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Abstract
The availability of large-scale curated protein interaction
datasets has given rise to the opportunity to investigate
higher level organization and modularity within the protein
interaction network (ppi) using graph theoretic analysis. De-
spite the recent progress, systems level analysis of ppis re-
mains a daunting task as it is challenging to make sense out
of the deluge of high-dimensional interaction data. Specif-
ically, techniques that automatically abstract and summa-
rize ppis at multiple resolutions to provide high level views
of its functional landscape are still lacking. In this pa-
per, we present a novel data-driven and generic algorithm
called fuse (Functional Summary Generator) that gener-
ates functional maps of a ppi at different levels of orga-
nization, from broad process-process level interactions to
in-depth complex-complex level interactions. By simulta-
neously evaluating interaction and annotation data, fuse
abstracts higher-order interaction maps by reducing the de-
tails of the underlying ppi to form a functional summary
graph of interconnected functional clusters. To this end,
fuse exploits Minimum Description Length (mdl) principle
to maximize information gain of the summary graph while
satisfying the level of detail constraint. Extensive experi-
ments on real-world ppis demonstrate its effectiveness and
superiority over state-of-the-art graph clustering methods
with go term enrichment.

Categories and Subject Descriptors
J.3 [Life And Medical Sciences]: Biology and genetics;
H.5.2 [Information Interfaces And Presentation]: User
Interfaces—Theory and methods

General Terms
Algorithms, Performance

Keywords
Graph summarization, Protein interaction network, Func-
tional clusters, Functional summarization
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1. INTRODUCTION
With advances in high throughput experimental biology,

the number of large scale protein interaction networks (ppi)
have grown rapidly. At the same time, collaborative efforts
to annotate proteins and genes using Gene Ontology [2] (go)
annotations has generated detailed attributes that describe
these entities. Knowledgebases with go annotations, such
as UniprotKB [33], provide a wealth of annotation data at
different levels of specificity. go provides standardized an-
notations that describe various attributes of a gene or pro-
tein, including localization attributes, molecular function,
and the biological processes it participates in. As proteins
may involve in multiple roles and functions, go attributes
associated with a protein or a gene can be high-dimensional.

While each individual protein or gene has a unique role
in the biological system, many of them form communities to
govern higher-order biological processes or functions. Bio-
logical networks are believed to be modular and hierarchi-
cally organized; one may decompose a ppi into modules or
functional clusters that interact with one another [4]. Pro-
tein complexes, for instance, are made up of tightly con-
nected subunit proteins that appear as dense subgraphs in
the ppi. Other functional groups may be less structurally
obvious. Examples include signaling pathways, where pro-
teins rarely appear to be structurally cohesive. In spite of
their “sparse” structure, proteins comprising them share bi-
ologically significant signaling propagation function.

1.1 Motivation
The amount of information contained within large bio-

logical networks can often overwhelm researchers, making
systems level analysis of ppis a daunting task. As ma-
jority of function annotation and high throughput or cu-
rated interaction data are encoded at protein or gene level,
higher-order abstraction maps such as complex-complex or
process-process functional landscapes, are often unavailable.
However, availability of such information is invaluable as it
not only allows one to ask questions about the relationships
among high-level modules, such as processes and complexes,
but also allows one to visualize higher order patterns from
a bird’s eye perspective.

For instance, consider the Alzheimer’s Disease (ad) re-
lated ppi in IntAct [16]. An ad interaction network can be
studied at different levels of organization, from broad-level
process-process interactions to in-depth complex-complex in-
teractions. Such maps would reveal higher-level patterns
that otherwise would have been invisible. The objective here
is not to study a process associated with ad in isolation, but



Figure 1: Functional summary (FSG) of the AD network for k = 30 (cluster size indicated in brackets).

instead focus on the interplay of related processes in tan-
dem to identify the causative mechanisms of ad. For exam-
ple, one might ask the following questions: How do signal-
ing pathways implicated for ad associate with one another?
How do proteins related to transportation play a role in ad,
and how are they associated with bioenergetics? A bird’s-
eye view of the functional landscape of ad network may
provide answers to these questions. An example is shown in
Figure 1 (detailed in Section 6). Observe that the associa-
tions between signaling pathways (A28, A14, A18, A21, and
A16 ) are depicted in the summary. It is worth mentioning
that it is extremely difficult to answer the aforementioned
questions by simply looking at a large ppi containing large
number of proteins and interactions as nodes. This problem
is further exacerbated by the high-dimensional nature of ppi;
each protein may have hundreds of annotation attributes. It
is therefore crucial to have some form of summarization that
maps higher-order information of the underlying ppi. For-
tunately, the modular nature of biological networks–either
structurally or attribute wise–lends itself to the possibility
of building such a summary.
Although tools to abstract high-level and functional in-

formation from gene lists have been proven to be key to
analyzing high throughput data [7], similar tools that au-
tomatically abstract and summarize ppis at multiple reso-
lutions to provide high level views of functional landscape
of ppis are still lacking. At first glance, it may seem that
state-of-the-art graph clustering techniques [3, 11, 24, 29, 34]
can be used for generating high quality summaries of ppis
as these techniques have been successful in identification of
novel protein function and protein complexes. Intuitively, a
biological network can be decomposed into modules–groups
of vertices sharing a common function–that are then col-
lapsed into a representative node to form a summary graph
of the underlying network. Depending on the granularity

Figure 2: FSG of the AD network (k = 10).

of the decomposition, summaries of various level of detail
can be formed. Despite the benefits of graph clustering,
these techniques suffer from the following key weaknesses
that make them less suitable for building high quality higher
order functional summaries of ppis.

Firstly, several existing graph clustering approaches [3,
11,29,32] overwhelmingly emphasize structure cohesiveness
over attribute coherence. In practical applications of ppi
summarization, however, attribute coherence is key to form-
ing meaningful, interpretable modules. In ppi, groups of
proteins (vertices) that share a common vertex property can
form a meaningful cluster that represents a particular bio-
logical function. Otherwise, clusters with inconsistent ver-
tex properties, even if structurally well-connected, may not
simply summarize into one functionally interpretable clus-
ter. Secondly, majority of existing graph clustering tech-
niques form non-overlapping partitions [3, 29, 32]. Conse-
quently, they cannot be used to generate high-quality sum-
mary because “interactors” in biological processes and path-
ways are likely to overlap [13]. Thirdly, these techniques
typically focus on identifying dense subgraphs from a graph.



Figure 3: (a) A toy example of PPI network. (b) A set of functional clusters of the network in (a). (c)
Suppose a 3-node summary is required (k = 3). FUSE explores the functional clusters of the PPI network
to identify the 3-node functional summary that best partition and represent the underlying network. This
functional summary graph (FSG) depicts the functional landscape of the PPI network in 3 nodes. (d) A
5-node partition (k = 5) and its corresponding FSG.

However, higher-level clusters in ppis are not always struc-
turally dense. Proteins in signaling pathways, for instance,
are structurally loose, but share important functions. Such
groups of proteins often have significant biological implica-
tions despite their loose structure, and should be present in
any summary of the underlying network. Finally, because
the annotations that describe proteins and their functions
are high-dimensional, finding the right choice of attribute
coherent groupings is combinatorial and non-trivial. The
reader may refer to [30] for examples related to these limi-
tations.

1.2 Overview
In this paper, we present a novel data-driven algorithm

called fuse (Functional Summary Generator) that addresses
the aforementioned challenges (Sections 3 and 4). Given a
ppi, it generates a k-node functional summary graph (fsg)
that best represents the higher-order abstraction of the ppi
by simultaneously evaluating interaction and annotation data.
We argue that a “good” functional summary of a network is
not merely a graph of all function-function relationships, but
a graph that reduces details of the original ppi to form a sub-
set of interconnected functional clusters. A functional clus-
ter represents a subnetwork of proteins that shares a com-
mon function. In particular, the functional summary graph
must simultaneously satisfy the following requirements: (a)
the summary is at a specific level (k nodes) of detail, (b)
the summary is representative of the original network, and
(c) redundancies are minimized. Specifically, fuse exploits
Minimum Description Length principle [28] to generate the
“best” summary by maximizing information gain while sat-
isfying the level of details constraint. Figure 3 depicts exam-
ples of functional summaries generated by fuse. Figure 1
and 2 depict a 30-node and a 10-node fsgs of the ad net-
work, respectively, generated by fuse.
The goal of fuse is not only to generate a higher level

functional summary that is representative of the underlying
ppi, but also to generate a k-node functional map whose
visual complexity (determined by k) permits user analysis.
With close to 30000 terms in the Gene Ontology (go), in-
teraction network of 30000 functional modules will not be
a useful summary, as it is just as daunting as the original

ppi, if not more. fuse addresses this challenge by enabling
generation of summaries that are small and understandable.

In Section 5 we evaluate the performance of fuse on sev-
eral real-world ppis. We also compare fuse to state-of-the-
art graph clustering methods with go term enrichment by
constructing the biological process landscape of the ppis.
Our experimental results demonstrate that fuse is highly
effective in constructing higher order functional maps with
superior accuracy and representativeness compared to these
state-of-the-art graph clustering methods. Using ad net-
work as our case study, we further demonstrate the ability
of fuse to quickly summarize the network and identify many
different processes and complexes that regulate it.

2. RELATED WORK
Functional landscape of an underlying protein interaction

network has been explored in [15]. The approach the authors
used, however, rely on manual short listing of 229 biological
processes for analysis. While this approach makes visualiza-
tion permissible, it neither scale with the growing number
of annotations, nor does it fully utilize the large number of
annotations available. Additionally, the processes that are
relevant depends on the context of the network.

Graph clustering methods identify functional clusters based
on the underlying assumption that the topology of interact-
ing proteins can be mined to identify protein clusters [3,11,
29,32]. Cluster function can then be inferred and annotated
by finding enriched annotations within the cluster. While
such methods have been proven effective for identification
of complexes, they are less suitable for identifying higher
level functional clusters, such as biological processes and
pathways, where interactors within them are likely to over-
lap [13,26]. Interactions within a process are also not neces-
sarily cohesive. CFinder [1] locates overlapping communities
based on structure of the network, but ignores the wealth
of functional knowledge already encoded in go annotation
data. While most graph clustering techniques rely solely
on network topology, several recent techniques utilize an-
notation information when clustering the networks [24, 34].
However, these techniques form non-overlapping partitions.
Additionally, with the growing amount of annotation data,
the attribute space of the nodes in an interaction network



is high dimensional as a single protein may be linked to
hundreds of annotations. However, these state-of-the-art ap-
proaches are not designed for clustering high-dimensional at-
tributes of go annotated interaction networks. For instance,
in [24], a “semantic” distance function is used to measure
semantic similarities between nodes with multiple mips com-
plex annotations. The curse of dimensionality limits the
applicability of such an approach on go annotations [5].
To the best of our knowledge, no existing method directly
addresses our need for generating overlapping clusters from
high-dimensional attributed graphs. Note that existing sub-
space clustering approaches that allow overlapping subspace
clusters typically produce a huge number of clusters that are
difficult to interpret [19].
Lastly, the high dependency on interaction topology makes

graph clustering ineffective for many context specific net-
works. Although there are many networks associated with
diseases, there are few, if any, with complete interaction
knowledge available. The high probability of false positive
interactions may also occur. This hampers accurate identi-
fication of cohesive clusters.

3. THE FUNCTIONAL SUMMARIZATION
PROBLEM

In this section, we formally introduce the functional sum-
marization problem. We begin by defining some terminology
that we shall be using in the sequel. A summary of notations
used in this paper is given in Table 1.
A protein interaction network (ppi) G = (V,E) contains

a set of vertices V , representing proteins, and a set of edges
E, representing interactions. An edge has a positive real
weight ω that represents its interaction strength. Given
a go directed acyclic graph (dag), denoted as D, the or-
dered set ∆ = ⟨a1, a2, . . . , an⟩ is a topological sort of D,
where ai represents a single go term. The term associa-
tion vector of v ∈ V , denoted by ∆v, is defined as ∆v =
⟨a1(v), a2(v), . . . , an(v)⟩, ai(v) ∈ {0, 1}, such that ai(v) = 1
if and only if the term ai or its descendants are associated
with protein v. Otherwise, ai(v) = 0. Note that ∆v indi-
cates go terms that are associated with v.

3.1 Functional Summary of PPI
Given a ppi G(V,E), a functional summary graph (fsg) is

an undirected graph ΘG(S, F ) that models the set of higher-
order functional clusters S and their interactions F that un-
derlie the ppi. A functional cluster is a subgraph of G that
shares a particular function/role based on the structure and
attribute properties of the subgraph and its constituent pro-
teins. Functional clusters may include complexes, processes,
and signaling pathways. A pair of functional clusters may
be connected by a web of protein interactions. If the num-
ber of interactions are significantly large, then we say that
the pair of clusters are associated. An fsg ΘG thus cap-
tures higher order modules that comprise the ppi and their
interconnections. We now define these concepts formally.

Definition 1. (Functional Cluster) Let V (ai) ⊆ V
denote the set of vertices in G such that v ∈ V (ai) if and
only if ∆v[ai(v)] = 1. The functional cluster of ai ∈ ∆,
denoted by C(ai) ⊆ G, is the subgraph of G that is induced
by V (ai).

Note that V (ai) represents the set of vertices of G that are
associated with term ai ∈ ∆. In this paper, we treat C(ai)

Symbols Description
G Input ppi graph
ΘG = (S, F ) Functional summary graph where S and F are sets of

nodes and interactions, respectively
ω edge weight
∆ Set of go terms
S∆ Set of functional clusters induced from ∆
C(u) Functional cluster representing the function u

ϕC(u) Structural information content of cluster C(u)

cC(u) Size deviation cost
k Summary complexity parameter
b Information budget parameter
d Redundancy penalizing parameter
β Significance cut-off parameter

Table 1: Notations.

as a vertex as well. We may also call a functional cluster
a functional subgraph when we wish to emphasize the fact
that it is a graph. Fig. 3(b) shows a subset of the possi-
ble functional clusters of the ppi in Fig. 3(a). Every node
in a cluster must share a particular function or attribute.
For instance, nodes in functional cluster cytosol share the
cytosol term.

Definition 2. (Functional Summary Graph (FSG))
A functional summary graph of the underlying protein inter-
action network G(V,E), ΘG, is defined as ΘG = (S, F, Pi, α),
where S is a set of functional clusters and F is a set of edges
that links the functional clusters. Let ocuv be the number
of interactions connecting proteins in C(u) and C(v). Let
Pi be the probability density function of observing ouv or
more number of interactions between C(u) and C(v). Let
β be a significance cut-off parameter (user-defined). Then,
(C(u), C(v)) ∈ F if and only if Pi(X > ocuv) ≤ 2β/|S|2.
The bijection α : 1, 2, . . . ,m↔ S is an ordering of S.

Observe that the aforementioned definition of functional
summary includes additional constructs and rules for de-
termining whether two functional clusters are associated.
We elaborate on this further. Given a ppi G(V,E), the ex-
pected probability of observing an interaction between two

randomly drawn protein pair is given by pi = 2|E|
|V |(|V |−1)

.

Let (C(u), C(v)) be a functional cluster pair such that mem-
bers of both clusters were randomly drawn from V . If pro-
teins v1 and v2 are randomly drawn from C(u) and C(v),
respectively, then the expected probability of observing a
positive interaction between them would also be pi. Let
n = |C(u)||C(v)|. Based on the independent and identically
distributed variable (iid) assumption, we model the proba-
bility of observing oc (the number of interactions between
C(u) and C(v)) as the probability of observing oc positive
interactions after n iid trials, representing n pairwise inter-
action trials between proteins in C(u) and C(v). Hence, the
probability of oc or more positive interactions between C(u)
and C(v) can be modeled using a binomial distribution:

Pi(X > ocuv) =

n∑
i=ocuv

(
n

i

)
pi

i(1− pi)
n−i

This p−value is used to assess the association significance
between a pair of functional clusters. Given a set containing
k clusters, association significance between 1

2
k(k − 1) pairs

of clusters would have to be tested. To this end, we applied
Bonferroni correction to account for multiple testing. Given
the significance cut-off β, a pair of functional clusters is



significantly associated if

Pi(X > oc) ≤ 2β/k(k − 1) ≈ 2β/k2

Observe that although we have adopted a simple model to
assess cluster-cluster association, the aforementioned defi-
nition is general enough to encompass more sophisticated
association models.

Example 1. Fig. 3(d) shows an fsg consisting 5 func-
tional clusters. Any edge between two functional clusters
exists when Pi(X > ocuv) ≤ 2β/|S|2, implying that more
edges connect proteins between the functional clusters than
expected in random.

3.2 Problem Statement
The functional summarization problem is the problem of

finding ΘG that best represents the underlying ppi subject
to a summary complexity constraint. To model this prob-
lem, we propose a profit maximization model that aims to
find ΘG = (S, F, Pi, α) by maximizing information profit
under a budget constraint. Every protein i ∈ V is assigned
a non-negative information budget b, which represents the
information it contains. Let S∆ be the set of functional clus-
ters induced from ∆. Every functional cluster C(u) ∈ S∆ is

assigned a non-negative structural information value ψC(u)

(to be defined later), which represents the amount of struc-
tural information contained within the functional subgraph.
When a functional cluster C(u) is added to the summary, for
every protein i ∈ V (u), a portion of b is taken out and added
to summary information gain. This represents new informa-
tion added to the summary. The amount to take depends on
ψC(u). Imposing information budget b limits the amount of
information a protein can provide. A parameter 0 ≤ d ≤ 10
is also introduced to penalize redundancy. By doing so, re-
peated representation of a protein i yields reduced infor-
mation gain, modeling diminishing returns. Based on this
profit model, we construct the set of functional clusters that
maximizes profit while satisfying the constraints.

Definition 3. (Functional Summarization Problem)
Let Ki be a set of functional clusters such that C(u) ∈ Ki

if and only if i ∈ C(u). For every C(u) ∈ S∆, let ψC(u) be
the structural information value of C(u). Given a protein
interaction network G(V,E) and user-defined parameters b,
d and k, the functional summarization problem constructs a
k-cluster fsg ΘG = (S, F, Pi, α) that satisfies the following
optimization problem:

maximize
∑
i∈V

|S|∑
j=1

p(i, j)

where

b(i,m) =


d
10

(b(i,m− 1)− p(i,m− 1)) if m > 1,
αS(m− 1) ∈ Ki

b(i,m− 1) if m > 1,
αS(m− 1) /∈ Ki

b if m = 1
and

p(i,m) =

 ψαS(m) if b(i,m) ≥ ψαS(m) and αS(m) ∈ Ki

b(i,m) if b(i,m) < ψαS(m) and αS(m) ∈ Ki

0 αS(m) /∈ Ki

subject to
|S| = k
S ⊂ S∆

We elaborate on how the structural information value ψC(u)

is assigned. A functional cluster C(u) and its protein con-
stituents share a common function u, and thus vertices in

the subgraph are considered homogeneous attribute wise.
However, it does not imply that the functional subgraph
is structurally cohesive (dense). Proteins having common
function u may still be weakly interacting. This may be
due to the fact that u itself may indicate a general function
(e.g., ‘protein binding’) which is a common attribute to
a large number of proteins that do not interact with each
other. We argue that structurally cohesive functional clus-
ters contain more information than those which are loosely
interconnected. The argument for this is based on the mdl
principle, whereby clusters that have higher than expected
cohesiveness will have higher information content because
of the lower probability of observing a random cluster hav-
ing the same cohesiveness. However, we make the following
exception – a functional cluster with lower than expected
cohesiveness is not deemed structurally informative.

Since the optimization problem must choose among a set
of functional clusters, we are not concerned about the ac-
tual p-value of observing a subgraph having such interac-
tion density. Instead, we only need a measure that allows us
to compute the relative ranking of the functional clusters by
their information content. Such simplification leads to much
greater computation efficiency. We define the structural in-
formation value of a functional cluster C(u) as follows.

Definition 4. (Structural Information Value) Let
ωij be the edge weight of (i, j) ∈ E. The structural informa-

tion value of a functional cluster C(u), denoted by ψC(u), as

ψC(u) = ρC(u) where

ρC(u) =

∑
i,j∈C(u) ωij

|C(u)|

ρC(u) is the ratio association [8] score of C(u), a standard
graph clustering objective we adopt that indicates the struc-
tural density of C(u). At first glance, it may seem that the

structural information value should be defined as ψC(u) =
ρC(u)−ρrandom, where ρrandom is the expected structural den-
sity of a random cluster. However, we ignore ρrandom for the
following reason. In scale-free and Erdős–Rényi graphs, the
self-information − logP (ψC(u)) is a positive non-decreasing

function of ψC(u) for ψC(u) > 0. Hence, ψC(u) can be used to
compare the self-information between two functional clusters
without having to determine the probability density func-
tion of the interaction distribution of a subgraph. Given
ai, aj ∈ ∆, C(ai) is deemed more informative than C(aj) if

and only if ψC(aj) > ψC(ai) and ψC(aj) > 0. If both ψC(aj)

and ψC(ai) are negative, it does not matter whether one
is more informative than the other, since both have struc-
tural density less than that of random networks. As such,
for symmetry, we also deem that C(ai) is more informative

than C(aj) if and only if ψC(aj) > ψC(ai) for ψC(aj) ≤ 0.
Therefore, when comparing the structural density between
two clusters, ρrandom can be omitted from ψC(u) and ψC(u)

is simply ρC(u).

Example 2. Suppose we wish to summarize the ppi in
Fig. 3(a) into a 3-node summary (k = 3). If clusters apop-
tosis, receptors, and TGF-beta are chosen—instead of the
clusters in Fig. 3(c)—we can see that the profit obtained
is suboptimal. Information budget for proteins b,c are de-
pleted due to redundancy, while information budget for pro-
teins d,e,g,i are untapped. In contrast, functional sum-
mary in Fig. 3(c) is relatively more optimal, as not only



Algorithm 1 Algorithm fuse

Input: G, ∆, D, k, b, d, β
Output: Θmin

1: Let S = empty set
2: Let Bmap = set of pairs (i, b) for each i ∈ V

3: Assign ψC(u) and cC(u) for each C(u) ∈ S∆

4: i = 0
5: while i < k do
6: (Cmin, Bmap) = MapProfit( S∆, Bmap, d, |V |, k )
7: Remove Cmin from S∆

8: Add Cmin to S
9: i = i+ 1
10: end while
11: for C(i), C(j) ∈ S do
12: if C(i) ̸= C(j) and Pi(X > ocC(i)C(j)) ≤ 2β/|S|2 then

13: Add edge (C(i), C(j)) to F
14: end if
15: end for

the set of clusters maximizes profit through superior cover-
age and minimal redundancy, but it also maximizes profit
through higher structural information (e.g., the cluster tran-
scription is structurally dense compared to apoptosis).

4. THE ALGORITHM FUSE
The profit maximization problem is a variation of the bud-

geted maximum coverage problem [18], which is an np-hard
problem. To permit a tractable solution, let us first con-
sider a straightforward greedy approach. The initial fsg is
an empty graph. Given the input protein interaction net-
work G, ψC(u) for each functional cluster C(u) ∈ S∆ are
computed. The algorithm then iteratively selects the func-
tional cluster that leads to greatest increase in net profit
of the summary. Each time a functional cluster C(u) is se-
lected, the fsg and budget information b(i) for every protein
i ∈ V (u) is updated. Once k clusters has been selected, the
algorithm terminates by generating the fsg.
A major weakness of the aforementioned approach is that

it tends to be “overenthusiastic” in selection of functional
clusters during early iterations. Functional clusters that are
too large or too small may be selected at early iterations re-
sulting in very poor cluster choices at later iterations due to
limited information budget and summary size (k) constraint.
Hence, our proposed algorithm adds a complexity cost to
each chosen cluster. Given graph size |V | and summary
size k, the expected cardinality of a functional cluster in the

summary is defined by E[|C|] = |V |
k
. Then the size deviation

cost, denoted as cC(u), is defined as the square of the devia-

tion of |C(u)| from E[|C|]. That is, cC(u) =
(
|V (u)| − |V |

k

)2
.

Observe that the greater the difference between |V (u)| and
E[|C|], the less likely it is to be part of a summary of k-
granularity. Clusters whose size deviates too much from the
expected cardinality are penalized and therefore less likely
to be selected. This reduces the chance of having too less
or too much information budget remaining during the later
iterations of the greedy heuristic.
The aforementioned intuition is realized in fuse as out-

lined in Algorithm 1. It consists of three phases, namely,
the initialization phase, the greedy iteration phase, and the
summary graph construction phase. In the initialization
phase (Lines 1-3), ψC(u) and cC(u) for each functional cluster
C(u) ∈ S∆ are computed. The greedy iteration phase (Lines
4-10) involves iterative addition of functional clusters into S

Algorithm 2 The MapProfit procedure.

Input: S∆, Bmap, d, |V |, k
Output: Cmin, Bmap

1: Let pmax = 0
2: for C(u) ∈ S∆ do
3: Let Btemp = Bmap

4: Let p = 0
5: for i ∈ V (u) do

6: Let (i, b(i)) ∈ Btemp and p(i) = b(i)− ψC(u)

7: if p(i) > 0 then

8: p = p+ ψC(u)

9: b(i) = b(i)− ψC(u)

10: else
11: p = p+ b(i)
12: b(i) = 0
13: end if
14: end for

15: cC(u) =
(
|V (u)| − |V |

k

)2

16: p = p− cC(u)

17: if pmax < p then
18: pmax = p
19: Cmin = C(u)
20: end if
21: end for
22: for i ∈ Vmin do
23: Let (i, b(i)) ∈ Bmap and p(i) = (d/10)(b(i)− ψC(u))
24: if p(i) > 0 then

25: b(i) = (d/10)(b(i)− ψC(u))
26: else
27: b(i) = 0
28: end if
29: end for
30: return ( Cmin, Bmap )

in a greedy manner as described above. The best candidate
functional cluster for the current round (Cmin) is determined
through the subroutine MapProfit (Line 6). This step also
maintains the information profit of S and the remaining in-
formation budget of every v in G through a persistent profit
map (Bmap). Cmin is then removed from the candidate pool
S∆ and added to the solution set S (Lines 7-8). Finally, the
summary graph construction phase (Lines 11-15) computes
F to generate the fsg Θmin.

The MapProfit procedure is outlined in Algorithm 2.
In order to identify the best candidate cluster of the cur-
rent iteration round, it evaluates every cluster in the can-
didate pool by evaluating its profit gain potential (Lines 1-
21). First, the amount of information to extract from each
protein’s information budget pool (b(i)) is computed (Lines
7-13). Next, the potential profit gain is adjusted to com-
pensate for the complexity cost (Lines 15-16). After Cmin is
found, the profit map is recomputed to commit the changes
made to the information budget map due to the selection of
Cmin (Lines 21-29).

Theorem 1. Algorithm fuse takes O(|S∆|2|V |2) time in
the worst case.

Proof. Due to space constraints, the proof is given in [30].

5. EXPERIMENTAL RESULTS
We have implemented fuse in Scala and Java. We now

present the experiments conducted to evaluate the perfor-
mance of fuse and report some of the results obtained. We
used the coverage metric to evaluate the fraction of the an-
notated protein interaction network covered by a summary.
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Figure 4: Cluster quality of FUSE vs graph clustering-based approaches.

Dataset #nodes #edges Source

H. sapiens 9181 34624 hprd [17]
S. cerevisiae 4768 177299 IntAct [16]
D. melanogaster 3114 6472 IntAct
Alzheimer’s disease (AD) 177 1038 IntAct

Table 2: Summary of datasets used.

A functional summary with high coverage is desirable be-
cause it is more representative of the underlying interaction
network than a summary with low coverage. Additionally,
the redundancy metric is the average number of functional
clusters each protein belongs to. This is an indicator of the
amount of cluster overlap in the summary. Additional re-
sults and formal definitions of evaluation metrics are avail-
able in [30]. The ppi datasets employed in this study are
shown in Table 5. Biological Process (bp), Molecular Func-
tion (mf), and Cellular Component (cc) go annotations are
used. Unless specified otherwise, we set β = 0.01, b = 3, and
d = 0 in order to balance coverage and redundancy of the
functional summaries. We assign all edge weights be 1.0. All
experiments were run on a 1.66GHz Intel Core 2 Duo T5450
machine, with 3GB memory, and a 250GB SATA disk.

5.1 FUSE vs Graph Clustering Methods
Dataset. Currently, there does not exist any gold stan-

dard to compare functional summaries of ppis. Typically,
biological graph clustering approaches use mips complex an-
notations [23] as gold standard data for testing cluster qual-
ity. These annotations, however, are limited to complexes
and not for other functional clusters like pathways. go an-
notation data is also used as gold standard for evaluating
clustering algorithms. As our approach utilizes attributes of
go, using go annotations as gold standard evaluation may
lead to results biased in favor of fuse. Instead, we obtained
a different set of curated attributes as gold standard–the
molecule class annotations from hprd–which is distinct from
go attributes. Note that these annotations are only avail-
able in the H. sapiens dataset. Consequently, we use this
dataset for the comparative study. To create a gold stan-
dard reference summary, we generated a network from sub-
graphs induced from the hprd network using nodes grouped
by their molecule class attribute, signifying the molecular
functional groups within the network. Subgraphs from five
functional groups corresponding to subgraphs of proteins
classified as G protein coupled receptor, Protease in-

hibitor, RNA binding protein, Cytoskeletal associated

protein, and Calcium binding protein are extracted and
merged to form the reference summary network (747 nodes,
959 edges). fuse and state-of-the-art graph clustering meth-
ods are then evaluated on this network to determine whether
the graph can be partitioned and summarized to reconstruct

the gold standard functional groups.
We compare the performance of fuse with four state-of-

the-art graph clustering methods for life sciences applica-
tions, namely Markov clustering (mcl) [20], mcode [3], and
nemo [29]. We also compare fuse with csv [32], a recent co-
hesive subgraph visualization method. Note that in order to
obtain higher order modules of a ppi, the current approach
is to first use an existing graph clustering method on the
network to generate the clusters followed by function assign-
ment. For example, in Krogan et al. [20], the global yeast
ppi is first clustered using mcl to generate non-overlapping
clusters. Then, each cluster is compared against mips com-
plex annotations [23] and the complex annotation with the
greatest overlap is assigned to represent the cluster.

5.1.1 Cluster Quality Comparison
We first emphasize on the qualities of an ideal summariza-

tion. First, the generated clusters have to be representative
of the underlying graph, which implies that coverage of the
clustering should be sufficiently high. Second, attribute pu-
rity [35] of the clusterings should correspond to the func-
tional groups that were merged apriori. This can be deter-
mined through the purity of the molecule class attribute
within the proteins in each cluster. Each functional group
should also be well-represented. We use precision, recall, and
F-measure to quantify these features. For each cluster, we
determine the molecule class functional group that best
matches the cluster. The purity of that cluster is then de-
fined as the proportion of nodes in the cluster that belong
to the best matching group. As a functional group may
be represented by several smaller clusters, we define recall
for each functional group as total coverage of the functional
group among the clusters that best matches that functional
group. Then, the precision of a clustering is defined as the
average purity among all clusters. The recall of a clustering
is defined as the average recall among all functional groups.
Lastly, the F-measure ( 2∗precision∗recall

precision+recall
) provides an overall

measure of clustering quality.
Figure 4 depicts the results of summarization quality. Where

applicable, we adjust relevant parameters to vary the clus-
ter granularity. As nemo has no parameter to tweak, only
a single set of clusters can be obtained. In mcl, csv, and
mcode, the inflation, ηmseen cutoff, and node score cutoff
parameters are adjusted, respectively, to vary the cluster
sizes (denoted as k in all figures). In fuse, the parameter k
directly affects the summary granularity.

Observe that fuse generates summary with significantly
higher F-measure score compared to the graph clustering-
based approaches for all values of k. In other words, fuse
may generate summaries at multiple levels of complexity
while remaining representative of the underlying graph. Ob-
serve that, although nemo, csv, and mcode generate clus-
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Figure 5: Function representativeness.

ters with high precision, the recall scores are very low (<
0.2). This is because these two approaches identify highly
cohesive subgraphs, which tend to be part of protein com-
plexes. csv in particular are limited to identification of near-
clique structures. Proteins in complexes belong to the same
functional groups and hence the high precision. However
as mentioned earlier, biological networks are not comprised
solely of complexes. Consequently, majority of the under-
lying network was poorly represented by these approaches
due to heavy bias towards complexes. Specifically, most of
the clusters match the RNA binding protein class of pro-
teins, leaving other groups barely represented. For instance,
the Protease inhibitor subgraph is not well represented
because of its inherent loose structure. Although the recall
score of mcl is relatively higher as this method is known to
perform very well in biological clustering applications, it is
still below 0.4. Note that the mcl approach failed to par-
tition the underlying network into five clusters representing
the five functional groups. The csv approach, on the other
hand, were not able to generate larger number of partitions.
Notice that these existing approaches indirectly affect the

summary complexity whereas fuse allows direct adjustment
of summary size, which explains why summaries at any level
of detail can be obtained by the latter. Figure 4(d) shows
that fuse generates summaries at different granularity with-
out greatly affecting the precision and recall of the cluster-
ings. The peak F-measure score of 0.8 is obtained in fuse
at k = 5, corresponding to the five gold standard functional
groups that comprise the dataset. Observe that the recall
and precision scores are equally high. As cluster granularity
deviates from the underlying five functional groups, obvi-
ously the F-measure score drops.

5.1.2 Function Representativeness Comparison
The accuracy and representativeness of the function as-

signed to each cluster is key to generating high quality func-
tional maps. Here, we introduce measures that quantify the
representativeness of functions assigned to each clusters and
compared fuse to graph clustering methods in this aspect.
To obtain the functional landscape of a ppi, graph cluster-

ing methods often assign function to clusters through func-
tional enrichment techniques. To this end, we compute the
statistical significance of association of the cluster with ev-
ery go term based on the hypergeometric distribution [7].
The term with the best p-value is assigned as the represen-
tative function of the cluster. To evaluate the representa-
tiveness of this assigned function, we reuse the precision and
recall measures introduced earlier with slight modification.
Specifically, the representative purity of a cluster is defined
as the proportion of nodes in the cluster that are annotated
with the representative function. We also define represen-
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Figure 6: Effect of k.

tative recall for each functional group as total coverage of
the functional group among the clusters that has the func-
tional group assigned as representative function. Then, the
precision of the representative functions is defined as the
average representative purity among all clusters, and the re-
call of the representative functions is defined as the average
representative recall among all functional groups.

Figure 5 depicts the representativeness of the functional
summaries by different techniques. As fuse is designed
specifically to generate highly representative maps, each clus-
ter is perfectly representative of the biological function as-
signed to it. Likewise, each function is well represented by
its assigned cluster. In graph clustering methods, however,
the clusters do not represent their representative function
well, as indicated by the lower precision score. Hence, pro-
teins within the clusters exhibit less functional coherence.
The lower recall scores in graph clustering methods imply
that only a fraction of nodes annotated with the represen-
tative function are included in the cluster. That is, fuse
summaries contain functional clusters that are more repre-
sentative of the assigned function, and thus provide more
meaningful and interpretable higher-order functional maps
of the underlying ppi. While clusters without attribute co-
herence may still reveal novel biological insights, assigning
a function to represent such cluster could be misleading.

5.2 Effects of User-Defined Parameters
Effect of parameter k. Recall that the user-defined

parameter k controls the granularity of the summary. Intu-
itively, as k increases the amount of information contained
within the summary as well as its complexity increase. Fig-
ure 6(a) reports the effect of k on the summaries of test
datasets. As k increases, the summary information content
(sic), denoted by SIC(Θ), rises rapidly until it saturates to
a peak value before tapering off.

SIC(Θ) =
∑

C(u)∈SΘ

−ψC(u)|V (u)|logp(V (u))

where p(V (u)) is the probability that a protein in network is
annotated with term u or its descendants. Note that sum-
mary profit cannot be used for comparing summaries with
different k values because it does not make any assumption
about the information content of a go term attribute. In
contrast, sic measure is summary profit with a twist – small
clusters are weighted higher than large clusters. This allows
one to compare information content of summaries with dif-
ferent k values. Other factors being equal, a summary with
many small clusters will contain more information than a
single large cluster. The above results imply that k is useful
up to a certain value, after which increasing k only increases
summary complexity while providing little information gain.

Figure 6(b) plots the effect of k on coverage of the sum-



Figure 7: Effect of b and d.
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Figure 8: Running times of FUSE (in sec.).

mary. Observe that except for low k values, it is rela-
tively stable as k varies. In fact, the amount of informa-
tion a summary can provide is limited by the resolution
and completeness of the interaction and annotation data.
This could explain why S. cerevisiae summaries have con-
sistently higher coverage and information content than D.
melanogaster summaries. The H. sapiens summary con-
tains the largest number of nodes and edges, and even at
k = 600, information content is still increasing. The ad
network reaches a peak of information content at k = 20.
Effect of parameters b and d. We investigated the

effect of user-defined parameters b and d on summary cover-
age and redundancy. We use the global S. cerevisiae dataset
with k = 100. Figure 7 shows that increasing b or decreasing
d lowers overall summary redundancy at the expense of lower
summary coverage. On the other hand, when d is increased
or b is decreased, both summary redundancy and coverage
increases. An intuitive explanation of this phenomenon is
that more cluster overlap penalty means fewer combination
of clusters to choose from, lowering the likelihood of finding
a summary with high coverage. Both parameters allow users
to control the coverage and redundancy tradeoff.

5.3 Runtime and Scalability
Figure 8 plots the running times of fuse over the real

datasets for generation of summaries ranging from k = 3 to
k = 600. Observe that it increases almost linearly with k.
Specifically, summarization of the yeast interaction network
(the largest available network) completes within 40 minutes
for k = 600. For practical sizes of k = 3 to k = 100, a
functional summary of a ppi can be generated within few
minutes. Disease networks such as ad network can be com-
pleted in less than 10 sec.
We now assess the scalability of fuse with respect to net-

work size and |S∆|. Note that the latter feature is important
as it will continue to grow as more annotation information
becomes available. To assess the scalability with respect to
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Figure 9: Scalability of FUSE

network size, we generated synthetic networks of vertex size
|V | = 100 to |V | = 20000. For every term t, a vertex has
a 2% probability of being annotated with it. The number
of terms is |S∆| = 2769. The edge density of the synthetic
networks is such that the probability that a pair of vertices
interact is 0.0025, resulting in an average of 1 million edges
in a network of 20000 vertices. Summary granularity is set
to k = 50. To measure the effect of |S∆| on running time, we
generated synthetic networks by varying |S∆| ranging from
|∆| = 100 to |∆| = 10000.

Figure 9 depicts the scalability of fuse with respect to
|V | and |S∆|. As the number of vertices increases, the ex-
ecution time of fuse increases in a quadratic fashion. In
fact, it appears to increase almost linearly for networks with
|V | < 10000. For larger networks, the ψC(u) component
and the fsg generation component take up the bulk of the
execution time. Observe that in Figure 9(b), the fsg gen-
eration component takes up bulk of the computation time
and is independent of |S∆|. As |S∆| increases, ψC(u) compu-
tation and iterative cluster selection time increases in near
linear fashion, demonstrating ability of fuse to handle high-
dimensional annotation data.

6. CASE STUDY ON AD NETWORK
In this section, we construct a low and a high resolution

functional summaries of the ad network to illustrate the ben-
efits of fuse in providing a higher level functional view of the
underlying ppi. A low resolution summary delineates broad
functional overview of the processes related to the disease
whereas a high resolution summary provides in-depth func-
tional landscape of the disease, revealing associations be-
tween processes related to the disease. Figure 2 shows a low
resolution summary (k = 10) of the ad network. It indicates
that the ad network is represented by an interconnection of
several key processes, include protein phosphorylation(B7),
cell-cell signaling (B2, B3), and microtubule-based trans-
port and localization (B1, B5) processes.

Figure 1 depicts a high resolution functional summary for
k = 30. Defective transport mechanism has major implica-
tions in ad. Consequently, several transport and cytoskele-
ton organization related cellular processes are represented
in the summary (A11, A22, A24, A26). Disrupted trans-
port mechanism affects, among others, synapse organiza-
tion and vesicle trafficking (A6, A8, A23). In the litera-
ture, several lines of evidence explain disruption of trans-
port and its related processes in ad. Amyloid-β plaques
may lead to hyperphosphorylation of tau proteins, subse-
quently causing microtubule defects and axonal transport
impairment [10]. More strikingly, recent findings indicate
that vesicle transport itself play a causative role in pathogen-
esis of the disease [25]. Glucose metabolic processes (A20)



is closely linked to microtubule-based processes (A22, A24).
The link between bioenergetics and transport in ad has been
discussed in [22].
At the center of the summary lies protein folding and

calcium ion homeostasis pathways (A15,A17). Protein
misfolding is central to ad pathogenesis [31]. Misfolded
amyloid-β accumulation is shown to induce calcium over-
load, leading to a variety of structural and functional disrup-
tion in neurons [21]. The two functional clusters are among
the nodes with the highest degree in the summary. Cell
fate processes that trigger or inhibit differentiation and cell
fate (A9, A10, A12) are also linked to ad [14]. It has been
suggested that Wnt signaling dysregulation, a key devel-
opmental pathway, leads to reduced synaptic plasticity and
function in ad [6]. Processes such as peptide cross-linking
and negative regulation of angiogenesis (A3, A4) imply vas-
cular roles in ad pathogenesis [36].
From signaling regulation perspective, five major signaling

pathways are implicated – small GTPase (A28), Notch (A14),
Wnt receptor (A18), glutamate (A21), and G-protein cou-

pled receptor signaling pathways (A16). Several functional
clusters connect with multiple signaling pathways, indicat-
ing that signaling pathways crosstalk in ad pathogenesis.
For instance, the serine/threonine kinase GSK-3β, a po-
tential therapeutic target, is known to be regulator of both
the G-protein coupled receptor pathway and the Wnt/β-
catenin signaling pathway [12]. PS1 may be involved in
regulating both Notch and Wnt pathways in ad [9].
The tight interplay of multiple pathways and processes

in the aforementioned functional summary of ad network
highlights the complexity of the disease. The disease re-
mains poorly understood despite decades of research. While
the summary does not suggest causal relationships, in part
because of the undirected nature of the fsg, we hope that
by having a global, big picture view of process-process inter-
actions, researchers can better identify the causative mech-
anisms of ad. Most studies considered an aspect of the
processes in isolation. An integrative study, however, may
lead to a more consistent view of the disease that addresses
distinct, often competing hypotheses.

7. CONCLUSIONS AND FUTURE WORK
In this paper, we propose fuse, a novel data-driven and

generic algorithm for generating functional summaries at
multiple resolutions from a ppi, providing a high level view
of its functional landscape. It exploits mdl principle [28]
to generate the “best” summary from both interaction and
annotation data by maximizing information gain for a spe-
cific resolution. Our experimental study with real-world
ppis revealed that fuse is effective and have higher accu-
racy compared to graph clustering techniques in ppi sum-
marization. It is also robust against incomplete interaction
knowledge (e.g., ad network in IntAct). We note that the
graph clustering techniques have the ability to uncover novel
complexes, whereas fuse is designed to determine process-
process, complex-complex, and process-complex associations
with higher confidence. In this aspect, graph clustering and
fuse play complementary roles. As part of future work, we
intend to use fuse-generated summaries as training data for
network comparison of various protein interaction networks
at functional level. We believe such comparison may yield
interesting findings on function-function and process-process
relationships among different networks.
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