
Cleopatra: Evolutionary Pattern-based
Clustering of Web Usage Data

Qiankun Zhao1 Sourav S Bhowmick1 Le Gruenwald2?

1CAIS, Nanyang Technological University, Singapore
2University of Oklahoma, Norman, USA

qkzhao@pmail.ntu.edu.sg assourav@ntu.edu.sg

ggruenwald@ou.edu

Abstract. Existing web usage mining techniques focus only on discov-
ering knowledge based on the statistical measures obtained from the
static characteristics of web usage data. They do not consider the dy-
namic nature of web usage data. In this paper, we present an algorithm
called Cleopatra (CLustering of EvOlutionary PAtTeRn-based web
Access sequences) to cluster web access sequences (WASs) based on
their evolutionary patterns. In this approach, Web access sequences that
have similar change patterns in their support counts in the history are
grouped into the same cluster. The intuition is that often WASs are
event/task-driven. As a result, WASs related to the same event/task
are expected to be accessed in similar ways over time. Such clusters are
useful for several applications such as intelligent web site maintenance
and personalized web services.

1 Introduction

Recently, web usage mining has become an active area of research and com-
mercialization [3, 6, 10]. Often, web usage mining provides insight about user
behaviors that helps optimizing the website for increased customer loyalty and
e-business effectiveness. Applications of web usage mining are widespread, rang-
ing from usage characterization, web site performance improvement, personal-
ization, adaptive site modification, to market intelligence [1].

Generally, the web usage mining process can be considered as a three-phase
process, which consists of data preparation, pattern discovery, and pattern anal-
ysis [10]. In the first phase, the web log data are transformed into sequences
of events (called Web Access Sequences (WASs)) based on the identification
of users and the corresponding timestamps [1]. Figure 1(a) shows an exam-
ple of such WASs. Here S ID represents a sequence id and a WAS such as
〈a, b, d, c, a, f, g〉 denotes a visiting sequence from web page a to pages b, d, c, a,
f and finally to page g. Each sub-table in Figure 1(a) records the collection of
WASs for a particular month. In the second phase, statistical methods and/or
?

This material is based upon work supported by (while serving at) the National Science Foundation
(NSF). Any opinion, findings, and conclusions or recommendations expressed in this material are
those of the authors and do not necessarily reflect the views of the NSF.

S_ID WASs

1 <a, b, d, c, a, f, g>

4 < b, d, c, a, e>
3 <e, f, g, i, n>
2 <a, b, e, h, a, f, g>

S_ID WASs

1 <a, b, d, c, a, f, g>

4 < b, e, h, b, d, c, n, f, g>
3 <e, f, g, i, n>
2 <b, d, c, x>

S_ID WASs

1 < b, d, e, a, f, g>

4 < e, f, g, i, n>
3 <e, f, g, i, n>
2 <b, e, h, b, d, c>

S_ID WASs

3 < a, b, e, c, f, g>
4 <e, f, g, i, n>

2 <e, f, g, i, n>

(1) The first month (2) The second month

(3) The third month (4) The fourth month

1 < b, d, e, a, f, g>

(a) Example of WASs

����

����

����

����

����

����

����

��	�

��
�

����

����

� � � � � �

���

�
�
�
�
�
�
�

�� �� �� �� ��A1 A2 A3 A4 A5

(b) Support of WASs over a time period
Fig. 1.

data mining techniques are applied to extract interesting patterns such as Web
Access Patterns (WAPs)[7]. A WAP is a sequential pattern in a large set of
WASs, which is visited frequently by users [7], that is, given a support thresh-
old ξ and a set of WASs (denoted as A), a sequence W is a WAP if W appears
as a subsequence1 in at least ξ × |A| web access sequences of A. Lastly, these
patterns are used for further analysis in the third phase, which is application
dependent.

From Figure 1(a), it is obvious that web usage data is dynamic in nature.
For instance, the WAS 〈 b, d, e, a, f, g 〉 did not exist in the first and second
months but appeared in the third and fourth months. The dynamic behaviors
of WASs can be attributed to various factors, such as changes to web content
and users’ interest, arrival of new web visitors, and effects of real life events.

In particular, the dynamic nature of WAS data leads to two challenging
problems in the context of web usage mining: maintenance of web usage mining
results and discovering novel knowledge [11]. In this paper, we focus on discover-
ing novel knowledge from historical WASs. Particularly, we focus on clustering
of WASs based on the characteristics of their evolution over time. The intuition
behind this is that WASs are event/task driven. Consequently, WASs related
to the same event/tasks are expected to be accessed in a similar way over time.
For example, consider Figure 1(b), which depicts the support values (y-axis) of
fiveWASs (denoted as A1, A2, A3, A4, and A5) from time period 1 to 6 (x-axis).
Note that i in the x-axis represents a time period (e.g., day, week, month etc.)
and not a particular time point. It can be observed that evolutionary pattern
of the supports for A1, A3, and A5 are very similar over time (like the letter
“W”). Similarly, the evolutionary patterns of supports for A2 and A4 are similar
(like the letter “M”). However, the “W” and “M” clusters cannot be discovered
by existing web usage mining techniques due to the fact that they focus only
on knowledge discovery from snapshot data and maintenance of the knowledge
with the changes to the data source. To extract those clusters, in this paper, we
propose the Cleopatra (CLustering of EvOlutionary PATteRn-based web
Access sequences) algorithm.
1

If there are two WASs A1 = 〈B, E, A〉 and A2 = 〈A, B, C, E, A〉, then A1 is a subsequence of
A2.

The Cleopatra clustering results can be useful in many applications, two
of which are given below.
Intelligent Web Site Maintenance: With the massive amount of data on
the web, it is critical to maintain a well-structured web site in order to increase
customer loyalty. Recently web usage mining techniques have been successfully
used as a key solution to this issue [3]. However, none of these techniques exploits
the dynamic nature of WASs to restructure web sites. The Cleopatra cluster-
ing results can be used by web site administrators to maintain a well-structured
web site. For example, consider the “W” cluster of WASs in Figure 1(b), which
includes A1, A3, and A5. By analyzing the evolutionary patterns, the web site
administrator can figure out the possible reasons (such as promotions, release of
new products, and holidays) for such patterns. Accordingly, the structure of the
web site can be modified.
User Segmentation: User segmentation is to cluster web users based on the
corresponding WASs to provide personalized services [4, 3]. Existing works ei-
ther use sequence-based distance or probability models to measure the distance
between WASs [4, 3]. However, none of them has taken the dynamic nature of
WASs into account. For instance, two users may have the same list of WASs
that belong to two topics, T1 and T2, having the same support. Using existing
segmentation techniques, the two users will be grouped into the same cluster.
However, they may have different preferences. For example, the first user may
be currently interested in T2 as most of the WASs about T1 were accessed long
time ago, while the second user may be currently interested in T1 as most of the
WASs about T2 were also accessed long time ago. By taking the temporal infor-
mation into account, the user segmentation can be more accurate as users in the
same group are not only expected to have similar WASs but also evolutionary
patterns of those WASs are expected to be similar as well.

The contributions of this paper can be summarized as follows:

• This is the first approach to cluster WASs based on the evolutionary pat-
terns of their support counts.

• We proposed an algorithm called Cleopatra for clustering WASs based
on the evolutionary patterns. Also, the performance of the algorithm is eval-
uated with real life web usage dataset.

2 Problem Statement

In general, web log data can be considered as sequences of web pages with
session identifiers [1]. Formally, let P = {p1, p2, . . ., pm} be a set of web
pages. A session S is an ordered list of pages accessed by a user, i.e., S =
〈(p1, t1), (p2, t2), . . . , (pn, tn)〉, where pi ∈ P , ti is the time when the page pi is
accessed and ti ≤ ti+1 ∀ i = 1, 2, 3, . . . , n − 1. Each session is associated with a
unique identifier, called session ID. A web access sequence (WAS), denoted as
A, is a sequence of consecutive pages in a session, that is, A = 〈p1, p2, p3, . . . , pn〉
where n is called the length of the WAS.

The access sequence W = 〈p′1, p′2, p′3, . . . , p′m〉 is called a web access pattern
(WAP) of a WAS A = 〈p1, p2, p3, . . . , pn〉, denoted as W ⊆ A, if and only if
there exist 1 ≤ i1 ≤ i2 ≤ . . . ≤ im ≤ n such that p′j = pij

for 1 ≤ j ≤ m.
A WAS group, denoted as G, is a bag of WASs that occurred during a

specific time period. Let ts and te be the start and end times of a period. Then,
G = [A1, A2, . . ., Ak] where pi is included in WAS Aj for 1 ≤ j ≤ k and pi

was visited between te and ts. For instance, we can partition the set of WASs
on a daily, weekly or monthly basis, where the timestamps for all the WASs
in a specific WAS group are within a day, a week, or a month. Consider the
WASs in Figure 1(a) as an example. They can be partitioned into four WAS
groups on a monthly basis, where WASs, the timestamps of which are in the
same month, are partitioned into the same WAS group. The size of G, denoted
as |G|, reflects the number of WASs in G.

Given aWAS group G, the support of aWAS A in G is ΦG(A) = |{Ai|A⊆Ai∈G}|
|G| .

When the WAS group G is obvious from the context, the support is denoted as
Φ(A). Similarly, when the WAS A is obvious from the context, the support is
denoted as Φ.

In our investigation, the historical web log data is divided into a sequence
of WAS groups. Let HG = 〈 G1, G2, G3, . . ., Gk 〉 be a sequence of k WAS
groups generated from the historical web log data. Given a WAS A, let HA = 〈
Φ1(A), Φ2(A), Φ3(A), . . ., Φk(A) 〉 be the sequence of support values of A in HG.
Then, the degree of dynamic (denoted as ω(A)) and version dynamic (denoted
as χ(A)) of A are defined to summarize the changes of support values in the
history (defined later in Section 3.1). Moreover, an evolutionary pattern-based
distance (denoted as D) is defined as the Euclidian distance between WASs
based on their version dynamic values.

Given a collection of WASs, with an evolutionary pattern-based distance
D and the degree of dynamic, the objective of the Cleopatra algorithm is to
partition WASs into clusters such that WASs within the same cluster are more
similar/closer to each other than to WASs in other clusters.

3 Representation of Historical WASs

Given a WAS denoted as A = 〈p1, p2, p3, . . . , pn〉, in this paper, we use an
unordered tree called WAS tree to represent the WAS. A WAS tree is defined
as TA = (r, N, E), where r is the root of the tree that represents web page p1;
N={p1, p2, · · · , pn} is the set of nodes; and E is the set of edges in the maximal
forward sequences of A. An example of a WAS tree is shown in Figure 2(a),
which corresponds to the first WAS shown in Figure 1(a).

As a result, a WAS group consists of a bag of WAS trees. Here, all occur-
rences of the same WAS within a WAS group are considered identical. Then
the WAS group can also be represented as an unordered tree by merging the
WAS trees. We propose an extended WAS tree to record the aggregated support
information about the bag of WASs within a WAS group.

a

b

g

f

d

c

(a): WAS tree

0.25

0.25

0.25

b

ed

hc

r

c

f

e

a

d

g

ba

g

n

i

f

e0.5

0.5

0.5

0.25

0.25

0.25
0.25

0.25

0.25 0.25

0.250.25

0.25

0.25

0.25

(b): Extended WAS tree

{ 0.33, <0,0,0.5>}

r

d

b

g

f

h

e

c

d

(c): H-WAS tree

{ 0.33, <0.25,0,0>}

{ 0.66, <0.25,0,0.5>}

{ 0.33, <0.25,0,0>}

{ 1, <0.5,0.25,0.25>}

{ 0.33, <1,0,0>}

{ 0.33, <0.25,0,0>}

{ 0.66, <0.5,0,0.5>}

Fig. 2. Examples

Definition 1. [Extended WAS Tree] Let G = [A1, A2, . . ., Ak] be a bag of
WASs, where each WAS Ai, 1 ≤ i ≤ k, is represented as a tree TAi = (ri,
Ni, Ei). Then, the extended WAS is defined as TG = (r, N, E, Θ), where N =
N1 ∪Nj · · · ∪Nk; E = E1 ∪Ej · · · ∪Ek; r is a virtual root; and Θ is a function
that maps each node in N to the support of the corresponding WAS. 2

Consider the first WAS group in Figure 1(a). The corresponding extended
WAS tree is shown in Figure 2(b), where the value associated with each node
is the Θ value. Next, we propose to merge the sequence of extended WAS trees
into an historical WAS tree, called H-WAS tree.

Definition 2. [H-WAS Tree] Let HG = 〈 G1, G2, G3, . . ., Gk 〉 be a sequence
of k WAS groups, where each WAS group Gi, 1 ≤ i ≤ k, is represented as an
extended WAS tree, TGi = (ri, Ni, Ei, Θ). Then, the H-WAS tree is defined
as HG = (r, N, E, ℘), where r is a virtual root; N = N1 ∪ Nj · · · ∪ Nk; E =
E1 ∪Ej · · · ∪Ek; and ℘ is a function that maps each node in N to the sequence
of historical support values of the corresponding WAS. 2

Note that, in the H-WAS tree there is a sequence of support values for
each node; while there is only one support value for each node in the extended
WAS. In this paper, rather than using the entire sequence of support values, we
propose two metrics called version dynamic and degree of dynamic to summarize
the history of support values.

Definition 3. [Degree of Dynamic] Given aWAS, A, with the corresponding
support count sequence HA =〈 Φ1(A), Φ2(A), · · · Φn(A) 〉, the degree of dynamic,
denoted as ω(A), is defined as:

ω(A) =
1

n− 1
∗

n−1∑

i=1

di where di =
{

1, if Φi(A) 6= Φi+1(A);
0, otherwise

2

Definition 4. [Version Dynamic] Given a WAS, A, with the corresponding
support count sequence HA =〈 Φ1(A), Φ2(A), · · · Φn(A) 〉, the version dynamic,
denoted as χ(A), is defined as a sequence χ(A)=〈χ1(A), χ2(A), · · ·, χn−1(A)〉,
where χi(A) = |Φi(A)−Φi+1(A)|

max{Φi(A),Φi+1(A)} , for 1 ≤ i < n-1. 2

Figure 2(c) shows a part of an H-WAS tree, where the associated values are
the corresponding degree of dynamic value, and the sequence of version dynamic
values. The degree of dynamic measures how frequently the WAS changed and
the version dynamic measures how significant are the changes in the history.
Furthermore, based on the version dynamic metric, we propose an evolutionary
pattern-based distance to measure the relationships between WASs.

Definition 5. [Evolutionary Pattern-based Distance] Given two WASs
(A1 and A2), the evolutionary pattern-based distance between A1 and A2, denoted
as D(A1, A2), is defined as:

D(A1, A2) =
√

(χ′1(A1)− χ′1(A2))
2 + · · ·+ (χ′

n−k+1(A1)− χ′
n−k+1(A2))

2

where χ′i(Aj) = 1
k

∑i+k−1
i (χi(Aj)−χ(Aj)

σ(Aj)
), k is the user defined window size,

χ(Aj) and σ(Aj) are the average support count value and standard deviation of
χ(A). 2

Note that, the above evolutionary pattern-based distance measure is actually
the Euclidean distance between the smoothed χ(A) sequence using the moving
average. This distance measure can handle WASs with different baseline, scale,
and time offset. Such properties are highly desired in this specific problem for the
following reasons. Firstly, the average χ(A), which can be viewed as the baseline
for the χ(A) sequence, for WASs that are related to the same event/task may
vary a lot while their evolutionary patterns are similar. Secondly, the effects
of event/task on different WASs can be different, which makes the scales of
changes (χ(A)) to those WASs different. Thirdly, there may be a different time
delays for different WASs related to the same event/task, which may cause the
time offset among χ(A) sequences.

4 Cleopatra Algorithm

The Cleopatra algorithm consists of three major phases: the H-WAS tree con-
struction phase, the node-based clustering phase, and the subtree-based clustering
phase. The objective of the H-WAS tree construction phase is to represent the
WASs as trees and merge them into a single tree structure that records both
the structural and temporal information. As the H-WAS tree construction has
been discussed in [11], we focus on the clustering phases.
Node-based Clustering Phase: The objective of this phase is to categorize
individual nodes with similar evolutionary patterns in the H-WAS tree into
clusters. Note that individual nodes representWASs from the root to the current
nodes. Hereafter, clustering individual nodes refer to clustering WASs that starts
from the root and ends at the corresponding leaf nodes. This algorithm is shown in
Figure 3 and consists of two phases, a two-level clustering phase and an iterative
refinement phase. In the first phase, given an H-WAS tree, firstly, it is clustered
based on the degree of dynamic associated with the individual nodes. Then, using
the evolutionary pattern-based distance, the degree of dynamic based clustering

Input: H-WAS tree: H

Output: a set of clusters C

1: C′=DBSCAN(H, ω(A))
2: for all Node pairs (Ni, Nj) in cluster c′i ∈ C′ do
3: calculate D(Ni, Nj)
4: end for
5: C = DBSCAN (c′i, D), ∀ c′i ∈ C′

6: for Stop = False do
7: C′=Split(C)
8: C′=Merge(C′)
9: end for

10: Return(C)

Fig. 3. Node-based Clustering Algorithm

Input: A set of clusters C, distance thresh-
old ε for DBSCAN
Output: Refined clusters C′

1: for cluster Cj ∈ C do
2: calculate the centroid point C(Cj)
3: end for
4: for all Cj , Ck∈ C & C(Cj) 6= C(Ck) do
5: if D(C(Cj), C(Ck)) < 2 ∗ ε then
6: merge them into a new cluster
7: calculate the new centroid point
8: end if
9: end for

10: Return clusters C′

Fig. 4. Merging Operation

results are further partitioned into smaller clusters. In the second phase, the
iterative refinement phase, the merging and splitting algorithms are used to
refine the quality of the clustering results. The reason is that in the first phase,
the two metrics degree of dynamic and evolutionary pattern-based distance are
used separately, when the merging and splitting operations converge, the results
will be more accurate.

Note that we use the DBSCAN algorithm [2] to cluster the individual nodes
in the H-WAS tree in this phase for the following reasons. First, the DBSCAN
algorithm needs no prior knowledge about the number of clusters in the data
collection. This is an advantage of the density-based clustering algorithms. Sec-
ondly, the naive DBSCAN approach has the time complexity of O(N log N),
where N is the total number of points in the database, using spatial indexing
techniques. Moreover, the DBSCAN algorithm is able to discover clusters with
arbitrary shapes and is efficient for very large database. Notice that here the dis-
tances between nodes in the H-WAS tree are the Euclidean distances calculated
based on the smoothed χ(A) sequence generated using the moving average.

In the first phase, the reason for designing a two-level clustering algorithm
is to avoid computational cost. In the first level, the degree of dynamic values
are used for producing a preliminary results as the degree of dynamic values
are easier to obtain while the cost for calculating the evolutionary pattern-based
distances are relatively more expensive. By doing this, the computational cost
for calculating the evolutionary pattern-based distances for nodes that are not
expected to be in the same cluster can be reduced.

In the second phase, the merging and splitting operations are proposed to
refine the clustering results in the first phase. The intuition behind is that it is
possible that the first level of degree of dynamic based clustering results may
not fully reflect the evolution pattern-based distances between the nodes. Using
this iterative merging and splitting operations, which will converge to certain
results, we can guarantee that node-based clustering results are accurate, which
is the foundation for the sub-tree based clustering in the next phase.

Specifically, merging operation is shown in Figure 4. Firstly, for each cluster
a virtual centroid is obtained. Then, the distances between those centroids are
calculated using the proposed evolutionary pattern-based distance measure. For

clusters whose centroids are within a distance of 2∗ε will be merged together
to form a new cluster, where ε is the radius parameter for the DBSCAN al-
gorithm [2]. After that, the splitting operations is then performed on the new
clustering results to split them into new clusters if possible. This splitting process
is based on the DBSCAN algorithm as well.
Subtree-based Clustering Phase: The output of the node-based clustering
phase is a set of clusters that consist of sets of individual nodes with similar
change patterns. However, given a cluster, the relations between individual nodes
are not captured. In this section, the individual nodes within clusters are merged
together to form subtrees, which can represent higher level concepts or objects.
Note that, the subtree construction process is guided by not only the links in
the H-WAS tree, but evolution patterns of these nodes should be similar. For
a given node in the cluster, to measure the number of nodes that have similar
evolution patterns with it, the evolutionary degree is defined as follows.

Definition 6. [Evolutionary Degree] Let C = NodeClust(H) be a function
that implements the node-based clustering phase where H is the H-WAS tree
and C is the set of clusters returned by the function. Let B(i, j) = Edge(ni, nj)
be a function that takes in two nodes ni and nj and returns 1 if there exists or
0 if there does not exist an edge (ni, nj) in H. Let Cx ={n1, n2, · · ·, n|Cx|} and
Cx ∈ C. Then, the evolutionary degree of ni ∈ Cx (denoted as E•(ni)) is defined
as follows: E•(ni) =

∑|Cx|
j=1 B(i, j), where i 6= j and 0 < j ≤ |Cx| 2

From the above definition, it can be observed that nodes that have large evo-
lutionary degree are expected to form large subtrees. In this section, we propose
to extract the list of subtrees for each cluster. Firstly, nodes in each cluster are
ranked based on the evolutionary degree in descending order. Then, to ensure
that WASs in the same subtree have similar evolutionary patterns with each
other, the intra similarity is defined as follows.

Definition 7. [Intra Similarity] Let C = NodeClust (H) and C = {C1, C2,
· · ·, Cn}. Let tj be a subtree of H and Nt be the set of nodes in tj. Let K = {
K1, K2, · · ·, Ki }, where Kr = |Nt∩Cr| ∀ 0 ≤ r ≤ i and r ≤ n. Then, the intra
similarity of tj, denoted as IS(tj), is defined as: Max(K) / |Nt|, where Max(K)
is the maximum value in K. 2

Definition 8. [Cluster Subtree] Let tj = (Nj , Aj) be a subtree of H such that
Nj ⊆ Cx and Cx ∈ C where C = NodeClust(H). Then tj is a cluster subtree if
IS(tj)≥ β where β is a user-defined threshold. 2

The algorithm for extracting subtree clusters is presented in Figure 5. The
input of the subtree-based clustering algorithm is a set of clusters with sorted
nodes. Firstly, the node with maximum evolutionary degree is selected and the
corresponding subtree that includes all the nodes that are connected to that
nodes is constructed and tested against the threshold value of IS. If this subtree
is a cluster subtree, then all the nodes in this subtree are eliminated from the
list of subtrees in that cluster. Otherwise, if this subtree is not a cluster subtree,
then the evolutionary degree of this node is set to -1. This process iterates till
all the nodes in the subtree are tested.

Input: Clusters with sorted nodes C, IS
threshold β
Output: Clusters of subtrees CoS

1: for all cluster Cj ∈ C do
2: for all node nx with the largest

E•(nx) where E•(nx) > 0 do
3: prune all the leaf nodes that are in

different cluster with nx iteratively
4: calculate the IS of the subtree

rooted at nx

5: if IS (Tree(nx)) ≥ β then
6: insert this subtree into the CoS list
7: prune all the leaf nodes in this sub-

tree from this cluster
8: else
9: E•(nx) = −1
10: end if
11: end for
12: end for
13: Return(CoS)

Fig. 5. Subtree-based Clustering

Dataset ε k β Havg Hmin Savg Smax |CoS|
UoS 0.05 30 0.8 0.81 0.16 0.21 0.46 46
UoS 0.10 60 0.8 0.79 0.13 0.23 0.51 38
UoS 0.15 60 0.75 0.78 0.17 0.19 0.48 34
UoS 0.20 90 0.75 0.78 0.14 0.20 0.46 36

Calgary 0.05 30 0.8 0.80 0.14 0.23 0.45 71
Calgary 0.10 60 0.8 0.79 0.15 0.16 0.38 68
Calgary 0.15 60 0.75 0.71 0.13 0.17 0.38 63
Calgary 0.20 90 0.75 0.75 0.06 0.13 0.32 62

Fig. 6. Experimental Results

5 Performance Evaluation

In this section, we evaluate our proposed clustering algorithm with two real
datasets, the web log UoS and Calgary, obtained from the Internet Traffic
Archive [5]. The UoS records the historical visiting patterns for University of
Saskatchewan from June 1, 1995 to December 31, 1995, a total of 214 days. In
this seven month period there were 2,408,625 requests. The Calgary logs were
collected from October 24, 1994 through October 11, 1995, a total of 353 days.
There were 726,739 requests. Both of them have 1 second resolution. The web
access patterns are transformed into a sequence of extended WAS trees with a
duration of one day. All the following experiments are carried out on a PC with
Intel Pentium 4, 1.7Ghz CPU, and 512MB RAM.

Our experiments focus on two aspects: the quality and novelty of the cluster-
ing results. To evaluate the quality of the our clustering results, two quality met-
rics, Homogeneity and Separation [9, 8], are used. Here we review the metrics:

Havg = 1
M

∑
i<j, C(Ai)=C(Aj)

S(Ai, Aj); Hmin = minC′∈C

2∗
∑

i<j∈C′ S(Ai,Aj)

|C′|∗(|C′|−1) ;
Savg = 2

n(n−1)−2M

∑
i<j, C(Ai)6=C(Aj)

S(Ai, Aj); and Smax = maxC,C′∈C∑
Ai∈C, Aj∈C′ S(Ai, Aj)|C| ∗ |C ′|, where n is the total number ofWAS subtrees;

Ai is the ith WAS subtree; M is the total number of node pairs that are within
the same cluster; C is the set of clusters in the result and |C| is the size of the
set; C(Ai) is the cluster to which Ai belongs. Note that, here we transform the
evolutionary pattern-based distance to the similarity measure S such that we
can use the above cluster quality metrics. That is, S(Ai, Aj) = e−D(Ai,Aj). The
larger homogeneity implies a better result, while a larger separation shows a
worse result.

Figure 6 shows the quality of the clustering results with different parameters
for the DBSCAN algorithm, size of moving window in the moving average, and
the intra similarity threshold. The reason of using the above cluster quality
metrics is that, due to privacy reasons, the original URLs of web pages in the

web usage dataset are not available. Therefore, the ground truth of the clusters
are not available. However, from the values in Figure 6, compared with the
corresponding values in other applications that using above quality metrics, the
quality of our results is comparable to the results in [9, 8].

Considering the novelty of our clustering results, although there is no quan-
tified measures, we have the following observations. First, in the Cleopatra
clustering results, we found many WAS pairs that are in the same cluster are
very far away in the H -WAS-tree while the evolutionary patterns are quite sim-
ilar. Such clustering results can be useful for exploring the hidden factors that
lead to the evolution of the corresponding WASs. Second, the overall structures
of the clusters are quite similar in the Cleopatra clustering result. This means
that suppose we have two clusters C1 and C2, where C1 = {A1, A2, A3} and C2

= {A4, A5, A6}, although A1, A2, and A3 may not be siblings or connected but
pairs such as {A1, A4}, {A2, A5}, and {A3, A6} are siblings or connected.

6 Conclusions

This work is motivated by the fact that existing web usage mining techniques
only focus on mining snapshot web usage data and maintaining of the mining re-
sults incrementally. They do not consider the dynamic nature of web usage data.
In this paper, we proposed the first approach of clustering historicalWASs based
on the evolutionary patterns. Experiments with real life datasets show Cleopa-
tra can efficiently produce high quality clusters that cannot be discovered using
existing web usage mining techniques.
Acknowledgements
We thank Dr Mukesh Mohania from IBM India Research Lab for the feedbacks on the
initial draft of this paper.

References

1. M.-S. Chen, J. S. Park, and P. S. Yu. Efficient data mining for path traversal patterns. TKDE,
10(2):209–221, 1998.

2. M. Ester, H.-P. Kriegel, J. Sander and X. Xu. A Density-Based Algorithm for Discovering
Clusters in Large Spatial Databases with Noise. In KDD, pages 226-231, 1996.

3. S. Gunduz and M. T. Ozsu. A web page prediction model based on click-stream tree represen-
tation of user behavior. In Proc. of SIGKDD, pages 535–540, 2003.

4. X. Jin, Y. Zhou, and B. Mobasher. Web usage mining based on probabilistic latent semantic
analysis. In Proceedings of ACM SIGKDD, pages 197–205, 2004.

5. L. B. N. Laboratory. Internet traffic archive, http://ita.ee.lbl.gov/, 2004.
6. T. Li, Q. Yang, and K. Wang:. Classification pruning for web-request prediction. In Proc. of

WWW, 2001.
7. J. Pei, J. Han, B. Mortazavi-asl, and H. Zhu. Mining access patterns efficiently from web logs.

In Proc. of PAKDD, pages 396–407, 2000.
8. R. Sharan, A. M. Katz, and R. Shamir. Click and expander: a system for clustering and

visualizing gene expression data. Bioinformatics, 19(14):1787–1799, 2003.
9. R. Sharan and R. Shamir. Center click: A clustering algorithm with applications to gene

expression analysis. In ISMB, pages 307–316, 2000.
10. J. Srivastava, R. Cooley, and P.-N. Tan. Web usage mining: Discovery and applications of usage

patterns from web data. KDD Exploration, 1(2):12–23, 2000.

11. Q. Zhao and S. S. Bhowmick and L. Gruenwald. WAM-Miner: In the Search of Web Access

Motifs from Historical Web Log Data. In Proceedings of CIKM 2005.

