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ABSTRACT

Network similarity ranking attempts to rank a given set of networks

based on its “similarity” to a reference network. State-of-the-art

approaches tend to be general in the sense that they can be applied

to networks in a variety of domains. Consequently, they are not

designed to exploit domain-specific knowledge to find similar net-

works although such knowledge may yield interesting insights that

are unique to specific problems, paving the way to solutions that

are more effective. We propose Tintin which uses a novel target

feature-based network similarity distance for ranking similar sig-

naling networks. In contrast to state-of-the-art network similarity

techniques, Tintin considers both topological and dynamic fea-

tures in order to compute network similarity. Our empirical study

on signaling networks from BioModels with real-world curated out-

comes reveals that Tintin ranking is different from state-of-the-art

approaches.

1 INTRODUCTION

The network similarity problem scores the resemblance between

a pair of related networks. We can broadly classify network simi-

larity approaches for biological networks into two classes, namely

node mapping-based and network feature-based. The former is based

on graph isomorphism [15, 19] as node mappings are performed

using different measures and the extent of the network similar-

ity is dependent on the mappings. In contrast, the latter class of

approaches do not assume the existence of such node mappings.

These approaches [4, 17] generally employ network structure-based

local or global measures to determine similarity between networks.

Specifically, global measures, such as those based on network fea-

tures, are derived from the entire biological network and tend to

be biased as biological networks are inherently noisy and incom-

plete [17]. In contrast, local measures, which are typically derived

from regions of networks that are well-studied, are deemed as more

appropriate [17]. For instance, graphlet degree distribution (gdd)

[17] and NetSimile [4] both use local measures to determine net-

work similarity. A common theme that runs through these network

feature-based approaches is their generality and applicability to

other types of networks such as social networks. Consequently,

they are not designed to exploit domain-specific knowledge to find
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similar networks, although such knowledge may yield interesting

insights that are unique to specific problems. In this paper, we present

a novel network similarity technique called Tintin, which is designed

for signaling networks and leverages such domain-specific knowledge

to identify networks that are similar in terms of target features.

Signaling networks model biological systems as networks of

interacting molecules. When biological processes are dysregulated

due to diseases, the activities of downstream molecule(s) (referred

to as disease node(s) in the paper) are affected and typically mani-

fest themselves as phenotypic changes related to the disease. For

instance, in the MAPK-PI3K network, the hyperactivity of activated

ERK, a downstream molecule, is often linked to cell proliferation

[21], a cancer hallmark. This has led to increasing popularity of

targeted therapeutic strategies to tackle such diseases where drugs

are designed to hit molecules in a signaling network crucial for

tumor growth and progression [22]. These molecules (referred to

as targets) modulate the disease node(s) directly (e.g., MEK [21]) or

indirectly (e.g., Raf [21]).

In this paper, we exploit the network features associated with tar-

gets in a signaling network to compute similarity between signaling

networks. Intuitively, in target feature-based network similarity prob-

lem we deem a pair of signaling networks as similar if their targets

have similar characteristics. Hence, our network similarity tech-

nique called Tintin (Target-based SIgnaling NeTwork SImilarity

ComputatioN) is driven by similarity of features of targets that

modulate specific disease-related nodes (disease nodes) associated

with a pair of signaling networks. It takes as input (a) a reference

network (e.g., Ras activation), its disease node (e.g., Ras) and an

associated set of known targets; and (b) a set of candidate networks

along with their disease nodes, known targets and features. It ranks

these candidate networks based on their degree of similarity to the

reference network w.r.t. the features of the known targets. Tintin

is potentially useful for several real-world applications such as

network-based target prioritization [8]1 and clustering signaling

networks based on the feature similarity of targets.

In summary, this paper makes the following key contributions:

(a) We introduce the novel problem of target feature-based network

similarity for signaling networks (Section 4). (b) We present Tintin,

a target-driven approach that is, to the best of our knowledge, the

world’s first algorithm to address this problem (Section 5). (c) We

conduct an empirical study on real signaling networks and drug

target data to analyze the similarities and differences of Tintin’s

rankings compared to that of the state-of-the-art generic network

similarity techniques (Section 6).

1In contrast to this work, the study in [8] does not focus on details of the network similarity problem.
Instead, it assumes the existence of such a network similarity technique, which is utilized for target

prioritization.



2 RELATEDWORK

Compared to generic target-unaware network similarity techniques

such as gdd [17] and NetSimile [4], Tintin differs in the following

ways. First, the network similarity problems are defined differently

in existing work. In gdd [17], two networks are deemed similar

when they share similar graphlet degree distribution that is measured

using the gdd agreement (topology-based feature); in NetSimile,

network similarity is measured using a feature vector consisting

of seven topological features. In contrast, we define similarity as

the likelihood of two network sharing targets with similar topo-

logical and dynamic characteristics. Second, gdd was designed for

undirected networks (e.g., protein-protein interaction) and is not

immediately applicable to directed networks such as cell signaling

networks. Third, we consider a wider variety of network features

inclusive of both topological and dynamic features. Both gdd and

NetSimile use only topological features. Traditionally, the topo-

logical representation of signaling networks is considered static

[12] as they capture specific observation under particular condition

(e.g. equilibrium condition). Hence, topological characteristics (e.g.,

betweenness centrality) that are derived from the network topology

are static in nature as well. However, biological systems change

with time and time-dependent response of molecular species are

typically captured as dynamic time series data (e.g., concentration-

time profiles). Lastly, gdd and NetSimile are generic techniques.

That is, they are not designed to exploit domain-specific knowl-

edge (e.g., knowledge of disease nodes in a signaling network) to

find similar networks. In contrast, our similarity measure is “dis-

ease node-aware” and is designed specifically for disease-related

signaling networks.

3 BACKGROUND

In this section, we introduce key concepts necessary to understand

this paper. We first describe the graphical representation of signal-

ing networks and ordinary differential equation (ode) models. Next,

we introduce a recently proposed dynamic feature called profile

shape similarity distance [5]. Lastly, we briefly describe a target

characterization framework called tenet [6].

3.1 Graph Model of Signaling Networks

A biological signaling network describes biochemical reactions

(with reactants and products) that affect the concentrations of

molecular species in the network. Graphically, this reaction is typ-

ically represented as a directed hyperedge connecting one set of

nodes to another set [14, 20]. Hence, a signaling network is natu-

rally represented as a directed hypergraph G = (V ,E). Analysis of
directed hypergraphs is generally more complex than graphs and

many graph algorithms cannot be used directly on hypergraphs.

Hence, hypergraphs are often transformed into graphs containing

simple edges for analysis using techniques such as bipartite and

substrate graph representation [14]. In this paper, we convert sig-

naling network hypergraphs into bipartite graphs by adopting the

method in [10]. We chose the bipartite graph representation as it

retains the original structural information of the hypergraphs [14].

Note that the transformed bipartite graph is used to compute the

topological features.

We refer to a node in a signaling network as a candidate target if

when perturbed, it modulates the activity of a specific node (referred

to as disease node). A disease node is a protein that is either involved

in some biological processes which may be deregulated, resulting

in manifestation of a disease, or be of interest due to its potential

role in the disease. Given a signaling network G = (V ,E) and a

disease node x ∈ V , let the set of nodes having a path leading to x

be denoted as Vx ⊆ V . Then, the set of candidate target nodes in G

relevant to x is denoted as Tx ⊆ Vx .

Each reaction (edge) in a signaling network is further annotated

with dynamic information associated with the biochemical process.

In signaling networks, numerous ordinary differential equations

(odes) containing various reaction kinetics and initial concentra-

tions for every species are used to model the production and con-

sumption rates of different molecular species [2]. The determination

of these reaction kinetics can be technically challenging. Hence, a

large proportion of these kinetics are usually estimated using pa-

rameter estimation techniques [18]. Despite this uncertainty, these

under-determined ode systems can still model real, observable

biological behaviour, providing valuable means for quantitative

study. Note that ode-based models of signaling networks are ex-

pected to grow further in the future and become an important and

accepted way of representing biological knowledge [2]. In this pa-

per, we use hypergraphs containing odes for simulation to obtain

concentration-time series profiles (i.e., plots of concentration against

time) of nodes.

3.2 Profile Shape Similarity Distance (PSSD)

In signaling networks, signal responses to perturbation are typi-

cally measured in terms of phosphoprotein concentrations dynam-

ics represented as concentration-time profiles. There are certain

considerations in comparing these phosphoprotein concentration-

time profiles. In signaling networks, reactions occur at different

and non-uniform rates [1] resulting in profiles with variable time

delays. Hence, a distance measure based on one-to-one alignment

on a time axis (Euclidean) is ineffective at detecting similarity in

these profiles. A non-linear measure, such as dynamic time warping

(dtw ) distance, allows a more intuitive alignment between profiles

[13] and is more suitable for biological time series data [1].

Definition 3.1. Given two discrete time series φu and φv , the dy-

namic time warping distance between them is defined recursively

as:

dtw(φu ,φv ) = ξ (F (φu ), F (φv )) +Min




dtw(φu ,Rest(φv ))
dtw(Rest(φu ),φv )
dtw(Rest(φu ),Rest(φv ))

where F (φu ) = {φu[1]}, Rest(φu ) = {φu[2],φu[3], · · · ,φu[n]},
ξ (φu[i],φv[j]) = (φu[i] − φv[j])2 and φu[i] is the value of φu at

time point i [13].

Definition 3.2. Given a concentration-time profile ζu having n

time points, denoted as φu = {φu[0], · · · ,φu[n]}, letm be the median

value of φu . The corresponding inverted profile is denoted as φ ′u =
{φ ′

u[0], · · · ,φ
′
u[n]} where φ

′
u[i] = 2 ×m − φu[i].

Definition 3.3. Given a signaling network H = (VH ,EH ), let
φu ,φv be the Z-normalized concentration-time profiles of u,v ∈ VH .

The profile shape similarity distance [5] of u with respect to v is

defined as:

Φ(u,v)=Min(dtw(φu ,φv ),dtw(φ ′u ,φv ))



In summary, pssd identifies the most relevant upstream regu-

lators by assessing the similarity of the concentration-time series

profiles of a target and its upstream regulators.

3.3 Target Characterization using TENET

In this paper, we leverage on a target characterization approach

(Tenet [6]) to generated the ground truth for assessing the per-

formance of Tintin. Tenet is a network-centric, in silico target

characterization system, which uses signaling networks having

known targets from publicly-available signaling network reposi-

tories (e.g., BioModels) to learn for each network, a set of topolog-

ical features that are predictive of targets and a characterization

model that can be used to generate topological feature-based (tfb)

rankings of targets. The characterization model specifies which

topological features are important for discriminating the targets in

a signaling network and how these features should be combined to

quantify the likelihood of a node being a target. It generates differ-

ent characterization models for different networks as it is unlikely

for one characterization model to generalize the characteristics of

known targets in all networks due to the complexity and diversity

of signaling networks.

4 TARGET FEATURE-BASED NETWORK
SIMILARITY PROBLEM

Network similarity measures the similarity between a pair of net-

works. In the literature, there are different strategies to measure

such similarity for both directed (e.g., signaling networks) and undi-

rected (e.g., ppi networks) networks. Hence, a set of networks can be

ranked with respect to a reference network based on their similarity

degrees to the latter. Formally, the similarity-based network ranking

problem can be defined as follows.

Definition 4.1. Given a reference networkG and a set of candidate

networks L = {L1, · · · ,LN }, the similarity-based network rank-

ing problem computes network similarity distance D(G,Li ) be-
tweenG and each Li ∈ L and ranks them in ascending (or descending)

order of D(.). Given the networks Li and Lj where Li ,Lj ∈ L, Li is

more similar to G if D(G,Li ) < D(G,Lj ). The best matched net-

work Lk ∈ L ofG is the network with the smallest network similarity

distance. That is, ∀i D(G,Lk ) < D(G,Li ).

Recall that the network similarity distance in Tintin is measured

using target features. Hence, we now formally introduce it. The

network similarity distance D(G,L) between a pair of signaling

networks, G and L, is based on similarity of the targets in G and

L with respect to their network features. Table 1 lists the set of

topological and dynamic features that we consider for computing

D(G,L) (referred to as target features). That is, given a reference

networkG and two candidate networks Li and Lj ,G is more similar

to Li if the feature distribution of the targets inG is more similar to

that of the targets in Li across all network features being considered.

Definition 4.2. Given a reference network G, its disease node xG
and an associated set of known targetsTG ; a set of candidate networks

L = {L1, · · · ,LN }, their disease nodes
⋃ |L |
i=1 xL[i] and associated

sets of known targets
⋃ |L |
i=1 TL[i]; and a set of target features X,

the distribution similarity of G and Li for a target feature Xj is

Symbol Description Type

θu Degree centrality of node u . The in, out and total

degree centralities are denoted as θin(u), θout (u) and
θtotal (u), respectively.

T

αu Eigenvector centrality of node u . T

βu Closeness centrality of node u . T

γu Eccentricity centrality of node u . T

δu Betweenness centrality of node u . T

πu Bridging coefficient of node u . T

ζu Bridging centrality of node u . T

κu Clustering coefficient of node u . The undirected, in,

out, cycle and middleman clustering coefficients are

denoted as κundir (u), κin(u), κout (u), κcyc (u) and
κmid (u), respectively.

T

µu Proximity prestige of node u . T

ωu Target downstream effect of node u [5]. T

Φ(u,v ) Profile shape similarity distance (pssd) between

nodes u and v [5].

D

Table 1: Target features. T: Topological, D: Dynamic

defined as

pG,Li ,X j
= F (G(G,xG ,TG ,Xj ),G(Li ,xLi

,TLi
,Xj )) (1)

where G(G,xG ,TG ,Xj ) is a function that retrieves target feature Xj
for a set of nodes TG in a given network G with disease node xG , and

F (A,B) is a statistical function that computes the similarity of two

distributions A and B. Then, the target feature-based similarity

distance between G and Li is defined as

D(G,Li ) = C({pG,Li ,X j
| 1 ≤ j ≤ |X |}) (2)

where C(Z ) is a function that aggregates the set of items Z .

In this work, we use the target features specified in Table 1.

Hence, the functions (G(G,xG ,TG ,Xj )) used for retrieving the

target features correspond directly to the formula for comput-

ing these features. For example, to compute pssd, we use the for-

mula given in Definition 3.3. The formula for the remaining target

features can be found in [6]. In particular, we use two statistical

functions (F (A,B)), namely, Wilcoxon Rank-Sum (Wilcoxon) and

Kolmogorov-Smirnov (ks) statistical measures2 to assess distri-

bution similarity. Hence, distribution similarities are obtained as

p-values. We use Stouffer’s method (Stouffer) as the aggregation

function (C(Z )) to aggregate the p-values in Equation 2. Note that

Stouffer’s method can be applied to combine dependent p-values

by introducing some degree of dependence (correlation) between

pairs by following the approach in [11]. A larger aggregatedp-value

implies the null hypotheses (a closer target feature-based similarity)

are true for every test.

5 THE TINTIN ALGORITHM

Algorithm 1 outlines the Tintin algorithm. Given a reference sig-

naling network G, its disease node xG and known targets TG , a

set of candidate networks L, their disease nodes x =
⋃ |L |
i=1 xL[i]

and known targets T =
⋃ |L |
i=1 TL[i], it identifies the best matched

network Gbest ∈ L of G and a ranked list of L in two phases.

Tintin provides an optional relaxation parameter pr to configure

the criteria for filtering out dissimilar networks.

2The Wilcoxon and ks tests are nonparametric and are suitable for features with distribution that

are unknown a priori.



Algorithm 1 Algorithm Tintin

Require: Reference networkG and its disease node xG and known targets

TG ; set of candidate networks L, their disease nodes x and known

targets T ; relaxation parameter pr (optional).

Ensure: Best matched network Gbest and network ranked list r .

1: Xbest , Pbest , H, T ruth ←learnBestVariant(L,x ,T )

2: pt ←learnPThreshold(T ruth, Pbest , pr )

3: Gbest , r ←getBestNetwork(G, xG , TG , L, Xbest , pt , H )

Algorithm 2 Procedure learnBestVariant

Require: Set of training networks L, their disease nodes x and known

targets T .

Ensure: Best feature type Xbest ; matrix of p-values for training networks

using the best feature type Pbest ; matrix of all features values in all

training networks H ; and the ground truth T ruth.

1: A ←initialize({Xall ,XT ,XD })

2: H ←extractFeatures(L,Xall )
3: T ruth ←getGroundTruth(L,H )

4: for iteration i=1 to |L | do
5: for iteration j=i+1 to |L | do
6: for iteration k=1 to |A | do
7: M ←getRelevantFeatures(H ,Ak )

8: PW ←Wilcox(Li , Lj , M )

9: Pks ←KS(Li , Lj , M )

10: PV ali (k, Lj ) ←combineP(PW ,Pks)

11: end for

12: end for

13: end for

14: for iteration i=1 to |A | do
15: for iteration j=1 to |L | do
16: Ranki, j ←Rank(PV al, i, j )

17: end for

18: Distancei ←Sum(Spearman(Rank, i ),Kendall(Rank, i ),T ruthi )

19: end for

20: Xbest , Pbest , H, T ruth ←getBestVariant(Distance ,PV al ,A)

The Learning Phase. In this phase, Tintin learns the best vari-

ant for findingGbest (Lines 1-2 in Algorithm 1). In particular, three

variants (Table 2) of Tintin utilizing different feature sets (only

topological features, only dynamic feature and combination of topo-

logical and dynamic features) are considered. We begin by identi-

fying the ground truth (true order of the ranking) of the candidate

networks. The ground truth reflects the actual similarity of the

target characteristics of the networks based on prior knowledge

or empirical results. Hence, it can either be provided by experts

familiar with the candidate networks and its associated targets

or generated automatically by using models that characterize the

known targets in these networks. We adopt the latter strategy by

utilizing Tenet[6]. Specifically, in order to generate the ground

truth, we exploit Tenet in the following way. Given a reference net-

work G and two candidate networks L1 and L2, L1 is more similar

to G if the characterization model of L1 produces a better char-

acterization of known targets in G compared to L2. That is, the

characterization model of L1 achieves a larger auroc (area under

roc curve) for known targets in G compared to that of L2. Note

that auroc is typically used to assess classifier performance as the

metric is robust for imbalanced datasets [9]. The ground truth can

Variant All Features T. Features D. Features Stouffer

TINTINA
√ √

TINTINS
√ √

TINTIND
√ √

√
marks inclusion in the variant. T.=Topological, D.=Dynamic

Table 2: Variants of our network similarity strategy.
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Figure 1: Ground truth found using AUROC.

be interpreted as the ordering of the candidate networks based on

decreasing auroc.

Next, all the features for targets in all candidate networks are ex-

tracted and the combined p-value for the Wilcoxon and the ks tests

for each variant is computed. Then, for each candidate network Li ,

three ranked lists (denoted as r ), each corresponding to one variant

(see Table 2), are obtained by ordering the remaining candidate

networks in decreasing order of the combined p-value. Next, the

disagreement between r and the ground truth is measured using

the Spearman footrule distance and Kendall-Tau distance, denoted as

ϒ(.) and Λ(.), respectively. Given two complete rankings r1 and r2
of a set of N individuals, let r1(i) be the rank of i ∈ N in the ranked

list r1. Then, the distances are calculated as:

ϒ(r1, r2) =
∑

i ∈N
|r1(i) − r2(i)|

Λ(r1, r2) = |{i, j} : r1(i) < r1(j) and r2(i) > r2(j)|
For each variant, the Spearman footrule and Kendall-Tau distances

for all the candidate networks are aggregated to obtain the over-

all distance. The best variant is the one yielding the least overall

distance. Furthermore, this phase determines a p-value threshold

(denoted as pt ) that shall be used to filter off dissimilar network

(Algorithm 1, Line 2). First, it obtains a mapping between the com-

bined p-values and “poor”3 auroc. Then, these combined p-values

are averaged to obtain pm . The value of pt is set as the minimum

of pm and pr since combined p-values less than pt are removed.

The Ranking Phase. In the next phase, the Tintin algorithm

identifies the best matched networkGbest and rank of the candidate

networks with combined p-values greater than pt . First, values of

predictive topological features is extracted for G. Then, for each

pair of (G ,Li ), the Wilcoxon and ks tests are performed for each of

these features and the p-values obtained are combined. Finally, the

candidate networks with combined p-values greater than or equal

to pt are ranked in order of decreasing combined p-values to obtain

r . The top-ranked network is Gbest .

Observe that it is possible for our ranking strategy to return no

best matched network if all the combined p-values are less than pt .

This indicates that none of the given candidate networks are similar.

In this case, we can either explore additional candidate networks to

identify Gbest or relax pt using pr to obtain a suboptimal Gbest .

Theorem 5.1. The worst-case time complexity of Algorithm 1 is

O(|L|(|L| − 1)(G(Xall ) + |A|(|VL[i] | |VL[j] |)2)) time in the worst

3We deem auroc<0.5 as “poor” since it indicates performance worse than random prioritization.



case, where G(Xall ) is the worst time complexity for extracting all

features, |VL[i] | is the number of nodes of the ith network in L and

|A| is the number of Tintin variants.

The proof of the above theorem is given in [7].

6 EXPERIMENTS

Tintin is implemented using Java. In this section, we investigate

its performance. All experiments are performed on a computer

system using a 64-bit operating system with 8gb ram and a dual

core processor running at 3.60GHz.

Datasets. We use a reference network (I0) and four candidate

networks (I1 to I4) for our experiments as shown in Table 3. Note

that although there are more than 600 curated signaling networks

in Biomodels, we restrict our study to only five signaling networks.

This is because we need to identify known targets of signaling net-

works for validating our experimental results. Unfortunately, to the

best of our knowledge, there is no publicly available technique that

can automatically identify known targets from signaling networks

by analyzing biomedical literature. Hence, we are confined to man-

ual target curation from a large volume of biomedical literature, a

time-intensive process. Also, although larger signaling networks

are desirable, to the best of our knowledge, no publicly-available

large signaling networks (e.g., human cancer signaling network)

contain dynamic information of all edges (odes), preventing us to

exploit dynamic features such as pssd. The targets of I0 are curated

from [16] (Ca2+, EGF:EGFR, EGFR, activated EGFR and Ras) and from

[3] (dimerized EGFR). The curated targets of the candidate networks

are given in [7].

Best TINTIN variant. First, we identify the best variant of Tintin.

Specifically, we examine how various variants (Table 2) perform

on the given set of candidate networks (I1 to I4). Then, we examine

if the best performing variant for the candidate networks is also

effective in identifying the best matched network for the reference

network. Finally, we analyze their runtime performance.

Figure 2 reports the results. Interestingly, we observe that the

variant using only dynamic feature performs better (smaller dis-

tance between ground truth and Tintin ranking) than variants that

either use only topological feature set or a combination of topolog-

ical and dynamic feature sets. This underscores the importance of

considering dynamic feature. The best performing variant obtained

from the learning phase (learnBestVariant) is TintinD .

Next, we examine the effect of applying different variants on

the reference network to validate if the learning phase yields the

desired best performing variant. Indeed, TintinD is the top per-

forming variant for the reference network (Figure 2, top, reference

network). In fact, majority of the Tintin variants identify I4 as the

best matched network (Figure 2, middle).

In terms of the runtime performance (Figure 2, bottom), the

learning process (Step 2) consumes the bulk of its execution time.

Hence, learning can be performed offline to improve the runtime

performance. The improvement is up to 2 orders of magnitude for

certain variants (e.g., TintinS for comparison of networks with

fewer than 100 nodes). In addition, we observe that the runtime

performance is dependent on the size of the network, the types and

number of features used by the variant. In subsequent experiments,

we shall use TintinD .
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Performance of the learnPThreshold procedure. In this

set of experiments, we identify the threshold p-value pt learnt from

the candidate networks. Table 4 shows the combined p-values of

each pair of candidate networks using TintinD and the corre-

sponding auroc when applying the characterization model of one

candidate network to another. pt is the average combined p-value

of the cells marked with ♯ . That is, pt =
2.2x10−16+2.2x10−16+0.045

3
=

0.01. When we apply pt = 0.01 to the ranked list of I1 to I4 ob-

tained using TintinD , we note that I3 (auroc=0.632, combined

p-value=2.2x10−16) is considered as a dissimilar network and fil-

tered off. Note that pt affects the number of networks being ranked,

but not the actual rank of the network. Hence, it is possible to have

no best matched network if the given set of candidate networks is

considered dissimilar to the unseen network.

Comparison with state-of-the-art. Lastly, we compareTintinD
against gdd [17] and NetSimile [4] in terms of network ranking

and runtime performance. We consider both the arithmetic and

geometric versions of gdd which are denoted as gddA and gddD ,

respectively. Since these target-unaware network similarity ap-

proaches define similarity differently from Tintin (Section 2), it is



Network notation I0 I1 I2 I3 I4
Data set (BioModel ID) Ras activation

(0000000161)

MAPK-PI3K

(0000000146)

glucose-stimulated insulin se-

cretion (0000000239)

endomesoderm gene regula-

tory (0000000235)

glucose metabolism

(0000000244)

Disease node RasGTPPM ERKPP ATPmitochondr ial Protein_E_Endo16 acetate

No. of nodes 46 36 59 622 47

No. of hyperedges 43 34 45 778 109

No. (%) of targets 5 (10.9%) 9 (25%) 6 (10.2%) 206 (33.1%) 16 (34%)

Table 3: Dataset.

I1 Model I2 Model I3 Model I4 Model

I1 - 6.52x10−4

[0.55]

2.2x10−16

[0.47♯]

0.128 [0.64]

I2 6.52x10−4

[0.62]

- 2.2x10−16

[0.54]

0.045 [0.43♯]

I3 2.2x10−16

[0.65]

2.2x10−16

[0.60]

- 2.2x10−16

[0.48♯]

I4 0.128 [0.61] 0.045 [0.51] 2.2x10−16

[0.55]

-

Table 4: Summary of result for learnPThreshold procedure (Al-

gorithm 1). The (i ,j)th cell entry is of the form x[y] where x is the

combined p-value for the (Ii ,Ij ) pair andy is the AUROCwhen char-

acterization model of Ij is applied to Ii .
♯ refer to cases with low

AUROC (i.e., AUROC<0.5).

Rank comparison S K Rank comparison S K

Tintin,gddA 6 4 gddA ,gddG 2 1

Tintin,gddG 6 3 gddA ,NetSimile 2 1

Tintin,NetSimile 6 3 gddG ,NetSimile 0 0

Table 5: Summary of comparison of ranks obtained using differ-

ent approach. S and K indicate Spearman footrule and Kendall-Tau

distances, respectively.

not possible to have a good network ranking benchmark that can

be used as ground truth for comparison. Instead, we compare the

similarities and differences in the rankings derived from Tintin

as compared to that from other approaches. As observed in Fig-

ure 3 (top), our approach differs in ranking of networks I1 to I4
when compared to traditional target-unaware network similarity

approaches. The differences in ranking is more significant when we

compare Tintin against target-unaware approaches (Table 5, left)

versus a comparison among traditional target-unaware approaches

only (Table 5, right). In particular, I4 was ranked best by Tintin

and worst by the target-unaware approaches (Figure 3, top).

The runtime performance is affected by the network size (Fig-

ure 3, bottom), of which the most significant4 impact is experienced

by the gdd-based approaches. In particular,NetSimile performs the

best and scales well even for larger networks. The order of the ap-

proaches in terms of runtime performance isNetSimile ≺ TintinD

(offline learning) ≺ TintinD ≺ gdd. Hence, our approach has mod-

erate runtime performance and the ranks produced are markedly

different from state-of-the-art approaches.

7 CONCLUSIONS & FUTUREWORK

In this paper, we present Tintin, a target feature-based signaling

network similarity computation and ranking technique by exploit-

ing the topological and dynamic characteristics of the targets. It is

4The runtime performance of gdd degrades by about 3 orders of magnitude when applied to I3 (622

nodes) as compared to I4 (47 nodes).

interesting to note that the empirical study highlights a single dy-

namic feature (pssd) as being more important than a set of topolog-

ical features in identifying the best matched network. This signals

the importance of considering dynamic features in measuring net-

work similarity. However, to the best of our knowledge, majority of

the work on network feature focus on topological features instead.

Hence, as part of future work, we intend to explore novel dynamic

network features that could be used to study signaling networks.

In addition, our empirical results demonstrate the differences in

terms of network ranking of Tintin compared to state-of-the-art

target-unaware network similarity techniques.
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