
IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. XXX, NO. XXX, AUGUST 2007 1

FRECLE Mining: Discovering Frequent

Semantic Tree Cluster Sequences from

Historical Tree Structured Data

Ling Chen and Sourav S Bhowmick

Abstract

Mining frequent trees is very useful in domains like bioinformatics, web mining, mining semi-

structured data, and so on. Existing techniques focus on finding “structural” patterns and ignores the

“semantics” that may be associated with the subtrees. In this paper we proposal an algorithm to mine

a novel pattern called frequent semantic tree cluster sequences (FRECLE), which captures the frequent

sequential association between different semantics of tree-structured data. Given a semantic tree sequence

database, the algorithm first categorizes each semantic tree to a semantic cluster. Next, FRECLE patterns

are discovered from the semantic cluster sequences by adopting an existing frequent sequential pattern

mining algorithm. FRECLE patterns are beneficial in applications where the knowledge of semantic

association is significant, such as XML query caching, prefetching XML data, and web users clustering.

Specifically, we show how our proposed FRECLE mining framework can be used for designing optimal

XML query cache replacement strategy. Finally, by reporting the performance of our algorithm and

caching strategy through extensive experiments with both synthetic and real datasets, we show the

effectiveness and usefulness of FRECLE mining.
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I. INTRODUCTION

Mining tree-structured data has gained tremendous interest in recent times due to the widespread

occurrence of tree patterns in applications like bioinformatics, web mining, semi-structured data

mining, and so on. Particularly, the frequent tree mining is the most well researched topic due to

the importance of finding common subtree patterns. Several algorithms for mining frequent trees

have been proposed recently, which include TreeMiner [30], FreqT [2], TreeFinder [22], PathJoin

[27], Chopper [23], and CMTreeMiner [8]. The basic idea is to extract subtrees which occur

frequently among a set of trees or within an individual tree. For example, consider a database

of XML queries as shown in Figure 1. Suppose each user i issues a sequence of queries over

time as shown in Figure 1(a). One might like to mine frequently occurring “structural” query

patterns, i.e., subtrees, that appear in this collection [28]. It has been reported that such patterns

are useful in designing cache replacement strategy for XML queries [29].

While the above frequent tree pattern mining techniques have been innovative and powerful,

our initial investigation revealed that majority of the existing approaches focus on finding

“structural” patterns ignoring the “semantics” that may be associated with the substructures.

For example, the query trees in Figure 1 have certain semantics. S1 and S3 are about book

title, and S2 and S4 are about authors. We refer to such trees that are semantically meaningful

as semantic trees. Existing frequent tree mining techniques typically focus on finding frequent

structure but not frequent “semantics”. Knowledge of frequent semantics and association between

them can be useful in several applications. For example, if we know that whenever a user queries

about the information of book title, he/she is very likely to issue another query about the authors,

then we can use such information to design optimal XML cache replacement strategy. We can

also use such semantically-enriched knowledge to prefetch data while processing XML queries.

Observe that this is a challenging problem as two semantic trees may not be structurally

identical but they may have similar semantics. For example, although S2 and S4 in Figure 1(b)

have similar semantics, they are not structurally identical. Furthermore, there may exist interesting

sequential associations between two different semantics as highlighted above. Consequently,

existing frequent tree mining algorithms cannot be directly applied on the collection of semantic

trees to discover frequent semantics and associations between them.

Given a database of semantic tree sequences (e.g., XML query sequences in Figure 1), in this
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(a) XML query tree sequences (b) XML query trees 

Fig. 1. Example of XML query tree sequences.

paper, we introduce a novel pattern called frequent semantic tree cluster sequences (FRECLE).

A semantic tree cluster contains a set of semantic trees that share similar semantics. Hence,

each tree in a semantic tree sequence can be assigned to a semantic cluster that is “closest” to

the semantics of the tree. In this paper, we present an efficient algorithm to discover FRECLE

patterns by assigning each semantic tree to a cluster.

A. Overview

Our proposed FRECLE mining algorithm consists of two major phases: the semantic tree

clustering phase and the FRECLE pattern discover phase. In the first phase, a novel cluster-

centered strategy is proposed to construct semantic clusters from a set of semantic trees by

measuring the semantic cohesiveness of clusters. At the end of this phase, the semantic tree

sequences are transformed to corresponding semantic cluster sequences. The goal of the second

phase is to extract frequent cluster sequences by scanning the transformed database. We illustrate

these two phases informally with an example.

Given the database of XML query tree sequences in Figure 1, we categorize each query tree to

certain semantic cluster by grouping query trees representing similar semantics. For example, the

query trees of S1 and S3 will be grouped together as they represent the information on book title.

Suppose the clustering results of the five query trees in Figure 1 are shown in Figure 2(a), where

the cluster C1 represents the information of book title, the cluster C2 represents the information

about book author, and the cluster C3 represents the information about book section. Then, the
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ID Semantic Cluster Sequence
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Fig. 2. Historical XML query trees.

database of XML query tree sequences can be transformed into a set of cluster sequences as

depicted in Figure 2(b). FRECLE patterns can then be discovered from the transformed database

as frequent subsequences of tree clusters by adopting a traditional frequent sequential pattern

mining technique [13]. For example, suppose the threshold of support be 0.4. Then, the sequence

〈C1, C2〉 in Figure 2(b) will be discovered as a FRECLE pattern because its support is 2/5 ≥ 0.4.

Observe that FRECLEs capture the frequent association between different semantics represented

by different semantic tree clusters. Hence, such patterns are beneficial in applications where the

knowledge of semantic association is significant, such as XML query cache replacement strategy,

prefetching XML data, and web users clustering. For instance, the discovered FRECLE pattern in

the above example indicates that when a user formulates query about the information of book

title, he/she is very likely to issue another query about the author of the book. As we shall see

in Section V, such knowledge can be used in designing optimal XML query caching replacement

strategies. For example, we can delay the eviction of answers to queries about book author, if

they exist in cache already, once the queries about book title are issued.

B. Contributions

The major contributions of this paper can be summarized as follows.

• We introduce an approach that, to the best of our knowledge, is the first one to discover

novel knowledge from temporal sequences of semantic trees. Specifically, in this paper we

focus on discovering frequent semantic tree cluster sequences (FRECLE).

• We propose an algorithm to discover FRECLE pattern from a collection of semantic tree

sequences.
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• We show with illustrative examples that FRECLE patterns are useful for several real life

applications. Specifically, we elaborate on how FRECLE patterns can be used as the frame-

work for generating positive and negative FRECLE rules that can be used for more efficient

cache replacement strategy in the context of XML query processing.

• We present the results of extensive experiments with both synthetic and real datasets that

we have conducted to demonstrate the efficiency and scalability of the proposed algorithms,

quality of mining results, and usefulness of XML cache replacement strategy.

C. Paper Organization

The rest of this paper is organized as follows. In Section II, we formally introduce the notion

of semantic tree clusters and the problem of frequent semantic cluster sequences (FRECLE)

mining. In Section III, we present our proposed algorithm for FRECLE mining. We highlight

several representative applications of FRECLE patterns in Section IV and elaborate on a specific

application (XML query cache replacement strategy) in Section V. Performances of the FRECLE

mining algorithm and XML query caching are evaluated using in Section VI. Section VII reviews

the related works. Finally, the last section concludes this paper.

II. PRELIMINARIES

This section formally defines the problem of mining frequent semantic tree cluster sequences

(FRECLE) from tree-structured data. We begin by introducing some basic concepts and formalism

essential for defining the FRECLE mining problem.

A. Semantic Trees

The hierarchical relationships of nodes in a tree often reflects semantic relationship. Hence,

a tree structure may represent a set of objects such that the hierarchy of the tree is semantically

meaningful. We say a tree is semantically meaningful if the semantic hierarchy of labels of nodes

complies with the structural hierarchy of nodes. For example, a tree with a parent-child node

pairs which are labeled as “wheel” and “car”, respectively, is not semantically correct as car

cannot be part of wheel. However, it is meaningful if the pair of nodes are labeled as “car” and

“wheel”, respectively. We refer to such trees as semantic trees.
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Fig. 3. Sequence of semantic trees.

Definition 1: [Semantic Tree] A semantic tree is a node-labeled rooted tree, which is a 3-

tuple S = 〈N, E,L〉, where N is a set of nodes, E ⊆ N×N is the set of edges and L : N → Λ

is a node labeling function which assign each node n ∈ N a label L(n) ∈ Λ. For each edge

(n1, n2) ∈ E, L(n1) semantically contains L(n2), i.e., L(n2) is either an attribute or a subobject

of L(n1).

That is, a node-labeled tree is a semantic tree if the label of each node semantically contains

the label of any of its child nodes. For instance, a tree modeling an XML query is semantically

meaningful and it reflects the semantics of the query. Figure 1(a) shows a set of XML query

sequences, where each query is expressed in XPath language and modeled as a tree structure

in Figure 1(b). Each sequence records a sequence of queries issued by some user. Observe that

each query tree in Figure 1(b) is a semantic tree. Similarly, Figure 3 shows five semantic trees.

A semantic tree database (STD) can be defined as a set of semantic tree sequences. Formally,

Definition 2: [Semantic Tree Database (STD)] Let Σ = {S1, S2, . . . , Sn} be a set of se-

mantic trees. A semantic tree sequence Q is an ordered list of semantic trees, denoted as

Q = 〈S1S2 . . . Sl〉, where Si ∈ Σ (1 ≤ i ≤ l). D is a semantic tree database on Σ if

D = {Q = 〈S1S2 . . . Sl〉|∀Si ∈ Q, Si ∈ Σ}.

For example, let Σ = {S1, S2, S3, S4, S5} be the set of semantic trees as shown in Figure 3.

Then, Table I is a semantic tree database on Σ, where the first column ID contains the identities

of semantic tree sequences. Similarly, Figure 1(a) represents an STD where each semantic tree

is an XML query. Note that semantic trees in each record in STD can be ordered temporally.

Hence, each record may represent historical collection of semantic trees. For instance, queries

S1, S5, and S3 in record 1 in Figure 1(a) may represent sequence of queries formulated by a

user at times t1, t2, and t3, respectively where t1 < t2 < t3.

August 29, 2007 DRAFT



IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. XXX, NO. XXX, AUGUST 2007 7

ID Semantic tree sequence

Q1 〈S1S4S5〉
Q2 〈S2S4S5〉
Q3 〈S2S4〉
Q4 〈S1S3〉
Q5 〈S1S4S2〉

TABLE I

A SEMANTIC TREE DATABASE.

B. Semantic Clusters

Different semantic trees may have similar semantics. For example, semantic trees S1 and S3

in Figure 3 and queries S2 and S4 in Figure 1 are related to the information of book author. On

the other hand, S2 and S5 in Figure 3 are about the information of book publisher. Then, given

a collection of semantic trees, we can group them based on their semantics to generate a set of

representative semantic clusters. After categorizing each tree to a semantic cluster, a semantic

tree sequence can be transformed to be a semantic cluster sequence.

Definition 3: [Semantic Cluster Sequence] Let Σ = {S1, S2, . . . , Sn} be a set of semantic

trees. Suppose there exists a function f : Σ → Υ that categorizes each tree in Σ to a semantic

cluster in Υ = {C1, C2, . . . , Cm} (e.g., for any i ∈ [1, n], there exists one and only j ∈ [1,m]

s.t. f(Si) = Cj ). Then, given any semantic tree sequence Q = 〈S1S2 . . . Sl〉 where Si ∈ Σ,

it can be transformed into a semantic cluster sequence C(Q) = 〈C1C2 . . . Cl〉, where C1 =

f(S1), . . . , Cl = f(Sl).

Example 1: Consider the set of semantic trees in Figure 3. Suppose that they can be cat-

egorized into three semantic clusters as follows: f(S1) = C1, f(S2) = C2, f(S3) = C1,

f(S4) = C3, f(S5) = C2, where C1 represents the information of book author, C2 represents

the information of book publisher and C3 represents the information of book chapter. Thus, for

the first semantic tree sequence Q1 in Table I, it can be transformed to be the semantic cluster

sequence C(Q1) = 〈f(S1)f(S4)f(S5)〉 = 〈C1C3C2〉.
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C. FRECLE Pattern

Given a set of semantic trees Σ and a function f : Σ → Υ that categorizes each tree in

Σ to a semantic clusters in Υ, a semantic tree sequence Q = 〈S1S2 . . . Sl〉 is said to support

a semantic cluster sequence C = 〈C1C2 . . . Ck〉, denoted as Q v C, if there exists an integer

i(1 ≤ i ≤ l−k+1) such that f(Si) = C1, f(Si+1) = C2, . . . , f(Si+k−1) = Ck. Then the support

of a semantic cluster sequence in a STD can be defined as follows.

Definition 4: [Support] Let D be a STD on Σ. Suppose there exists f : Σ → Υ. Then, given

a semantic cluster sequence C on Υ, the support of C in D, denoted as suppD(C), is

suppD(C) =
|{Q|Q v C, Q ∈ D}|

|{Q|Q ∈ D}|

Example 2: Suppose the semantic trees in Figure 3 are clustered as in Example 1. Then, given

a semantic cluster sequence, C = 〈C1C3〉, its support in the STD D in Table I is 2/5, since two

semantic tree sequences, Q1 = 〈S1S4S5〉 and Q5 = 〈S1S4S2〉, support it.

Definition 5: [Frequent Semantic Tree Cluster Sequence (FRECLE)] Given a STD D on

Σ, f : Σ → Υ, and a real number ξ (0 ≤ ξ ≤ 1) as the threshold of support, a semantic

cluster sequence C = 〈C1C2 . . . Ck〉 (Ci ∈ Υ) is called a FRECLE pattern with respect to D if

suppD(C) ≥ ξ.

Example 3: Again, suppose the semantic trees in Figure 3 are clustered as in Example 1.

Given the STD in Table I and the support threshold ξ = 0.2, the semantic cluster sequence

〈C1C3〉 is a FRECLE pattern as its support is 2/5 = 0.4 > ξ.

Observe that FRECLE pattern in Example 3 reflects the frequent association between the two

kinds of semantics: book author (C1) and book chapter (C3). In Section V, we shall highlight

the usefulness of such knowledge in the context of XML query caching strategy.

D. Problem Statement

Let D be a STD on a set of semantic trees Σ. Given a support threshold ξ (0 ≤ ξ ≤ 1), the

problem of FRECLE mining is first to find the function f : Σ → Υ that categorizes trees in Σ to

semantic clusters in Υ = {C1, C2, . . . , Cm} such that the semantics of trees within a cluster are

similar to one another and different from the semantics of trees in other clusters, and then to

find the set of semantic cluster sequences {C = 〈C1C2 . . . Ck〉|∀Ci ∈ Υ, suppD(C) ≥ ξ}. Note
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that different sets of FRECLE patterns will be found if the function f : Σ → Υ is implemented

differently. The goodness of different sets of FRECLE patterns depends on the applications (e.g.,

a set of patterns is more beneficial than the others in some particular application).

The problem of FRECLE mining is different from traditional frequent sequential pattern mining

[1], [20] in the following two critical aspects. First, the data type we considered is different.

Traditional frequent sequential pattern mining considers one-dimensional data, such as items,

while FRECLE mining considers tree structured data. Second, the definition of support is different.

In traditional frequent sequential pattern mining, a sequence supports another sequence if the

latter is embedded in the former. While, in FRECLE mining, a semantic tree sequence supports

a semantic cluster sequence only if the latter is embedded in a semantic cluster sequence

that is transformed from the former. Consequently, existing frequent sequential pattern mining

algorithms cannot be applied here directly to discover FRECLEs. We propose a new data mining

algorithm for FRECLE mining in the following section.

III. FRECLE MINING ALGORITHM

In this section, we first present the overview of FRECLE mining algorithm. Then, we discuss

the details of respective mining phases.

A. Overview

Given a STD D and some user-specified support threshold ξ, the discovery of FRECLE patterns

consists of the following two phases.

• Phase I: Semantic Tree Clustering. In order to transform semantic tree sequences to

calculate the support of semantic cluster sequences, we need to cluster the set of semantic

trees in D first. Hence, a clustering algorithm which clusters tree structures based on

semantics is needed in this phase.

• Phase II: FRECLE Pattern Discovery. After getting the results of Phase I, each semantic

tree sequence can be transformed to a semantic cluster sequence. Then, the second phase

mines FRECLEs from the transformed database with respect to the support threshold ξ.

B. Phase 1: Semantic Tree Clustering

Given a STD D on a set of semantic trees Σ, the objective of this phase is to implement

the function f : Σ → Υ which categorizes each semantic tree in Σ to a semantic cluster in Υ.
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Fig. 4. Node-based and edge-based similarity measures.

The function f can be implemented by clustering semantic trees in Σ based on semantics. In

other words, given a collection of semantic trees {S1, S2, . . . , Sn}, we aim to find a clustering

function f that forms a partition {C1, C2, . . . , Cm} of {S1, S2, . . . , Sn} such that trees in each

Ci are semantically as close as possible.

1) Similarity Measure for Clustering: A key task for clustering semantic trees is to define an

appropriate similarity measure. In recent years, there have been several tree structure clustering

methods [24], [10] proposed in the literature. Hence, at first glance it may seem that we can

adopt a similarity metric proposed in the literature for clustering semantic trees. However, our

initial investigation revealed that such strategy may not work for certain cases of semantic tree

clustering. Let us elaborate on this further.

Similarity measures defined on tree structures can broadly be classified into two basic cate-

gories. Node-based similarity measures the proximity of two trees based on shared nodes. For

example, the work in [10] proposed to measure the similarity between two trees using tree

distance, which is a sequence of node insertion, node deletion and node relabeling operations

etc. Then lesser the number of operations in the tree distance, the closer the two trees are.

However, as observed by [24], tree distance based similarity may not be able to distinguish trees

of different semantics. For example, as shown in Figure 4(a), the tree distance between S1 and

S2 is one (a node relabeling), while the tree distance between S2 and S3 is also one. Although

S1 and S2 should be semantically closer as they represent the information of the same object

A, the tree distance-based similarity fail to differentiate between such semantic structures.

Edge-based similarity measures the proximity of two trees based on shared edges. For example,
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the work in [24] proposed a modified Jaccard coefficient defined on edges, dist(S1, S2) =

1 − |sg(S1)∩sg(S2)|
max{|sg(S1)|,|sg(S1)|} , where sg(Si) is the set of edges in tree Si. Thus, the more edges the

two trees share, the closer the two trees are. Edge-based similarity measure is more accurate

than node-based measure as it considers not only the nodes but also the edges connecting the

nodes. For example, based on the modified Jaccard coefficient, the distance between S1 and

S2 in Figure 4(a) is 0.5, while the distance between S2 and S3 is 1. However, we observed

that edge-based measure also fails to distinguish trees of different semantics in some cases. For

example, as shown in Figure 4(b), the distance between S1 and S2 is the same as the distance

between S2 and S3 based on modified Jaccard coefficient. But S1 and S2 should be semantically

closer as they represent the information of an object A which has two sub-objects B and C.

Based on the above discussion, it is obvious that node-based and edge-based similarities cannot

achieve good accuracy in clustering semantic trees. Hence, we propose a rooted subtree-based

similarity measure to cluster semantic trees. Formally, a rooted subtree of a semantic tree is

defined as follows.

Definition 6: [Rooted Subtree] Given a semantic tree S = 〈N, E,L〉, let Root(S) be the root

of S, a rooted subtree RS = 〈N ′, E ′, L′〉 is a subtree of S if it satisfies the following conditions:

1) Root(RS) = Root(S); 2) N ′ ⊆ N , E ′ ⊆ E.

For example, in the Figure 4 (b), the tree S1 is a rooted subtree of S2, while S3 is not a rooted

subtree of S2.

Rooted-subtree-based similarity scheme has certain advantages over the node-based and edge-

based ones. For example, consider the trees in Figure 4(a) again. S1 and S2 share the common

rooted subtree RS with a root node A and a leaf node B, while S3 does not share any rooted

subtree with S1 or S2. Hence, S1 and S2 should be more similar. Consider the trees in Figure 4(b)

again. S1 and S2 share the rooted subtree RS with the root A and two child nodes B and C.

S3 share the rooted subtree RS with the root A and a leaf node B. Since the size of the rooted

subtree shared by S1 and S2 is larger, S1 and S2 should be closer.

2) Clustering Method: We now discuss the clustering method. Existing tree structure cluster-

ing approaches usually employ the agglomerative clustering technique [24], [10]. They compute

the similarity between all pairs of clusters and then merge the most similar pair. Recently, cluster-

centered approach was proposed in the area of document clustering [26], [15]. A clustered-

centered method constructs clusters by measuring the cohesiveness of clusters directly using

August 29, 2007 DRAFT



IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. XXX, NO. XXX, AUGUST 2007 12

book

title

S1

book

title

RS1

book

author

RS2

book

author

RS3

ln

book

section

RS4

book
S6

section

title

book
S2

author

book

title

S7

book

title

S3

year

book

S5

sectionbook

S4

price

book

title

S9

author

ln

author

book
S8

ln

book
S10

section

C1={ S1, S3, S7, S9 }  C2={ S2 }  C4={ S6, S5, S10 }C3={ S8, S9 }
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frequent patterns. For example, FIHC [15] mined frequent terms of a collection of documents first

and then clustered the documents according to the frequent terms they contain. The motivation

is that there are some frequent terms for each cluster (topic) in the document set, and different

clusters share few frequent terms. We employ such a clustering strategy here to cluster semantic

trees as it is revealed in [15] that the cluster-centered method can distinguish documents of

different semantics better and achieve higher clustering accuracy.

In order to cluster semantic trees based on cluster-centered strategy, we need to discover fre-

quent rooted subtrees from a collection of semantic trees first. We use the algorithm FastXMiner [29]

to discover frequent rooted subtrees from semantic trees. A frequent rooted subtrees can be

defined as follows.

Definition 7: [Frequent Rooted Subtree] Given a set of semantic trees Σ = {S1, S2, . . . ,

Sn}, and a real number δ (0 ≤ δ ≤ 1), which is called minimum rooted subtree support, the

support of a rooted subtree RS, denoted as supp(RS), is the fraction of semantic trees that

include it. RS is a frequent rooted subtree if supp(RS) ≥ δ.

Example 4: In order to illustrate our clustering method clearly, we use another set of semantic

trees, in the upper part of Figure 5, as the running example. If the threshold δ is 0.2, then four

frequent rooted subtrees, RS1, RS2, RS3 and RS4, will be discovered as depicted in the lower

part of Figure 5. Each arrowed line from a semantic tree to a frequent rooted subtree indicates

that the semantic tree supports the rooted subtree.

After discovering frequent rooted subtrees from a collection of semantic trees, the clustering
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method constructs clusters in the following three steps: initializing clusters, disjointing clusters,

and pruning clusters. We elaborate on these steps in turn.

Initializing Clusters. In this step, we construct initial clusters for each mined frequent rooted

subtree. We use the frequent rooted subtrees as the labels of the initial clusters. A semantic tree

is assigned to an initial cluster if the label of the cluster is the maximal frequent rooted subtree

supported by the semantic tree 1. For example, consider the semantic tree S8 in Figure 5. It is

supported by two frequent rooted subtrees RS2 and RS3. We assign S8 to the initial cluster RS3

since the label of RS2 is not a maximal frequent rooted subtree supported by S8. Note that if a

semantic tree does not support any frequent rooted subtree, e.g., the semantic tree S4 in Figure 5,

then it will be treated as an outlier because the semantics of the tree is not close to any cluster.

Given the set of semantic trees and discovered frequent rooted subtrees in Figure 5, the results

of the initializing step are shown in the bottom of Figure 5, where four initial clusters, C1, C2,

C3 and C4, are created.

Initial clusters may not be disjoint because a semantic tree may support more than one maximal

frequent rooted subtrees. For example, the semantic tree S9 supports two maximal frequent rooted

subtrees, RS1 and RS3. Thus, S9 is assigned to two corresponding initial clusters C1 and C3.

We discuss how to make the initial clusters disjoint in the next step.

Disjointing Clusters. For each semantic tree, we identify the best initial cluster and keep the

tree only in the best cluster. We define the goodness of a cluster for a semantic tree based on

the intra-cluster dissimilarity. That is, we remove a semantic tree from all the clusters but the

one to which adding the tree results in the minimal intra-cluster dissimilarity. We measure the

intra-cluster dissimilarity based on the number of infrequent edges in the cluster 2. That is, we

merge all semantic trees in a cluster into a tree structure. For the merged tree, each edge e is

associated with a cluster support, denoted as suppC(e), which is the fraction of semantic trees

containing it. For example, Figure 6(a) shows the merged tree structure for the initial cluster

C1 in Figure 5. The numbers on the edges are their absolute cluster support values. Given a

1A frequent rooted subtree is not maximal w.r.t. a semantic tree if it is included by another frequent rooted subtree supported

by the semantic tree.
2We highlight that our fall-back on measuring dissimilarity based on edges in this step will not damage the clustering quality

significantly since the initializing step based on rooted subtrees basically decides the assignment of semantic trees to clusters.
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Fig. 6. Intra-cluster dissimilarity.

minimum edge support χ (0 ≤ χ ≤ 1), an edge in a merged tree is infrequent if its cluster

support is less than χ. Then, we define the intra-cluster dissimilarity as follows.

Definition 8: [Intra-Cluster Dissimilarity] Given a merged tree Mi of a cluster Ci and a

minimum edge support χ, the intra-cluster dissimilarity of Ci, denoted as Intra(Ci), is

Intra(Ci) =
|{e ∈ E(Mi)|suppCi

(e) < χ}|
|{e ∈ E(Mi)}|

where E(Mi) is the set of edges of Mi.

The value of Intra(Ci) ranges from 0 to 1. The higher the Intra(Ci), the more dissimilar the

semantic trees in cluster Ci.

Example 5: Figure 6 shows the merged trees for initial clusters C1 and C3 in Figure 5. Let

χ = 0.6. In the merged tree of C1, there are three infrequent edges: (book, year), (book, author)

and (author, ln). Hence, Intra(C1) = 3/4 = 0.75. Similarly, the edge (book, title) is an

infrequent edge in the merged tree of C3. Hence, Intra(C3) = 1/3 ≈ 0.33.

We then make the clusters disjoint by assigning a semantic tree to a cluster which has the

smallest intra-cluster dissimilarity value. That is, a semantic tree Si is kept in cluster Cj if

Cj = argminCj∈C,Si∈Cj
Intra(Cj)

Example 6: Given the set of semantic trees and initial clusters in Figure 5, S9 is assigned to

both C1 and C3. As shown in Example 4, grouping S9 in C1 generates the Intra(C1) = 0.75,

whereas grouping S9 in C3 results in the Intra(C3) = 0.33. Hence, we remove S9 from C1.

After this step, clusters are not overlapping any longer. The initial clusters in Figure 5 are

adjusted as shown in Figure 7, where each cluster is represented as a merged tree of all semantic

trees in it.
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Fig. 7. Clusters after disjointing.

Pruning Clusters. If the minimum rooted subtree support δ is small, many frequent rooted

subtrees will be mined from the collection of semantic trees. Then, some of the rooted subtrees

are semantically close, e.g., RS2 and RS3 in Figure 5, which results in semantically close

clusters, e.g., C2 and C3 in Figure 7. Hence, in this step, we perform cluster pruning to merge

close clusters.

We measure the similarity of a cluster to another cluster based on the number of frequent

edges shared by the two clusters. Given a minimum edge support χ, the set of frequent edges

of cluster Ci, denoted as FCi
, are the edges in the merged tree of Ci with their cluster support

no less than χ. That is, FCi
= {e|e ∈ E(Mi) & suppCi

(e) ≥ χ}.

Example 7: Consider the cluster C3 in Figure 7. Let χ = 0.6. Then the two edges, (book, author)

and (author, ln), are frequent because each edge has the cluster support 2/2 = 1 ≥ χ. Hence,

FC3 ={(book, author), (author, ln)}.

Then, the similarity of one cluster to another cluster can be defined as follows.

Definition 9: [Cluster Similarity] Given two clusters Ci and Cj , the cluster similarity of Ci

to Cj , denoted as Sim(Ci → Cj), is,

Sim(Ci → Cj) =
|{e|e ∈ FCi

, e ∈ FCj
}| − |{e|e ∈ FCi

, e /∈ FCj
}|

|{e|e ∈ FCi
}| + 1

where FCi
is the set of frequent edges of Ci.

That is, the more frequent edges of Ci are frequent in Cj , the closer Ci is to Cj . The value

of the first term,
|{e|e∈FCi

,e∈FCj
}|−|{e|e∈FCi

,e/∈FCj
}|

|{e|e∈FCi
}| , ranges from −1 to 1. If all frequent edges in

cluster Ci are frequent as well in cluster Cj , then the value of Sim(Ci → Cj) is 1. If none of the

frequent edge in cluster Ci is frequent in cluster Cj , then the value of Sim(Ci → Cj) is −1. To

avoid negative similarity values, we add the term +1. As a result, the range of Sim(Ci → Cj)

is [0, 2]. If Sim(Ci → Cj) is greater than 1, cluster Ci is semantically close to cluster Cj . Note
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that, the cluster similarity is asymmetrical.

The inter-cluster similarity between Ci and Cj is defined as the geometric mean of the two

similarities: Sim(Ci → Cj) and Sim(Cj → Ci). Formally,

Definition 10: [Inter-Cluster Similarity] Given two clusters Ci and Cj , the inter-cluster

similarity between Ci and Cj , denoted as Inter(Ci, Cj), is,

Inter(Ci, Cj) =
√

Sim(Ci → Cj)× Sim(Cj → Ci)

According to [15], the advantage of the geometric mean is that the inter-cluster similarity will

be high only if both values of Sim(Ci → Cj) and Sim(Cj → Ci) are high. Since the range of

cluster similarity is [0, 2], the range of Inter(Ci, Cj) is also [0, 2]. Obviously, the inter-cluster

similarity has the symmetry property.

Higher value of inter-cluster similarity implies higher similarity between two clusters. An

Inter(Ci, Cj) value below 1 implies that the weight of dissimilar item (e.g., Sim(Ci → Cj) or

Sim(Cj → Ci)) has exceeded the weight of similar item. Hence, we merge two clusters Ci and

Cj if Inter(Ci, Cj) is greater than 1.

Example 8: Consider the cluster C2 and C3 in Figure 7 again. Let χ = 0.6, FC2 ={(book,

author)} and FC3 ={(book, author), (author, ln)}. Thus, Sim(C2 → C3) = (1−0)/1+1 = 2

because the frequent edge (book, author) in C2 is frequent as well in C3. Whereas, Sim(C3 →
C2) = (2 − 1)/2 + 1 = 1.5 because the frequent edge (author, ln) in C3 is infrequent in C2.

Then, Inter(C2, C3) =
√

2× 1.5 ≈ 1.73 and we merge the two clusters C2 and C3.

The final clustering result is shown in Figure 8. That is, given the set of ten semantic trees as

shown in the upper part of Figure 5, we implement the following function f to categorize each

semantic tree to a collectively represented semantic cluster.

f(Si) =





C1, if i = 1, 3, 7

C2, if i = 2, 8, 9

C3, if i = 5, 6, 10

Null, if i = 4

C. Phase 2: Frequent Cluster Sequence Discovery

After implementing the function f : Σ → Υ, the STD D can be transformed to be a database

of semantic cluster sequences. Then, the objective of the second phase is to discover FRECLE
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Fig. 9. Mining FRECLEs from semantic cluster database.

patterns from the transformed database with respect to some given support threshold ξ. Since

FRECLE patterns are actually frequent semantic cluster sequences, the objective of this phase

is similar to the problem of traditional frequent sequential pattern mining. Although many data

mining approaches have been proposed in the literature for frequent sequential pattern mining [1],

[20], we adopt the FS-Miner [13] algorithm because of the following reason. Most of existing

frequent sequential pattern mining algorithms discover frequent embedded subsequences. For

example, 〈ace〉 will be regarded as a subsequence of 〈abcde〉. While, both FS-Miner and our

FRECLE mining are interested in frequent induced subsequences only, such as 〈abc〉 of 〈abcde〉.
We illustrate how FS-Miner discovers FRECLEs from the transformed semantic cluster database

with an example. Readers can refer to [13] for the details of FS-Miner. Given the STD in Table I

and the clustering in Example 1, Figure 9(a) shows the transformed semantic cluster database.

Given a semantic cluster database and a support threshold ξ, FS-Miner discovers FRECLEs

from a constructed data structure called FS-tree as depicted in Figure 9(b). Similar to FP-

tree [16], FS-tree contains a header table and a tree structure. Each entry in the header table has
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three fields: edge (a frequent sequence of length 2), count (count of the edge), and link (pointing

to the first occurrence of the edge in the tree structure). For example, suppose the threshold ξ

is 0.4. Then edges are frequent if their counts are no less than 2. After scanning the table in

Figure 9 for the first time, three frequent edges are discovered and created in the header table.

Then, a second scan of the database is performed to construct the tree structure. For example,

we construct a root path 〈C1C3C2〉 in the tree structure for the first semantic cluster sequence.

Similarly, another root path is created for the second semantic cluster sequence. For the third

sequence, since it can share the edge 〈C2C3〉 with the second root path, we simply increment

the count of the edge in the tree. Other sequences are inserted into the tree using the above

strategy.

For each edge in the header table, FS-Miner extracts derived paths. For example, for the edge

〈C3C2〉, two derived paths, highlighted with bold lines in Figure 9, are extracted. Then, the

conditional sequence base of 〈C3C2〉 can be obtained by setting the frequency count of each

edge in the paths to the count of the removed 〈C3C2〉, as shown in Figure 9(c). We create the

conditional FS-tree of 〈C3C2〉 by inserting each path of conditional sequence base into the tree

in a backward manner. Finally, a depth first traversal is performed to discover all sequences

satisfying the threshold ξ.

Lastly, we would like to highlight here that the novelty of the FRECLE mining algorithm lies

in the first phase, where we developed a cluster-centered strategy to construct clusters from a

set of trees. To the best of our knowledge, this is the first method that clusters tree structures

by measuring the semantic cohesiveness of clusters directly using frequent substructures.

IV. APPLICATION SCENARIOS

In this section, we first show the usefulness of FRECLE patterns with some potential applica-

tions. Since FRECLE patterns discover knowledge about semantic associations in tree-structured

data, they can be useful in applications where tree structures are dynamic and semantically

meaningful. We enumerate some of these applications. In the next section, we shall elaborate

on one of these applications.

• XML query cache replacement. Efficient processing of XML queries is an important issue

in the XML research community. Recently, caching XML queries has been recognized as

an orthogonal approach to improve the performance of XML query engines. For example,
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FastXMiner [29] proposed to mine frequent XML query patterns from the user queries and

discard infrequent query patterns first once the cache is full. However, these frequent query

pattern mining techniques are primarily designed for static collection of XML queries. Hence,

they may not always be reliable in predicting the subsequent queries as these techniques

ignore the evolutionary feature of users’ queries. Instead, we can mine FRECLE patterns

from XML queries to predict the subsequent information needs of users based on their

current queries. The details are discussed in the next section.

• Prefetching XML data. Besides caching, prefetching can be used for XML query perfor-

mance improvement. For example, Ng et al. [19] proposed to mine association rules from

XML query sequences and prefetch answers to queries which are predicated to be issued

subsequently. Considering that users may not issue exactly same queries in sequence, they

proposed the idea of abstract rules, which are association rules between semantically similar

queries. Queries are semantically similar if they are only different in constraint values

(predicate). However, this form of abstract rules is not flexible enough as many sequential

associations between semantically similar queries may not be discovered. For example, two

XPath queries, //book[title = “XML”]/publisher/ and //book[title = “WWW”]/pubisher,

will be regarded as similar queries as they contain different predicates on title element

only (e.g., XML and WWW). However, the queries //book[title = “XML”]/publisher/

and //book[title = “WWW”]/ pubisher/address will not be treated as similar queries

although both inquire the information of book publisher. Since FRECLE mining cluster

similar queries before mining sequential patterns, FRECLE-based prefetching system should

be more effective in improving the hit ratio and precision of XML cache.

• Web users clustering. A Web session tree, which is constructed by organizing Web pages

based on their URLs, is semantically meaningful as it represents the information needs of

a user. We can mine FRECLEs from historical Web usage data for each user and cluster

users based on discovered FRECLEs. Such a clustering method can identify clusters of users

that exhibit similar sequential information needs. Then, Web requests can be served more

efficiently by designing some user-cluster aware caching/prefetching strategies.
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V. REPLACEMENT STRATEGY FOR XML QUERY CACHE

In this section, we elaborate on how FRECLE patterns can be used in designing optimal

XML cache replacement strategies. First, we derive association rules called FRECLE rules from

FRECLEs mined from sequential XML queries. Then, we discuss the design of cache replacement

strategies based on the derived rules. We begin by giving an overview of the replacement strategy.

A preliminary version of this section appeared in [5].

A. Overview

Recently, several approaches that mine frequent XML query patterns and cache their results

have been proposed to improve query response time [28], [29]. However, frequent XML query

patterns mined by these approaches ignore the temporal and semantic association of queries.

As a result caching strategies based on only frequency and recency have certain limitations in

predicting future queries. In this section, we show how FRECLE patterns can be used to exploit

temporal and semantic features of user queries by discovering association rules that are used as

a foundation for optimal cache replacement strategies. The association rules indicate that when

a user inquires some information from the XML document, he/she probably will (positive) or

will not (negative) inquire some other information subsequently. Intuitively, as few users issue

exactly the same queries sequentially and many users may inquire similar information, we cluster

queries based on their semantics first using the FRECLE mining framework and then discover the

positive and negative associations between them. The knowledge obtained from the discovered

rules are incorporated in designing appropriate replacement strategies.

B. FRECLE Rules

Suppose we have a database of XML query sequences where each sequence represents a set

of XML queries sequentially issued by some user at different timepoints. Given such a database,

a support threshold ξ, a minimum rooted subtree support δ, and a minimum edge support χ,

we can mine FRECLEs of any length. That is, FRECLEs with any number of semantic clusters.

Particularly, in the application of XML query caching, we consider FRECLEs of length 2 only

(e.g., 〈C1C2〉), because this type of short patterns significantly reduce the complexity of the

mining process and any FRECLE with more than 2 clusters can be decomposed into a set of

FRECLEs of length 2.
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Given a FRECLE 〈C1C2〉 mined from an XML query sequence database, we may derive an

association rule of the form C1 ⇒ C2. The rule indicates that when a user issues a query that

is semantically contained by or close to the semantics of cluster C1, he/she will probably issue

a subsequent query that is semantically related to the semantics of cluster C2. Based on such

kind of knowledge, we may optimally delay the eviction of answers to the predicated queries

from the cache. We also observed the following type of knowledge is potentially useful as well.

When a user issues a query semantically related to the cluster C1, he/she will probably not

issue a query semantically related to cluster C2 subsequently. Thus, we can optimally hasten

the purge of answers to queries related to the semantics of C2. Thus, besides 〈C1C2〉, FRECLEs

including negative clusters, such as 〈C1¬C2〉, are beneficial (the symbol ¬ is used to represent

the nonoccurrence of a semantic cluster). We call the former positive FRECLE and the latter

negative FRECLE, respectively.

To determine the positive or negative association between variables, some correlation measures

should be used. As we are equally interested whether a user inquires some information or not,

the occurrence of a cluster Ci is a symmetric binary value. Hence, correlation measures which

are suitable for analyzing symmetric binary variables can be used, such as φ-coefficient, odds

ratio, and the Kappa statistic etc. [21]. In our analysis, we use the φ-coefficient. Then, if we

use supp(〈Ci, ∗〉) to denote the support of any 2-sequence starting with Ci and supp(〈∗, Ci〉)
to denote the support of any 2-sequence ending with Ci, then the correlation of a FRECLE of

length 2 can be defined as follows.

Definition 11: [Correlation of FRECLE] Given a FRECLE 〈CiCj〉, the correlation of the

pattern, denoted as corr(〈CiCj〉), is

corr(〈CiCj〉) =
supp(〈CiCj〉)− supp(〈Ci, ∗〉)supp(〈∗, Cj〉)√

supp(〈Ci, ∗〉)(1− supp(〈Ci, ∗〉))supp(〈∗, Cj〉)(1− supp(〈∗, Cj〉))

The strength and the meaning of the correlation of FRECLE are same as those of the φ-

coefficient. Hence, if corr(〈CiCj〉) > 0 then it is a positive FRECLE pattern. Otherwise, it is a

negative FRECLE pattern. The confidence of association rules derived from a positive/negative

FRECLE can be defined accordingly.

Definition 12: [Confidence of FRECLE rule] Given a FRECLE 〈CiC
∗
j 〉, the derived association
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Algorithm 1 Positive and Negative FRECLE Rule Generation
Input:

D, f : Σ → Υ, ξ, µ, θ

Output:

PR: A set of positive FRECLE rules, NR: A set of negative FRECLE rules

Description:

1: scan D and find the frequent 1-sequence (F1) /*support(〈Ci, 〉) or support(〈, Ci〉)≥ ξ*/

2: P2 = F1./F1 /*candidate frequent 2-cluster sequence*/

3: for each < 〈Ci, Cj〉 ∈ P2 do

4: if corr(< 〈Ci, Cj〉) ≥ µ then

5: if (supp(< 〈CiCj〉) ≥ ξ)&& (conf(Ci ⇒ Cj) ≥ θ) then

6: PR = PR ∪ {Ci ⇒ Cj}
7: end if

8: else

9: if (corr(< 〈Ci, Cj〉) ≤ −µ)&&(conf(Ci ⇒ ¬Cj) ≥ θ) then

10: NR = NR ∪ {Ci ⇒ ¬Cj}
11: end if

12: end if

13: end for

rule has the form of Ci ⇒ C∗
j . The confidence of rule, denoted as conf(Ci ⇒ C∗

j ), is,

conf(Ci ⇒ C∗
j ) =

support(〈CiC
∗
j 〉)

support(〈Ci, 〉)
where C∗

j represents either Cj or ¬Cj .

Then, positive and negative FRECLE rules, which can be mined from XML query sequences,

can be defined based on these metrics.

Definition 13: [Positive and negative FRECLE rules] Let D be an XML query tree sequence

database on Σ = {S1, S2, . . . , Sn}, where each tree in Σ represents an XML query. Let f : Σ →
Υ be the function that categorizes each tree in Σ to a semantic cluster in Υ = {C1, C2, . . . , Cm}.

Given the threshold of support ξ, the threshold of correlation µ, and the threshold of confidence

θ,

• Ci ⇒ Cj is a positive FRECLE rule if 1) corr(〈CiCj〉) ≥ µ; 2) supp(〈CiCj〉) ≥ ξ; 3)

conf(〈Ci ⇒ Cj〉) ≥ θ.

• Ci ⇒ ¬Cj is a negative FRECLE rule if 1) corr(〈CiCj〉) ≤ −µ; 2) conf(〈Ci ⇒ ¬Cj〉) ≥ θ.
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C. FRECLE Rules Mining Algorithm

Given an XML query sequence database, the function f : Σ → Υ can be implemented with the

clustering algorithm discussed in the previous section. Then, the database can be transformed

to be an evolutionary semantic cluster database. Rather than discovering FRECLEs first and

then derive possible positive and negative rules as commonly done by traditional association

rule mining algorithm, we can discover positive and negative FRECLE rules directly from the

transformed evolutionary semantic cluster database.

The algorithm is presented in Algorithm 2. Initially, we scan the transformed database to find

the set of frequent 1-cluster sequences (Line 1). Then we join the frequent 1-cluster sequences

to generate candidate FRECLEs (Line 2). Note that only a pair of 1-cluster sequences in the form

of 〈Ci, 〉 and 〈, Cj〉 can be joined. After that, we verify the correlation of candidate FRECLEs. If

the correlation is greater than the threshold µ (Line 4), we consider to derive a positive FRECLE

rule and check the support and confidence of the possible rule (Line 5). If both support and

confidence of the derived rule are greater than the thresholds ξ and θ, it is added into the set of

positive FRECLE rules PR (Line 6). Otherwise, if the correlation of a candidate FRECLE is not

greater than the threshold −µ, we check whether valid negative FRECLE rules can be derived

(Line 9− 11) .

D. Designing Replacement Strategies

After deriving positive and negative FRECLE rules, we design replacement strategies with

discovered rules 3. As we cluster XML query (trees) into semantic clusters, our replacement

scheme has two levels. The upper level applies replacement functions on clusters while the

lower level decides the replacement value for queries in each cluster.

We incorporate the discovered association rules between clusters with LRU, which is a classic

cache replacement algorithm that discards the least recently used items first, in the upper

level. Without loss of generality, we assume that “the most recent value for clusters”, Vtop,

is incremented by one, each time a new query Sx is issued. When a new query Sx is issued,

3Although FRECLEs are defined on semantic trees with specific node labels, our strategy can be extended straightforwardly

to handle XML queries with wildcards “ ∗ ” and relative paths “//”, given the partial ordering as defined in [29]. That is, a

specific node label is semantically contained by “ ∗ ”, which is semantically contained by “//”.
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Algorithm 2 FRECLE Rule-based Cache Replacement Strategy
Input:

PR - the set of positive FRECLE rules, NR - the set of negative FRECLE rules, Sx - the new XML query

Description:

1: let Vtop be the most recent values for clusters

2: if Sim(Sx → Ci) > 1 and Ci ⇒ Cj ∈ PR then

3: select the Ci ⇒ Cj with the highest Sim(Sx → Ci)

4: if Cj exists in cache then

5: V (Cj) = V (Cj) + (Vtop − V (Cj)× Conf(Ci ⇒ Cj))

6: end if

7: end if

8: if Sim(Sx → Ci) > 1 and Ci ⇒ ¬Cj ∈ NR then

9: select the Ci ⇒ ¬Cjwith the highest Sim(Sx → Ci)

10: if Cj exists in cache then

11: V (Cj) = V (Cj) + (V (Cj − Vtop)× Conf(Ci ⇒ ¬Cj))

12: end if

13: end if

14: for there is insufficient space for Sx do

15: select the cluster Ci with lowest V (Ci)

16: remove queries in Ci according to some existing query level caching strategy

17: end for

18: admit Sx

19: if there is a cluster Ci in the cache with the highest Sim(Sx → Ci) then

20: V (Ci) = Vtop + 1

21: else

22: create a cluster Cx for Sx, V (Cx) = Vtop + 1

23: end if

we need to justify whether Sx is semantically contained by or close to an existing cluster Ci.

Basically, we treat Sx as a singular cluster and compute the cluster similarity Sim(Sx → Ci)

according to Definition 9. If there’s more than one cluster Ci such that Sim(Sx → Ci) is greater

than one, we select the cluster with the highest cluster similarity. Then, we examine whether

a positive FRECLE rule Ci ⇒ Cj was discovered and Cj is cached. If yes, we calculate a new

replacement value for Cj as V (Cj) = V (Cj) + (Vtop − V (Cj)) × conf(Ci ⇒ Cj). Obviously,

V (Cj) is increased and we delayed the eviction of queries in cluster Cj based on the rule. It

is similar for negative FRECLE rules. For example, with a negative rule Ci ⇒ ¬Cj , we update

V (Cj) = V (Cj) + (V (Cj) − Vtop) × conf(Ci ⇒ ¬Cj). Since V (Cj) is decreased, we actually

hasten the purge of queries in cluster Cj .
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N Number of semantic trees 1K

L Number of potential frequent rooted subtrees 8

D Maximum depth of rooted subtrees 10

F Maximum fanout of rooted subtrees 10

M Average number of nodes of rooted subtrees 20

P Maximum overlap between frequent rooted subtrees 0.2

O The ratio of outliers 0.05

(a)

Data Feature parameters

d1 P = 0.05

d2 P = 0.1

d3 P = 0.2

d4 O = 0.01

d5 O = 0.05

d6 O = 0.08

d7 N = 10K

(b)

TABLE II

PARAMETERS AND DATA SETS.

For the replacement function for queries in the lower level, some other parameters, such as

the processing cost of the query and the size of the query region, should be considered. These

issues are out of the scope of our discussion on this application. Interested readers can refers

to [29] for the details.

VI. EXPERIMENTAL RESULTS

In this section, we evaluate the performance of the FRECLE mining algorithm and the FRECLE

based cache replacement strategies. We have implemented our approach using Java. Experiments

are carried out on a Pentium IV 2.8GHz PC with 512 MB memory. The operating system is

Windows 2000 professional.

A. Performance of FRECLE Mining

Firstly, we investigate the performance of the FRECLE mining algorithm. Recall that the mining

algorithm consists of two phases. The first one clusters the semantic trees while the second one

discovers FRECLEs from the transformed semantic cluster database. Since we adopt the FS-

Miner [13] algorithm in the second phase, we focus on evaluating the performance of the first

phase.

In order to evaluate our semantic tree clustering method in the first phase, we implemented a

synthetic tree generator. The set of parameters used by the generator are presented in Table II.
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Basically, synthetic trees are generated with the following steps 4:

• We generate a set of L potential frequent rooted subtrees by controlling the overlap P

between them. The structure of each potential frequent rooted subtree are decided by D,

F and M . For example, at a given node, the number of children is sampled uniformly at

random from the range 0 to F . For each child, the process is performed recursively if the

depth of the tree is less than or equal to D or the total number of nodes reaches a value

sampled from a Poisson distribution with mean of M . After generating the first potential

frequent rooted subtree, we generate subsequent subtrees based on the previous one with

respect to the parameter P . For example, if the number of nodes in the previous tree is Mi

and the number of nodes in the current tree is Mi+1, then the number of changed nodes

between trees (1 − p) ∗ (Mi + Mi+1). We randomly decide the positions of inserted and

deleted nodes.

• We then generate the set of N ∗ (1− O) trees based on potential frequent rooted subtrees

produced in the first step. We generate N ∗O trees randomly with respect to the parameters

D, F and M . Each potential frequent rooted subtree is assigned a weight, which corresponds

to the probability that it will be selected to generate a synthetic tree. The weight is picked

from an exponential distribution with unit mean. Weights of each frequent rooted subtree is

normalized so that the sum of weights is 1. The next frequent rooted subtree to be used to

generate a synthetic tree is chosen by tossing an L-sided weighted coin, where the weight

of a side is the probability of picking the corresponding frequent rooted subtree. We also

associate each potential frequent rooted subtree a corruption level, which is obtained from

a normal distribution with mean 0.5 and variance 0.1. Then, when constructing a synthetic

tree based on the potential frequent rooted subtree, we keep deleting nodes randomly as

long as a uniformly distributed random number between 0 and 1 is less than the corruption

level of the potential frequent rooted subtree.

The third column of Table II shows the default values. Basically, there are 7 datasets used in

the following experiments. The key parameter values used in generating the datasets are shown

in Table II (b).

4Note that the generated synthetic trees do not really convey meaningful semantics. But it does not affect the evaluation of

our algorithm by assuming the generated labeled trees are semantically meaningful.

August 29, 2007 DRAFT



IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. XXX, NO. XXX, AUGUST 2007 27

d1 d2 d3 d4
Avg_Intra 0.312 0.339 0.386 0.380
Avg_Inter 0.142 0.181 0.205 0.199

d5
0.386
0.205

d6
0.388
0.204

Fig. 10. Accuracy of clustering method.

Accuracy of clustering method. We first conduct experiments to study the accuracy of the

clustering method. We evaluate the accuracy of the clustering based on two metrics, average

intra-cluster dissimilarity and average inter-cluster similarity, which are defined as follows.

Avg Intra =
1

k

k∑
i=1

Intra(Ci) (1)

Avg Inter =
2× Inter(Ci, Cj)

k × (k − 1)
(2)

where Intra(Ci) is the intra-cluster dissimilarity as defined in Definition 8 and Inter(Ci, Cj)

is the inter-cluster similarity as defined in Definition 10, k is total number of clusters. For a

good clustering, both values should be low. We conduct experiments on the set of data sets

d1 through d6. The data sets d1, d2 and d3 are generated with different overlap values. While,

the data sets d4, d5 and d6 are generated with different outlier ratios. Both the minimum rooted

subtree support and the minimum edge support are set as 25%. Figure 10 shows the accuracy

of the produced clusters. We have the following observations:

• Generally, our clustering method can achieve both small average intra-cluster dissimilarity

and small average inter-cluster similarity.

• When the overlap value between potential frequent rooted subtrees decreases (e.g., from d3

to d1), our method can achieve better accuracy.

• The variation of the outlier ratio, which is used to generate data sets (d4, d5, d6), does not

affect the performance of our method obviously.

Sensitivity to parameters. We conduct the second experiment to study how the variation of

parameters affect the accuracy of the clustering. There are two parameters used in the clustering

method: minimum rooted subtree support (δ) and minimum edge support (χ). We conduct

experiments on data sets d1, d2 and d3 to study the effect of the two parameters respectively.

Figures 11(a) and (b) shows the Avg Intra and the Avg Inter by varying δ respectively. We

noticed that when δ is larger, the Avg Intra value increases while the Avg Inter decreases. This
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(a) sensitivity of Avg_Intra to minimum rooted 
subtree support

(b) sensitivity of Avg_Inter to minimum rooted 
subtree support

(c) sensitivity of Avg_Intra to minimum edge support (d) sensitivity of Avg_Inter to minimum edge support
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Fig. 11. Sensitivity to parameters.

is because when δ is larger, fewer frequent rooted subtrees are generated and fewer clusters are

found accordingly. Figures 11(c) and (d) show the Avg Intra and the Avg Inter by varying

χ respectively. We observed that when χ increases, although the Avg Intra and Avg Inter

values vary in the same trend as when δ increases, they vary within smaller range. That is, the

parameter δ has more effect on the accuracy of the clustering.

Efficiency of Clustering Method. We evaluated the efficiency of our clustering method by

conducting experiments on data set d7 and varying the number of trees from 1K to 10K. We

first examine the time cost of each clustering step. Both the minimum rooted subtree support and

the minimum edge support are set as 25%. The experimental results are shown in Figure 12(a).

The main cost of our clustering method is the disjointing step as it needs to construct the merged

trees for clusters. We further evaluate the efficiency of the clustering method with respect to

the variation of the two parameters: minimum rooted subtree support (δ) and minimum edge

support (χ). The experimental results are shown in Figures 12(b) and (c) respectively. We notice
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(a) Efficiency of clustering steps (b) Efficiency with different minimum 
rooted subtree support (delta) 
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Fig. 12. Performance of clustering.

that when the threshold of rooted subtree support is increased, the clustering method is more

efficient. The reason is that when the minimum rooted subtree support is high, fewer clusters will

be generated. Thus, both the disjointing step and the merging step need to handle fewer initial

clusters. However, the minimum edge support does not affect the efficiency of our clustering

method obviously. This is because the computation efficiency of each clustering step does not

depend on this parameter.

Scalability Study. We evaluate the scalability of the clustering method by duplicating the trees

in data set d7 until we get 100K semantic trees. Since the parameter of minimum edge support

χ does not affect the execution time of the clustering method, we fix it at 25%. Three different

minimum rooted subtree support values are used: δ = 10%, δ = 30% and δ = 50%. The

experimental results are shown in Figure 12(d). It verifies that our clustering method scales well

with respect to the number of trees.
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Fig. 13. Performance of XML query caching strategy.

B. Performance of Replacement Strategy

We then show the effectiveness of our replacement strategy with FRECLE rules mined from

XML query sequence database. We used a simple XQuery processor [31] that proceeds queries

directly from the source XML file. Hence, no underlying storage strategy or indexing techniques

will be involved in affecting the query response time. However, such a processor is not very

scalable with respect to the size of the source XML document. Consequently, in our experiment,

we generated a fragment of DBLP data as the source XML document. The file size is 10.5M

and there are totally 248, 215 nodes.

Synthetic XML queries are generated with the similar method described in the previous

subsection. Firstly, we generate a set of potential frequent XML queries based on the DTD

of DBLP . Secondly, we generate a set of potential frequent sequences such that each sequence

contain two potential frequent XML queries. Thirdly, a sequence of 1000 XML queries are

generated based on the frequent queries and frequent sequences generated in the first two steps.

We then use the first M queries in the sequence as the training data to discover FRECLE rules

and the remaining N queries as the test to evaluate the performance of caching.

Three sets of experiments were carried out to investigate the effect of varying the number

of queries, varying the size of cache, and varying the size of training data set respectively. We

compare our FRECLE association rule-based LRU replacement strategy (denoted as LRU AR)

with another two strategies, LRU and LRU integrated with frequent query patterns [29] (denoted

LRU FQPT ). Note that our approach is not competing with LRU FQPT but rather comple-

ments it. This is because we can integrate LRU FQPT with LRU AR by using frequent query
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Fig. 14. Average response time with respect to the training data size.

patterns in each semantic cluster to enhance the cache replacement strategy. We use the average

response time, which is the ratio of total execution time for answering a set of queries to the

total number of queries in this set, as the metric.

Variation of number of queries. Because of the limited power of the query processor, we

vary the number of test queries N from 100 to 500 (Note that, we fix the training queries

at 900 and duplicate the test queries). The cache size is fixed at 2.5MB, which is nearly one

quarter of the source XML document. The set of thresholds ξ, δ and χ are 0.1, 0.25, and 0.25,

respectively. The experimental results are shown in Figure 13(a). We observed that LRU AR

have consistently superior performance than LRU . Also, when the number of queries is larger

than 200, the strategy LRU AR works best. Particularly, when the number of queries is 500,

LRU AR works nearly 1s faster than LRU FQPT . Note that this improvement is not small as

the query processor averagely takes 0.005s to process an XML query. Furthermore, according to

the trend shown in Figure 13, when more test queries are used, more efficiency gains will be

achieved by LRU AR.

Variation of cache size. In this experiment, we vary the size of cache from 1.5M to 5.5M,

the number of test queries N is fixed at 300. The set of thresholds are same above the above

experiment. As shown in Figure 13(b), the more limited the cache size, the greater gap in average

response time between LRU AR and the rest.

Variation of training data size. In this experiment, we evaluate the performance of our caching

strategy with respect to the variation of the training data size. We vary the number of training
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queries M from 500 to 900 and use the subsequent 100 queries as the test data (In order to

show the difference clearly, the test data is duplicated until we get 300 testing queries). We fix

the cache size at 2.5M. The experimental results are shown in Figure 14. It can be observed

that our XML caching strategy works better with a larger training data size. The reason is that

when the number of training queries increases, the discovered FRECLE rules are more accurate

and the corresponding caching strategy is more effective.

VII. RELATED WORK

A. Frequent Pattern Mining for Tree Structured Data

Most existing work focus on discovering the frequent substructures from a collection of semi-

structured data such as XML documents. Wang and Liu [25] developed an Apriori-like algorithm

to mine frequent substructures based on the “downward closure” property. They first found

the frequent 1-tree-expressions that are frequent individual label paths. Discovered frequent 1-

tree-expressions are joined to generate candidate 2-tree-expressions. The process is executed

iteratively till no candidate k-tree-expressions is generated. Asai et al. [2] developed another

algorithm, FreqT, to discover all frequent tree patterns from large semi-structured data. They

modeled the semi-structured data as labeled ordered tree and discover frequent trees level by

level. At each level, only the rightmost branch is extended to discover frequent trees of the next

level. Thus, efficiency can be achieved without generating duplicate candidate frequent trees.

TreeMinerH and TreeMinerV [30] are two algorithms for mining frequent trees in a forest.

TreeMinerH is an Apriori-like algorithm based on a horizontal database format. In order to

efficiently generate candidate trees and count their frequency, a smart string encoding is proposed

to represent the trees. In contrast, TreeMinerV uses vertical scope-list to represent a tree.

Frequent trees are searched in depth-first way and the frequency of generated candidate trees

are counted by joining scope-lists. TreeFinder [22] is an algorithm to find frequent trees that

are approximately rather than exactly embedded in a collection of tree-structured data modeling

XML documents. Each labeled tree is described in relaxed relational description which maintains

ancestor-descendant relationship of nodes. Input trees are clustered if their atoms of relaxed

relational description occur together frequently enough. Then maximal common trees are found

in each cluster by using algorithm of least general generalization. Recently, there is another line

of work that employs the pattern-growth strategy to discover frequent subtrees [23], [27].
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The critical difference between our proposed frequent semantic tree cluster sequences mining

and existing works on XML data mining is as follows. Firstly, all the above works focus on

mining a set of structural tree pattern whereas we focus on mining a set of semantic tree pattern

sequences where each sequence contains a set of semantic trees that are temporally associated.

Secondly, rather than finding frequent pattern from a collection of trees, we focus on clustering

the semantic trees into semantically-related clusters and then discover frequent cluster sequences.

These clusters represent how a group of semantically-related trees is associated with another

group of semantically-related trees.

B. Caching XML Data

Semantic caching was proposed in [11] as a more flexible model than the previous tuple [12]

and page [4] caching systems. Semantic caching manages the cache at the data granularity of

group of tuples. Hence, it incurs less space overhead than tuple caching for cache management

(such as buffer control blocks, hash table entries etc). Due to its flexibility, semantic caching

is popular in Web query caching [9] and recently XML query caching [14] [6]. For example,

Chidlovskii and Borghoff [9] discussed using semantic caching to group together semantically

related Web documents covered by a boolean Web user query (i.e., the documents dynamically

generated by cgi-scripts after the user filling out a search form). Hristidis and Petropoulos [14]

proposed a compact structure, modified incomplete tree (MIT), to represent the semantic regions

of XML queries. ACE-XQ [6] is a holistic XQuery-based semantic caching system. They dis-

cussed how to judge whether a new query is contained by any cached query and how to rewrite

the new query with respect to the cached queries. They also proposed a fine-grained replacement

strategy rather than replacing a complete query region at a time. However, this work did not

consider using the knowledge mined from historical user queries to design the replacement

function.

Recently, intelligence has been incorporated into Web/XML query caching by constructing

predictive models of user requests with the knowledge mined from historical queries [17] [3] [29].

Lan et al. [17] mined association rules from Web user access patterns. Then they prefetched Web

documents based on discovered associations and current requested documents. They focused on

the placement strategy (fetching and prefetching) while we focused on the replacement strategy.

Bonchi et al. [3] mined association rules from Web log data to extend the traditional LRU
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replacement strategy. For example, given a discovered association rule URL A ⇒ URL B, when a

user queries the resource at URL A, if the resource at URL B is in the cache, its eviction should be

delayed. However, their work cannot be applied in XML query caching directly because answers

to XML query do not have explicit identifiers such as URL. Hence, our work is different from this

one in that we mine association rules between query groups in which queries are semantically

close. Furthermore, we also use negative association rules to demote the replacement values of

corresponding query regions.

VIII. CONCLUSIONS

In this paper, we have introduced frequent semantic tree cluster sequences (FRECLE) that

represent semantic associations between tree-structured data. Given a tree sequence database,

where each tree represents some semantic meaning, we have proposed a technique to discover

FRECLE patterns from the underlying database. Our approach consists of two phases. In the

first phase, each semantic tree is categorized to a semantic cluster. To this end, we proposed a

clustering algorithm on the set of tree structures in the database so that trees in the same cluster

represent similar semantics. As a result, the semantic tree sequence database are transformed

into a semantic cluster database. Next, FRECLE patterns are discovered from the transformed

database by adopting an existing frequent sequential pattern mining algorithm.

FRECLEs discovered from semantic tree sequence database can be useful in several applications

such as XML query cache replacement strategy, prefetching XML data, and web user clustering.

Particularly, we showed that FRECLEs can be used in the context of XML query sequence database

to infer that when a user issues a query of some particular information, he/she will query about

some other information of the XML document subsequently. Then, FRECLEs can be used in

designing optimal XML query cache replacement strategies. We first derive both positive and

negative association rules from discovered FRECLEs. Then, we promote the replacement value

for queries in the consequences of positive rules and demote the replacement value for those

of negative rules. As verified by the experimental results, FRECLE-based replacement strategy

improved the cache performance.
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