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Recently, a large amount of work has been done in web access pattern (WAP) mining. Most of
the existing techniques focus on mining WAP that occur frequently from snapshot web usage data
collection. However, web usage data is dynamic in real life. The dynamic nature of web usage
data leads to two challenging problems. The first problem is the maintenance of existing WAP
mining results. The second problem is discovering hidden knowledge from the historical changes
to WAP. As the frequent WAPs are useful in many applications, knowledge hidden behind the
historical changes to WAPs, which reflects how WAPs change, is also critical to some applications
such as adaptive web, web site maintenance, business intelligence, etc. In this paper, we propose
a novel approach to discover hidden knowledge from historical changes to WAPs. We define a
new type of knowledge, Frequent Mutating WAP (FM-WAP), based on the historical changes to
WAPs. Moreover, a FM-WAP mining approach, which can discover all the FM-WAPs efficiently
from historical web usage data, is presented. Firstly, the historical web usage data collection
is partitioned into different groups according to the user-defined calendar pattern, where each
group is represented as a WAP forest. Then, changes among the WAP forests sequence are detected
and stored in the global forest. Lastly, the FM-WAP is extracted by traversing the global forest.
Extensive experimental results show that our proposed approach is efficient with good scalability
to very large web usage data collection. Moreover, this approach can produce new knowledge
about web access patterns that cannot be discovered by existing techniques.

Categories and Subject Descriptors: H.2.8 [Database Management: Database Applica-
tions]: Data Mining

General Terms: Algorithm, Experimentation

Additional Key Words and Phrases: Web access pattern, Historical changes, FM-WAP

1. INTRODUCTION

Recently, with the evolution of the internet into the global information infrastruc-
ture, data on the web becomes the largest source of publicly available data. How-
ever, with the complex structures of the web sites and the overwhelming amount
of data available on the web, it is really difficult for web surfers to access the de-
sired information efficiently and for web masters to design and maintain a good
web site structure as well. Under such circumstances, web usage mining was intro-
duced to help both of them by automatically extracting useful knowledge from web
log data collections, which record the history of interactions between web servers
and web surfers [Cooley et al. 1997]. Such useful knowledge includes association
rules [Srivastava et al. 2000], frequent web access patterns (WAPs) [Pei et al. 2000],
statistics of web traffic [Spiliopoulou 2000], clusters and classes of web users [Fu
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S ID Web Access Sequence

1 〈 a, b, d, c, a, f, g 〉
2 〈 a, b, e, h, a, f, g 〉
3 〈 f, g, m, g, i 〉
4 〈 b, d, c, b, e, h 〉

(a) The First Month

S ID Web Access Sequence

1 〈 a, b, d, c, a, f, g, i 〉
2 〈 b, d, c, n 〉
3 〈 a, f, g, a, b, d, c, n 〉
4 〈 b, e, h, b, d, c, n 〉

(b) The Second Month

S ID Web Access Sequence

1 〈 b, d, c, a, f, g 〉
2 〈 b, e, h, b, d, c 〉
3 〈 a, f, g, m, g, i 〉
4 〈 a, b, e, h, a, f, g 〉

(c) The Third Month

S ID Web Access Sequence

1 〈 a, f, g, a, b, e, h, j 〉
2 〈 e, d, c, b, e, h, j 〉
3 〈 a, b, d, c, a, f, g 〉
4 〈 f, g, m, g, i, g, q 〉

(d) The Fourth Month

Table I. Web access sequences of a web site.

et al. 1999]. Among them, mining of frequent WAPs, sequences of web pages that
are frequently visited by web users in a fixed order, is the most fundamental and
well-researched topic [Chen et al. 1998; Chi et al. 2004; Eirinaki and Vazirgiannis
2003; Pei et al. 2000; Xiao and Dunham 2001; Xiao et al. 2003]. The idea is to
transform the web log data into sequences of events with user identifications and
timestamps, and then extract the frequent sequential patterns from the events data
with the statistic metric support [Pei et al. 2000]. It has also been shown that the
frequent WAPs extracted from the web log data can be useful in a wide range of ap-
plications such as personalization, system improvement, site modification, business
intelligence, and usage characterization, etc [Srivastava et al. 2000].

Generally, the web usage mining process can be considered as a three-phase pro-
cess, which consists of data preparation, pattern discovery, and pattern analysis
[Srivastava et al. 2000]. In the first phase, web log data are transformed into se-
quences of events based on the identification of users and sessions. In the second
phase, statistical methods and data mining techniques are applied to extract in-
teresting patterns such as frequent WAPs. Such patterns are stored for further
analysis in the third phase. Since the pattern analysis phase is application de-
pendant, let us illustrate the first two phases with an example. Given a web log
archive that records the navigation history of a web site, by using some existing
preprocessing techniques [Chen et al. 1998; Xiao and Dunham 2001], the raw log
data can be transformed into a sequence of events as shown in Table I, where a,
b, · · ·, z represent web pages and a sequence 〈 a, b, d 〉 denotes a visiting pattern
from page a to page b and finally to page d. Each sub-table in Table I records
the web access sequence for a particular month. In the second phase, we can apply
existing web usage mining techniques [Spiliopoulou 2000; Pei et al. 2000; Srivastava
et al. 2000] to this dataset and extract the following types of knowledge. Note that
only representatives of such knowledge are presented here. The reader may refer to
[Srivastava et al. 2000] for details.
ACM Transactions on Information Technology, Vol. , No. , Month Year.
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—Association rules: The association rule mining technique in [Agrawal et al. 1993]
can be applied to the web access sequence data to extract the correlations between
web pages that are accessed together during a user session. For example, {b, d}
→ c is an association rule with 50% support and 100% confidence according to
the log data in Table I (a). It implies that whenever pages b and d are accessed,
page c should also be accessed.

—Frequent WAP : Frequent WAPs are extensions of association rules. Beside corre-
lations, they also imply the order of the web pages being visited within individual
sessions. For example, suppose the threshold of support is 0.5. Then 〈a, f, g〉
can be extracted as a frequent WAP from Table I (a) (by using the technique
described in [Pei et al. 2000]) since it has a support of 0.5 that is no less than
the threshold. It implies that 50% of the user sessions follow the visiting pattern
of a → f → g.

—Statistical information of traffic: An example of statistical information is that the
web page b is the most frequently visited web page during the four months. Other
statistics such as average page view, entry page, exit page, and geographical
location of web surfers can also be obtained as shown in [Spiliopoulou 2000;
Srivastava et al. 2000].

1.1 Motivation

From Table I, it is evident that the web usage data is dynamic. However, most of
the above techniques focus only on discovering knowledge based on the statistical
measures obtained from the static characteristics of web log data. They do not
consider the dynamic nature of the web usage data. That is, with the changes to
the content of the web site and users’ familiarity to the web site structure, together
with the introduction of new web visitors, WAPs may change over time. With
the newly accumulated web usage data, some new frequent WAPs may emerge and
some old frequent WAPs may become invalid. For instance, reconsider the previous
example. The frequent WAP 〈 b, e, h 〉 in the first month becomes infrequent in
the second month. Similarly, it is possible that the web page f, instead of b, be-
comes the most popular page in the next few months. To handle this issue, several
techniques have been proposed to maintain and update the discovered knowledge
[Baron and Spiliopoulou 2003; Baron et al. 2003; Ganti and Ramakrishnan 2002],
and detect changes between two sets of mining results [Ganti et al. 1999; Liu et al.
2001]. However, beside the updated version of such knowledge, interest-
ing knowledge can be discovered from the sequence of changes to WAPs
based on the history of the dynamic behaviors. For instance, if we partition
the above log data into four groups based on the timestamps as shown in Table I,
the following novel knowledge can be discovered by mining the history of changes
to WAPs.

• Conserved Web Access Patterns (CWAP): Access patterns that never
changed or seldom changed in terms of their support values in the histories are
called conserved WAPs (CWAPs). They can be either frequent WAPs or infre-
quent WAPs (WAPs with a support less than the minimal support threshold).
For instance, the frequent WAP 〈 a, b 〉 and the infrequent WAP 〈 g, i 〉 in
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Frequent WAP FM-WAP

〈 a, f, g 〉 Yes
〈 b, d, c 〉 Yes
〈 a, b, e, f, g 〉 No
〈 b, e, h 〉 No
〈· · ·〉 · · ·

(a) Frequent WAP

FM-WAP Frequent WAP

〈 b, d, c 〉 Yes
〈 b, e, h 〉 No
〈 a, b, d 〉 No
〈 f, g 〉 Yes
〈· · ·〉 · · ·

(b) FM-WAP

Table II. Web access patterns.

Table I (with a minimal support threshold of 50%) did not change during the
four months in terms of their support values.

• Frequently Mutating WAP (FM-WAP): There are WAPs that change fre-
quently in terms of their supports over a period of time. These WAPs are called
frequent mutating WAPs (FM-WAPs). Note that frequent WAP and FM-WAP
are different. Frequent WAP is based on the support of the WAPs in the snap-
shot data, whereas FM-WAP is based on the significance and frequency of the
changes to their support values, which we shall discuss later. For example, given
the web log data shown in Table I, the set of frequent WAPs discovered by the
WAP-mine [Pei et al. 2000] algorithm with the minimal support of 50% is shown
in Table II (a). However, not all of these frequent WAPs are FM-WAPs. For
instance, frequent WAPs 〈a, f, g〉 and 〈b, d, c〉 are FM-WAPs based on the sig-
nificance and frequency of the changes to their supports. Whereas, the frequent
WAPs 〈a, b, d, c〉 and 〈b, e, h〉 are not FM-WAPs as their supports do not change
frequently and significantly. Hereafter, we shall use the term “changes to WAPs”
to mean the changes to WAPs in terms of their support values.

Such novel knowledge can be useful in different applications such as the adaptive
web, web site modification and maintenance, business intelligence, web site design,
efficient web caching, etc. For instance, the CWAPs can be used as a guide for
efficient web structure design. By extracting all the frequent CWAPs from the web
sites in a specific domain, a well designed structure of a web site in the corresponding
domain can be constructed. We call it a well designed web site structure because
the frequent CWAPs reflect the most commonly used and stable patterns of visiting
a web site for all the users, both familiar users and new users. At the same time,
the infrequent CWAPs should be excluded from a well designed web site. It is
because that infrequent CWAPs may represent parts of the web site that are very
specific so that only a small group of fans or patient users will always follow such
visiting patterns. Moreover, the CWAPs can be used for efficient promotion and
marketing strategies in e-commerce. For instance, we can put the advertisements
such as promotion and special offers along the way of the most frequent CWAPs
since the users are expected to visit these pages with very high confidence and such
patterns are not likely to change in the near future. With such high confidence of
the correlation, the CWAPs can also be used for efficient web caching.

Similarly, the FM-WAPs can also be used for business intelligence. Suppose we
obtained a set of FM-WAPs denoted as F. Then we can extract different types of
ACM Transactions on Information Technology, Vol. , No. , Month Year.
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FM-WAPs from F. For example, we can extract a set of FM-WAPs I, I ⊆ F , which
contains all FM-WAPs whose support values keep increasing. Consequently, I may
represent the portions of the web site that are becoming more frequently visited.
This may indicate that the corresponding parts of the web site are becoming more
popular. With such semantic knowledge, trend-based business intelligence such
as promotion, cross selling, advertisements, etc. can be adapted. For example,
advertisements for the products can be placed through the access patterns in I.
Moreover, by incorporating different properties of the web pages such as content
page, entry page, and exit page, an efficient web site management strategy can be
obtained. For example, if we find out that the page that is becoming more frequently
visited is an exit page and it is not the right place for the users to leave the web
site, the structure of that particular part will be modified to keep users on the web
site longer and entice them to make more purchases or seek additional information.
Similarly, the set of WAPs D and P, D ⊆ F and P ⊆ F , which represent the sets of
FM-WAPs whose supports keep decreasing and changing periodically in the history
respectively, can be extracted. Such knowledge can be useful for building different
intelligent business strategies and maintaining the web site structure as well.

To the best of our knowledge, the CWAPs and FM-WAPs cannot be discovered
by existing web usage mining techniques. This is due to the fact that the existing
techniques either focus on the snapshot data [Chen et al. 1998; Chi et al. 2004;
Pei et al. 2000; Xiao and Dunham 2001] or on detecting the changes to the mining
results [Baron and Spiliopoulou 2003; Baron et al. 2003; Ganti et al. 1999; Ganti
and Ramakrishnan 2002]. None of these techniques considered the issue of directly
mining the change patterns of WAPs from the original dataset. Even if we ap-
ply the frequent WAP techniques repeatedly to a sequence of snapshot data, they
cannot generate such knowledge efficiently. Let us illustrate this with an exam-
ple. Consider the example in Table I. If we apply WAP-mine [Pei et al. 2000] to
the four partitions individually, only knowledge about the frequent WAPs in each
month can be generated. For example, with a minimal support threshold of 50%,
the frequent WAPs in the first month are shown in Table II (a). It is obvious that
not all the support values for each WAP in the groups are recorded. Only for these
WAPs that are frequent WAPs in all the groups, their historical support values are
recorded. That means even if we want to use some post-processing techniques to
extract the FM-WAPs and CWAPs from the mining results of frequent WAPs, the
result is not complete at all. Table II (b) shows some of the FM-WAPs. It can be
observed that not all FM-WAPs are frequent WAPs. To sum up, the approach of
using exist frequent WAP mining techniques repeatedly, combined with the post
processing on the mining results, has the following limitations.

• Firstly, as we shall see in Section 5.2, the process of repeatedly mining the fre-
quent WAPs and post-processing the mining results is very expensive compare
to our proposed mining approach. To extract the FM-WAPs and CWAPs, it
is not necessary to mine the frequent WAPs since FM-WAPs and CWAPs are
different from frequent WAPs. They are based on the percentage of changes to
the support values and not the actual support values for the access patterns.

• Secondly, the result obtained by post-processing the frequent WAPs is not com-
plete. It may include some of the CWAPs and FM-WAPs that are frequent WAPs
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in each partition of the dataset. The change patterns of these infrequent WAPs,
such as infrequent FM-WAPs and CWAPs, are lost. However, such knowledge is
also important as we mentioned earlier. Details about the relationship between
FM-WAPs and frequent WAPs are shown in Section 5.5.

• Lastly, this approach is not flexible. In the frequent WAP mining process, once
the minimal support threshold changes, the whole process, which is expensive,
has to be executed repeatedly.

1.2 Overview

In this paper, we propose a novel approach to extract the change patterns of WAPs
from the historical web log data. Taking into account the dynamic nature of web
log data, rather than updating the WAPs repeatedly, knowledge behind the changes
to the WAPs is discovered. More specifically, we focus on discovering the frequent
mutating WAPs and we call such mining process as FM-WAP mining. A short
version of this paper appeared in [Zhao and Bhowmick 2004].

Similar to traditional web usage mining, FM-WAP mining has three phases: the
data preparation phase, the pattern discovery phase, and the pattern analysis phase.
In this paper we focus on the second phase. We assume that the web access log
data has been properly preprocessed into separated session sequences using existing
data preparation techniques [Xiao and Dunham 2001]. The pattern discovery phase
can be further divided into the following sub-phases:

—Construction of the WAP Forest : The transformed web log data is partitioned
into a sequence of partitions according to the user-defined calendar pattern. For
each partition, a WAP forest is constructed by merging the set of WAP trees.

—Detecting and Storing the Changes: Changes between different WAP forests are
detected by a modified tree comparison algorithm based on X-Diff [Wang et al.
2003]. The historical changes are stored in the proposed global forest structure.

—FM-WAP Extraction: The proposed mining algorithm is applied to the global
forest to extract the FM-WAPs based on the S-Value and F-Value metrics.

We have implemented the FM-WAP mining algorithm and done extensive ex-
periments. The experimental results show that our proposed algorithm can extract
all the FM-WAPs, while repeatedly apply the existing frequent WAP mining tech-
niques on the sequence of snapshot data and post-process the mining results can
only extract part of the FM-WAPs (for the datasets we used, it can only extract
around 30% of the FM-WAPs). Moreover, our proposed approach is more than
three times faster than the above approach before we take into account the cost for
the post-processing phase. The experimental results also show that our proposed
approach is scalable to the size of the dataset. By comparing the FM-WAP mining
results with existing frequent WAP mining results, it shows that more than half of
the FM-WAPs cannot be discovered by existing web usage mining techniques. In
summary, the major contributions of this paper are as follows.

• To the best of our knowledge, this is the first approach to discover useful change
patterns of WAPs, frequent mutating WAPs (FM-WAPs), from the sequence of
historical changes to web access patterns.

• By representing WAPs as unordered trees, which is a better representation of the
underlying structural information for web access patterns than pure sequences,
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we proposed an efficient algorithm for mining of FM-WAPs based on our proposed
WAP forest and global forest data structures.

• Extensive experiments with both synthetic and real datasets have been conducted
to demonstrate the efficiency and scalability of our algorithm.

The rest of this paper is organized as follows. In the next section, related research
is discussed and compared with our approach. The overview of FM-WAP mining
is presented in Section 3. In Section 4, details of the FM-WAP mining algorithm
are described step by step. Section 5 presents the experimental results. Finally,
the last section concludes this paper.

2. RELATED WORK

Our proposed FM-WAP mining is related to two existing research topics. They are
frequent WAP mining and detecting changes to the mining results. In this section,
we review some of the representative techniques.

Web access pattern mining is defined to extract hidden patterns from the nav-
igation behavior of web users [Chen et al. 1998]. Different algorithms have been
proposed to mine different types of access patterns from the web logs such as the
maximal frequent forward sequence mining [Chen et al. 1998], the maximal frequent
sequence mining with backward traversal [Xiao and Dunham 2001]. There are also
algorithms for general web access pattern mining such as the WAP-Mine [Pei et al.
2000], the maximal and closed access pattern mining [Xiao et al. 2003; Chi et al.
2004], etc.

The maximal frequent forward sequence mining approach in [Chen et al. 1998]
transforms the browsing patterns of users to maximal forward sequences. This work
is based on statistically dominant paths. A maximal forward reference is defined as
the sequence of pages requested by a user up to the last page before backtracking.
Suppose the traversal log contains the following traversal path for a user: 〈 A, B,
C, B, D 〉, after the transformation, the maximal forward sequences are 〈 A, B,
C 〉 and 〈 A, B, D 〉. However, this approach may lose some useful information
about the structure [Xiao and Dunham 2001]. Considering the above example, the
structural information about the need to have a direct link from page C to page D
is lost.

The maximal frequent sequence proposed in [Xiao and Dunham 2001] keeps back-
ward traversals in the original sequences and thus preserve some structural infor-
mation, i.e., the sibling relation within a tree structure. However, the maximal
frequent sequence approach requires contiguous page access in the pattern, which
limits the patterns to be found. Suppose there are two sessions 〈 A, B, C, A, E,
A, D 〉 and 〈 A, B, C, A, D 〉. The access pattern of 〈 A, B, C, A, D 〉 may be
missed since the access patterns 〈 A, B, C 〉 and 〈 A, D 〉 are not contiguous in the
first session.

Two other approaches have been proposed in [Xiao et al. 2003; Chi et al. 2004]
to overcome this limitation by considering the sessions as unordered trees. In [Xiao
et al. 2003], the authors proposed a compact data structure, FST-Forest to compress
the trees and still keeps the original structure. A PathJoin algorithm was proposed
to generate all maximal frequent subtrees from the forest. However, this approach
is neither scalable nor efficient. In [Chi et al. 2004], Chi et al. use the canonical
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form to represent the unordered trees. The authors proposed the CMTreeMiner
algorithm to mine the maximal and closed frequent subtrees. It is claimed to be
much faster than the PathJoin algorithm.

Another general algorithm is the WAP-Mine approach proposed in [Pei et al.
2000]. The authors proposed a compressed data structure, WAP-tree, to store data
from the web logs. The WAP-tree structure facilitates the mining of frequent web
access patterns. Different from the Apriori-based algorithms, the WAP-Mine algo-
rithm avoids the problem of generating explosive numbers of candidates. Experi-
mental results show that the WAP-Mine is much faster than the traditional sequen-
tial pattern mining techniques. Although the WAP-tree technique improved the
mining efficiency, it recursively reconstructs large numbers of intermediate WAP-
trees that require expensive operations of storing intermediate patterns.

The above web access pattern mining approaches focus on improving the effi-
ciency of mining frequent WAPs and representing frequent WAPs in different for-
mat such as sequence and tree structure. However, the number of frequent WAPs
can be huge. In particular, when the web log data accumulate over a period of
time, the frequent WAPs have to be updated. Compare to the above approach, our
proposed approach has the following advantages. Firstly, the entire web log data is
grouped into sequences of partitions that are much smaller in size. The timestamps
for the web log data within the same partition conforms to a particular calendar
pattern. Consequently, our approach is more scalable. Secondly, our approach is
not based on the actual support values for the access patterns. It is based on the
changes to the support values. Lastly, our approach can provide more informative
and concise knowledge about the dynamics of WAPs efficiently, while the above
techniques cannot discover the complete set of FM-WAPs.

Considering the dynamic property of the datasets, there are several techniques
proposed recently for maintaining and update previously discovered knowledge.
They focus on two major issues. One is to actualize the knowledge discovered by
detecting changes in the data such as the DEMON framework proposed by Ganti
et al [Ganti and Ramakrishnan 2002]. Another is to detect interesting changes
in the KDD mining results such as the FOCUS framework proposed by Ganti et
al [Ganti et al. 1999], PAM proposed by Baron et al [Baron et al. 2003], and the
fundamental rule change detection tools proposed by Liu et al [Liu et al. 2001].
However, these techniques have several limitations. Firstly, they were proposed for
transactional database only, while the web access pattern should be represented as
a tree structure to retain the structural knowledge of the web site [Xiao et al. 2003;
Chi et al. 2004]. Secondly, they focus only on changes for the frequent itemsets
while the evolution of infrequent itemsets can also be important. Thirdly, none of
the above approaches has considered to mine the sequence of changes to obtain the
knowledge about their change patterns.

More recently, we have proposed a similar approach, FCS mining, to extract
frequent changing substructures from the historical structural changes to versions
of XML documents [Zhao et al. 2004]. In FCS mining, we assume that versions of
XML documents are available and we only focus on structural changes of the XML
documents. However, FM-WAP mining is different in the following two aspects.
Firstly, in FM-WAP mining, the raw web usage data is not stored as a sequence of
versions. Rather, we proposed a calendar pattern based approach to partition the
ACM Transactions on Information Technology, Vol. , No. , Month Year.
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F

D

E

Tree ID Timestamp
Tw1

Tw2

Tw3

Tw4

Tw5

Tw6

Tw7

8:30, 1st, Feb, 2004

10:30, 3rd, Mar, 2004

16:30, 21st, Apr, 2004
1:30, 6th, Feb, 2004

9:30, 12th, Mar, 2004
18:30, 23rd, Feb, 2004
2:30, 16th, Apr, 2004

(a) (b)

Fig. 1. An example.

raw web usage data into a sequence of groups, where the raw web usage data in
each group is semantically linked together. Secondly, in FM-WAP mining, we focus
on the changes to both the structure (WAP trees) and content (the support values
for the WAP trees), while FCS mining focuses on only the structural changes.

To sum up, FM-WAP mining is proposed to overcome all the above mentioned
limitations of existing related mining techniques and to produce novel and inter-
esting knowledge from historical changes to WAPs.

3. OVERVIEW OF FM-WAP

In this section, we give an overview of FM-WAP. First, some preliminaries such as
WAP tree, calender schema, calendar pattern, WAP forest are introduced. Next,
the formal definitions of FM-WAP and FM-WAP mining are presented based on
the preliminaries.

3.1 Preliminaries

As in most web access pattern mining approaches, web log can be considered as a
sequence of events with user identifiers. There are different ways of preprocessing
the web logs to user sessions with timestamp [Eirinaki and Vazirgiannis 2003].
We assume that the raw data has already been preprocessed into sessions using
the technique in [Xiao and Dunham 2001], in which both forward traversal and
backward traversal are considered. In our case, the user sessions are transformed
into unordered trees called WAP trees. The advantage of considering the users
sessions as unordered trees is that the unordered trees can capture more information
about the structure of the web site since it does not require contiguous page access
[Xiao et al. 2003]. Formally, the WAP tree, denoted as Tw, is defined as following.

Definition 3.1. [WAP Tree] Given a user session sequence 〈P1, P2, · · · , Pn〉,
where Pi is a web page, the corresponding WAP tree ( Tw) for this sequence is
represented as Tw = (N, A, r), where r is the root of the tree that represent web
page P1; N is the set of nodes representing the web pages in {P1, P2, · · · , Pn}; and
A is the set of arches in the maximal forward sequences. ¥

For instance, let 〈 A, B, C, B, D, E, D, F 〉 be an identified user session sequence,
where A, B, · · ·, F are identifiers of the web pages. The corresponding maximal
forward sequences are 〈 A, B, C 〉, 〈 A, B, D, E 〉, and 〈 A, B, D, F 〉. According to
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our definition, this user session sequence can be modelled as an unordered tree as
shown in Figure 1 (a). This kind of modelling method has been used in [Xiao et al.
2003; Chi et al. 2004]. After the transformation, the web logs are represented as a
sequence of WAP trees. Each tree will be accompanied with a timestamp, i.e., 8:30
am, 1st Feb, 2004, which is the actual time when such access pattern is performed
as shown in Figure 1 (b). To organize the WAP trees in a meaningful way based on
the corresponding timestamps, we introduce the concepts of calendar schema and
calendar pattern.

Definition 3.2. [Calendar Schema] A calendar schema is defined as a rela-
tional schema R = (Gn : Dn, Gn−1: Dn−1, · · ·, G1 : D1) with a valid constraint.
Each Gi is a granularity name such as year, month, day, hours, etc. Each domain
Di is a set of positive integers that specifies the valid values of each granularity. ¥
For example, there are 12 months in a year, so there are only 12 integers in the
domain corresponding to the granularity month. The constraint valid is a Boolean
function on Dn ×Dn−1 × · · · × D1. It specifies which combinations of the values
in Dn × Dn−1 × · · · × D1 are valid. The constraints can be used to exclude the
combinations that users are not interested in or those that have no corresponding
time intervals. For instance, if we are not interested in weekends, then we can let
the valid value for such days to be False.

Definition 3.3. [Calendar Pattern] Given a calendar schema R = (Gn : Dn,
Gn−1: Dn−1, · · ·, G1 : D1), a calendar pattern on R is a tuple of the form 〈 dn,
dn−1, · · ·, d1 〉, where each di is either in Di or a wildcard symbol ‘*’. ¥

Suppose we have a calendar schema 〈 year, month, day 〉. The calendar pattern 〈
*, 12, 24 〉 means “the 24th of December of every year”; while 〈 2004, *, 24 〉 means
“the 24th of every month in 2004”. Intuitively, each calendar pattern represents
the time intervals specified by the constraint.

Given a set of WAP trees with timestamps, it can be further partitioned into
smaller groups according to the corresponding timestamp and a user-defined calen-
dar pattern. Suppose we have a set of WAP trees as shown in Figure 1 (b). Given a
month-based calendar pattern 〈*, month, *〉 with the calendar schema 〈 day, month,
year 〉, the WAP trees can be partitioned into three groups { Tw1, Tw4, Tw6}, {
Tw2, Tw5 }, and { Tw3, Tw7 }. Similarly, given another calendar pattern 〈 interval,
*,* 〉 with the calendar schema 〈 interval, day, month〉, where a day is divided into
three intervals 0:00-8:00, 8:00-16:00, and 16:00-0:00, the same set of WAP trees
will be partitioned into the following groups { Tw1, Tw2, Tw5}, {Tw3, Tw6 }, and
{Tw4, Tw7 }. Each group of WAP trees can be merged together and represented as
a WAP forest denoted as Fw. The WAP forest is formally defined as following.

Definition 3.4. [WAP Forest] Let W = {Tw1, Tw2, · · · , Twn} be a set of WAP
trees in a WAP group. Let Ni and Ai be the sets of nodes and arches in Twi

respectively. Then a WAP forest is defined as Fw = (N, A, r, v), where N =
N1 ∪N2 · · · ∪Nn; A = A1 ∪A2 · · · ∪An; r is a virtual root of the forest; and v is a
function that maps each node in N to an integer. ¥

A WAP forest is a compact structure that represents a group of WAP trees by
merging them into one structure. The WAP forests not only record the access
ACM Transactions on Information Technology, Vol. , No. , Month Year.
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Fig. 2. WAP Forests.

patterns of the visitors but also how frequently the web pages were visited. The
hierarchical structure of the forest represents the patterns of the pages being visited,
while the integer value corresponding to each node represents the frequency of the
web page being visited. The integer value is the support count of the corresponding
node. Formally, the support count of a web page is defined as follows.

Definition 3.5. [Support Count] Let {Tw1, Tw2, · · ·, Twn } be a set of n WAP
trees in WAP forest Fwk. Then the support count for a web page Pi ∈ Fw, denoted
as support(Pi), is defined as:

support(Pi) =
n∑

i=1

Ci, where Ci =
{

1, if Pi ∈ Twi

0, else

¥

The definition of support count is similar to the definition of support in transac-
tional database [Agrawal et al. 1993]. Take the dataset in Table I (a) as an example.
There are four WAP trees in the database. Two of the WAP trees contain the web
page d. Consequently the support count for this web access pattern is 2. The sup-
port count for each web page is the integer recorded with the corresponding node
in the WAP forest.

The construction of WAP forest is similar to the WAP-tree construction in [Pei
et al. 2000]. The difference is that in the WAP-tree construction, each access
session is modelled as a single path, while in the WAP forest construction each
access session is taken as a tree structure. For example, for an access session 〈 A,
B, C, B, D, E, D, F 〉, in the WAP-trees construction it will be modelled as a single
path starting from A to F. In our approach, this access pattern is modelled as an
unordered tree as shown in Figure 1 (a). By doing this, the WAP forest represents
the access patterns in a meaningful way such that the hierarchical relationship
among web pages is preserved. Figure 2 shows the three WAP forests constructed
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based on the first three WAP groups in Table I. For instance, in Figure 2 (a), the
integer “2” corresponding to node c means that the support count of this web page
is 2 in the first group of WAP trees in Table I (a). We shall formally discuss the
WAP forest construction algorithm in Section 4.

With the introduction of WAP forest, the set of WAP tree groups can be rep-
resented as a set of WAP forests. We order these WAP forests according to the
corresponding timestamps to form a WAP history denoted as H. Formally, WAP
history is defined as follows.

Definition 3.6. [WAP History] A WAP History is a sequence H= 〈(t1, Fw1),
(t2, Fw2), · · ·, (tn, Fwn)〉, where Fwi is a WAP forest and ti is a timestamp, for
i = 1 · · ·n, and ti < ti+1 for i = 1 · · ·n − 1. The number of WAP forests in the
WAP history H is defined as |H|, that is |H| = n. ¥

Since the WAP forests in the WAP history are already ordered, here after, we
represent the WAP history as 〈Fw1, Fw2, · · ·, Fwn〉 for simplicity. Based on this def-
inition, the web log data is finally transformed into a WAP forest history according
to the user defined calendar pattern.

3.2 FM-WAP Definition

Given a WAP history, as time goes by, some new web access patterns may be
inserted; some old web access patterns may not exist any more; and for some
others, their supports may change in the sequence. To measure the significance
and frequency of the changes to the support of the WAPs, two metrics, S-value
and F-value, are proposed. The S-value is defined to represent the significance of
changes to the support values of a WAP, while the F-value is used to measure the
frequency of changes to the support values of a WAP. Formally, they are defined as
follows.

Definition 3.7. [S-value] Let Fwi and Fw(i+1) be two WAP forests in the WAP
history. Let Pk be a node in Fwi, Pk+1 be the corresponding node of Pk in Fw(i+1).
The S-value of Pk from version i to i+1 is defined as

Si(Pk) =
|support(Pk))− support(Pk+1)|

max(support(Pk), support(Pk+1))

¥

It can be observed that the S-value is between 0 and 1. A larger S-value implies a
more significant change to the support count value. For example, consider the three
WAP forests in Figure 2. The S-values for nodes b and f from the first WAP forest
to the second WAP forest are 0.25 and 0.33 respectively. It is obvious that the
change of support count to node f is more significantly than the change to node b.
Note that the S-value is based on two consecutive WAP forests in the WAP history.
Thus, for a WAP history with n forests, there is a sequence of (n-1) S-values for
each web page.

Definition 3.8. [Significant Change] Let Fwi and Fw(i+1) be two WAP forests
in the WAP history. Let Twi be a subtree of WAP forest Fwi, Tw(i+1) be the
corresponding WAP tree of Twi in Fw(i+1). Let α be the threshold for S-value.
ACM Transactions on Information Technology, Vol. , No. , Month Year.
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Then it is a significant change for WAP tree Twi from Fwi to Fw(i+1) if ∀ Pi ∈ Twi,
Si(Pi) ≥ α. ¥

This definition is based on the threshold of the S-value since in different domain
the criterion of significant change can be different. Here the WAP tree can be a
single web page or a set of connected web pages. Consider the previous example
in Figure 2. If the value of the threshold α is set to 0.3, then web page f changed
significantly from Fw1 to Fw2 since it has a S-value of 0.33. Similarly, we can say
that the WAP tree rooted at node b changed significantly from Fw1 to Fw2 since
every node in this subtree has a S-value no less than the S-value threshold (the
S-values for nodes b, d, c, n, e, h are 0.33, 0.50, 0.50, 1, 0.50 and 0.50 respectively).

Definition 3.9. [F-Value] Let H be a WAP history where |H| = n and Twi is a
WAP tree in the WAP forest Fwj . Let α be the threshold for the S-value, then the
F-value for Twi is defined as

F (Twi, α) =
∑n−1

i=1 fi

n− 1

where fi =
{

1, if it is a significant change for Twi from Fwi to Fw(i+1)

0, else;

¥

The F-value for a WAP tree, Twi, is defined to represent the percentage of times
this WAP tree changed significantly against the total number of WAP forests in
the sequence. Let us consider the WAP tree rooted at node b in Figure 2 as an
example. From the previous calculation, this WAP tree changed significantly from
Fw1 to Fw2. Similarly, we found out that it did not change significantly from Fw2

to Fw3 since the S-value for node b from the second WAP forest to the third WAP
forest is 0. According to the above formula, the F-value for this WAP tree rooted
at node b is 0.5 (1/2). From this definition, it can also be observed that the F-value
is between 0 and 1. It represents the frequency of significant changes to the WAP
tree.

Based on the S-value and F-value metrics, frequently mutating web access pat-
tern(FM-WAP) is defined as following.

Definition 3.10. [FM-WAP] Let H be a WAP history and |H| = n. Let α and
β be the thresholds for the S-value and F-value respectively. Then a WAP tree
Twi ⊆ Fwm, where 1 ≤ m ≤ n, is a FM-WAP if F (Twi, α) ≥ β. ¥

The FM-WAPs represent the access patterns that change significantly and fre-
quently (specified by α and β) in the history. Consider the datasets in Table I.
Some of the FM-WAPs are shown in Table II (b) when the thresholds for S-value
and F-value are set to 0.2 and 0.25 respectively. In this table, we present the FM-
WAPs as sequences of web pages, while in our final mining results the FM-WAPs
are modelled as unordered tree structures. The FM-WAPs can be any subtree in
the WAP forests. They can be rooted at any node and they may include one or
more connected nodes. Some FM-WAP examples are shown in Figure 3. The FM-
WAPs can be single nodes in the WAP forests such as node b and d in Figure 3
(a); they can be single paths such as 〈 a, f, g 〉 as shown in Figure 3 (b); also, they
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Fig. 3. FM-WAP examples.

can be subtrees such as 〈 b, d, c, b, e 〉 and 〈 g, m, g, i 〉 in Figures 3 (c) and (d)
respectively.

Based on the above definitions of FM-WAPs, the problem of FM-WAP mining
is defined as follows.

Definition 3.11. [FM-WAP Mining] Let M be a collection of web usage data,
which is represented as a WAP history H = 〈Fw1, Fw1, · · ·, Fwn〉. Let α, β be
the thresholds for S-value and F-value. The problem of FM-WAP mining is to
discover the complete set of WAP trees M, where M= {Tw1, Tw2, · · · , Twk} such
that Twi ⊆ Fwj and F(Twi, α) ≥ β, ∀ 0 < i ≤ k, and 0 < j ≤ n. ¥

4. MINING FM-WAP

In this section, we present the algorithm for FM-WAP mining. The mining process
consists of three phases, the construction of WAP forest phase, the detecting and
storing the changes phase, and the FM-WAP extraction phase. The overview of
the FM-WAP mining algorithm is shown in Figure 4. We elaborate on each phase
in turn.

4.1 Phase 1: Construction of the WAP Forest

Given a collection of web log data, the set of WAPs can be identified by existing
preprocessing techniques [Chen et al. 1998; Xiao and Dunham 2001]. For each WAP,
there is a timestamp indicating when the visiting pattern is performed. First, the
WAPs are transformed into WAP trees arranged in ascending order according to
the timestamps. Next, according to the user-defined calendar pattern, these WAP
trees are partitioned into WAP groups. For each WAP group, a WAP forest is
constructed. Figure 5 shows the detail algorithm for building the WAP forest given
a group of WAP trees. The WAP forest is initialized as the first WAP tree in the
group with a virtual root node. Then, the next tree is compared with the existing
WAP forest to merge them together as shown in Figure 5 (Lines from 3 to 17).
For the rest of WAP trees in the group, their root nodes are compared with the
current WAP forest using breadth first search. If the root nodes do not exist, the
corresponding WAP trees are attached to the WAP forest as subtrees. Otherwise,
the WAP trees are merged into the subtree that rooted at the node identical to the
root of the WAP tree and the support counts for the affected nodes in the WAP
forest are updated. This process iterates for all the WAP trees in the WAP group.
ACM Transactions on Information Technology, Vol. , No. , Month Year.
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Input:
A collection of web usage data: W
A user defined calendar pattern: cp
Threshold for S-value and F-value: α and β

Output:
Fw: the complete set of FM-WAPs

Description:
1: Construct the sequence of WAP forests H from W // Phase 1

1.1 Represent the web access patterns as WAP trees
1.2 Order the WAP trees according to the timestamps
1.3 Partition them into groups according to the calendar pattern cp
1.4 Merge the WAP trees within each group
1.5 Output the WAP history H

2: Detect and store the changes into the global forest GF from H // Phase 2
2.1 Initialize the GF
2.2 Detect the changes and merge them into GF
2.3 Output the updated GF

3: Extract the list of FM-WAPs Fw from GF // Phase 3
3.1 Traverse the GF
3.2 Compare the F-value and S-value against α and β
3.3 Incorporate the FM-WAPs into the list Fw

3.4 Output the final list of Fw

Fig. 4. Overview of FM-WAP Mining.

Figure 6 is an example of constructing a WAP forest from two WAP trees. Firstly,
the WAP forest is initialized as the first WAP tree in the group with a virtual root
node (Line 2) in Figure 5. After that, the second WAP tree is traversed (Lines 4
to 16 in Figure 5) and merged into the WAP forest. In this example, as the root of
the second WAP tree exists in the WAP forest, this WAP tree is merged with the
existing WAP forest and the support count of the root node a is increased by 1.
Next, all the other nodes in this WAP tree are compared with the corresponding
subtree in the WAP forest. For example, node b also exists in the corresponding
subtree, its support count is increased by 1, while node e does not exist, this node
is inserted into the WAP forest as a child node of b. The support count for node e
is set to 1. This process iterates for all the other nodes and the final WAP forest is
presented in Figure 6.

The WAP forest is proposed to record the statistics about the access patterns.
Different from existing WAP mining approaches, we do not discard the WAPs
that are infrequent. The frequent and infrequent WAPs are considered as equally
important in our approach. This is because even infrequent WAPs may have certain
patterns in their change histories, and such changes patterns are useful as mentioned
in Section 1. The advantage of constructing a WAP forest is to store the shared
prefix of the WAP trees only once so that the collection of WAP trees can be
represented in a compact data structure. At the same time, by using the unordered
tree representation, the hierarchical relationship among web pages are preserved.
Since the WAP trees are unordered, the WAP forest is also unordered. However,
to make the process of merging WAP trees more efficient, nodes in the WAP forest
are ordered according to their support count values. In this paper, the order among
siblings are in descending order with respect to their support count values.
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Input:
A set of WAP trees: { Tw1, Tw2, · · · , Twn }

Output:
Fw: the WAP forest

Description:
1: Create a virtual root node for Fw

2: Initialize Fw as the first WAP tree in the group with a virtual root node.
3: for all i = 2 to n do
4: if the root of Twi does not exist in Fw then
5: attach Twi as a subtree of Fw

6: else
7: //merge Twi to the subtree with the same root node
8: for all nodes Nj in WAP tree Twi do
9: //traversed in BFS manner

10: if Nj exists in the current subtree of Fw then
11: increase the support count of Nj

12: else
13: create a new child node Nj under the current node
14: end if
15: end for
16: end if
17: end for
18: Return(Fw)

Fig. 5. WAP Forest Construction.
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Fig. 6. Construction of the WAP Forest.

4.2 Phase 2: Detecting and Storing the Changes

Given the WAP history H = 〈 Fw1, Fw2, · · · , Fwn 〉, the second step is to detect
the changes between any two consecutive WAP forests in H and store them for
FM-WAP extraction in the next phase. The changes in the forests can be obtained
by modifying existing change detection techniques for tree structured data such as
XyDiff [Cobena et al. 2002] and X-Diff [Wang et al. 2003]. Since we consider the
web access patterns as unordered, we adapt the X-Diff approach that is proposed
to detect changes for unordered XML documents.
ACM Transactions on Information Technology, Vol. , No. , Month Year.
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Each WAP forest is considered as an XML document, where each web page is
considered as an element and the corresponding support count is considered as
an attribute. Rather than transforming the WAP forests into XML documents
and then parse the XML documents, the WAP forests are modelled as trees that
are similar to parsed XML documents. The change detection technique is then
used to obtain the changes among them. In our case, there are only three types
of changes: insertion of a new node, deletion of an old node, and updating the
attribute value of a node. As X-Diff [Wang et al. 2003], a signature based change
detection algorithm, detects all types of changes, we modify this algorithm to detect
only the three types of changes we mentioned above. Moreover, the following two
modifications are made. First, rather than keeping all the unchanged parts of
the trees, only parts of the forest that have changed and their ancestor nodes are
returned in the results. Second, we integrate that change detection process with
the storing process. Rather than outputting the change results and parsing them
again, the changes are directly stored into the global forest data structure. The
global forest is defined as following.

A global forest is a 4-tuple GF = (N, A, v, r), where N is a set of object identifiers;
A is a set of labelled arcs (p, l, c) where p, c ∈ N and l is the label of the arc; v is
a function that maps each node n ∈ N to a set of real values Cs, which represent
the historical changes; r is a virtual node in N called root.

The global forest is a compact structure that records all the necessary statistics
for FM-WAP mining. Since the FM-WAPs are defined based on the significance
and frequency of the changes to the support count, we should be able to obtain
the significance of the changes for each node and frequency of the changes from the
global forest. There are different ways of representing the historical changes in the
global forest.

4.2.1 Naive Approach

The naive approach is to record the sequence of S-values for each node in the
global forest, from which the F-value can be obtained and hence the FM-WAPs
can be extracted. In this approach, for each node there will be a sequence of n-1
S-values in a WAP history H of n WAP forests. An example of the global forest
constructed based on this naive approach is shown in Figure 8 (a). In the example
that for each nodes in the global forest, a sequence of n-1 S-values are stored. For
instance, for node b, the sequence of S-values 〈S1(b), S2(b), · · · , Sn−1(b)〉 are stored.

The advantage of this approach is that it is flexible since the sequence of values
attached for the nodes are independent from the user defined parameters such as
the thresholds for S-value and F-value. Such kind of representations and models are
desirable in most data mining cases since the user defined parameters are subject
to change with respect to the mining results. In this case, when the users are not
satisfied with the mining results and want to adjust the parameters, there is no
need to re-construct the global forest from scratch.

As we mentioned before, the global forest is a compact tree structure since the
common prefixes for different changes to WAPs are represented only once in this
structure. However, the space requirement for the global forest depends on not
only the number of nodes in the global forest but also the size of the sequence of
values attached to each node. In this approach, even the number of nodes in the
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Input:
A WAP history: H
α: the threshold of S-value

Output:
GF : the global forest

Description: //This outline is the same for both the naive approach and the binary approach
1: Initialize GF as an empty forest with a virtual root
2: Let current node point to the root of GF
3: for all i = 2 to n do
4: Obtain the changes between two forests Fw(i−1) and Fwi, denoted as 4i

5: for all nodes Nj in the delta 4i do
6: if the S value for this node from Fwi and Fw(i−1) is no less than α then
7: if current node has a child Nj then
8: Update the value of Cs

//this step is different for the naive approach and the binary approach
9: else

10: Create a new child node Nj and make the current node point to Nj

11: end if
12: end if
13: end for
14: Let current node point to the root of GF
15: end for
16: Return(GF )

Fig. 7. Global Forest Construction.

global forest is much smaller than the total number of nodes in the WAP forests,
the space requirement for the global forest can be huge. This is due to the fact
that when the number of WAP forests in the history is very large, the size of the
sequence of values corresponding to each node can be huge.

4.2.2 Binary Approach
To make the global forest compact, we proposed to use the binary approach

to represent the historical changes. Given the threshold α for the S-value, Cs

is a binary string that records the versions in the history where the support for
the corresponding node has changed significantly. For instance, a binary string of
‘10011101’ means that the support for this node has changed significantly in WAP
forests 2, 5, 6, 7, and 9 in the history.

Compared with the naive approach, the global forest in this approach will be
smaller in terms of space requirement since the binary sequence is much smaller
than the sequence of real values. However, this approach is not flexible since the
values in Cs depend on the threshold for the S-value. Every time the users change
the threshold for the S-value, the global forest will be re-constructed, while in the
naive approach the global forest is independent from the threshold for the S-value.
To sum up, the binary approach is more compact and suitable for very large dataset
while the naive approach is more efficient for interactive data mining, where the
thresholds change from time to time.

The algorithm for constructing the global forest is shown in Figure 7. First of
all, the global forest, GF, is initialized as an empty forest with a virtual root node
(Line 1). Next, for the second forest, the changes between the current forest and the
ACM Transactions on Information Technology, Vol. , No. , Month Year.
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Fig. 8. Construction of the Global Forest.

previous forest are detected and incorporated into GF (Lines 3 to 15). This process
iterates for all the WAP forests in the history and finally returns the updated forest
GF. For the two approaches we mentioned above, the schema of construction the
global forest is the same. The only difference is how to update the values in Cs. In
the naive approach, it is straightforward. The new S-value for each nodes will be
appended into Cs version by version. In the binary approach, the update process
is guided by following rules.

• If the S-value of a node from Fwi to Fw(i+1) is no less than the predefined
threshold α, then
(1) If this node does not exist in the global forest, then the corresponding WAP

tree in the change is inserted. The values of Cs are updated to the value of
‘000· · ·1’ where there are (i-1 ) 0s in the string.

(2) If this node already exists in the global forest, the value of Cs is updated by
setting the ith digit of the binary string as 1, and the empty digits before it
are set to 0s. Continue the incorporating process for the remaining nodes in
the changes.

• Else, skip this node and continue to check other nodes in the changes.

Based on the algorithm for global forest construction in Figure 7, we can con-
clude that the hierarchical structure and all the nodes in the global forest for both
naive approach and binary approach are the same. The only difference the values
in Cs. Since it is straightforward in the naive approach, where Cs is just a sequence
of S-values, we illustrate the global forest construction process using the binary ap-
proach. An example of constructing the global forest based on the binary approach
is shown in Figures 8 (b) and (c). This example is based on the three WAP forest
in Figure 2. The changes between WAP forests are shown in Figure 2 with grey
nodes. The changes are detected by our modified change detection technique. The
first global forest is constructed based on the first two WAP forests in Figure 2,
while the second global forest is constructed by incorporating the changes between
the second and the third WAP forests in Figure 2. Suppose the threshold for S-
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value is 0.2. The S-value can be calculated based on the supports and changes of
the supports. Based on the S-value, it can be concluded that nodes a and i did
not change significantly from the first WAP forest to the second WAP forest. After
initialize the GF as a empty tree, all the nodes that change significantly from the
first WAP forest to the second WAP forest are inserted into the GF with the cor-
responding value for Cs. For example, for node b and d the Cs value is “1”, which
represents that this node changed significantly from WAP forest 1 to WAP forest 2.
The global forest that represents the changes from WAP forest 1 and WAP forest 2
is shown in Figure 8 (b). When the next WAP forest comes, the significant changes
are detected and compared with the existing global forest. The value of Cs for
the nodes in the global forest are updated according to the above rules. For nodes
whose S-values are less than the threshold, Cs value will be updated by appending
a 0. This process iterates until there is no more WAP forest in the history. The
final global forest constructed based on the three WAP forests in Figure 2 is the
last global forest shown in Figure 8 (c).

4.3 Phase 3: FM-WAP Extraction

4.3.1 Preliminaries
Once the global forest is constructed, we proceed to the mining process where the

FM-WAPs are extracted. A distinguishing character of this problem is that there
is no heuristic relationship between the ancestor and descendant nodes in the WAP
forest in terms of the changes to their support counts. Such characteristic makes
our mining problem more challenging since the heuristic of tree structure mining,
which is proved useful for pruning during the mining process [Xiao et al. 2003; Chi
et al. 2004], cannot be used in our case. That is, the parent and child relationships
have no effect to the individual nodes in terms of the changes to support counts. We
cannot infer the changes to the parent nodes from the changes to the child nodes.
For example, from the first WAP forest to the second WAP forest in Figure 8, it
can be observed that nodes b, f, and g changed significantly, while their parent
node (a, the parent node of node b) and child node (i, the child node of node g)
did not change significantly. However, based on the definition of FM-WAP, there
is a heuristic similar to the Apriori property in association rule mining [Agrawal
et al. 1993]. For any FM-WAP Twi, the size of the FM-WAP denoted as |Twi|, is
defined as the total number of nodes in this FM-WAP. A FM-WAP with the size
value of n is called a n-node FM-WAP. For example, consider the FM-WAPs in
Table II (b). The FM-WAP 〈b, d, c〉 is a 3-node FM-WAP that consists of three
1-node FM-WAPs: b, d, and c. Hereafter, we call FM-WAPs with only one node as
a 1-node FM-WAPs and FM-WAPs with more than one node as n-node FM-WAP.
From the definition of F-value, FM-WAPs, and the relationship between 1-node
FM-WAPs and n-node FM-WAPs, we derived the following lemma.

Lemma 4.1. Let Twi be a n-node FM-WAP. Then ∀ Pj (Pj ∈ Twi, 1 ≤ j ≤ n),
Pj is a 1-node FM-WAP.

Proof. Let Twi be a n-node FM-WAP. According to the definition of FM-WAP
and F-value, F (Twi, α) =

∑n−1
i=1 fi

n−1 ≥ β. Here fi is 1 if and only if ∀ Pj ∈ Twj ,
Si(Pj) ≥ α. It implies that ∀ Pj ∈ Twj , F (Pj , α) ≥ F (Twi, α) ≥ β. Consequently,
Pj is a 1-node FM-WAP according to the definitions.
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Input:
GF : the global forest
α, β: the threshold of S-value and F-value

Output:
L: the list of frequently changing web access patterns

Description:
1: for all nodes Ni in GF do
2: if F (Ni, α) < β then
3: mark all the links to this specific node as deleted
4: update GF
5: else
6: mark the node as 1-node FM-WAP ; L = L ∪ ST
7: end if
8: end for
9: for all 1-node FM-WAP Ni in the updated GF do

10: for all nodes connected with Ni do
11: if the node is evolutionarily connected with Ni then
12: a link between the node and Ni will be created/preserved in the global forest
13: else
14: mark the link as deleted if there exists one between the node and Ni in the global forest
15: end if
16: end for
17: end for
18: for all 1-node FM-WAP Ni with a degree value greater than 1 in the GF do
19: choose the 1-node FM-WAP with the largest degree value i
20: if there are i evolutionarily connected nodes then
21: form a substructure St
22: if F(St) ≥ β then
23: L = L ∪ ST
24: end if
25: end if
26: end for
27: Return(L)

Fig. 9. FM-WAP Extraction.

The algorithm of FM-WAP extraction is shown in Figure 9. The idea is to use
the bottom-up traversal strategy to check the properties of all the possible FM-
WAPs. There are two steps. The first step is to extract all the 1-node FM-WAPs
and prune the global forest. After that, the n-node FM-WAPs are extracted based
on the pruned global forest by checking the potential combinations of 1-node FM-
WAPs. This mining strategy is based on Lemma 4.1.

4.3.2 1-node FM-WAP Generation
In this phase, all the 1-node FM-WAPs are generated by directly calculating the

S-values and F-values and comparing them against the user defined threshold. For
each node in the global forest, the F-value can be calculated as n

m , where |H| = m
and n is the number of times the corresponding structure has changed significantly
(the corresponding S-value is no less than the threshold). If the F-value is no
less than the threshold, then, the corresponding node is a 1-node FM-WAP and
returned as FM-WAPs. Otherwise, this node is not a 1-node FM-WAP, all the
links to its parent and children will be marked as deleted. This process iterates in
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Fig. 10. FM-WAP Extraction Example.

a bottom-up manner for all the nodes until it reaches the root of the global forest.
At the end of this phase, we have a list of 1-node FM-WAPs and a modified

global forest. An example of the updated global forest after the first step is shown
in Figure 10(a). In this fictitious example, there are 7 1-node FM-WAPs, which are
shown as bold nodes. Here since node c is not a 1-node FM-WAP, all the links to
this node is marked as deleted (indicated by the dotted links).

4.3.3 n-node FM-WAP Generation
In this phase, the n-node FM-WAPs are generated based on the modified global

forest generated in the first phase. Firstly, we define some useful terms that will be
used to extract the n-node FM-WAPs.

Definition 4.2. [Evolutionarily Connected Pair] Let Twp, Twq be two 1-node
FM-WAPs in a WAP history H, where |H| = n and 0 ≤ p, q ≤ n. Then {Twp, Twq}
is an evolutionarily connected pair if

∑n−1
i=1 Ei

n− 1
≥ β, Ei =

{
1, if Si(Twp) ≥ α and Si(Twq) ≥ α ;
0, else;

where n is the total number of versions and β is the threshold for F-value. ¥
Based on Definitions 3.9, 3.10, and 4.2, the following lemmas can be derived.

Lemma 4.3. Let Twi be a n-node FM-WAP. Then ∀ {Pm, Pn} (Pm, Pn ∈ Twi),
{Pm, Pn} is a evolutionarily connected pair.

Proof. According to the definition of FM-WAP, F (Twi, α) =
∑n−1

i=1 fi

n−1 ≥ β.
Here fi is 1 if and only if ∀ Pj ∈ Twj , Si(Pj) ≥ α. That is, ∀ Pm ∈ Twi, Pn ∈ Twi,
Si(Pm) ≥ α and Si(Pn) ≥ α. Since F (Twi, α) ≥ β, according to the definition
of evolutionarily connected Pm and Pn is an evolutionarily connected pair. The
heuristic is that if all of nodes in a WAP tree change together significantly, any two
of them will surely change together significantly.

Lemma 4.4. Let Twi be a n-node FM-WAP. Then ∀ Pj (Pj ∈ Twi), ∃ (n-1)
other 1-node FM-WAPs that are evolutionarily connected to Pj.
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Proof. As we mentioned before, a n-node FM-WAP consists of n 1-node FM-
WAPs. According to the Definition 3.9 and Lemma 4.3, all the 1-node FM-WAPs
in the n-node FM-WAP should be evolutionarily connected to each other. Conse-
quently, each 1-node FM-WAP should be evolutionarily connected to at least n-1
other 1-node FM-WAPs.

To extract all possible n-node FM-WAPs from the modified global forest, based
on the above lemmas, we need to check the number of evolutionarily connected
1-node FM-WAPs for all the existing 1-node FM-WAPs. In this approach, we
focus on finding connected n-node FM-WAPs, which consists of multiple 1-node
FM-WAPs that are connected in the global forest. Here, a 1-node FM-WAP is
connected to another 1-node FM-WAP if there exists a path between them and
none of the edge has been marked at deleted. For example, 1-node FM-WAPs a
and b, b and d are connected in Figure 10 (a).

The first step is to check all pairs of connected 1-node FM-WAPs in the modified
global forest. If they are evolutionarily connected then a link between them is
preserved (for direct parent and child 1-node FM-WAPs) or created (for 1-node FM-
WAPs that are not directly connected in the global forest). To avoid repeatedly
checking the evolutionarily connected property for the same pair of 1-node FM-
WAPs, the modified global forest is taken as an ordered tree. For each 1-node
FM-WAP, the evolutionarily connected properties to all the connected nodes that
have larger values of pre-order number are calculated. For example, consider the
global forest in Figure 10 (a). We will check the evolutionarily connected status
for 1-node FM-WAP pairs {a, b }, {a, d }, {b, d } but not for 1-node FM-WAP
pairs {b, a }, {d, a } and {d, b}. Suppose {a, b } and {b, d } are evolutionarily
connected, {a, d } is not evolutionarily connected. Then the link between a and
d will be marked as deleted. At the same time, the links between a, b and b,
d are preserved and created respectively. This process iterates for all the 1-node
FM-WAPs. From Figure 10 (a), this phase will output the global forest as shown
in Figure 10 (b).

For each 1-node FM-WAP, there is a set of 1-node FM-WAPs that are evolution-
arily connected to it. We call this number as evolutionary degree. For example, in
Figure 10 (b) the evolutionary degree for 1-node FM-WAP h is 2. Based on the
evolutionary degree values, all the n-node FM-WAPs can be extracted. We process
the 1-node FM-WAPs in descending order with respect to their evolutionary degree
value. Based on Lemma 4.4, it can be inferred that for each 1-node FM-WAP in a
n-node FM-WAP will have an evolutionary degree value no less than n-1 and there
will be at least n such nodes. Based on these criteria, the first n-node FM-WAP is
extracted and the process of extract such n-node FM-WAPs iterates for all the rest
of the 1-node FM-WAPs. Consider the example in Figure 10, the n-node FM-WAP
will be the 3-node FM-WAP 〈 h, i, h, j 〉.

Finally, the output of this extraction phase will include all the 1-node FM-WAPs
generated in the first sub-phase and all the n-node FM-WAPs generated in the
second sub-phase.

Theorem 4.5. [Completeness of the Algorithm] The FM-WAP mining ap-
proach can generate all the valid FM-WAPs.
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Proof. Let f be any valid FM-WAP in a sequence of n WAP forests with the
thresholds for S-value and F-value are α and β. We prove that our FM-WAP mining
approach can discover this WAP as a valid FM-WAP in two cases. Case 1: f is a
1-node FM-WAP; case 2: f is a n-node FM-WAP.

Case 1: When f is a 1-node FM-WAP, according to the definition of F-value and
FM-WAP, the corresponding F-value should be no less than β and this FM-WAP
can be easily generated by our algorithm as shown in Lines 2-7 in Figure 9.

Case 2: When f is a n-node FM-WAP, according to Lemma 4.1, all the nodes in
this substructure should be 1-node FM-WAPs. Therefore, all the nodes in f should
be included in the updated global forest after the 1-node FM-WAPs generating
process. This is why our algorithm generates all the n-node FM-WAPs based
on the 1-node FM-WAPs. Also based on Lemma 4.3, all the 1-node FM-WAPs
in f should be evolutionarily connected, which should satisfy the evolutionarily
connected status checking as shown in Lines 9-17 in Figure 9. Finally, the F-value
of f is checked against the threshold β. According to the definition of FM-WAP, f
is returned as a valid FM-WAP.

Thus, for any FM-WAP f , no matter it is a 1-node FM-WAP or n-node FM-
WAP, our FM-WAP mining approach can discover it as a valid FM-WAP. The
theorem is proved.

4.4 Algorithm Analysis

In this section, we analyze the time complexity and space complexity of FM-WAP
mining algorithm. In phase 1, the web log data that is represented as WAP trees
are partitioned into n groups based on the calendar pattern. For each group, a
WAP forest is constructed. Suppose the average number of nodes in the WAP
trees is i and each group includes j WAP trees. The time complexity for this
phase will be O (n×j×i2). In phase 2, the global forest construction and change
detection are integrated. The average number of nodes in the WAP forest is i×j×
c, where c is a constant. The time complexity for this phase is O((n-1){i× j}2×
max{deg(Fwi), deg(Fwj)}×log2 max{deg(Fwi), deg(Fwj)}), where Fwi and Fwj are
any two of the WAP forests in the history, according to the analysis in [Wang et al.
2003]. In phase 3, the global forest is traversed to extract all the FM-WAPs. The
corresponding time complexity is O(n×i2×j× log i). From the above analysis it is
obvious that the dominant cost of FM-WAP mining is the cost of phase 2. We shall
validate this experimentally in Section 5.

From the three mining phases, it is obvious that the space complexity of FM-WAP
mining depends on the size of the global forest, which is the largest data structure.
Based on the algorithms, we observed that the compactness of the global forest
depends on the overlaps among the changes between WAP forests. However, the
upper bound of the number of nodes in the global forest is O(i× j × (n− 1)). The
actual size of global forest is significantly smaller than the total number of nodes
in the WAP trees as we shall see in the next section.

4.5 Summary

We proposed a global forest data structure to record the historical changes of WAPs
and an efficient mining algorithm. It can extract all FM-WAPs with one scan over
the original log data and one scan of the global forest. Our approach has following
ACM Transactions on Information Technology, Vol. , No. , Month Year.
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Dataset N M F D T

D25 100 10000 20 25 100000
F15 500 10000 15 25 500000
T2M 500 10000 10 25 1000000
T4M 1000 20000 30 40 10000000

Table III. Synthetic datasets.

advantages. We do not check all the combinations of the existing FM-WAPs since
the cost is exponentially large. Our mining process is guided by the global forest.
This forest is actually a pruned structure representation of the corresponding WAPs.
Another advantage is that there is no need to scan the original data to get the
support for the combinations of FM-WAPs. Their supports can be easily calculated
by using the AND operation on all their descendant nodes.

5. PERFORMANCE EVALUATION

We performed four sets of experiments to evaluate the performance of our proposed
FM-WAP mining algorithm. All experiments were conducted on a P4 1.7 GHz PC
with 512Mb main memory running Windows 2000 professional. The algorithm is
implemented in Java based on the two types of global forest we proposed. In this
section, detail of the datasets and experimental results will be discussed respectively.

5.1 Datasets

Both synthetic and real web log data are used in the experiments. The real data is
the web log UoS obtained from the Internet Traffic Archive [http://ita.ee.lbl.gov/ ].
It records the historical visiting patterns for University of Saskatchewan from June
1, 1995 to December 31, 1995, a total of 214 days. In this seven month period there
were 2,408,625 requests. Timestamps have 1 second resolution. There are 2,981
unique URLs. After preprocessing the size of the dataset is 222MB. Using the
calendar pattern 〈 *, week, * 〉, it is transformed into a sequence of 30 WAP forests.
The synthetic data set is generated using the synthetic tree generation program
used in [Zaki 2002]. The characteristics of the synthetic data we used are shown in
Table III. The program first constructs a master web site browsing tree, W, based
on parameters supplied by the user. These parameters include the maximum fan
out of a node (denoted as F ), the maximum depth of the tree (denoted as D), the
number of nodes in each tree (denoted as M ), the total number of nodes in the
sequence of tree (denoted as T ), and the number of node labels (denoted as N ).
For the basic synthetic datasets, there are 30 WAP forests in the history.

5.2 Time Efficiency Evaluation

In this section, we evaluate the time efficiency of FM-WAP algorithm by varying the
two thresholds for S-value and F-value. Figures 11 (a) and (b) show the execution
time of our algorithm with different thresholds of S-value and F-value. The real
UoS web log dataset is used in the first two sets of experiments. In our experimental
results, we find out that the time efficiency of the algorithm is the same for both
the naive approach and the binary approach. Hence, for experimental results in
this section, the running time is for both approaches if not specified.

From Figure 11 (a) it can be observed that as the threshold of S-value increases
the execution time decreases. This is due to the fact that the number of nodes
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Fig. 11. Experiment results [Efficiency].

that have changed significantly decreases as the threshold of S-value increases.
Consequently, the size of the global forest will be smaller and the FM-WAP mining
process will be faster. It also shows that with the same S-value, when the threshold
for F-value is large, the execution time is smaller.

However, changes to the threshold for F-value does not affect the execution time
much with a fixed threshold for S-value as shown in Figure 11 (b). This is because
there is no closure property in the global forest and all the possible structures in the
forest should be tested against the threshold of F-value. The threshold of F-value
only affects the deleting process that is relatively cheap. Notice that there is a huge
gap between the first two curves in this figure. This is because of the characteristic
of the dataset we used (the S-values for most WAPs are less than 0.2).

Figure 11 (c) shows the cost of each phase in the FM-WAP mining process. The
cost for partitioning the web log data is incorporated into the cost of constructing
ACM Transactions on Information Technology, Vol. , No. , Month Year.
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the WAP forest. It can be observed that the process of detecting and storing the
changes in the global forest is the most expensive process. This is due to the fact
the change detection for unordered trees is a time-consuming problem [Wang et al.
2003]. The process of FM-WAP extraction is very efficient. Experimental results
show that the ratio of cost for each phase is the same for both the naive approach
and binary approach based algorithms.

Figure 11 (d) shows the execution time of FM-WAP mining and repeated WAP-
mine [Pei et al. 2000] for the five different datasets. The WAP-mine algorithm used
in this paper is download from http://www.cs.ualberta.ca/∼tszhu/software/wap.zip.
Our literature survey shows that most citations use this version of implementation
[Gunduz and Ozsu 2003]. Here, the thresholds for the S-value and F-value are set
to 0.2, the minimal support threshold for frequent WAP is set to 0.2. Note that,
the cost for WAP-Mine does not include the cost of post-processing as mentioned
in Section 1. Even in this case, from this figure it is obvious that the FM-WAP
mining is more than three times faster than WAP-Mine. This is because of large
size of the tree structure generated in the WAP-Mine algorithm and expensive cost
of constructing the conditional WAP-tree. Considering the post-processing cost, we
can conclude that the FM-WAP cannot be efficiently extracted by using existing
frequent WAP mining approaches.

5.3 Scalability Evaluation

The scalability of FM-WAP mining is evaluated by varying the characteristics of
the datasets such as the size of each WAP tree, the number of WAP forests in
the history, the percentage of changes between WAP forests, etc. In this set of
experiments, synthetic dataset T4M is used. The first three set of results are for
both the naive approach based and the binary approach based global forest, where
the running time for both approaches is the same. The last set of results is the
comparison of the naive approach and the binary approach in terms of the memory
usage.

Figure 12 (a) shows the execution time of our algorithm as the size of the WAP
forest increases. The percentage of changes between two consecutive WAP forests
in this dataset is set to 10%. 30 WAP forests are used in this experiment. It can
be observed that as the size of the WAP forest increases, the execution time also
increases. This is because the size of the global forest increases as the size of the
WAP forests increase. Moreover, as the size of the WAP forest increases, the cost
for detecting the changes between WAP forests increases as well. However, the
overall execution time increases in a near log manner in our experiments.

Figure 12 (b) shows the execution time of our algorithm as the number of WAP
forests in the history increases. The percentage of changes between two consecutive
WAP forests in this dataset is set to 10%. The average number of nodes in the
WAP forests is 9000. It can be observed that as the number of WAP forests in the
history increases, the execution time also increases. The reason behind is the same
as the previous experiment of varying the size of the WAP trees.

Figure 12 (c) shows the execution time of our algorithm as the percentage of
changes between WAP forests increases. The average number of nodes in the WAP
forest is 9000, and there are 30 WAP forests in each dataset. It can be observed that
as the percentage of changes increases, the execution time also increases. This is
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Fig. 12. Experiment results [Scalability].

because the size of the global forest increases as the percentage of changes increases.
Figure 12 (d) shows how the memory usage of the global forest changes as the

average number of nodes in the each WAP forest increases. In this dataset, there
are 80 WAP forests in the history and the percentage of changes among them is
10%. Here the memory usage depends on both the compactness of the global forest
structure and the size of the values affiliated to each node. We compare the memory
usage of the global forest for two different approaches, the naive approach and the
binary approach. From the global forest construction algorithm in the previous
section, we can conclude that the total number of nodes in the global forest is
the same for both approach, the difference is the size of the sequence of numbers
that are used to represent the change history for each node. From the experimental
results, it is obvious that the memory usage for the binary approach is much smaller
ACM Transactions on Information Technology, Vol. , No. , Month Year.
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than the naive approach. In most cases, the naive approach has a memory usage
more than 6 times larger than the binary approach. In the implementation of the
naive approach, we use the shortint to represent the sequences of S-values. By
doing so the memory usage is reduced, but, as a tradeoff this approach will only
have a precision of 0.01 in terms of the S-value and the threshold. We believe this
will not significantly affect the final result. In the binary approach, there is no
approximation in terms of the S-value and the threshold.

5.4 Compression Efficiency Evaluation

In this section, we evaluate the compression efficiency of our proposed global forest
by varying the thresholds for S-value and the percentage of changes between WAP
forests. The synthetic datasets in Table III and the real UoS dataset are used in
the following experiments. In the first three set of experiments, we evaluate the
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Dataset Approaches Number of Nodes Size of the GF
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Fig. 14. Comparison of Naive and Binary Approaches.

compression efficiency use the compression ratio measure. The compression ratio,
denoted as R, is defined as c

o , where c and o are the number of nodes in the global
forest and the total number of nodes in the original web log data. As we can see
from the global forest construction algorithm in Figure 7, the number of nodes in
the global forest for both the naive and binary approach are the same. Thus, the
compression ratios for both approaches are the same.

Figure 13 (a) shows the compression ratio of our proposed global forest. For the
five datasets used in our experiments, in which the percentage of changes is 10%
and the threshold for S-value is 0.1, the size of the global forest is only less than half
the size of the original forest sequences. This is due to the fact that the overlapping
part is represented only once in the global forest. It shows that our global forest is
a compact data structure for storing historical changes to web access patterns.

Figure 13 (b) shows how the compression ratio of global forest changes when the
threshold of S-value changes. The percentage of changes is set to 10% and there
are 30 versions of WAP forest in the history. The size of the global forest does not
change at all as the threshold value of S-value increases. This is because the global
forest records all the nodes that have changed in the WAP history, no matter how
significant the changes are. As a result, the compression ratio for the global forest
is irrelevant with the threshold for the S-value.

From Figure 13 (c), we can observe that the compression ratio of global forest
changes when the percentage of changes between WAP forests changes. For this
experiment, the threshold for the S-value is set to 0.2. The size of the global
forest increases as the percentage of changes increases. This is because when the
percentage of changes increases, the number of WAP trees that change significantly
will increase. As a result the global forest will be larger.

Figure 13 (d) shows how the compression ratio changes as the total number of
WAP forests in the history increases. For this experiment, the percentage of changes
is fixed to 10%. We can observe that the compression ratio of global forest does not
change much when the total number of WAP forests in the history changes. It is
because that when the number of WAP forests in the sequence increases to a certain
value, the global forest will cover almost all the possible nodes in the WAP forest
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that are likely to change. After that, when the number of WAP forest increases,
it does not change the structure of the global forest too much. Notice that the
compression ratio shown in this figure is the ratio with respect to the number of
nodes.

Figure 14 is a table that shows the comparison of the naive approach and the
binary approach for the four different datasets. In this set of experiments, the
percentage of changes is fixed to 10% and there are 30 versions of WAP forests in
the history. The results in this table verified that the number of nodes in the global
forests for both the naive and binary approaches are the same, while the actual size
of the global forest are different. It can also be observed that the size of storage
for each node, which can be derived from the number of nodes and the size of the
global forest, in the same approach is the same for different datasets. Moreover, the
ratio of the size of the storage for the naive approach against the size of the storage
for the binary approach is the same for all the datasets (in the above experimental
results, it is around 6.8). It is because the historical information is stored as binary
sequence in the binary approach, while the historical information is stored as short
integer sequence in the naive approach.

From the above experimental results about efficiency, scalability, and compres-
sion, we can summarize the difference between the naive approach and the binary
approach as following. The advantage of the naive approach is that there is no
need to re-construct the global forest even if the users change the threshold for the
S-value. However, the global forest constructed based on this approach requires a
lot of memory usage. For the binary approach, it has much less requirement for
the memory usage. However, it is necessary to re-construct the global forest every
time the threshold for S-value changes. As we can see from Figures 11 (c) and
12 (d), the time for re-constructing the global forest in both approaches is almost
1/3 of the total mining cost and the memory requirement for the naive approach is
almost 6 times larger than the binary approach. In real life, users can choose the
appropriate approach based on different applications and requirements.

5.5 Novelty of Knowledge Discovered

As mentioned earlier, not all the frequent WAPs are FM-WAPs and not all the FM-
WAPs are frequent WAPs either. In this section, we evaluate the novelty of the
knowledge discovered by FM-WAP mining. We have done experiments to show the
relation between frequent WAPs and FM-WAPs. The synthetic dataset in Table III
and the real dataset UoS are used in the following experiments.

Figure 13 (e) shows the percentage of FM-WAPs that are not frequent WAPs.
The frequent WAPs are generated by using the WAP-mine algorithm in [Pei et al.
2000] to the five datasets. The minimal support threshold for frequent WAP is
10%. The threshold for S-value and F-value are 0.2 and 0.5 respectively. This is
used to demonstrate that not all the FM-WAPs are frequent WAPs.

Our experimental results also show that not all the frequent WAPs are FM-
WAPs. Figure 13 (f) shows the percentage of frequent WAPs that are FM-WAPs.
The minimal support threshold for frequent WAP is 10%, while the threshold for
S-value and F-value are 0.1 and 0.4 respectively. This is used to demonstrate that
not all frequent WAPs are meaningful and useful in terms of their historical change
patterns.
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Fig. 15. Experiment results [Novelty].

5.6 Summary

From the above experimental results, we can conclude that our proposed FM-WAP
mining algorithm is efficient. The mining cost grows in a near log manner when
the total number of nodes in the dataset increases. It is more efficient compared
with the approach of re-applying existing frequent WAP mining algorithms and
post-processing the mining results. The experiments also show that our proposed
data structure global forest is compact for storing historical changes of WAPs and
the FM-WAP mining algorithm is scalable. By comparing the mining results of
existing frequent WAP mining algorithms with our FM-WAP mining results, it
can be observed that our proposed FM-WAPs are novel knowledge that cannot
be discovered by existing frequent WAP mining and post-processing techniques
efficiently and completely.

6. CONCLUSIONS AND FUTURE WORK

In this paper, we present a novel approach to extract hidden knowledge from the
history of changes to WAPs. We proposed a global forest data structure to represent
and store the historical changes to WAPs. Using this structure, our algorithm can
discover the FM-WAPs by only two scans over the web log data. Experiments
based on both synthetic and real datasets shown that our algorithm is efficient and
scalable, and it can produce novel knowledge that cannot be discovered even by
post-processing the results of existing frequent WAP mining algorithms. We have
also shown how such novel knowledge can be useful in different applications.

Our future work will be identifying specific change patterns such as increasing,
decreasing, or periodic changes from the set of FM-WAPs. Also, we want to cluster
different parts of a web site based on the change patterns to WAPs and explore the
semantic meanings of such clusters for business intelligence.
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