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Abstract

Background: The availability of large-scale curated protein interaction datasets has given rise to the opportunity to
investigate higher level organization and modularity within the protein interaction network (PPI) using graph
theoretic analysis. Despite the recent progress, systems level analysis of PPIS remains a daunting task as it is
challenging to make sense out of the deluge of high-dimensional interaction data. Specifically, techniques that
automatically abstract and summarize PPIS at multiple resolutions to provide high level views of its functional
landscape are still lacking. We present a novel data-driven and generic algorithm called FUSE (Functional Summary
Generator) that generates functional maps of a PPI at different levels of organization, from broad process-process
level interactions to in-depth complex-complex level interactions, through a pro t maximization approach that
exploits Minimum Description Length (MDL) principle to maximize information gain of the summary graph while
satisfying the level of detail constraint.

Results: We evaluate the performance of FUSE on several real-world PPIS. We also compare FUSE to state-of-the-
art graph clustering methods with GO term enrichment by constructing the biological process landscape of the
PPIS. Using AD network as our case study, we further demonstrate the ability of FUSE to quickly summarize the
network and identify many different processes and complexes that regulate it. Finally, we study the higher-order
connectivity of the human PPI.

Conclusion: By simultaneously evaluating interaction and annotation data, FUSE abstracts higher-order interaction
maps by reducing the details of the underlying PPI to form a functional summary graph of interconnected
functional clusters. Our results demonstrate its effectiveness and superiority over state-of-the-art graph clustering
methods with GO term enrichment.

Background
With advances in high throughput experimental biology,
the number of large scale protein interaction net-works
(PPI) have grown rapidly. At the same time, collaborative
efforts to annotate proteins and genes using Gene Ontol-
ogy [1] (GO) annotations has generated detailed attri-
butes that describe these entities. Knowledgebases with
GO annotations, such as UniprotKB [2], provide a wealth
of annotation data at different levels of specificity. GO
provides standardized annotations that describe various

attributes of a gene or protein, including localization
attributes, molecular function, and the biological pro-
cesses it participates in. As proteins may involve in multi-
ple roles and functions, GO attributes associated with a
protein or a gene can be high-dimensional.
While each individual protein or gene has a unique role

in the biological system, many of them form commu-
nities to govern higher-order biological processes or
functions. Biological networks are believed to be modular
and hierarchically organized; one may decompose a PPI
into modules or functional clusters that interact with one
another [3]. Protein complexes, for instance, are made up
of tightly connected subunit proteins that appear as
dense subgraphs in the PPI. Other functional groups may
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be structurally less obvious. Examples include signaling
pathways, where proteins rarely appear to be structurally
cohesive. In spite of their “sparse” structure, proteins
comprising them share biologically significant signaling
propagation function.

Motivation
The amount of information contained within large bio-
logical networks can often overwhelm researchers, mak-
ing systems level analysis of PPIS a daunting task. As
majority of function annotation and high throughput or
curated interaction data are encoded at protein or gene
level, higher-order abstraction maps such as complex-
complex or process-process functional landscapes, are
often unavailable. However, availability of such informa-
tion is invaluable as it not only allows one to ask ques-
tions about the relationships among high-level modules,
such as processes and complexes, but also allows one to
visualize higher order patterns from a bird’s eye
perspective.
For instance, consider the Alzheimer’s Disease (AD)

related PPI in IntAct [4]. An AD interaction network
can be studied at different levels of organization, from
broad-level process-process interactions to in-depth
complex-complex interactions. Such maps would reveal

higher-level patterns that otherwise would have been
invisible. The objective here is not to study a process
associated with AD in isolation, but instead focus on the
interplay of related processes in tandem to identify the
causative mechanisms of AD. For example, one might
ask the following questions: How do signaling pathways
implicated for AD associate with one another? How do
proteins related to transportation play a role in AD, and
how are they associated with bioenergetics? A bird’s-eye
view of the functional landscape of AD network may
provide answers to these questions. An example is
shown in Figure 1 (detailed in Results Section). Observe
that the associations between signaling pathways (A28,
A14, A18, A21, and A16 ) are depicted in the summary.
It is worth mentioning that it is extremely di cult to
answer the aforementioned questions by simply looking
at a large PPI containing large number of proteins and
interactions as nodes. This problem is further exacer-
bated by the high-dimensional nature of PPI; each pro-
tein may have hundreds of annotation attributes. It is
therefore crucial to have some form of summarization
that maps higher-order information of the underlying
PPI. Fortunately, the modular nature of biological net-
works-either structurally or attribute wise-lends itself to
the possibility of building such a summary.

Figure 1 Functional summary (FSG) of the AD network for k = 30 (cluster size indicated in brackets).
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Although tools to abstract high-level and functional
information from gene lists have been proven to be key
to analyzing high throughput data [5], similar tools that
automatically abstract and summarize PPIS at multiple
resolutions to provide high level views of functional
landscape of PPIS are still lacking. At first glance, it may
seem that state-of-the-art graph clustering techniques
[6-10] can be used for generating high quality summa-
ries of PPIS as these techniques have been successful in
identification of novel protein function and protein
complexes. Intuitively, a biological network can be
decomposed into modules-groups of vertices sharing a
common function-that are then collapsed into a repre-
sentative node to form a summary graph of the underly-
ing network. Depending on the granularity of the
decomposition, summaries of various level of detail can
be formed. Despite the benefits of graph clustering,
these techniques suffer from the following key weak-
nesses that make them less suitable for building high
quality higher order functional summaries of PPIS.
Firstly, several existing graph clustering approaches

[6-8,11] overwhelmingly emphasize structure cohesive-
ness over attribute coherence. In practical applications
of PPI summarization, however, attribute coherence is
key to forming meaningful, interpretable modules. In
PPI, groups of proteins (vertices) that share a common
vertex property can form a meaningful cluster that
represents a particular biological function. Otherwise,
clusters with inconsistent vertex properties, even if
structurally well-connected, may not simply summarize
into one functionally interpretable cluster. Secondly,
majority of existing graph clustering techniques form
non-overlapping partitions [6,8,11]. Consequently, they
cannot be used to generate high-quality summary
because “interactors” in biological processes and path-
ways are likely to overlap [12]. Thirdly, these techniques
typically focus on identifying dense subgraphs from a
graph. However, higher-level clusters in PPIS are not
always structurally dense. Proteins in signaling pathways,
for instance, are structurally loose, but share important
functions. Such groups of proteins often have significant
biological implications despite their loose structure, and
should be present in any summary of the underlying
network. Finally, because the annotations that describe
proteins and their functions are high-dimensional, find-
ing the right choice of attribute coherent groupings is
combinatorial and non-trivial. The reader may refer to
[13] for examples related to these limitations.

Overview
In this paper, we present a novel data-driven algorithm
called FUSE (Functional Summary Generator) that
addresses the aforementioned challenges (see Methods
Section). Given a PPI, it generates a k-node functional

summary graph (FSG) that best represents the higher-
order abstraction of the PPI by simultaneously evaluat-
ing interaction and annotation data. We argue that a
“good” functional summary of a network is not merely a
graph of all function-function relationships, but a graph
that reduces details of the original PPI to form a subset
of interconnected functional clusters. A functional clus-
ter represents a subnetwork of proteins that shares a
common function. In particular, the functional summary
graph must simultaneously satisfy the following require-
ments: (a) the summary is at a specific level (k nodes) of
detail, (b) the summary is representative of the original
network, and (c) redundancies are minimized. Specifi-
cally, FUSE exploits Minimum Description Length princi-
ple [14] to generate the “best” summary by maximizing
information gain while satisfying the level of details con-
straint. Figures 1 and 2 depict a 30-node and a 10-node
FUGS of the AD network, respectively, generated by
FUSE. Figure 3 depicts examples of functional summaries
generated by FUSE.
The goal of FUSE is not only to generate a higher

level functional summary that is representative of the
underlying PPI, but also to generate a k-node functional
map whose visual complexity (determined by k) permits
user analysis. With close to 30000 terms in the Gene
Ontology (GO), interaction network of 30000 functional
modules will not be a useful summary, as it is just as
daunting as the original PPI, if not more. FUSE
addresses this challenge by enabling generation of sum-
maries that are small and understandable.
We evaluate the performance of FUSE on several real-

world PPIS. We also compare FUSE to state-of-the-art
graph clustering methods with GO term enrichment by
constructing the biological process landscape of the
PPIS. Our experimental results demonstrate that FUSE
is highly effective in constructing higher order func-
tional maps with superior accuracy and representative-
ness compared to these state-of-the-art graph clustering
methods. Using AD network as our case study, we
further demonstrate the ability of FUSE to quickly sum-
marize the network and identify many different pro-
cesses and complexes that regulate it. In addition, we
analyze the topological features of the functional land-
scape of human PPI that leads us to the identification of
functional hubs (clusters of proteins that act as hubs).

Related work
Functional landscape of an underlying protein interac-
tion network has been explored in [15]. The approach
the authors used, however, rely on manual short listing
of 229 biological processes for analysis. While this
approach makes visualization permissible, it neither
scale with the growing number of annotations, nor does
it fully utilize the large number of annotations available.
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Figure 2 Functional summary (FSG) of the AD network for k = 10 (cluster size indicated in brackets).

Figure 3 Illustration of FUSE algorithm. (a) A toy example of PPI network. (b) A set of functional clusters of the network in (a). (c) Suppose a
3-node summary is required (k = 3). FUSE explores the functional clusters of the PPI network to identify the 3-node functional summary that
best partition and represent the underlying network. This functional summary graph (FSG) depicts the functional landscape of the PPI network in
3 nodes. (d) A 5-node partition (k = 5) and its corresponding FSG.
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Additionally, the processes that are relevant depends on
the context of the network.
Graph clustering methods identify functional clusters

based on the underlying assumption that the topology
of interacting proteins can be mined to identify protein
clusters [6-8,11]. Cluster function can then be inferred
and annotated by finding enriched annotations within
the cluster. While such methods have been proven
effective for identification of complexes, they are less
suitable for identifying higher level functional clusters,
such as biological processes and pathways, where inter-
actors within them are likely to overlap [12,16]. Interac-
tions within a process are also not necessarily cohesive.
CFinder [17] locates overlapping communities based on
structure of the network, but ignores the wealth of func-
tional knowledge already encoded in GO annotation
data. While most graph clustering techniques rely solely
on network topology, several recent techniques utilize
annotation information when clustering the networks
[9,10]. However, these techniques form non-overlapping
partitions. Additionally, with the growing amount of
annotation data, the attribute space of the nodes in an
interaction network is high dimensional as a single pro-
tein may be linked to hundreds of annotations. However,
these state-of-the-art approaches are not designed for
clustering high-dimensional attributes of GO annotated
interaction networks. For instance, in [9], a “semantic”
distance function is used to measure semantic similarities
between nodes with multiple MIPS complex annotations.
The curse of dimensionality limits the applicability of
such an approach on GO annotations [18]. To the best of
our knowledge, no existing method directly addresses our
need for generating overlapping clusters from high-dimen-
sional attributed graphs. Note that existing subspace
clustering approaches that allow overlapping subspace
clusters typically produce a huge number of clusters that
are difficult to interpret [19].
Lastly, the high dependency on interaction topology

makes graph clustering ineffective for many context spe-
cific networks. Although there are many networks asso-
ciated with diseases, there are few, if any, with complete
interaction knowledge available. The high probability of
false positive interactions may also occur. This hampers
accurate identification of cohesive clusters.

Results and discussion
Experiment settings
We have implemented FUSE in Scala and Java. We now
present the experiments conducted to evaluate the per-
formance of FUSE and report some of the results
obtained. We used the coverage metric to evaluate the
fraction of the annotated protein interaction network
covered by a summary. A functional summary with high
coverage is desirable because it is more representative of

the underlying interaction network than a summary
with low coverage. Additionally, the redundancy metric
is the average number of functional clusters each pro-
tein belongs to. This is an indicator of the amount of
cluster overlap in the summary. Detailed definitions are
described in the Methods Section. The PPI datasets
employed in this study are shown in Table 1. Biological
Process (BP), Molecular Function (MF), and Cellular
Component (CC) GO annotations are used. Unless spe-
cified otherwise, we set b = 0.01, b = 3, and d = 0 in
order to balance coverage and redundancy of the func-
tional summaries. We assign all edge weights be 1.0. All
experiments were run on a 1.66 GHz Intel Core 2 Duo
T5450 machine, with 3 GB memory, and a 250 GB
SATA disk.
Dataset
Currently, there does not exist any gold standard to com-
pare functional summaries of PPIS. Typically, biological
graph clustering approaches use MIPS complex annota-
tions [20] as gold standard data for testing cluster quality.
These annotations, however, are limited to complexes
and not for other functional clusters like pathways. GO
annotation data is also used as gold standard for evaluat-
ing clustering algorithms. As our approach utilizes attri-
butes of GO, using GO annotations as gold standard
evaluation may lead to results biased in favor of FUSE.
Instead, we obtained a different set of curated attributes
as gold standard-the molecule class annotations from
HPRD-which is distinct from GO attributes. Note that
these annotations are only available in the H. sapiens
dataset. Consequently, we use this dataset for the com-
parative study. To create a gold standard reference sum-
mary, we generated a network from subgraphs induced
from the HPRD network using nodes grouped by their
molecule class attribute, signifying the molecular func-
tional groups within the network. Subgraphs from five
functional groups corresponding to subgraphs of proteins
classified as G protein coupled receptor, Pro-
tease inhibitor, RNA binding protein,
Cytoskeletal associated protein, and Cal-
cium binding protein are extracted and merged to
form the reference summary network (747 nodes, 959
edges). FUSE and state-of-the-art graph clustering meth-
ods are then evaluated on this network to determine
whether the graph can be partitioned and summarized to
reconstruct the gold standard functional groups.

Table 1 Summary of datasets used

Dataset #nodes #edges Source

H. sapiens 9181 34624 HPRD [37]

S. cerevisiae 4768 177299 IntAct [4]

D. melanogaster 3114 6472 IntAct

Alzheimer’s disease (AD) 177 1038 IntAct
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FUSE vs graph clustering methods
We compare the performance of FUSE with four state-
of-the-art graph clustering methods for life sciences
applications, namely Markov clustering (MCL) [21],
MCODE [6], and NeMo [8]. We also compare FUSE
with CSV [11], a recent cohesive subgraph visualization
method. Note that in order to obtain higher order mod-
ules of a PPI, the current approach is to first use an
existing graph clustering method on the network to gen-
erate the clusters followed by function assignment. For
example, in Krogan et al. [21], the global yeast PPI is
first clustered using MCL to generate non-overlapping
clusters. Then, each cluster is compared against MIPS
complex annotations [20] and the complex annotation
with the greatest overlap is assigned to represent the
cluster.
Cluster quality comparison
We first emphasize on the qualities of an ideal summar-
ization. First, the generated clusters have to be represen-
tative of the underlying graph, which implies that
coverage of the clustering should be sufficiently high.
Second, attribute purity [22] of the clusterings should
correspond to the functional groups that were merged
apriori. This can be determined through the purity of
the molecule class attribute within the proteins in
each cluster. Each functional group should also be well-
represented. We use precision, recall, and F-measure to
quantify these features. For each cluster, we determine
the molecule class functional group that best matches
the cluster. The purity of that cluster is then defined as
the proportion of nodes in the cluster that belong to the
best matching group. As a functional group may be
represented by several smaller clusters, we define recall
for each functional group as total coverage of the func-
tional group among the clusters that best matches that
functional group. Then, the precision of a clustering is
defined as the average purity among all clusters. The
recall of a clustering is defined as the average recall
among all functional groups. Lastly, the F-measure

(
2∗precision∗recall
precision + recall

) provides an overall measure of clus-

tering quality.
Figure 4 depicts the results of summarization quality.

Where applicable, we adjust relevant parameters to vary
the cluster granularity. As NeMO has no parameter to
tweak, only a single set of clusters can be obtained. In
MCL, CSV, and MCODE, the inflation, hmseen cutoff,
and node score cuto parameters are adjusted, respec-
tively, to vary the cluster sizes (denoted as k in all fig-
ures). In FUSE, the parameter k directly affects the
summary granularity.
Observe that FUSE generates summary with signifi-

cantly higher F-measure score compared to the graph
clustering-based approaches for all values of k. In other
words, FUSE may generate summaries at multiple levels
of complexity while remaining representative of the
underlying graph. Observe that, although NeMO, CSV,
and MCODE generate clusters with high precision, the
recall scores are very low (< 0:2). This is because these
two approaches identify highly cohesive subgraphs,
which tend to be part of protein complexes. CSV in par-
ticular are limited to identification of near-clique struc-
tures. Proteins in complexes belong to the same
functional groups and hence the high precision. How-
ever as mentioned earlier, biological networks are not
comprised solely of complexes. Consequently, majority
of the underlying network was poorly represented by
these approaches due to heavy bias towards complexes.
Specifically, most of the clusters match the RNA binding
protein class of proteins, leaving other groups barely
represented. For instance, the Protease inhibitor
subgraph is not well represented because of its inherent
loose structure. Although the recall score of MCL is
relatively higher as this method is known to perform
very well in biological clustering applications, it is still
below 0.4. Note that the MCL approach failed to parti-
tion the underlying network into five clusters represent-
ing the five functional groups. The CSV approach, on

Figure 4 Cluster quality of FUSE vs graph clustering-based approaches.
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the other hand, were not able to generate larger number
of partitions.
Notice that these existing approaches indirectly affect

the summary complexity whereas FUSE allows direct
adjustment of summary size, which explains why sum-
maries at any level of detail can be obtained by the lat-
ter. Figure 4(d) shows that FUSE generates summaries
at different granularity without greatly affecting the pre-
cision and recall of the clusterings. The peak F-measure
score of 0.8 is obtained in FUSE at k = 5, corresponding
to the five gold standard functional groups that com-
prise the dataset. Observe that the recall and precision
scores are equally high. As cluster granularity deviates
from the underlying five functional groups, obviously
the F-measure score drops.
Function representativeness comparison
The accuracy and representativeness of the function
assigned to each cluster is key to generating high quality
functional maps. Here, we introduce measures that
quantify the representativeness of functions assigned to
each clusters and compared FUSE to graph clustering
methods in this aspect.
To obtain the functional landscape of a PPI, graph

clustering methods often assign function to clusters
through functional enrichment techniques. To this end,
we compute the statistical significance of association of
the cluster with every GO term based on the hypergeo-
metric distribution [5]. The term with the best p-value
is assigned as the representative function, denoted by ar
Î Δ, of the cluster. To evaluate the representativeness
of this assigned function, we reuse the precision and
recall measures introduced earlier with slight modifica-
tion. Specifically, the representative purity of a cluster C
is defined as the proportion of nodes in the cluster that
are annotated with the representative function, i.e.
|{v ∈ C : �v[ar(v)] = 1}|

|{v ∈ C}| . We also define representative

recall for each functional group as total coverage of the
functional group among the clusters that has the func-
tional group assigned as representative function, i.e.
|{v ∈ C : �v[ar(v)] = 1}|
|{v ∈ V : �v[ar(v)] = 1}|. Then, the precision of the

representative functions is defined as the average repre-
sentative purity among all clusters, and the recall of the
representative functions is defined as the average repre-
sentative recall among all functional groups.
Figure 5 depicts the representativeness of the func-

tional summaries by different techniques. As FUSE is
designed specifically to generate highly representative
maps, each cluster is perfectly representative of the bio-
logical function assigned to it. Likewise, each function is
well represented by its assigned cluster. In graph cluster-
ing methods, however, the clusters do not represent

their representative function well, as indicated by the
lower precision score. Hence, proteins within the clus-
ters exhibit less functional coherence. The lower recall
scores in graph clustering methods imply that only a
fraction of nodes annotated with the representative
function are included in the cluster. That is, FUSE sum-
maries contain functional clusters that are more repre-
sentative of the assigned function, and thus provide
more meaningful and interpretable higher-order func-
tional maps of the underlying PPI. While clusters with-
out attribute coherence may still reveal novel biological
insights, assigning a function to represent such cluster
could be misleading.

Effects of user-defined parameters
Effect of parameter k
Recall that the user-defined parameter k controls the
granularity of the summary. Intuitively, as k increases
the amount of information contained within the sum-
mary as well as its complexity increase. Figure 6(a)
reports the effect of k on the summaries of test datasets.
As k increases, the summary information content (SIC),
denoted by SIC(Θ), rises rapidly until it saturates to a
peak value before tapering off.

SIC(�) =
∑

C(u)∈S�

−ψC(u)|V(u)|logp(V(u)) (1)

where p(V (u)) is the probability that a protein in net-
work is annotated with term u or its descendants. Note
that summary profit cannot be used for comparing sum-
maries with different k values because it does not make
any assumption about the information content of a GO
term attribute. In contrast, sic measure is summary profit
with a twist - small clusters are weighted higher than
large clusters. This allows one to compare information
content of summaries with different k values. Other fac-
tors being equal, a summary with many small clusters
will contain more information than a single large cluster.
The above results imply that k is useful up to a certain
value, after which increasing k only increases summary
complexity while providing little information gain.
Figure 6(b) plots the effect of k on coverage of the

summary. Observe that except for low k values, it is
relatively stable as k varies. In fact, the amount of infor-
mation a summary can provide is limited by the resolu-
tion and completeness of the interaction and annotation
data. This could explain why S. cerevisiae summaries
have consistently higher coverage and information con-
tent than D. melanogaster summaries. The H. sapiens
summary contains the largest number of nodes and
edges, and even at k = 600, information content is still
increasing. The AD network reaches a peak of informa-
tion content at k = 20.
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Effect of parameters b and d
We investigated the effect of user-defined parameters b
and d on summary coverage and redundancy. We use
the global S. cerevisiae dataset with k = 100. Figure 7
shows that increasing b or decreasing d lowers overall
summary redundancy at the expense of lower summary
coverage. On the other hand, when d is increased or b
is decreased, both summary redundancy and coverage
increases. An intuitive explanation of this phenomenon
is that more cluster overlap penalty means fewer combi-
nation of clusters to choose from, lowering the

likelihood of finding a summary with high coverage.
Both parameters allow users to control the coverage and
redundancy tradeoff.

Runtime and scalability
Figure 8 plots the running times of FUSE over the real
datasets for generation of summaries ranging from k = 3
to k = 600. Observe that it increases almost linearly with k.
Specifically, summarization of the yeast interaction net-
work (the largest available network) completes within 40
minutes for k = 600. For practical sizes of k = 3 to k = 100,

Figure 5 Function representativeness.

Figure 6 Effect of k.
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a functional summary of a PPI can be generated within
few minutes. Disease networks such as AD network can
be completed in less than 10 sec.
We now assess the scalability of FUSE with respect to

network size and |SΔ|. Note that the latter feature is
important as it will continue to grow as more annota-
tion information becomes available. To assess the scal-
ability with respect to network size, we generated
synthetic networks of vertex size |V | = 100 to |V | =
20000. For every term t, a vertex has a 2% probability of
being annotated with it. The number of terms is |SΔ| =
2769. The edge density of the synthetic networks is such
that the probability that a pair of vertices interact is
0.0025, resulting in an average of 1 million edges in a
network of 20000 vertices. Summary granularity is set to
k = 50. To measure the effect of |SΔ| on running time,
we generated synthetic networks by varying |SΔ| ranging
from |Δ| = 100 to |Δ| = 10000.
Figure 9 depicts the scalability of FUSE with respect to

|V | and |SΔ|. As the number of vertices increases, the
execution time of FUSE increases in a quadratic fashion.
In fact, it appears to increase almost linearly for

networks with |V| < 10000. For larger networks, the ψC

(u) component and the fsg generation component take
up the bulk of the execution time. Observe that in
Figure 9(b), the fsg generation component takes up bulk
of the computation time and is independent of |SΔ|. As
|SΔ| increases, ψ

C(u) computation and iterative cluster
selection time increases in near linear fashion, demon-
strating ability of FUSE to handle high-dimensional
annotation data.

Case study on AD network
In this section, we construct a low and a high resolution
functional summaries of the AD network to illustrate
the benefits of FUSE in providing a higher level func-
tional view of the underlying PPI. A low resolution sum-
mary delineates broad functional overview of the
processes related to the disease whereas a high resolu-
tion summary provides in-depth functional landscape of
the disease, revealing associations between processes
related to the disease. Figure 2 shows a low resolution
summary (k = 10) of the AD network. It indicates that
the AD network is represented by an interconnection of

Figure 7 Effect of b and d.
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several key processes, include protein phosphorylation
(B7), cell-cell signaling (B2, B3), and microtubule-based
transport and localization (B1, B5) processes.

Figure 1 depicts a high resolution functional summary
for k = 30. Defective transport mechanism has major
implications in AD. Consequently, several transport and

Figure 8 Running times of FUSE (in sec.).

Figure 9 Scalability of FUSE.
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cytoskeleton organization related cellular processes are
represented in the summary (A11, A22, A24, A26). Dis-
rupted transport mechanism affects, among others,
synapse organization and vesicle trafficking (A6, A8,
A23). In the literature, several lines of evidence explain
disruption of transport and its related processes in AD.
Amyloid-b plaques may lead to hyperphosphorylation
of tau proteins, subsequently causing microtubule
defects and axonal transport impairment [23]. More
strikingly, recent findings indicate that vesicle transport
itself play a causative role in pathogenesis of the disease
[24]. Glucose metabolic processes (A20) is closely linked
to microtubule-based processes (A22, A24). The link
between bioenergetics and transport in AD has been
discussed in [25].
At the center of the summary lies protein folding and

calcium ion homeostasis pathways (A15, A17).
Protein misfolding is central to AD pathogenesis [26].
Misfolded amyloid-b accumulation is shown to induce
calcium overload, leading to a variety of structural and
functional disruption in neurons [27]. The two func-
tional clusters are among the nodes with the highest
degree in the summary. Cell fate processes that trigger
or inhibit differentiation and cell fate (A9, A10, A12) are
also linked to AD [28]. It has been suggested that Wnt
signaling dysregulation, a key developmental path-
way, leads to reduced synaptic plasticity and function in
AD [29]. Processes such as peptide cross-linking and
negative regulation of angiogenesis (A3, A4) imply vas-
cular roles in AD pathogenesis [30].
From signaling regulation perspective, five major sig-

naling pathways are implicated - small GTPase (A28),
Notch (A14), Wnt receptor (A18), glutamate
(A21), and G-protein coupled receptor signaling
path-ways (A16). Several functional clusters connect
with multiple signaling pathways, indicating that signal-
ing pathways crosstalk in AD pathogenesis. For instance,
the serine/threonine kinase GSK-3b, a potential
therapeutic target, is known to be regulator of both the
G-protein coupled receptor pathway and the
Wnt/b-catenin signaling pathway [31]. PS1 may be
involved in regulating both Notch and Wnt pathways in
AD [32].
The tight interplay of multiple pathways and processes

in the aforementioned functional summary of AD net-
work highlights the complexity of the disease. The dis-
ease remains poorly understood despite decades of
research. While the summary does not suggest causal
relationships, in part because of the undirected nature
of the FSG, we hope that by having a global, big picture
view of process-process interactions, researchers can
better identify the causative mechanisms of AD. Most
studies considered an aspect of the processes in isola-
tion. An integrative study, however, may lead to a more

consistent view of the disease that addresses distinct,
often competing hypotheses.

Inferring functional cluster hubs
Structural information provided by the summaries pre-
sents an opportunity to study the topology and connec-
tivity of higher order abstractions of the underlying PPI.
Here we analyzed the association patterns of functional
clusters in summaries of the global H. sapiens PPI. To
this end, we generated cellular component (CC) and
biological process (BP) summaries of the human net-
work. For each summary type, we varied the level of
detail by setting k from 50 to 400.
Figure 10 shows the frequency-degree plots of the

functional clusters at different k values. At the broadest
level of abstraction (k = 50), long-tailed degree distribu-
tion of functional clusters is not observed. As level of
detail increases to k = 400, the smaller and more speci-
fic clusters exhibit increasingly pronounced long-tailed
distribution characteristics. We note that the CDF plots
on a semi-log scale form straight lines at higher k values
(k = 200 and k = 400), implying exponential distribution
of the cluster degrees.
In light of heavy-tailed distribution of functional clus-

ter degrees at higher k values, we identified functional
cluster hubs in the summary of the human network (k =
400) (analogous to identification of protein hubs). While
Patil and Nakamura defined hub as proteins having
degree of more than 6 [33], we chose a higher threshold
such that they correspond to the 15 most connected
functional clusters. The list of functional hubs is shown
in Table 2.
We observed that CC cluster hubs in S. cerevisiae

can be categorized into several major functional
groups. A significant percentage of the cluster hubs -
such as cytosolic large ribosomal subunit, cytosolic
small ribosomal subunit, eukaryotic translation initia-
tion factor 4F complex, preribosome, small subunit pre-
cursor, preribosome, large subunit precursor, and
polysome- are core to regulation and functioning of
protein translation. It is unsurprising that these func-
tional clusters have high degree, since every protein
must be translated or regulated by these machinery.
The complexity of this mechanism also suggests that it
requires many processes to regulate it.
Complexes involved in chromatin remodeling and

transcription, including nuclear nucleosome, Ino80 com-
plex, replication fork protection complex, astra complex,
and Swr1 complex, are also highly represented. The
functional cluster vacuolar proton-transporting V-type
ATPase complex is known to have diverse roles and is
associated with a wide array of processes [34].
Apart from that, we also observed the existence of

several ‘currency structures’, i.e., structures that may be
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acted upon by proteins from multiple processes. They
are generally not specific to a single bio-logical process.
We classify clusters nuclear nucleosome, nuclear micro-
tubule, cytoplasmic microtubule, and extracellular region
as such.
Next, we analyzed the bp functional cluster hubs.

From Table 2, we found many translation related pro-
cesses (regulation of translational initiation, transla-
tional elongation, translational termination, tRNA
aminoacylation for protein translation, negative

regulation of translation, positive regulation of transla-
tion, ribosomal small subunit assembly, ribosomal large
subunit assembly). Chromatin assembly and remodeling
processes (nucleosome assembly and nucleosome disas-
sembly) also served as key process hubs. Finally, we
found major post-translation protein modification and
transport processes, such as protein refolding, ATP
synthesis coupled proton transport, cotranslational pro-
tein targeting to membrane, and proteasome assembly,
acting as hubs.

Figure 10 Connectivity of functional clusters in H. sapiens network. Functional cluster degree CDF plots for BP and CC summaries at
varying cluster granularity. Plots are on a semi-log scale.

Table 2 High-degree CC and BP functional clusters in the H. sapiens summary (k = 400)

CC functional cluster Degree BP functional cluster Degree

Heterogeneous nuclear ribonucleoprotein complex 183 Actin filament bundle assembly 208

Cytosolic large ribosomal subunit 161 Regulation of defense response to virus by virus 206

Cytosolic small ribosomal subunit 158 Negative regulation of catabolic process 204

Coated pit 158 Peptidyl-threonine phosphorylation 200

Mitochondrial nucleoid 149 Signal complex assembly 189

Chaperonin-containing T-complex 148 Positive regulation of protein complex assembly 182

CRD-mediated mRNA stability complex 141 Regulation of nitric oxide biosynthetic process 181

NuA4 histone acetyltransferase complex 136 Glial cell development 178

Actin filament 135 Cell killing 178

Actomyosin 134 Regulation of cytokine-mediated signaling pathway 174

Clathrin coat of coated pit 133 Protein stabilization 174

Nonhomologous end joining complex 124 Actin filament capping 170

Endocytic vesicle membrane 124 Activation of MAPKK activity 169

Nucleosome 124 T cell receptor signaling pathway 164

Nuclear inner membrane 123 Regulation of RNA splicing 164
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Conclusions
In this paper, we propose FUSE, a novel data-driven and
generic algorithm for generating functional sum-maries
at multiple resolutions from a PPI, providing a high
level view of its functional landscape. It exploits mdl
principle [14] to generate the “best” summary from both
interaction and annotation data by maximizing informa-
tion gain for a specific resolution. Our experimental
study with real-world PPIS revealed that FUSE is effec-
tive and have higher accuracy compared to graph clus-
tering techniques in PPI summarization. It is also robust
against incomplete interaction knowledge (e.g., AD net-
work in IntAct). We note that the graph clustering tech-
niques have the ability to uncover novel complexes,
whereas FUSE is designed to determine process-process,
complex-complex, and process-complex associations
with higher confidence. In this aspect, graph clustering
and FUSE play complementary roles. As part of future
work, we intend to use FUSE-generated summaries as
training data for network comparison of various protein
interaction networks at functional level. We believe such
comparison may yield interesting findings on function-
function and process-process relationships among differ-
ent networks.

Methods
Functional summarization problem
In this section, we formally introduce the functional
summarization problem. We begin by defining some ter-
minology that we shall be using in the sequel.
A protein interaction network (PPI) G = (V, E) contains

a set of vertices V , representing proteins, and a set of
edges E, representing interactions. An edge has a positive
real weight ω that represents its interaction strength.
Given a GO directed acyclic graph (DAG), denoted as D,
the ordered set Δ = 〈a1, a2, ..., an〉 is a topological sort of
D, where ai represents a single GO term. The term asso-
ciation vector of v Î V , denoted by Δv, is defined as Δv =
〈a1(v), a2(v), ..., an(v)〉, ai(v) Î {0, 1}, such that ai(v) = 1 if
and only if the term ai or its descendants are associated
with protein v. Otherwise, ai(v) = 0. Note that Δv indi-
cates GO terms that are associated with v.

Functional summary of PPI
Given a PPIG(V, E), a functional summary graph (FSG)
is an undirected graph ΘG(S, F ) that models the set of
higher-order functional clusters S and their interactions
F that underlie the PPI. A functional cluster is a sub-
graph of G that shares a particular function/role based
on the structure and attribute properties of the sub-
graph and its constituent proteins. Functional clusters
may include complexes, processes, and signaling path-
ways. A pair of functional clusters may be connected by

a web of protein interactions. If the number of interac-
tions are significantly large, then we say that the pair of
clusters are associated. An FSG ΘG thus captures higher
order modules that comprise the ppi and their intercon-
nections. We now define these concepts formally.
Definition 1 (Functional Cluster) Let V (ai) ⊆ V

denote the set of vertices in G such that v Î V (ai) if and
only if Δv[ai(v)] = 1. The functional cluster of ai Î Δ,
denoted by C(ai) ⊆ G, is the subgraph of G that is
induced by V (ai).
Note that V (ai) represents the set of vertices of G

that are associated with term aiÎ Δ. In this paper, we
treat C(ai) as a vertex as well. We may also call a func-
tional cluster a functional subgraph when we wish to
emphasize the fact that it is a graph. Figure 3(b) shows
a subset of the possible functional clusters of the PPI in
Figure 3(a). Every node in a cluster must share a parti-
cular function or attribute. For instance, nodes in func-
tional cluster cytosol share the cytosol term.
Definition 2 (Functional Summary Graph (FSG)) A

functional summary graph of the underlying protein
interaction network G(V, E), ΘG, is defined as ΘG = (S,
F, Pi, a), where S is a set of functional clusters and F is
a set of edges that links the functional clusters. Let ocuv
be the number of interactions connecting proteins in C
(u) and C(v). Let Pi be the probability density function of
observing ouv or more number of interactions between C
(u) and C(v). Let b be a significance cut-o parameter
(user-defined). Then, (C(u), C(v)) Î F if and only if Pi(X
> ocuv) ≤ 2b/|S|2. The bijection a : 1, 2, ..., m ↔ S is an
ordering of S.
Observe that the aforementioned definition of func-

tional summary includes additional constructs and rules
for determining whether two functional clusters are
associated. We elaborate on this further. Given a PPIG
(V, E), the expected probability of observing an interac-
tion between two randomly drawn protein pair is given

by pi =
2 |E|

|V| (|V| − 1)
. Let (C(u), C(v)) be a functional

cluster pair such that members of both clusters were
randomly drawn from V. If proteins v1 and v2 are ran-
domly drawn from C(u) and C(v), respectively, then the
expected probability of observing a positive interaction
between them would also be pi. Let n = |C(u)||C(v)|.
Based on the independent and identically distributed
variable (iid) assumption, we model the probability of
observing oc (the number of interactions between C(u)
and C(v)) as the probability of observing oc positive
interactions after n iid trials, representing n pairwise
interaction trials between proteins in C(u) and C(v).
Hence, the probability of oc or more positive interac-
tions between C(u) and C(v) can be modeled using a
binomial distribution:
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Pi(X > ocuv) =
n∑

i=ocuv

(
n
i

)
pi

i(1 − pi)
n−i

This p - value is used to assess the association signifi-
cance between a pair of functional clusters. Given a set
containing k clusters, association significance between
1
2 k(k − 1) pairs of clusters would have to be tested. To
this end, we applied Bonferroni correction to account
for multiple testing. Given the significance cut-off b, a
pair of functional clusters is significantly associated if

Pi(X > oc) ≤ 2β/k(k − 1) ≈ 2β/k2

Observe that although we have adopted a simple
model to assess cluster-cluster association, the afore-
mentioned definition is general enough to encompass
more sophisticated association models.
Example 1 Figure 3(d) shows an FSG consisting 5

functional clusters. Any edge between two functional
clusters exists when Pi(X > ocuv) ≤ 2b =|S|2, implying
that more edges connect proteins between the func-
tional clusters than expected in random.

Problem statement
The functional summarization problem is the problem of
finding ΘG that best represents the underlying PPI sub-
ject to a summary complexity constraint. To model this
problem, we propose a profit maximization model that
aims to find ΘG = (S, F, Pi, a) by maximizing information
profit under a budget constraint. Every protein i Î V is
assigned a non-negative information budget b, which
represents the information it contains. Let SΔ be the set
of functional clusters induced from Δ. Every functional
cluster C(u) Î SΔ is assigned a non-negative structural
information value ψC(u)(to be defined later), which repre-
sents the amount of structural information contained
within the functional subgraph. When a functional clus-
ter C(u) is added to the summary, for every protein i Î V
(u), a portion of b is taken out and added to summary
information gain. This represents new information added
to the summary. The amount to take depends on ψC(u).
Imposing information budget b limits the amount of
information a protein can provide. A parameter 0 ≤ d ≤
10 is also introduced to penalize redundancy. By doing
so, repeated representation of a protein i yields reduced
information gain, modeling diminishing returns. Based
on this profit model, we construct the set of functional
clusters that maximizes profit while satisfying the
constraints.
Definition 3 (Functional Summarization Problem)

Let Ki be a set of functional clusters such that C(u) Î Ki

if and only if iÎ C(u). For every C(u) Î SΔ, let ψ
C(u) be

the structural information value of C(u). Given a protein
interaction network G(V, E) and user-defined parameters

b, d and k, the functional summarization problem con-
structs a k-cluster FSG ΘG = (S, F, Pi, a) that satisfies
the following optimization problem:

maximize
∑
i∈V

|S|∑
j=1

p(i, j)

where

b(i, m) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

d
10 (b(i, m − 1) − p(i, m − 1))

if m > 1,
αS(m − 1) ∈ Ki

b(i, m − 1)
if m > 1,
αS(m − 1) /∈ Ki

b if m = 1

and

p(i, m) =

⎧⎨
⎩
ψαS(m)

b(i, m)
0

if b(i, m) ≥ ψαS(m)and αs(m) ∈ Ki

if b(i, m) < ψαS(m)and αS(m) ∈ Ki

αS(m) /∈ Ki

subject to

|S| = k

S ⊂ S�

(2)

We elaborate on how the structural information value
ψC(u) is assigned. A functional cluster C(u) and its pro-
tein constituents share a common function u, and thus
vertices in the subgraph are considered homogeneous
attribute wise. However, it does not imply that the func-
tional subgraph is structurally cohesive (dense). Proteins
having common function u may still be weakly interact-
ing. This may be due to the fact that u itself may indi-
cate a general function (e.g., ‘protein binding’)
which is a common attribute to a large number of pro-
teins that do not interact with each other. We argue
that structurally cohesive functional clusters contain
more information than those which are loosely intercon-
nected. The argument for this is based on the MDL prin-
ciple, whereby clusters that have higher than expected
cohesiveness will have higher information content
because of the lower probability of observing a random
cluster having the same cohesiveness. However, we
make the following exception - a functional cluster with
lower than expected cohesiveness is not deemed struc-
turally informative.
Since the optimization problem must choose among a

set of functional clusters, we are not concerned about
the actual p-value of observing a subgraph having such
interaction density. Instead, we only need a measure
that allows us to compute the relative ranking of the
functional clusters by their information content. Such
simplification leads to much greater computation effi-
ciency. We define the structural information value of a
functional cluster C(u) as follows.
Definition 4 (Structural Information Value) Let ωij

be the edge weight of (i, j) Î E. The structural informa-
tion value of a functional cluster C(u), denoted by ψC(u),
as ψC(u) = pC(u) where
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ρC(u) =

∑
i,j∈C(u) ωij∣∣C(u)

∣∣
Algorithm 1 Algorithm FUSE
Input: G, Δ, D, k, b, d, b
Output: Θmin

1: Let S = empty set
2: Let Bmap = set of pairs (i, b) for each i Î V
3: Assign ψC(u) and cC(u) for each C(u) Î SΔ
4: i = 0
5: while i < k do
6: (Cmin, Bmap) = MapProfit(SΔ, Bmap, d, |V|, k )
7: Remove Cmin from SΔ
8: Add Cmin to S
9: i = i + 1
10: end while
11: for C(i), C(j) Î S do
12: if C(i) ≠ C(j) and Pi(X > ocC(i)C(j)) ≤ 2b = |S|2

then
13: Add edge (C(i), C(j)) to F
14: end if
15: end for
rC(u) is the ratio association [35] score of C(u), a stan-

dard graph clustering objective we adopt that indicates
the structural density of C(u). At first glance, it may
seem that the structural information value should be
defined as ψC(u) = rC(u) - rrandom, where rrandom is the
expected structural density of a random cluster. How-
ever, we ignore rrandom for the following reason. In
scale-free and Erdős-Rényi graphs, the self-information -
log P (ψC(u)) is a positive non-decreasing function of ψC

(u) for ψC(u) >0. Hence, ψC(u) can be used to compare
the self-information between two functional clusters
without having to determine the probability density
function of the interaction distribution of a subgraph.
Given ai, aj Î Δ, C(ai) is deemed more informative than
C(aj) if and only if ψC(aj) > ψC(ai) and ψC(aj ) >0. If both
ψC(aj) and ψC(ai) are negative, it does not matter whether
one is more informative than the other, since both have
structural density less than that of random networks. As
such, for symmetry, we also deem that C(ai) is more
informative than C(aj) if and only if ψC(aj) > ψC(ai) for
ψC(aj) ≤ 0. Therefore, when comparing the structural
density between two clusters, rrandom can be omitted
from ψC(u) and ψC(u) is simply rC(u).
Example 2 Suppose we wish to summarize the PPI in

Figure 3(a) into a 3-node summary (k = 3). If clusters
apoptosis, receptors, and TGF-beta are chosen–
instead of the clusters in Figure 3(c)–we can see that the
profit obtained is suboptimal. Information budget for pro-
teins b, c are depleted due to redundancy, while informa-
tion budget for proteins d, e, g, i are untapped. In
contrast, functional summary in Figure 3(c) is relatively

more optimal, as not only the set of clusters maximizes
profit through superior coverage and minimal redundancy,
but it also maximizes profit through higher structural
information (e.g., the cluster transcription is structu-
rally dense compared to apoptosis).
Algorithm 2 The Map Profit procedure.
Input: SΔ, Bmap, d, |V |, k
Output: Cmin, Bmap

1: Let pmax = 0
2: for C(u) Î SΔ do
3: Let Btemp = Bmap

4: Let p = 0
5: for i Î V (u) do
6: Let (i, b(i)) Î Btemp and p(i) = b(i) - ψC(u)

7: if p(i) >0 then
8: p = p + ψC(u)

9: b(i) = b(i) - ψC(u)

10: else
11: p = p + b(i)
12: b(i) = 0
13: end if
14: end for

15: cC(u) =
(∣∣V(u)

∣∣ − |V|
k

)2

16: p = p -cC(u)

17: if pmax < p then
18: pmax = p
19: Cmin = C(u)
20: end if
21: end for
22: for i Î Vmin do
23: Let (i, b(i)) Bmap and p(i) = (d/10)(b(i) - ψC(u))
24: if p(i) >0 then
25: b(i) = (d/10)(b(i) -ψC(u))
26: else
27: b(i) = 0
28: end if
29: end for
30: return (Cmin, Bmap)

The algorithm FUSE
The profit maximization problem is a variation of the
budgeted maximum coverage problem [36], which is an
np-hard problem. To permit a tractable solution, let us
first consider a straightforward greedy approach. The
initial FSG is an empty graph. Given the input protein
interaction network G, ψC(u) for each functional cluster
C(u) Î SΔ are computed. The algorithm then iteratively
selects the functional cluster that leads to greatest
increase in net profit of the summary. Each time a func-
tional cluster C(u) is selected, the FSG and budget infor-
mation b(i) for every protein i Î V (u) is updated. Once
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k clusters has been selected, the algorithm terminates by
generating the FSG.
A major weakness of the aforementioned approach is

that it tends to be “overenthusiastic” in selection of func-
tional clusters during early iterations. Functional clusters
that are too large or too small may be selected at early
iterations resulting in very poor cluster choices at later
iterations due to limited information budget and sum-
mary size (k) constraint. Hence, our proposed algorithm
adds a complexity cost to each chosen cluster. Given
graph size |V | and summary size k, the expected cardin-
ality of a functional cluster in the summary is defined by

E[|C|] = |V|
k . Then the size deviation cost, denoted as cC(u),

is defined as the square of the deviation of |C(u)| from E

[|C|]. That is, cC(u) =
(
|V(u)| − |V|

k

)2
. Observe that the

greater the difference between |V (u)| and E[|C|], the less
likely it is to be part of a summary of k-granularity. Clus-
ters whose size deviates too much from the expected car-
dinality are penalized and therefore less likely to be
selected. This reduces the chance of having too less or
too much information budget remaining during the later
iterations of the greedy heuristic.
The aforementioned intuition is realized in FUSE as

outlined in Algorithm 1. It consists of three phases,
namely, the initialization phase, the greedy iteration
phase, and the summary graph construction phase. In
the initialization phase (Lines 1-3), ψC(u) and cC(u) for
each functional cluster C(u) SΔ are computed. The
greedy iteration phase (Lines 4-10) involves iterative
addition of functional clusters into S in a greedy man-
ner as described above. The best candidate functional
cluster for the current round (Cmin) is determined
through the subroutine MapProfit (Line 6). This step
also maintains the information profit of S and the
remaining information budget of every v in G through
a persistent pro t map (Bmap). Cmin is then removed
from the candidate pool SΔ and added to the solution
set S (Lines 7-8). Finally, the summary graph construc-
tion phase (Lines 11-15) computes F to generate the
FSG Θmin.
The MapProfit procedure is outlined in Algorithm 2.

In order to identify the best candidate cluster of the cur-
rent iteration round, it evaluates every cluster in the
candidate pool by evaluating its profit gain potential
(Lines 1-21). First, the amount of information to extract
from each protein’s information budget pool (b(i)) is
computed (Lines 7-13). Next, the potential profit gain is
adjusted to compensate for the complexity cost (Lines
15-16). After Cmin is found, the profit map is recom-
puted to commit the changes made to the information
budget map due to the selection of Cmin (Lines 21-29).
Theorem 1 Algorithm FUSEtakes O(|SΔ|

2|V |2) time
in the worst case.

Proof of theorem 1
In the initialization phase, ψC(u) for each C(u) SΔ has to
be computed. Each C(u) may contain up to |E| edges
and |V | vertices. In Algorithm 1, ψC(u) for each C(u) SΔ
takes O(|E|) time. Thus, thus the total complexity for
this procedure is O(|E||SΔ| + |V ||SΔ|) time.
In the greedy iteration phase, the MapProfit subroutine

defined in Algorithm 2 is evaluted k times. In Algorithm 2,
lines 2-21 require O(|SΔ||V |). Lines 22-29 require O(|V |)
time. Thus, Algorithm 2 takes O(|SΔ||V | + |V |) time.
The iteration phase, as such, takes O(k|SΔ||V | + k|V |)
time in total.
Finally, the summary graph construction phase

involves pairwise significance evaluation of the resultant
functional cluster set. This involves evaluation of all
edges between k-pairwise functional clusters of the sum-
mary. Each significance Pi(X > ocuv) test requires a sin-
gle-pass evaluation of edges connecting a pair of
clusters. At worst case, this takes O(|E|) time. The sum-
mary graph construction phase therefore require O(k2|
E|) time.
The FUSE algorithm, as whole, takes O(|E||SΔ| + |V ||

SΔ| + k|SΔ||V | + k|V | + k2|E|) time. In the worst case
scenario of |E| = |V |2 and k = |V |, the algorithm takes
O(|SΔ||V | + |SΔ||V |2 + |V |2 + |V |4) time, implying a
polynomial time complexity at worst possible case.

Evaluation metrics
We used the coverage metric to evaluate the fraction of
the annotated protein interaction network covered by a
summary. A functional summary with high coverage is
desirable because it is more representative of the under-
lying interaction network than a summary with low cov-
erage. The coverage of a functional summary Θ is
defined as:

coverage(�) =

∣∣∣⋃C(u)∈S� V(u)
∣∣∣∣∣∣⋃C(u)∈S� V(u)
∣∣∣ (3)

The coverage is the ratio of the total number anno-
tated proteins in the summary over the total number of
annotated proteins in the protein interaction network.
The redundancy metric is the average number of

functional clusters each protein belongs to. This is an
indicator of the amount of cluster overlap in the sum-
mary. Redundancy of Θ is defined as:

redundancy(�) =

∑
C(u)∈S�

∣∣V(u)
∣∣

∣∣∣⋃C(u)∈S� V(u)
∣∣∣

(4)

A summary Θ with no overlapping clusters will have
lowest possible redundancy value of 1, where every
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protein is assigned to exactly one cluster. A summary
with high redundancy is undesirable, because a sum-
mary with many highly overlapping clusters is less intui-
tive and more complicated.
The following well-known evaluation metrics are

also used - precision and recall. These are well
known statistical measures to indicate accuracy
and completeness. Precision, a measure of exactness,

is defined as precision =
truepositive

truepositive + falsepositive
.

Recall, a measure of completeness, is defined as

recall =
truepositive

truepositive + falsenegative
. If a cluster C(i) is

assigned with the function i, then any protein p Î C(i)
that is not annotated with i or its descendants is
deemed a false positive. If p Î C(i) is annotated with i
or descendants, it is a true positive. Likewise, a protein
p Î V that is annotated with i but not in C(i) is deemed
a false negative. Here, proteins without annotations are
not taken into consideration.
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