the Repos-
itories View and displays the nodes that will be visible in the result of the query. This
enables the visual formulation and representation of the XQuery RETURN clause. The
user can execute the query by clicking on the “Run” icon in the Query Toolbar. The
Results View (labeled D) displays the query results.

To formulate a query, the user first selects the nodes that should be present in the
RETURN clause. For instance, in Figure 1(a), the nodes selected are sequence and
enzyme id indicating that the user only wants to view these elements in the result.
Next, the predicates in the WHERE clause are formulated in the Query Editor. The visual
constructs in the Query Editor and Selections View need to be translated to formulate
a complete XQuery. Each ComparisonExpr or QueryExpr can be combined to
obtain a Query type. The translation to XQuery can be easily done by following the
syntax presented earlier. Figure 1(b) shows the XQuery corresponding to Figure 1(a).

3 Computing Query Formulation Time

Our query processing approach utilizes the user’s query formulation time to prefetch
results of the intermediate queries. To determine the time available for prefetching (and
to measure the improvement provided by prefetching), the time required to formulate a
query visually needs to be measured. This is referred to as the query formulation time
(QFT). It is the duration between the time the first predicate is added and the execution
of the “Run” command as prefetching can start only when the first predicate is known.

We have used the Keystroke-Level Model (KLM)[4] to calculate QFT. The KLM
is a simple but accurate means to produce quantitative, a priori predictions of task
execution time. These times are has been estimated from experimental data [4]. The
basic idea of KLM is to list the sequence of keystroke-level actions that the user must
perform to accomplish a task, and sum the time required by each action. The KLM
has been applied to many different tasks such as text editing, spreadsheets, graphics
applications, handheld devices, and highly interactive tasks [4,6].

Figure 2(a) lists average task times for a subset of physical operators (K (key-stroking),
P (pointing), H (homing), and D (drawing)) as defined by KLM [4]. Figure 2(b) depicts
the estimated times for a set of atomic actions for visual query formulation. Note that the
times are computed using the physical operators in Figure 2(a). Figure 2(c) shows the
list of tasks the user needs to perform in order to formulate a query. Each task consists
of a set of atomic actions (Figure 2(b)). For example, adding a join predicate (Task T 2)
involves selecting the two join nodes (Action A1 twice) and dragging them on to the
Query Editor (Action A2). The estimated time taken to perform each task is simply the
sum of average times of the atomic actions.

Note that QFT does not include higher level mental tasks for formulating a query
such as planning a query formulation strategy. These tasks depend on what cognitive
processes are involved, and is highly variable from situation to situation or person to
person. We assume that the user has already planned the set of actions he/she is going
to take to formulate his/her query and any other mental tasks. That, is our QFT in the
following discussion consists of a sequence of physical operators only. This assumption
enables us to investigate the impact of prefetching for minimum QFT for a particular
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Action 
ID

Atomic Actions
Average Time 

(s)
Sequence of physical operator

A1 Select predicate node
(a) Move the mouse on the node (P)
(b) Press mouse button (B)

P+B=1.2

A2
Drag and drop 
predicate node

(a) Move the mouse to Query Editor (P)
(b) Release mouse button (B)

P+B=1.2

A3
Selection of 
comparison condition 
in condition dialog box

(a) Move the mouse to V button (P)
(b) Click mouse button (BB)
(c) Click mouse button on selected
     condition (BB)

P+2BB=1.5

A4
Type comparison 
value (avg 10 
characters)

(a) Move the mouse to text box (P)
(b) Moving the hand between keyboard 
     and mouse (H)
(c) Type characters (T(10))
(d) Moving the hand between keyboard 
     and mouse (H) [for subsequent action]

P+2H+T(10)
= 1.1 + 0.8 + 2.8

= 4.7

A5
Click on a button in the 
combo box

(a) Move the mouse on the button (P)
(b) Click mouse button (BB)

P+BB=1.3

A8 Click on RUN
(a) Move the mouse to RUN icon (P)
(b) Click mouse button (BB)

P+BB=1.3

A6 Select action to UNDO
(a) Move the mouse to UNDO  icon (P)
(b) Click mouse button (BB)

P+BB=1.3

A7 Click on UNDO
(a) Move the mouse to the action (P)
(b) Click mouse button (BB)

P+BB=1.3

A9
Drag predicate in 
Query Editor (for AND/
OR clause)

(a) Drag mouse to other predicate (P)
(b) Release mouse (B)

P+B=1.2

A10
Select AND/OR 
operator

(a) Move mouse on the AND or OR icon 
     (P)
(b) Click mouse button (BB)

P+BB=1.3

(b) Average execution times for atomic actions

Notation Physical Operator
Average 
Time (s)

K Keystroke 0.28

T(n) Type a sequence of n characters on a keyboard n x K

P Point with mouse to a target on the display 1.1

B Press or release mouse button 0.1

BB Click mouse button 0.2

H Moving the hand between keyboard and mouse 0.4

(a) Keystroke-Level Model

Task 
ID

Set of Task for QF Average Time (s)

T1 Add non-join predicate A1+A2+A3+A4+A5 = 9.9

Sequence of 
Actions

<A1, A2, A3, A4, A5>

T2 Add join predicate 2A1+A2 = 3.6<A1, A1, A2>

T3 Combine predicate with AND/OR A9+A10+A5 = 3.8<A9,A10,A5>

(c) Average execution times for query formulation tasks

Undo 
ID

Task
Average Time 

(s)

U1 Modify the LHS of a non-join predicate A1+A2+A5 = 3.7

Sequence of 
Actions

<A1, A2, A5>

U2 Modify the RHS of a non-join predicate A4+A5 = 6<A4, A5>

U3
Modify the comparison operator of a non-join 
predicate

A3+A5 = 2.8<A3, A5>

U4 Modify the LHS or RHS of a join predicate A1+A2+A5 = 3.7<A1, A2, A5>

U5 Change a AND to a OR (or vice versa) A10 = 1.3<A10>

U6 Deleting a predicate/RETURN clause A5=1.3
<A5> (Click delete 
button in UNDO box)

(d) Average execution times for UNDO tasks

T4 Add a RETURN clause element A1+A2 = 2.4<A1,A2>

Fig. 2. Query formulation times using Keystroke-Level model

query. Addition of mental operators while formulating a query will only increase the
QFT and consequently increase the performance gain achieved due to prefetching. In
other words, in this paper we investigate the benefits of prefetching for “worst case”
QFT (without mental operators).

We first compute QFT in the absence of any query formulation error committed by
the user. We call such QFT as error-oblivious query formulation time (EO QFT). Note
that our model for calculating the QFT can as well be used for other types of visual
XML query formulation systems (such as XQBE [1]). This is because similar actions
would be required to formulate a query.

3.1 Error-Oblivious QFT (EO QFT)

Based on the timings (Figures 2(b) and 2(c)) discussed above the EO QFT (denoted as
Tf ) for a query can be calculated as follows:

Tf = 9.9(xnj − 1) + 3.6xj + 3.8b + 1.3 (1)

where xnj is the number of non-join predicates, xj is the number of join predicates, b is
the number of boolean operators in the query, and 1.3s is the time taken to click on the
“Run” icon (Action A8 in Figure 2(b)). Observe that (xnj−1) is used as prefetching can
start only when the first query formulation step is complete in the Query Editor. That
is, QFT does not include the time taken to add the RETURN clause. This is because
if prefetching were to start as soon as the RETURN clause were added, it is possible
to retrieve very large results many of which may not be relevant eventually as WHERE
clause predicates are yet to be added in the Query Editor. Fortunately, as we shall in
Section 5, we achieve significant performance improvement even though we postpone
the prefetching till addition of a WHERE clause predicate in the Query Editor.



824 S. Prakash et al.

G

G

Fig. 3. Undo operation

3.2 Error-Conscious QFT (EC QFT)

The above approach used to calculate error-oblivious QFT does not take into account
errors committed by the user. These errors are referred to as query formulation errors
(QFE). Note that QFEs may impact our prefetching approach. Hence, it is necessary to
quantify the effect of QFEs by extending EO QFT with the time lost due to QFEs. We
first discuss how the GUI enables the user to correct queries by undoing certain actions.
Then, we compute the error-conscious QFT (EC QFT) that incorporates QFE.

Figure 3 shows the interface presented to the user. When the user discovers a mistake
he/she clicks on the UNDO icon (labeled F in Figure 1(a)). The user is then presented
with the list of actions he/she has performed (labeled G in Figure 3). For example,
in Figure 3 the list shows that the user has added two predicates and combined them
using a conjunction. The user then selects the action(s) to be corrected. Suppose the user
wanted the second predicate to be .sptr.entry.comment.text="cardiac
muscle" instead of .sptr.entry.comment.text="skeletal muscle" in
Figure 3. Consequently, the user has to modify the predicate by replacing "skeletal
muscle" with "cardiac muscle". In general, a user will execute the following
steps to rectify a mistake.

Step 1 (Click on the UNDO icon): This takes 1.3s (A7 in Figure 2(b)).

Step 2 (Select the action(s) to modify): The user may select an action to update or delete
by clicking on it or he/she may click the “Insert” button to insert new predicate(s) in
the WHERE and RETURN clauses. Each action selection for update or delete will take
at most 1.3s (A6 in Figure 2(b)). As there can be k number of actions to be modified,
the total time will be 1.3k seconds. The time taken to click “Insert” button is 1.3s (A5
in Figure 2(b)). If there are i such clicks then the total time is 1.3i. The time taken to
insert new non-join/join predicate(s) is (9.9inj +3.6ij) (Equation 1). Note that addition
of AND/OR operators will be included by Step 3. The time taken to insert r RETURN
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clause elements is also 2.4r (T 4 in Figure 2(c)). If “Insert” button is pressed then Step
3 is ignored by the user.

Step 3: In this step, some of the actions in Figure 2(d) need to be taken if the user
selects action(s) for update or delete.

Step 4 (Click on “OK” to accept the changes): This will take 1.3s (A5 in Figure 2(b))
and will have to be done for each modification. As a result, the total time taken for this
operation is 1.3 × � where � = (inj + ij + r + p� + pr + pc + pj + pd + pb) and
p�, pr, pc, pj , pd, pb are numbers of times corrections U1, U2, U3, U4, U5, and U6 in
Figure 2(d) are made respectively.

Step 5 (Click on “OK” button in Figure 3): This takes 1.3s (A5 in Figure 2(b)).

Therefore, each time the UNDO icon is clicked and a set of mistakes is corrected, the
additional time taken for formulating a query will be (2.6 + 1.3k + 1.3i + Tu) where
0 < k ≤ �, i ≥ 0 and

Tu = 9.9inj + 3.6ij + 2.4r + 3.7p� + 6pr + 2.8pc + 3.7pj + 1.3pd + 1.3pb + 1.3�
= 11.2inj + 4.9ij + 3.7r + 5p� + 7.3pr + 4.1pc + 5pj + 2.6pd + 2.6pb (2)

The query formulation time Tf can now be extended to incorporate QFEs. If the user
clicks on UNDO n times and corrects a set of mistakes each time then error-conscious
query formulation time (denoted as Tfe) is given by the following equation.

Tfe = 9.9(mnj − 1) + 3.6mj + 3.8mb +
n∑

s=1

(2.6 + 1.3is + 1.3ks + Tus) + 1.3(3)

where ks,is and Tus are the number of actions to be modified, the number of times
“Insert” button is selected, and the total time taken to correct the mistakes respectively,
for the sth instance of the UNDO operation. The variables mnj , mj , and mb are the
number of non-join predicates, number of join predicates, and the number of boolean
operators correctly added during query formulation respectively. Note that mnj , mj ,
and mb do not include those predicates and boolean operators that contain mistakes or
inserted/deleted during UNDO operation.

4 GUI-Based Prefetching

We now describe our approach to improving query performance by utilizing the la-
tency offered by GUI-based query formulation. Given an XML document and a path
expression P the Path Count (denoted as C(P )) is defined as the number of leaf nodes
that satisfy P . The C(P ) value for a non-root-to-leaf path P is

∑k
j=1 C(Pj) where

P1, P2, . . . , Pk are the root-to-leaf paths that satisfy P . Note that, as C(P ) increases so
does the I/O cost of a query that contains P as one of its path expressions. The Total
Path Count for an XML document is defined as T =

∑N
j=1 C(Pj) where N is the num-

ber of distinct root-to-leaf paths in the XML document. Next, we define the notion of
value selectivity. Given an XML document and a root-to-leaf path P , value selectivity
V (P ) is defined as the number of nodes in the XML document with path P that have
unique text values.
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Input: Actions from the query interface.
Output: Intermediate materializations.
1:  State S = getGUIState()
    /*prefetch till user executes query*/
2:  while S != “Execute Query” do
       /*Call materialization selection algorithm*/
3:     selectMaterialization()
       /*Call materialization replacement algorithm*/
4:     replaceMaterialization()
5:     S1 = getGUIState()
6:     while S1 == S do /*wait till GUI state changes*/
7:       S1 = getGUIState()
8:     end while
9:  end while

(a) Prefetching algorithm.

Input:  Expressions K =          in descending order of cost(  ). 
        Materialization limit LM.
Output: Coefficient of each   in the final materialization.
1:  start = 0, end = 2n - 1, middle
2:  while start < end do
3:    middle = (start + end)/2
4:    /*GetSelection(order, n) generates
5:      the coefficients for orderth combination out of 2n-1.*/
6:    S = GetSelection( middle, n )
7:    lS = 
8:    if lm > LM then
9:      end = middle - 1
10:  else if then
11:     start = middle + 1
12:   end if
13: end while
14: return GetSelection(middle, n)

)(cost
0 j

n

j js κ∑ =
×

},...,,{ 21 nκκκ
iκ

iκ

(b) Algorithm selectMaterialization.

Fig. 4. Algorithms for prefetching

Based on the above definitions, the cost of evaluating a QueryExpr κ, denoted
as cost(κ), can be calculated as follows. (1) If κ ::= PathExpr (ValueComp)
Literal then the usual procedure to estimate the I/O cost is followed. When Value
Comp is "=" or ">" cost(κ) = C(P )/V (P ) or cost(κ) = C(P )/3 respectively [5],
where P is the parameter of type PathExpr. This can be extended to other types
of ValueComp. (2) If κ ::= PathExpr (ValueComp) PathExpr and the two
PathExpr types are denoted as P1 and P2 then cost(κ) = C(P1)

V (P1)
× C(P2)

V (P2)
. (3) If κ ::=

ComparisonExpr (∧) ComparisonExpr and the two ComaprisonExpr
types are denoted as κ1 and κ2 then the probability that κi (i = 1, 2) is satisfied is
cost(κi)

T . Therefore, cost(κ) = cost(κ1)×cost(κ2)
T . (4) If κ ::= ComparisonExpr

(∨) ComparisonExpr and the two ComaprisonExpr types are denoted as κ1

and κ2 then cost(κ) = cost(κ1) + cost(κ2). Note that the last two formulae can be
extended for any number of conjunctions and disjunctions.

4.1 Prefetching Algorithm

The basic idea we employ for prefetching is that we prefetch constituent path expres-
sions, store the intermediary results, reuse them when connective is added or “Run” is
pressed. To realize this, the prefetching algorithm needs to perform prefetching oper-
ations at certain steps. In order to perform these operations, prefetching friendly GUI
actions need to be identified first. Recall from Section 2, when a user formulates a query,
constructs of types QueryExpr and ComparisonExpr are created. These types are
parts of the final query and, therefore, are candidates for temporary materializations.
Therefore, GUI actions that result in the addition of these types are also indicators for
prefetching. These actions are: (1) the addition of an ExprBox and (2) combining
two or more ExprBox types to create another ExprBox type that corresponds to a
QueryExpr type.

Next, given a GUI state, the optimal prefetching operations need to be determined.
Finally, since each prefetching operation is useful for the next, existing materializations
need to be replaced with new materializations preferably using the previous material-
izations. Figure 4(a) shows the overall prefetching algorithm. The process continues till
the user clicks on “Run” to execute the query (line 2). The process waits for changes in
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Input: GUI state, last GUI operation op and 
       current set of materializations M.
Output: Updated M.

1:  if op is add then
2:     selectMaterialization() /* refer to Figure 4(b) */
3:  end if
4:  if op is combine then
5:     e1 and e2 are the combined ExprBox types
6:     m1 and m2 are the corresponding materializations.
7:     if op is OR then
8:        if m1 and m2 then
9:           m = m1 m2
10:          M = M - (m1) - m2
11:          M = M m
12:       end if
13:       if !m1 or !m2 then
14:          M = selectMaterialization()
15:       end if
16:    end if
17:    if op is AND then
18:       if m1 and m2 then /* m1 and m2 have already been materialized */
19:          m = GetCommonNodes(m1,m2)
20:          M = M - (m1) - m2

∪

∪

21:          M = M m
22:       end if
23:       if !m1 or !m2 then /* m1 or m2 or both are not materialized yet */
24:          M = selectMaterialization()
25:          if (m1 m2)    M then
                /* Use m1 or m2 to generate the new SQL query */ 
26:             SQL s = SQL query using only m1 and m2.
27:             M = M - (m1 and m2)
28:             materialize s.
29:             M = M    s
30:          end if
31:       end if
32:    end if
33: end if
34: if op is UNDO then
35:    Cancel ongoing materialization.
36:    MD = completed materializations dependant on step being corrected.
37:    for all md MD do
38:       Delete md.
39:    end for
40: end if
    /*materialize the new ComparisonExpr or QueryExpr types in M*/
41: materializeNew()

∪

∧

∪

∈

∈

Fig. 5. Algorithm replaceMaterialization

the user interface (lines 5 to 8) before selecting new materializations (line 3). Once new
materializations are selected, existing ones are replaced (line 4).

Materialization Selection: At any given step during query formulation there can be
more than one materialization option. Therefore, an algorithm that selects the “best”
materialization is required. We begin by presenting two heuristics that are used in our
algorithm.

Heuristic 1:We consider only disjunctions of ComparisonExpr and QueryExpr
as candidates for temporary materializations. We elaborate on the rational behind this
heuristic now. While formulating queries the GUI contains n ComparisonExpr and
QueryExpr types (denoted as κi where i = 1 . . . n. Then, the possible materializations
are (κ1 ∨ κ2 ∨ κ3 ∨ . . .∨ κn), (κ1 ∧ κ2 ∨ κ3 ∨ . . .∨ κn), (κ1 ∧ κ2 ∧ κ3 ∨ . . .∨ κn) and
so on. The number of possible combinations is 2n−1. Obviously, evaluating all possible
materializations, though guaranteed to generate a useful materialization, is not feasible.
Therefore, only disjunctions are generated. This is because given κ1, . . . , κn, (κ1 ∧ κ2

∧ . . .∧ κn) can be evaluated from the materialization of (κ1 ∨ κ2 ∨ . . .∨ κn).

Heuristic 2: Given a materialization space limit LM , we include the maximum possible
number of expressions κi in the materialization. This is because the greater the number
of expressions included in the current materialization the greater the usefulness of the
intermediate result towards evaluating the final result.

Based on the above heuristics we define the notions of materialization selection
and the optimality of a materialization selection. Given κ1, κ2 . . . κn, a materializa-
tion selection is defined as S = {μ1, μ2, . . . , μn} where μi ∈ {0, 1} and the cost
associated with the selection (which is the same as the result size) is calculated as
lS =

∑n
i=1 cost(κi) × μi. Essentially, an expression κi is included in the material-

ization if μi = 1. The cost lS is a summation as only disjunctions are considered based
on Heuristic 1.
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The optimality of a materialization selection, denoted as Θ(S), is defined as follows.
Given two materialization selections Sa = 〈μa1 , μa2 , . . . , μan〉 and Sb =
〈μb1 , μb2 , . . . , μbn〉, Θ(Sa) > Θ(Sb) if and only if (

∑n
i=1 μai >

∑n
i=1 μbi) ∨

(
∑n

i=1 μai =
∑n

i=1 μbi∧lSa > lSb
). This optimality condition satisfies Heuristic 2. We

elaborate on the usefulness of this with an example. Consider a GUI state with three ex-
pressions κ1, κ2 and κ3 such that cost(κ1) > cost(κ2) > cost(κ3). The most desirable
materialization selection would be S = {1, 1, 1} as it will include all the expressions.
However, if lS > LM then selections with only two expressions will have to be consid-
ered. Then, the optimal materialization would be S = {1, 1, 0} as it includes the expres-
sions that will yield the largest result. This can be extended to generate the sequence
Θ({1, 1, 1}) > Θ({1, 1, 0}) > Θ({1, 0, 1}) > . . . > Θ({0, 0, 1}) > Θ({0, 0, 0}).
Note that this sequence can be generated for any number of expressions n.

The algorithm is shown in Figure 4(b). The input to the algorithm is the list of
ComparisonExpr and QueryExpr types, κi, currently present in the GUI. They
are listed in decreasing order of cost(κi) as discussed above. Essentially, the algorithm
performs a binary search over this sequence to determine the best materialization given
the limit LM . Notice that the sequence need not be pre-generated. The GetSelection
method returns a selection S given its order in the sequence and the number of ex-
pressions n. For example, in the case where n = 3, GetSelection(3, 3) would return
{1, 0, 1} - the third selection for three rules. Similarly, GetSelection(1, 3) would return
{1, 1, 1}. It can be shown that the overall time complexity of the algorithm is O(n3).
Once the list of expressions is selected by the algorithm a separate materialization, de-
noted as Mκi , is maintained for each κi. Note that a disjunction of the selected κis
could be maintained instead. However, the cost for both is approximately the same and
is equal to

∑
cost(κi).

Materialization Replacement: Once the optimal materialization to replace the current
state is selected it needs to be generated preferably using the results from the previous
materializations. The materialization replacement algorithm is presented in Figure 5.
The worst case complexity of the replacement algorithm without executing the new
materialization is O(n3) - when selectMaterialization() is called. The over-
all time taken depends on the execution time the SQL query(s) corresponding to the
new materialization.

5 Performance Study

The prototype system of GUI-driven prefetching technique was implemented using
JDK1.5. The visual interface was built as a plug-in for the Eclipse platform
(www.eclipse.org). The RDBMS used was SQL Server 2000 running on a P4 1.4GHz
machine with 256MB RAM. As mentioned in Section 1, our approach can be built on
any XML-to-relational storage mechanism. In this paper, we have adopted our schema-
oblivious XML storage system called SUCXENT++ [8].

The experiments were carried out with three data sets of size 300MB, 600MB and
1200MB respectively generated by combining the data sets shown in Figure 6(a). The
300MB data sets was generated using 150MB each of the SWISS-PROT and EMBL data
sets. The 600MB data set was generated using 300MB each and the 1200MB data set



Efficient XML Query Processing in RDBMS Using GUI-Driven Prefetching 829

# Query Characteristic Tf (s)

Q1

for $b in /sptr/entry
where $b/protein/name = ’Sesquiterpene
Cyclase’
return $b/accession

- Database: Swiss-Prot
- single non-join predicate
- small result size

1.3

Q2

for $b in /sptr/entry
where $b/feature[@type = ’transmembrane
region’] and $b/organism/name = ’human’
return $b/accession

- Database: Swiss-Prot
- two non-join predicates
- AND operator
- large result size

11.7

Q3

for $b in /sptr/entry
where ($b/keyword = ’Chloride Channel’
or $b/comment/text = ’skeletal muscle’)
return $b/accession,$b/sequence

- Database: Swiss-Prot
- two non-join predicates
- OR operator
- small result size

14.8

Q4

for $b in /sptr/entry
where ($b/keyword = ’Chloride Channel’
or $b/comment/text = ’skeletal muscle’)
and $b/organism/name=’human’
return $b/accession,$b/sequence

- Database: Swiss-Prot
- three non-join predicates
- AND/OR operator
- small result size

24.9

Q5
for $b in /embl/entry
where $b/keyword = “%gene%”
return $b/accession

- Database: EMBL
- single non-join predicate
- large result size

1.3

Q6

for $b in /embl/entry
where $b/source/organism=’Homo Sapiens’
and $b/keyword = ’%gene%’
return $b/accession

- Database: EMBL
- two non-join predicates
- AND operator
- large result size

11.98

Q7

for $b in /embl/entry
where $b/descr = ’%gene%’ or $b/keyword
= ’%gene%’
return $b/accession

- Database: EMBL
- two non-join predicates
- OR operator
- large result size

11.98

Q8

for $b in /embl/entry
where ($b/descr = ’%gene%’ or $b/keyword
= ’%gene%’) and $b/source/organism =
"Homo Sapiens"
return $b/accession

- Database: EMBL
- three non-join predicates
- AND/OR operator
- large result size

24.34

Q9

for $b in /sptr/entry, $c in /embl/entry
where $b/protein/name = ’Sesquiterpene
Cyclase’ and $b/dbReference[@id=$c/
accession]
return $b/accession, $c/accession

- Database: Swiss-Prot, 
  EMBL
- single join predicate
- AND operator

8.7

Q10

for $b in /sptr/entry, $c in /
enzyme_pathway/entry, $d in /embl/entry
where $d/keyword = ’%gene%’ and $b/
accession=$c/swissprot_reference/
reference and $b/
dbreference[@type="EMBL"]
and $b/dbReference[@id=$d/accession]
return $b/accession, $c/accession

- Database: Swiss-Prot, 
  Enzyme and EMBL
- two join predicates
- three Boolean operators

26.22

Result 
Size

3

2838

145

3349

3278

3883

43

3

3596

68

# Query Characteristic Tf (s)
Result 
Size

Data URL
Size
(MB)

Node 
Count

Leaf 
Count

Depth

Swiss-Prot http://us.expasy.org 600 26,035,096 17,385,288 6

EMBL http://ebi.ac.uk 600 15,265,784 13,460,524 6

Enzyme http://ebi.ac.uk 3 86,413 74,892 7

Total 1203 41,387,293 30,920,704

(a) Data Set

(b) Queries

Fig. 6. Data set and queries
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Fig. 7. Materialization replacement cost

was generated using the complete data sets. The 3MB ENZYME data set was used in all
experiments. It is not reflected in the respective sizes due to its much smaller size. Ten
queries were used to test the system. The list of queries together with their EO QFT
values and query results size for 1200MB data is shown in Figure 6.

We now define few terms that are used in the subsequent discussion. The response
time as perceived by the user when prefetching is not employed is called the normal
execution time (NET) (denoted as Tn). The perceived response time (PRT) is the query
response time when prefetching is employed. In the absence of QFEs, we refer to the
PRT as error-oblivious perceived response time (EO PRT). If QFEs are present then
we refer to the PRT as error-conscious perceived response time (EC PRT). The total
time taken for all prefetching operations is called total prefetching time (TPT). Next
we define the notion of error realization distance. Consider a query with n formulation
steps where the user clicks on “Run” at nth step. Suppose that the error is committed
at pth step and the UNDO operation is invoked at qth step where 0 < p < q ≤ n − 1.
Then, the error realization distance, denoted as ε, is defined as ε = q − p.

Materialization Replacement Cost: Figure 7 shows the results of materialization re-
placement cost. Here the running times of individual materialization operations are pre-
sented. Each section of the stacked columns represents the running time associated with
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Fig. 8. NET vs. TPT
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Fig. 9. NET vs EO PRT

the corresponding materialization. For example, Q1 has two formulation steps and, there-
fore, two sections in the corresponding stacked column. There are two main observations.
First, the increase in the running times as the data set size increases is less than linear.
Therefore, the cost associated with materialization replacement is scalable. Second, the
replacement cost for disjunctions is less than that for conjunctions. This is reflected in
the results for queries involving disjunction (Q3, Q4, Q7 and Q8) as opposed to queries
involving conjunction (Q2, Q6, Q9 and Q10). This is expected as the materialization
selection algorithm selects materializations with disjunctions (Heuristic 1). As a result,
evaluating conjunctions would involve an additional step.

NET vs TPT: This experiment is required to test the viability of prefetching. Figure 8
shows the results for this experiment. There are three main observations. The first is
that the difference is not significant indicating that prefetching is a viable option. The
second observation is that the conjunctive queries show a smaller difference than dis-
junctive ones. This is because conjunctive queries are evaluated from the corresponding
disjunction based on materialization selection/replacement algorithms. This means that
conjunctive queries will have a more significant prefetching overhead. This observation
can be extended to queries that proceed from less selective partial queries to more se-
lective final queries during formulation. The final observation is that for some of the
queries (e.g., Q2, Q4, Q10), interestingly, the sum of the prefetching operations is less
than the actual query execution time. This difference increases with data set size. This
can be explained as follows. The search phase during query optimization typically treats
the estimated cost model parameter values as though they were completely precise and
accurate, rather than the coarse estimates that they actually are. Consequently, the rela-
tional query optimizer may fail to produce query plans that are more robust to estima-
tion errors especially for complex queries. For Q2, Q4, and Q10, individual prefetching
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Fig. 10. EC PRT vs NET and EC PRT vs EO PRT(1)

queries are relatively simpler compared to a single normal query. Hence, we observe
such response time.

NET vs EO PRT: The next experiment compares the NET with the error-oblivious
perceived response time. This comparison is done as a percentage of improvement over
normal execution. It is measured as improvement = (1 - EO PRT

NET )×100. Figure 9
show the results for the three data sets. There are two main observations. First, the
improvement in performance is more for larger data sets. For the 300MB data set the
improvement range is 7-76%. This range increases to 16-89% for the 600MB data set
and 47-96% for the 1200MB data set. The second observation is that simple queries
(Q1, Q5 and Q9) with one predicate and small result sets benefit the least. Queries with
multiple predicates and large result sets benefit the most. This is indeed encouraging as
query response time is more critical for large data set. Also queries with disjunctions
benefit more than the queries with conjunctions. This is expected as the materializa-
tion selection algorithm selects disjunctions as the intermediate results. Q2 seems to
go against this observation. As mentioned earlier, this is due to the wide gap in the
optimality of the query plans generated in the two approaches.

NET vs EC PRT: In this experiment we evaluate the effect of QFE on perceived re-
sponse time over normal execution time. This comparison is done as a percentage of im-
provement over normal execution. It is measured as improvement = (1 - EC PRT

NET )×
100. In this experiment we present the worst-case value for EC PRT as discussed
in[2]. The results are presented in Figures 10(a) and 10(b). We only take the smallest
and the largest data sets (300MB and 1200MB) for this experiment. The main observa-
tion is that EC PRT is still significantly better than NET for most queries. Also ob-
serve that similar to EO PRT , there is larger improvement for larger data size. Hence,
QFEs do not significantly affect the performance improvement achieved by GUI-driven
prefetching.

EC PRT vs EO PRT: This comparison is done to measure the penalty on PRT due
to QFE. It is measured as penalty = EC PRT−EO PRT

EO PRT × 100. Again, the worst case
value of EC PRT is used for comparison. Particularly, we measure EC PRT for
q = n− 1 (UNDO operation invoked just before clicking “Run”) and vary error realiza-
tion distance. Figures 10(c) and 11 show the results for the 300MB and 1200MB data
sets. Figure 10(c) shows the results for queries that have three formulation steps (two
predicates and a conjunction/disjunction) other than clicking on “Run” and Figure 11(a)
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Fig. 11. EC PRT vs EO PRT (2)

shows the results for queries with five formulation steps. The three values shown for
each query in Figure 10(c) measure the penalty when the error was committed at the
first step, the second step and the third step respectively (variation of ε). The penalty
axis starts at −5 to allow the display of cases where penalty = 0.

The results shown highlight two main points. First, QFE generally has a greater effect
with the increase in error realization distance. This is expected as an early mistake will
lead to more materializations being recalculated. However, there are some exceptions.
The query Q2 for the 1200MB data set shows an increase as the evaluation of the second
predicate is more expensive than the first. Similar phenomenon is observed for query
Q4. Second, the impact of QFE increases with data set size. The 1200MB data set
shows a maximum increase of 316%. The 300MB data set shows a maximum increase
of 187%. The impact of QFE is felt on only four queries for the 300MB data set whereas
all queries are effected for the 1200MB data set. This can be attributed to the higher cost
of reevaluating materializations for the larger data set.

6 Related Work

GUI-latency driven optimization: Closest to our work is the effort by Polyzotis et
al. [7] in speculative query processing. The method described is for relational data and
incorporates speculation where the final query (or sub-queries that will be present in the
final query) is predicted based on the user’s usage profile. Machine learning techniques
are applied on past user actions and a user-behavior model is formulated. In comparison,
our approach employs deterministic prefetching without speculating on the final form
of the query. This could result in a less than maximum gain in certain cases but there
are no penalties. Speculation can lead to execution time penalties when the prediction
is incorrect. In our case, this problem does not arise. Furthermore, we do not need to
keep track of user’s usage profile, but still can achieve comparable query performance
improvement.

Prefetching and Caching: To the best of our knowledge, we have not found any pub-
lished work related to prefetching techniques for XML data. Closest to the prefetch-
ing approach is caching, which although investigated extensively in relational database
systems, is a relatively new area of research for XML data. However, XML caching
techniques mentioned in [9] operate on the final query and do not take into account
the individual steps in query formulation. In our approach, partial queries are materi-
alized at each formulation step by utilizing the latency offered by GUI-driven query
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formulation. This presents a significant advantage over caching as every query benefits
from prefetching unlike caching - where only those queries whose results have been
cached improve in performance.

7 Conclusions and Future Work

The main contribution of this paper is to show that the latency offered by visual query
formulation can be utilized to prefetch partial results so that the final query can be an-
swered in a shorter time. We show that prefetching is viable as the combined time taken
by all the prefetching operations is not significantly more than normal query execution
time. In fact, for some queries the total time taken by all prefetching operations is less
than the normal execution time due to a better query plan generated by the relational
query optimizer. Our experiments also show that prefetching improves the perceived
query response time by 7-96% with a greater improvement for larger data sets. In addi-
tion, query formulation errors have no significant influence on the perceived response
time compared to the normal execution time. GUI-driven prefetching is potentially of
value in XML query processing context where one would like to use a user-friendly GUI
to formulate queries. Future directions of research include extension of our prefetching
technique to more advanced XQueries, more sophisticated I/O cost estimation tech-
nique, and explore benefits of prefetching in a multiuser environment.
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