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ABSTRACT
Given a signaling network, the target combination identifi-
cation problem aims to predict efficacious and safe target
combinations for treatment of a disease. State-of-the-art in
silico methods use Monte Carlo simulated annealing (mcsa)
to modify a candidate solution stochastically, and use the
Metropolis criterion to accept or reject the proposed modi-
fications. However, such stochastic modifications ignore the
impact of the choice of targets and their activities on the
combination’s therapeutic effect and off-target effects which
directly affect the solution quality. In this paper, we present
Steroid, a novel method that addresses this limitation by
leveraging two additional heuristic criteria to minimize off-
target effects and achieve synergy for candidate modifica-
tion. Specifically, off-target effects measure the unintended
response of a signaling network to the target combination
and is generally associated with toxicity. Synergy occurs
when a pair of targets exerts effects that are greater than
the sum of their individual effects, and is generally a bene-
ficial strategy for maximizing effect while minimizing toxi-
city. Our empirical study on the cancer-related mapk-pi3k

network demonstrates the superiority of Steroid in com-
parison to mcsa-based approaches. Specifically, Steroid is
an order of magnitude faster and yet yields biologically rele-
vant synergistic target combinations with significantly lower
off-target effects.
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1. INTRODUCTION
Combinatorial control involving redundancy and multi-

functionality of biological signaling processes are often im-
plicated in diseases [12] such as cancer. These signaling pro-
cesses are often modeled as hypergraphs (G = V,E) in sys-
tems biology, where the nodes V represent molecules (e.g.,
proteins) and the edges E represent interactions [23]. Fig. 1
depicts the hypergraph representation of the mapk-pi3k sig-
naling cascade [17]. Such graph-based models facilitate our
understanding of the underlying disease mechanism, and
provide a means to study the effects of targeting different
nodes in the network through in silico network simulations.

Targeting multiple molecules simultaneously in a signal-
ing network, also known as combination therapy, sometimes
yields better benefits compared to a single molecule (mono-
therapy) for complex diseases, for dynamically changing dis-
eases, or for diseases with a heterogeneous population of
pathological mechanisms [10]. Even for diseases that are
caused entirely by disruption of a single pathway (lacking
in dynamics or heterogeneity), combination therapy might
still offer benefits over monotherapy by virtue of spreading
out the side effects to sub-toxic levels, while concentrating
the desired effects on the target pathway. However, not all
combination therapies produce better effects than monother-
apies. For instance, in a study of combinations of analgesic
drugs, some combinations (e.g., aspirin and pentazocine)
were beneficial, while others (e.g., acetaminophen and pen-

tazocine) were detrimental [26]. Hence, it is important
to formulate strategies to develop good drug combinations
which maximize the overall therapeutic effect while minimiz-
ing the off-target effects.

The identification of good drug combinations broadly in-
volves two key steps, namely identification of good target
combinations and identification of appropriate set of drugs
hitting these targets. In this paper, we focus on the first
step. That is, we address the target combination identifica-
tion problem, which is complex and non-linear. Informally,
this problem involves finding suitable sets of drug targets
and the required target activities (type and extent of per-
turbations) for these targets for a given signaling network
and a therapeutic goal. The complexity of the biological
network (numerous potential drug targets and wide range
of target activities) makes performing exhaustive search for
sets of targets technically challenging, expensive and time
consuming since the number of testable combinations in-
creases exponentially with the number of variables associ-
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Figure 1: MAPK-PI3K signaling cascade [17].

ated with the network. Tools that can facilitate early de-
tection of inefficacious or toxic target combinations in silico
can serve as a powerful discovery and prescreening platform
when coupled with other complementary technologies such
as high-throughput screening.
Informally, the therapeutic effect and the off-target effects

are measures of the intended and the unintended response,
respectively, of a biological signaling network to the drug
combination. Each drug effect can be simulated in silico by
modifying appropriate signaling network model parameters.
The intended response is the resulting changes to the con-
centration of the output node, while the unintended response
is the resulting changes to the sum of the concentration of
the rest of the nodes in the network. An output node is a
molecule that is either involved in some dysregulated bio-
logical processes implicated in a disease, or is of interest due
to its potential role in the disease. An example of an out-
put node in the mapk-pi3k network (Fig. 1) implicated in
cancer is phosphorylated erk (erkpp) [37]. The therapeu-
tic effect of the drug combination, azd6244 (mek inhibitor)
and sorafenib (Raf inhibitor), can be described as reducing
[erkpp], the node concentration we seek to decrease [11,41].
Few designs of target combinations are automated. These

state-of-the-art in silico methods are based on sequential
decoding (sd) algorithms [4] or Monte Carlo simulated an-
nealing (mcsa) [19,40]. Stochastic search algorithms such as
mcsa are expected to perform better than sd for non-linear
problems [4]. mcsa modifies a candidate solution stochasti-
cally and the proposed modification is accepted or rejected
using the Metropolis criterion [28]. Although stochastic can-
didate modification effectively covers the search space by
producing a wide variety of candidates, it has two key limi-
tations when used for identifying target combinations. First,
drug targets in real signaling networks influence the thera-
peutic and off-target effects differently, due to one or more
downstream nodes’ involvement in other protein-protein in-
teractions [8]. Ignoring this consideration may yield com-
binations satisfying the user-desired therapeutic effect, but
with excessive off-target effects. Second, although the tar-
get activity affects the combination effects, it is chosen ran-
domly in mcsa. A judicious selection process can provide us
an opportunity to improve efficiency of the overall process.
In this paper, we present a novel and generic approach

called Steroid (HeuriSTic-Based SynErgistic TaRget
COmbination IDentifier) to address the aforementioned lim-
itations. Instead of only modifying the drug target and
target activity stochastically (e.g., [19, 40]), Steroid judi-

Figure 2: Isobologram. Drug doses D1 and D2 achieve

the desired therapeutic effect if the drugs are adminis-

tered alone. d1 and d2 together achieves the same effect.

ciously modifies candidate solutions by leveraging two ad-
ditional heuristic criteria for minimizing off-target effects
and achieving synergy (detailed in Section 4). Off-target
effects are generally associated with toxicity. Synergy oc-
curs when a pair of targets exerts effects that are greater
than the sum of their individual effects, and is generally a
beneficial strategy for maximizing therapeutic effect while
minimizing toxicity. For instance, medullary thyroid cancer
cells treated with azd6244 and sorafenib had better out-
come in terms of cell survival and apoptosis due to drug
synergy [24]. Steroid uses heuristics based on target pri-
oritization methods (e.g., sensitivity analysis [38, 43] and
Pani [8]) which prioritize potential targets in a given disease-
related network; and Loewe additivity isobologram analysis
(loewe) [42] which assesses drug interaction in a combi-
nation. Specifically, target prioritization-based heuristic is
used to select more effective targets to reduce off-target ef-
fects. Off-target effects is the main reason why drugs fail,
and systems biology offers the hope of improving this trend
by avoiding off-target effects throughout the therapy design
process. loewe-based heuristic is used for pruning the tar-
get activity search space to reduce computational cost and
to ensure that targets selected are synergistic. As we shall
see in Section 5, the above candidate modification strategy
leads to efficient identification of superior target combina-
tions compared to mcsa-based techniques [19,40].

2. BACKGROUND
In this section, we briefly introduce target prioritization

and Loewe additivity isobologram analysis which we shall
be exploiting in the sequel. We use the heregulin (hrg)-
induced mapk-pi3k signaling network implicated in ovarian
cancer [17] (Fig. 1) as a running example because its nodes
are well-studied for the roles they play when targeted with
relevant drugs. Details of this ordinary differential equa-
tion (ode) model (biomd0000000146) are found in Biomod-
els.net [25]. We selected erkpp as the output node due to
its role in ovarian cancer [37]. The desired therapeutic ef-
fect was set to 50% erkpp down-regulation for the in silico
model. Note that in practice, the therapeutic effect is depen-
dent on the stage of the disease and is typically measured as
inhibition of certain phenotypic response (e.g., cell growth)
which may not be linearly correlated with the inhibition of
the output node concentration.

2.1 Target Prioritization
Target prioritization methods assign prioritization rank

to individual target nodes based on certain criteria (e.g.,
the sensitivity of the output node to each target node [38]).
Several target prioritization approaches such as sensitivity
analysis [38, 43] and Pani [8] have been recently proposed.



Sensitivity analysis assigns node rank according to the
sensitivity value which is the ratio of the output node per-
turbation to parameter (e.g., kinetic rate constant) pertur-
bation. Local sensitivity analysis (lsa) measures sensitiv-
ity by varying a single parameter at a time [38] whereas
global sensitivity analysis, such as multi-parametric sensitiv-
ity analysis (mpsa), measures sensitivity by varying multiple
parameters simultaneously [43].
Pani [8], in contrast, uses network information and simple

empirical scores to prioritize and rank biologically relevant
target molecules in signaling networks. First, it prunes the
nodes based on a reachability rule to eliminate nodes that
are likely to be non-regulators. Then, it ranks the result-
ing nodes based on the putative target score of each node,
which is a weighted rank aggregation of a dynamic property
(profile shape similarity distance (pssd)) and two structural
properties (target downstream effect (tde) and bridging cen-
trality (bc)) of the node. pssd identifies the most relevant
upstream regulators of the output node; tde assesses the
potential impact on the network when a node is perturbed;
and bc identifies nodes that bridge modular subregions in a
network [18]. Pani-prioritized nodes in the mapk-pi3k net-
work (e.g., Aktpip) are found to correlate well with known
ovarian cancer drug targets [8]. Hence, we reason that they
are likely to form safer and more efficacious combinations.

2.2 Loewe Additivity Theory (LOEWE)
The Loewe additivity theory assumes that drugs act with-

out self-interaction and determines drug interaction in a
combination using the combination index [12]. Given a set
of drugs X and therapeutic effect T , let Dx and dx be the
doses of drug x ∈ X required to achieve effect T when used
alone and in combination, respectively. Then, the combina-
tion index is defined as CI =

∑
x∈X

dx
Dx

. The combination
is synergistic, additive or antagonistic if CI < 1, CI = 1
or CI > 1, respectively. The isobologram (Fig. 2) provides
a visual interpretation of loewe. It is a graph with the
individual drug doses (D1 and D2) as its axes. The “line
of additivity” is used to interpret the drug interaction: syn-
ergistic and antagonistic combinations are represented by
drug doses that fall below and above the line of additivity,
respectively [42]. We adapt this theory by replacing drugs
and drug doses with drug targets and target activities, re-
spectively, for selecting synergistic target activities.

3. TARGET COMBINATION IDENTIFICA-
TION PROBLEM

In this section, we formally define the problem of target
combination identification. Note that the goal of this work is
to identify synergistic combinations of targets with reduced
off-target effects and excludes the evaluation of drug com-
pounds that bind and regulate the target molecules. We
begin by introducing several concepts related to drug target.

3.1 Drug Target and Target Activity
A drug asserts its effect on a network through the target,

while the target activity is a variable related to the extent
of target perturbation. The perturbation is typically a net-
work parameter (e.g., kinetic rate constant) that controls
the concentration of the node associated with the target.
The drug effect is typically modeled in silico as modulation
of the node concentration. The modulation is achieved by
modifying either the node’s edges (typically represented as

ode reactions) [40] or the node itself (initial concentration)
depending on whether the node concentration varies with
time. We now formally define these two concepts. We first
introduce the notion of reactant-product edge set to facili-
tate exposition. Given a signaling network G = (V,E) and
a node u ∈ V , the reactant-product edge set of u is defined
as ζu = Ru

⋃
Pu where Ru ⊂ E and Pu ⊂ E are the edge

sets involving u as reactants and products, respectively.

Definition 1. Given a signaling network G = (V,E),
and node u ∈ V with concentration time-series profile ξu
and reactant-product edge set ζu, the drug target of a node
u is cfix = u if ξu is constant, and it is cvar ∈ ζu otherwise.

Definition 2. Given a drug target c perturbed by drug D
with dissociation constant KD, the target activity of c is

defined as Γc = [D]
KD

where [D] is the concentration of D.

The ode modification varies according to the drug type
(e.g., activators or inhibitors) and the mechanism of ac-
tion. We modeled activation using nonessential activation
[6], and inhibition using competitive inhibition [40]. These
reaction modifications make sense only when applied to uni-
directional irreversible reactions. Note that reversible reac-
tions can be transformed into equivalent pairs of irreversible
reactions using [34].

Formally, let I be an inhibitor, A be an activator, and
cfix = u and cvar = r be two targets where u is a node
with constant concentration time-series profile and r is a
reaction in the reactant-product edge set of node v which
has a variable concentration time-series profile. Let r =
Vmax[S]
Km+[S]

where Vmax is the maximum velocity; Km is the

Michaelis-Menten constant; and [S] is the concentration of
the substrate S. Then, the competitive inhibition of cfix and
cvar are given by the following equations:

I(cfix) =
[u]0
[I]
KI

(1)

I(cvar) =
Vmax[S]

Km(1 + [I]
KI

) + [S]
(2)

In the above equations, [u]0 is the initial concentration of u
andKI is the dissociation constant of I. Similarly, letKA be
the dissociation constant of A. The nonessential activation
of cfix and cvar are defined as follows.

A(cfix) =
[A]

KA
[u]0 (3)

A(cvar) =
Vmax[S](1 +

[A]
KA

)

Km + [S]
(4)

3.2 Target Effects
Given a signaling network G = (V,E), a drug target c

and the desired therapeutic effect t, let u ∈ V be the node
associated with effect t. Let αu and α′

u be the areas under
the concentration-time series profile curves of node u before
and after c is perturbed, respectively. Then, the therapeu-
tic effect tc and off-target effects ρc of c are given by the
following equations.

tc =
|αu − α′

u|
αu

(5)

ρc =
∑

v∈V \u

(
|αv − α′

v|
αv

) (6)



Note that tc and ρc can be determined from in silico simula-
tion using Copasi [34]. The combination effects are defined
similarly and α can be estimated using the linear trapezoidal
rule method [5].

3.3 Problem Definition
Intuitively, the goal of the target combination identifica-

tion problem is to identify targets and their activities that
achieve a user-specified therapeutic effect (e.g., to achieve
50% inhibition of erkpp) while minimizing the off-target
effects. Hence, the problem can be modeled as the opti-
mization of a constraint satisfaction problem (csp) which is
NP-hard [14]. The csp is represented as a triple (X,D,C),
where X, D and C represent the set of variables, the vari-
ables’ domain and the set of constraints, respectively. The
element X represents the set of drug targets and target ac-
tivities; D represents the set of candidate targets in a given
disease-related network and the target activity range; and
C represents the condition that the combination therapeu-
tic effect must match the desired therapeutic effect. The
objective of the target combination identification problem is
to minimize the combination off-target effects.

Definition 3. Given a set of target combination C =
{C1, · · · , CN} and a desired therapeutic effect t, let Ci =
{c1, · · · , cm} where cj ∈ Ci is the jth target in the ith com-
bination. Let ρCi and tCi be the off-target effects and thera-
peutic effect of combination Ci, respectively. Then, the tar-
get combination identification problem is defined as

Ci = min{ρCi |tCi = t}

4. IDENTIFYING TARGET COMBINATION
In this section, we describe the heuristic algorithm Steroid

for identifying target combinations. We begin by presenting
the target prioritization and loewe-based heuristics which
we shall exploit for modifying the candidate solutions.

4.1 Heuristics
Target prioritization-based heuristic. The goal of

using the target prioritization heuristic for target selection
is to improve the average solution quality by choosing more
effective targets with higher probability, thereby minimizing
off-target effects. To achieve this, we first translate the node
prioritization rank (Recall from Section 2.1) to an equivalent
target rank, then convert the rank to a selection probability
value which is used to decide if the target will be accepted.
We now introduce these two concepts.
Given a signaling network G = (V,E) and a target pri-

oritization method P , let ΨP :u be the rank of node u ∈ V
based on P and ζv ⊂ E be the reactant-product edge set of
node v ∈ V . Let cfix, cvar ∈ C where C is the set of targets
in G. Then, the target ranks of cfix and cvar are denoted
as Ψcfix = ΨP :u and Ψcvar =

∑
w∈W ΨP :w, respectively,

where W = X
⋃

Y , X,Y ⊂ V , and cvar = (X,Y ).
The selection probability (δ) of a target is the likelihood of

selecting the target. We use the rank-based fitness function
in [2] to obtain a target’s selection probability. The fitness
function is based on the individual target ranks and avoids
scaling problems associated with using actual objective val-
ues. The expected sampling rate of the individual target is
controlled by a parameter called selective pressure λ+ [39].
Observe that the aforementioned heuristic is independent

of any specific target prioritization method. However, as we

shall see in Section 5, Pani-based target combination iden-
tification typically generates superior quality results com-
pared to mcsa-based techniques as the former exploits struc-
tural and dynamics properties of the signaling network [8]
to improve prioritization of targets.

LOEWE-based heuristic. The effects (Section 3.2) re-
sulting from a drug combination can be interpreted as drugs
at particular dosages hitting their targets that result in cer-
tain target activities causing a particular response of the
network. Hence, an interaction of multiple targets in a com-
bination can be assessed the same way as drug interactions
(Section 2.2) by replacing the drug doses with target activ-
ities. A target combination is guaranteed to be synergistic if
the target activities are chosen from values below the line of
additivity. Based on Section 2.2, we define the target inter-
action as follows.

Definition 4. Given a therapeutic effect t and a target
combination C = {c1, · · · , cm}, let Γ0(ci) and Γ(ci) be the

target activities of the ith target in C that achieve t when
targeted alone and in combination, respectively. Then, the
target combination index of C is defined as

tciC =
∑

ci∈C

Γ(ci)

Γ0(ci)

The combination is synergistic, additive or antagonistic
if tciC < 1, tciC = 1 or tciC > 1, respectively. The
synergistic ranges of cj and cm are denoted as [0–Γ0(cj))
and [0–Γ(cm)), respectively, where 1 ≤ j < m, Γ(cj) ∈[0–
Γ0(cj)) and tciC < 1.

Graphically, the synergistic ranges of a 2-target combina-
tion can be visualized in Fig. 2 (rightmost isobologram) as
“synergistic range1” and “synergistic range2”.

4.2 The Algorithm STEROID
Systematic algorithms (e.g., backtracking) proposed for

solving csp [3] assume that partial instantiation of the can-
didate solutions are possible. However, the target combina-
tion identification problem requires full instantiation to find
the combination effects. In this section, we present Steroid
(outlined in Algorithm 1) that leverages the heuristics in
Section 4.1 for modifying the candidate solutions. The sig-
naling network (G) and prioritization rank (Ψ) are used to
modify the drug targets and target activities. The signal-
ing network is also used to simulate the target combination
effects. Note that the user can specify his preferred target
prioritization method for finding Ψ. The input t is used to
assess the combination effects while input S specifies the size
of the combination target. Several other parameters (λ+, θt,
θa, N , τ0 and imax) that are required by Steroid are set
to default values which can be modified if required (Line 2).
The parameter λ+ is used to compute the selection prob-
ability of the target. In practice, it is difficult to achieve
the therapeutic effect exactly and additive target combina-
tions are generally close to the line of additivity, but seldom
“sit” exactly on it. Hence, we specify adjustment factor pa-
rameters θt and θa to relax the condition for therapeutic
effect and additive combination into bound conditions, re-
spectively (e.g., 49.5% to 50.5% inhibition of erkpp and ad-
ditive if 0.95 ≤ tci ≤ 1.05). Finally, the parameters N , τ0
and imax are used to configure the simulated annealing (sa)
and they control when the sa terminates: when N solutions



Algorithm 1 Algorithm Steroid

Input: Signaling network G, prioritization rank set Ψ, therapeutic
effect t, combination size S

Output: Solution set R
1: R ←initialize(R)

2: (λ+,θt,θa,N ,τ0,imax)←setToDefaults(λ+,θt,θa,N ,τ0,imax)
3: τ ← τ0
4: (G,C,Γ0)←preprocessInput(G,t,θt,τ0,imax)// Phase 1
5: while τ ≥ 0 and |R| ≤ N do
6: for iteration i=1 to imax do
7: X ←getCombi(C,λ+,Ψ,θa,Γ0,R,S)// Phase 2.1
8: (tX ,ρX )←getEffect(G,t,X )// Phase 2.2
9: R ←acceptCombi(tX ,ρX ,t,θa,θt,τ ,R)// Phase 2.3

10: end for
11: Decrement τ
12: end while
13: return R

are found or when τ0 × imax iterations are completed where
τ0 is the initial temperature and imax specifies the limit on
the number of iteration per temperature cycle.
Steroid consists of two phases, namely, the preprocessing

phase and the simulated annealing with heuristics phase.
Phase 1: Preprocessing. In this phase (Line 4), the re-

versible reactions in G are converted into pairs of irreversible
reactions using [34]. The reactions are then modified (ac-
cording to Section 3.1) to simulate the effects of the targets
when modulated by non-competitive inhibitors or essential
activators. The set of drug targets C is obtained using Def-
inition 1. The individual target activities Γ0 required to
achieve the desired therapeutic effect (50% down-regulation
of erkpp, θt=5%) are found using mcsa configured with the
parameters τ0 and imax. Due to space constraints, details
for the individual target activities are given in [7].
Phase 2: Simulated Annealing with Heuristics

(SAH). The sah consists of three subphases which are re-
peated until either the temperature τ reaches zero or the
required number of solutions N is found (Line 5). The sub-
phases consist of target combination generation (the get-

Combi procedure, Line 7); combination effects calculation
(the getEffect procedure, Line 8); and the test for candi-
date acceptance (the acceptCombi procedure, Line 9).
In the getCombi procedure (Algorithm 2), the candidate

combination X consisting of S targets is generated. Lines 4
to 7 implement the target prioritization-based heuristic and
Line 9 loewe-based heuristic. The first target A is ran-
domly selected using selectRandomTarget (Line 5, Al-
gorithm 2) and accepted in acceptTarget (Line 6) if the
probability of selecting A (selection probability) is greater
than a random number in the range [0–1] (δA >rand(0,1)).
Its activity is then selected within the synergistic range (Def-
inition 4) using selectActivity (Line 9). Similar steps are
repeated to find subsequent targets and their activities.
Next, the getEffect procedure (Line 8, Algorithm 1)

obtains the therapeutic and off-target effects by simulating
the candidate solution using Copasi and calculating the ef-
fects (Section 3.2). These effects are used to assess the can-
didate in acceptCombi (Line 9). A candidate is accepted
if it is synergistic, it achieves the required therapeutic ef-
fect, and it has lower off-target effects than the current so-
lution (curr); or if it achieves the required therapeutic effect

and e−
ρX−ρcurr

τ ≥rand(0,1) (Metropolis criterion). Due to
space constraints, the formal descriptions of these two pro-
cedures are given in [7].

Algorithm 2 The getCombi Procedure (Phase 2.1)

Input: Target candidate set C, selective pressure λ+, prioritization
rank set Ψ, adjustment factor for target interaction θa, individual
target activity set Γ0, solution set R, combination size S

Output: Combination candidate X = {(x1,Γ1), · · · , (xS ,ΓS)}
1: X ←initialize(X )
2: Y ←initialize(Y)
3: for (xi,Γi) ∈ X do
4: while isNull(xi) is true do
5: A ←selectRandomTarget(C/Y,R)

6: xi ←acceptTarget(A,C/Y,Ψ,λ+)
7: end while
8: Y ← Y

⋃
xi

9: Γi ←selectActivity(xi,Y,Γ0,θa,R)
10: end for
11: return X

Theorem 1. The time complexity of Steroid is O(τ0 ·
imax · |E| · |ξ|) where τ0 is the initial temperature; imax is
the limit on the iterations per cycle; |E| is the number of
irreversible reactions; and |ξ| is the number of time points
in the concentration time-series profiles used to estimate the
target effects.

Proof. The proof is given in [7].

5. PERFORMANCE STUDY
Steroid was implemented using Java. In this section,

we investigate the performance of Steroid and compare it
with state-of-the-art mcsa-based techniques [19, 40]. Since
Steroid involves two heuristics and it is orthogonal to any
specific target prioritization technique, we use several vari-
ants of it for comparative study. We denote variants of
Steroid enabled with one and two heuristics as Steroid-

x and Steroid-xx, respectively, where x∈ {l,p,s,m} and
l=loewe, p=Pani [8], s=lsa [38] and m=mpsa [43]. Note
that modification of the candidate differs depending on the
heuristics used. For mcsa, the targets and activities are se-
lected randomly. For Steroid-p, Steroid-s and Steroid-

m, the targets are selected using Algorithm 2 (Lines 4–7)
while the activities are selected randomly. For Steroid-l,
the targets are selected randomly while the activities are se-
lected from within the synergistic range. For Steroid-pl,
Steroid-sl and Steroid-ml, the targets and activities are
selected using Algorithm 2 (Lines 4–9).

We ran the experiments on an Intel 2.93ghz Xeron proces-
sor machine with 12gb ram running Microsoft Windows 7 to
obtain 10 sets of results for each approach. The mapk-pi3k

network [17] was used for analysis and the desired thera-
peutic condition was chosen as 50% erkpp down-regulation
(Section 2). For all experiments, the combination size was
set to 2 and the following default values were used for the rest
of the parameters: {τ0=100; imax=500; N=50; θt=θa=5%;
λ+=1.8}. We used Copasi for estimating the combination ef-
fects and its parameters were set following [8]. Due to space
constraints, the effects of these parameters on the results are
reported in [7]. In the tables presented, the terms ACT and
IN denote activators and inhibitors, respectively. Forward
and backward reactions are marked with the superscripts f
and b, respectively.

Biological Relevance. First, we examined each ap-
proach’s ability to find a set of benchmark target combi-
nation relevant to ovarian cancer and targeting the mapk-

pi3k network. The benchmark combination set is curated
from literature in the PubMed repository using “ovarian”,
“cancer”, “combination” as keywords. Out of 5863 PubMed



PMID Target 1 Target 2
22180401 Akt In mek In

21632463 pi3k In mek In

21062259 Akt In mek In

14675307 pi3k In Akt In

Table 1: PubMed re-

sults of ovarian cancer drug

combinations targeting the

MAPK-PI3K network.

Target in
Table 1

Inhibition Mechanism Corresponding target(s) in MAPK-PI3K network

Akt In Disruption of Akt binding to its membrane localizing
factor (pip3) [30] or dephosphorylation of pip3 [27]

Reaction 29b Act, Reaction 30 Act, Reaction 33
Act, Reaction 29f In, Reaction 31 In, Reaction 32
In

mek In mek dephosphorylation [29] or blockade of mek phos-
phorylation [13]. Is also used to achieve erk inhibition
as there is no known erk inhibitors.

Reaction 16 Act, Reaction 18 Act, Reaction 20 Act

Reaction 22 Act, Reaction 15 In, Reaction 17 In,
Reaction 19 In, Reaction 21 In

pi3k In Inhibits pi3k in atp-competitive manner [27] Reaction 24b Act, Reaction 26 Act, Reaction 24f In

Table 2: Mapping between targets in Table 1 and MAPK-PI3K network.

records (as of 17 March 2012), only 4 (Table 1) fitted the
criteria. Table 2 shows the targets in the mapk-pi3k network
that match those in Table 1. We examined our solution set
to identify those combinations (Table 3) involving the tar-
gets in Table 2 and found that the majority of the target
combinations were found using Steroid-pl. We noted that
the off-target effects of these solutions were relatively low (in
the range [4–26]) and were likely to be good combinations,
correlating well with literature [1, 21]. Details of the target
combinations are reported in [7].
Since the solutions in Table 3 were not the best within

our solution set, we went on to examine if the best solutions
are biologically relevant and whether one approach is better
than another for biological purposes. We pooled solutions
from all approaches to identify the top-10 solutions having
the least off-target effects involving target activity of less
than 100 (Min10, Table 4). Note that large target activity
(Definition 2) implies either high drug concentration or very
small dissociation constant, both of which are likely to cause
side effects, especially if the treatment regime requires re-
peated drug dosing [9]. Steroid-pl identified a majority of
the top-10 solutions (90%). Most of the targets identified are
located downstream of the mapk-pi3k network. Since none
of our solutions corresponded to the curated combinations in
PubMed (Table 1), we performed a targeted literature search
for each predicted combination (Table 4) to see if it had
ever been performed. We found that 60% of the solutions
in Min10, all found using Steroid-pl, have high biologi-
cal relevance as potential target combinations. For instance,
from experiments, profound growth inhibition and apoptosis
were observed in ci-1040 (mek1/2 inhibitor) treated ovarian
cancer cells with mutations in kras or braf [32] and these
tumors typically overexpress dusp4 (erk phosphatase) [35].
This correlates with our computational prediction of combi-
nations 1, 6 and 9 involving erk phosphatase activator and
erk (or mek) kinase inhibitor. Note that there is currently
no known inhibitor that acts directly on erk and erk inhi-
bition is typically achieved through mek inhibitors. Further-
more, the predicted combination 4 (erk kinase inhibitor and
tyrosine kinase inhibitor) correlates with the fact that the
combination of cetuximab (tyrosine kinase inhibitor [22])
and azd6244 (mek inhibitor) is currently undergoing a phase
1 clinical trial for solid tumors (nct01217450). For pre-
dicted combinations 7 and 10, we did not find any support-
ing evidence that they have been performed, successfully
or otherwise, in experiments. However, individual compo-
nents of these combinations have shown efficacy in ovarian
cancer [20, 31], and warrant further investigation as poten-
tial target combinations. In the remaining predicted com-
binations, two (combinations 2 and 3) are more akin to
monotherapies than combination therapies as they involve
the same type of drug (erk or mek kinase inhibitor) and we
did not find any supporting evidence for the other two (com-
binations 5 and 8). We conclude that Steroid can identify

Approach PubMed Combination (Count) % Found
Steroid-l Akt/mek In (5), mek/pi3k In (2) 12.73
Steroid-pl Akt/mek In (16), mek/pi3k In (8) 43.64
Steroid-sl Akt/mek In (6), mek/pi3k In (1) 12.73
Steroid-ml Akt/mek In (3), mek/pi3k In (3) 10.91
Steroid-p Akt/mek In (5), mek/pi3k In (3) 14.55
Steroid-s mek/pi3k In (1) 1.82
Steroid-m mek/pi3k In (1) 1.82
mcsa Akt/mek In (1) 1.82

Table 3: Summary of target combinations in R corre-

sponding to combinations curated from PubMed.
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Figure 3: Runtime performance.

biologically relevant combinations with low off-target effects,
suggesting that heuristics are useful in improving the solu-
tion quality.

We also examined 10 solutions with maximum off-target
effects from the pooled solution set (Table 5). All 10 com-
binations contain tyrosine kinase inhibitors (tki). Treat-
ments involving tki tend to lose their effectiveness soon
due to resistance, often caused by activating mutations in
downstream effectors of the tyrosine kinases [36]. Moreover,
they are prone to toxicity caused by the disruption of multi-
ple downstream signaling pathways of the tyrosine kinases,
which are involved in normal organ functioning [16]. Hence,
designing combinations involving tki requires knowledge of
a patient’s tumor’s genome to select additional complemen-
tary targets that can minimize tki-resistance. The tki ac-
tivity should also be kept low to reduce potential toxicity.
However, the predicted combinations involve tki at high
activity level, making them less than ideal. In addition, we
noted that several of the targets identified in the predicted
combinations (50%) involve promoters of known mediators
of cancer (e.g., mek kinase [33]). The design of such target
combinations require extra caution to achieve the required
therapeutic effect, since improper management of the bal-
ance between the pro- and anti-cancer signal can easily ag-
gravate the cancer. Hence, large off-target effects may be
indicative of less effective or more toxic combinations.

Runtime Performance. In this set of experiments,
we analyzed the execution time needed to complete anal-
ysis for the different approaches. Fig. 3 plots the results.
We can make two key observations. First, our proposed
heuristic-based approach is an order of magnitude faster
than state-of-the-art techniques (mcsa). Second, approaches
incorporating loewe are approximately an order of mag-



Target 1 [Activity] Target 2 [Activity] ρ Method
Reaction 21 In [1.858] Reaction 22 Act [0.173] 1.010 Steroid-pl

Reaction 21 In [2.063] Reaction 19 In [0.055] 1.010 Steroid-pl

Reaction 21 In [2.248] Reaction 17 In [2.5×10−4] 1.017 Steroid-pl

Reaction 21 In [2.248] Reaction 1f In [3.92×10−3] 1.022 Steroid-pl

Reaction 22 Act [2.227] Reaction 8f In [1.2×10−4] 1.023 Steroid-pl

Reaction 22 Act [2.086] Reaction 21 In [0.064] 1.026 Steroid-pl

Reaction 22 Act [2.143] Reaction 13 In [0.065] 1.028 Steroid-pl

Reaction 22 Act [2.222] Reaction 5b Act [0.011] 1.031 Steroid-l

Reaction 22 Act [2.216] Reaction 17 In [0.009] 1.032 Steroid-pl

Reaction 21 In [2.163] Reaction 14 Act [0.010] 1.036 Steroid-pl

Target (Count) Reaction in [17] Description
Reaction 21 In (6) erkp→erkpp erk kinase inhibitor
Reaction 22 Act (6) erkpp→erkp erk phosphatase activator
Reaction 17 In (2) mekp→mekpp mek kinase inhibitor
Reaction 1f In (1) R+hrg→rhrg tyrosine kinase inhibitor
Reaction 5b Act (1) RShc→rp+Shc activator of Shc dissociation from rp

Reaction 8f In (1) RShgs→Shgs+rp inhibitor of Shgs dissociation from rp

Reaction 13 In (1) Raf→Raf� Raf inhibitor
Reaction 14 Act (1) Raf� →Raf Raf inhibitor
Reaction 19 In (1) erk→erkp erk kinase inhibitor

Table 4: Top: Target combinations in Min-10. Bottom:

Details of targets.

Target 1 [Activity] Target 2 [Activity] ρ Method

Reaction 1b Act [3557] Reaction 28 In [6870] 3998 mcsa

Reaction 28 In [5050] Reaction 1b Act [3602] 3001 mcsa

Reaction 1b Act [3282] Reaction 28 In [4397] 2775 Steroid-m

Reaction 32 Act [4298] Reaction 1b Act [9192] 361 Steroid-s

Reaction 27 Act [993] Reaction 3b In [4717] 361 mcsa

Reaction 1b Act [9136] Reaction 31 In [9945] 360 mcsa

Reaction 1b Act [8992] Reaction 32 Act [2465] 360 Steroid-s

Reaction 31 In [1215] Reaction 1b Act [8406] 353 mcsa

Reaction 32 Act [9963] Reaction 1b Act [8086] 351 Steroid-s

Reaction 15 Act [3809] Reaction 1f In [1416] 350 mcsa

Target (Count) Reaction in [17] Description

Reaction 1b Act (8) rhrg→R+hrg tyrosine kinase inhibitor
Reaction 28 In (3) pip3→pi pip3 phosphatase inhibitor
Reaction 32 Act (3) Aktpip→Aktpipp pi3 kinase activator
Reaction 31 In (2) Aktpip→Aktpip3 pi3 kinase inhibitor
Reaction 1f In (1) R+hrg→rhrg tyrosine kinase inhibitor
Reaction 3b Act (1) rp→rhrg2 tyrosine kinase inhibitor
Reaction 15 Act (1) mek→mekp mek kinase activator
Reaction 27 Act (1) pi→pip3 pi3 kinase activator

Table 5: Top: Target combinations in Max-10. Bottom:

Details of targets.

nitude faster than other approaches, likely because loewe-
heuristic avoids doing full evaluation on non-synergistic com-
binations which are excluded during candidate generation.
Off-Target Effects. We studied the effects of using

different approaches on the off-target effects (Section 3.2)
by comparing various descriptive statistics (Fig. 4). We
also pooled together the solutions obtained from the 10 tri-
als (pooled trial) and compared the cumulative distribution
functions (cdf) using t-test and Kolmogorov-Smirnov (ks)
test for further analysis. Observe that Steroid-pl achieved
the lowest minimum, maximum, average and median off-
target effects. For the pooled trials, using one-tailed t-
test, Steroid-pl produced solutions with lower off-target
effects compared with other approaches (p<0.05); for the
cdf, using one-tailed ks-test, Steroid-pl produced cdf

which lie further to the left compared with other approaches
(p<0.005). This implies that Steroid-pl produces solutions
with significantly lower off-target effects when compared to
other approaches. This could be due to Pani and loewe

seeking solutions with reduced off-target effects in a com-
plementary manner: loewe selects for lower target activity
by enforcing target synergy while Pani selects for targets
with lower off-target effects at higher probability.
Combination Characterization. In this set of exper-

iments, we characterized the solutions based on the target
interaction (synergistic, additive or antagonistic) and the
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Figure 4: Off-target effects.
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Figure 5: (Left) Target interaction, and (Right) combi-

nation types.

combination type (activators, inhibitors, or mixed activator
and inhibitor). Approaches incorporating loewe produced
synergistic combinations by default while other approaches
produce mainly antagonistic combinations (Fig. 5, Left). In
terms of the combination type (Fig. 5, Right), we observed
that the bulk of the combinations found are mixed activator
and inhibitor. Development of inhibitors of protein-protein
interaction are perceived to be easier than activators which
have to achieve binding and be a good replication of the
protein interaction to stimulate increase in activity [15]. In-
corporating loewe-based heuristic improved the fraction of
trials with 2-inhibitors by about 1 to 3 folds.

6. CONCLUSIONS & FUTURE WORK
In this work, we describe Steroid, the first heuristic ap-

proach based on loewe and target prioritization for modi-
fying target combinations in a signaling network using the
simulated annealing framework. Our results highlight the
importance of using heuristics to improve the process of
generating appropriate candidates during the search for tar-
get combinations in terms of both execution time and re-
sult quality. Steroid-pl, particularly, produces superior
results with high biological relevance and significantly lower
off-target results. It also discovers potential combinations
(e.g., erk phosphatase activator with Raf inhibitor) for fur-
ther exploration. The good performance of Steroid-pl is
likely due to the selection of synergistic targets (loewe-
based heuristic) based on structural and kinetic properties of
the network (Pani-based heuristic). Furthermore, we note
that loewe-based heuristic enriches the search space, im-
proving runtime performance by about an order of magni-



tude, and increasing the fraction of trials with 2-inhibitor
combinations by up to 3 folds.
We note that not all target prioritization approaches im-

prove the results and the objectives of the problem (e.g.,
identifying therapeutic target combinations with low off-
target effects) can be used to guide the selection of ap-
propriate approaches. Further extensions of this work in-
clude incorporating various “omics” data and drug and dis-
ease information as heuristics to find target combinations
that exclude combinations akin to monotherapies, and that
avoid including activators of pro-disease targets as part of
the combinations. In this work, we assume all nodes have
equally severe off-target effects. A more flexible strategy is
to implement a weighted sum off-target effects to reflect dif-
ferences in severity of the off-target effects in future work.
In summary, our performance comparisons demonstrate the
potential value of knowledge-based heuristics for sampling
and evaluating targets and Steroid provides a first step in
this regard.
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