
PRAGUE: A Practical Framework for
Blending Visual Subgraph Query

Formulation and Query Processing

Changjiu Jin§ Sourav S Bhowmick§ Byron Choi† Shuigeng Zhou‡

§School of Computer Engineering, Nanyang Technological University, Singapore
†Hong Kong Baptist University, Hong Kong

‡Fudan University, China
cjjin|assourav@ntu.edu.sg, choi@hkbu.edu.hk, sgzhou@fudan.edu.cn

August 27, 2013

Abstract

In a previous paper, we laid out the vision of a novel graph query pro-
cessing paradigm where instead of processing a visual query graph after
its construction, it interleaves visual query formulation and processing by
exploiting the latency offered by the GUI to filter irrelevant matches and
prefetch partial query results [10]. Our first attempt at implementing this
vision, called GBLENDER [10], shows significant improvement in system re-
sponse time (SRT) for subgraph containment queries. However, GBLENDER
suffers from two key drawbacks, namely inability to handle visual subgraph
similarity queries and inefficient support for visual query modification, lim-
iting its usage in practical environment. In this paper, we propose a novel
algorithm called PRAGUE (PRactical visuAl Graph QUery blEnder), that ad-
dresses these limitations by exploiting a novel data structure called spindle-
shaped graphs (SPIG). A SPIG succinctly records various information related
to the set of supergraphs of a newly added edge in the visual query fragment.
Specifically, PRAGUE realizes a unified visual framework to support SPIG-
based processing of modification-efficient subgraph containment and simi-
larity queries. Extensive experiments on real-world and synthetic datasets
demonstrate effectiveness of PRAGUE.

2

1 Introduction

Graph is an extensively studied subject in mathematics and many areas of com-
puter science as it provides a natural way of modeling data in a wide variety of
domains. For example, in chem-informatics graphs are used to represent atoms and
bonds in chemical compounds. In bioinformatics, protein interaction networks are
graphs where nodes represent molecules and edges represent interactions between
them. Due to explosive growth of such graph-structured data in recent years, it is
paramount to develop user-friendly, efficient, and scalable tools to process search
queries on the graph databases.

A wide variety of graph queries in many applications (e.g., drug design, com-
puter vision and pattern recognition) involve the core substructure search prob-
lem (also called subgraph containment query). In this problem, given a graph
database D and a query graph q, the aim is to find all data graphs in D in which
q is a subgraph. Note that q is a subgraph of a data graph g ∈ D if there exist
a subgraph isomorphism from q to g [22]. A common problem for this type of
query is that in many occasions there may not exists any g ∈ D that matches the
query. For example, consider the substructure search query in Figure 1(a) and the
data graphs in Figures 1(b) and (c). Observe that the query is not a subgraph of
any of these data graphs. In this case, it is often useful to find out data graphs
that “nearly” contain the query graph, which is called the substructure similar-
ity search problem [20] (also called subgraph similarity query). For example, if
we are allowed to miss at most two edges from the query in Figure 1(a), then
both the data graphs match it as they contain subgraphs that nearly (or approxi-
mately) contain the query graph (shown by dotted box). Designing efficient strat-
egy for evaluating such graph queries is a challenging problem due to its inherent
computational hardness. Consequently in recent times, the database community
has focused on proposing several innovative solutions to subgraph query process-
ing [3, 6, 9, 10, 12, 17, 18, 20, 22–24, 26].

A number of graph query languages (e.g., SPARQL, PQL [11], GraphQL [5])
have been proposed that can be used to formulate subgraph queries. However,
formulating a graph query using these languages often demands considerable cog-
nitive effort from the end user and requires “programming” skill that is at least
comparable to SQL [1, 8]. A user must be familiar with the syntax of the language
to correctly formulate a query. Unfortunately, in many real life domains it is un-
realistic to assume that users are proficient in expressing such queries [8, 10]. For
instance, biologists cannot be expected to learn the complex syntax of PQL to be
able to formulate meaningful queries over biological networks.

1.1 Motivation

The traditional approach to address the query formulation challenge is to build a
user-friendly visual framework on top of a state-of-the-art graph query processing
technique (e.g., [3]). Figure 2 depicts an example of such a visual interface. A

3

C

(b)

C
C C

C
C C

C
C C

C
C C

C
C C

CN
C

C

O

(a)

C

C

C C

C

OC

(c)

Figure 1: A query graph (a) and data graphs ((b) and (c)).

user begins formulating a query by choosing a database as the query target and
creating a new query canvas using Panel 1. The left panel (Panel 2) displays the
unique labels of nodes that appear in the dataset in lexicographic order. In the query
formulation process, the user chooses labels from Panel 2 for creating the nodes in
the query graph. Then, she drags a node that is part of the query from Panel 2 and
drops it in Panel 3. Next, she adds another node in the same way and creates an
edge between the added nodes by left and right clicking on them. Additional nodes
and edges are added to the query graph by repeating these steps1. Finally, the user
can execute the query by clicking on the Run icon in the Query Toolbar. Panel 4
displays the query results.

In traditional visual query processing paradigm, although the final query that
a user intends to pose is revealed gradually in a step-by-step manner during query
construction, it is not exploited by the query processor prior to clicking of the Run
icon to execute the query. That is, query processing is initiated only after the user
has finished drawing the query. This often results in slower system response time
(SRT)2 as the query processor remains idle during query formulation.

In [10], we laid out the vision of a novel graph query processing paradigm
where we blend the two traditionally orthogonal steps, namely visual query for-
mulation and query processing. Specifically, we proposed a visual subgraph con-
tainment querying system called GBLENDER (Graph blender) which was our first
attempt at implementing this vision. Let us illustrate it with an example. Con-
sider a graph-structured chemical compounds dataset. GBLENDER first mines and
extracts the frequent and infrequent graph fragments from this dataset using an
existing frequent graph mining algorithm [21]. These fragments are then used to
construct the action-aware frequent index (A2F) and action-aware infrequent in-
dex (A2I) to support efficient matching of frequent and infrequent query fragments,
respectively, while formulating a visual query.

Suppose now a user formulates a visual subgraph containment query over this
dataset using the GUI in Figure 2. The sequence of steps taken by the user to formu-
late this query is shown in Figure 3 (Sequence 1). After every visual step taken by

1In this paper, we assume an “edge-at-a-time” visual query formulation interface. A more advanced and
domain-dependent GUI may support drag and drop of canned patterns or subgraphs (e.g., benzene ring) for
composing visual queries. Such visual query composition interface is beyond the scope of this work.

2Duration between the time a user presses the Run icon to the time when the user gets the query results [10].

4

1

2 3

4

1

6

5

4
3

2

Figure 2: Visual interface for formulating graph queries.

the user, the current query fragment is evaluated by exploiting the latency offered
by the GUI. For instance, after Step 1 the query fragment is a frequent fragment
(see the Status column) and is efficiently evaluated using the A2F-index and a set
of identifiers of data graphs containing this fragment (denoted by Rq) is retrieved.
Next, when the user draws Step 2, Rq is refined by filtering irrelevant matches us-
ing the index structure (the query fragment is still frequent). Observe that at Step
4, the query fragment evolves from frequent to an infrequent one. Consequently,
the A2I-index is probed andRq is refined accordingly. This continues until the user
click on the Run icon, when the final query results are computed by performing
subgraph isomorphism test if necessary.

The key benefits of the aforementioned paradigm are two-fold. First, it ensures
that the query processor does not remain idle during visual query formulation. Sec-
ond, it significantly improves the SRT. In traditional graph processing paradigm,
SRT is identical to the time taken to evaluate the entire query. In contrast, in this
new paradigm SRT is the time taken to process a part of the query that is yet to be
evaluated (if any).

Despite these appealing benefits of the new paradigm, GBLENDER has the
following limitations. Firstly, it was designed to handle subgraph containment
queries. Hence, if a query fragment does not have any match in the underlying
database then it returns empty result set. For instance, in Figure 3 (Sequence 1)
the query fragment after Step 5 does not have any match (the value of Status is
set to “Similar” indicating that no exact match exists.). Hence, GBLENDER returns
empty result set from this step onward. As mentioned earlier, this may not be desir-
able in many practical occasions. In fact, it should support substructure similarity

5

Step 1

Current GraphAction

Step 6

Step 5

Step 3

Step 2

Step 7

Status

C C

C C

C S

C S

frequent

frequent

frequent

Click RUN Verify

C S

Current GraphAction

C S

S C

C C

C C

C C

C S

Step 4 C C

Click RUN

Sequence 1 Sequence 2

Steps
Status

S

C
C

C

C

C

S

C
C

C

C

C

CC C

2
4

3
6

1

1

2

4
2

3
6

1

S

S

S
S

3
C 4

C

C C

C S

C
C

S

1

2

2

2

4

3

3

C

C

C C

CC 1

5

1

1

5

5

Infreq

Similar

Similar

C

C

C

C

C

1

5

5

1

5

S

S

C

C

C S

SC 1

1

1

6

6

S

S C

CC

C
C

C

C S

S

S

C
C C

C
CC

C
C

C

1

2

2 3

2
3

4

1
2

3
4

2

3
4

2

3

frequent

Infreq

Infreq

Infreq

Infreq

Similar

Verify

Figure 3: Query formulation steps.

search by retrieving graphs that are similar to the query fragment. Secondly, as
GBLENDER utilizes the Rq computed in the preceding step to update the candidate
data graphs, it is expensive to update it if a user modifies the formulated query frag-
ment (e.g., delete an edge) at any time during query construction (see Section 2).
In this paper, we propose a novel framework that provides a unified solution to the
aforementioned limitations.

1.2 Overview and Contributions

We present a novel algorithm called PRAGUE (PRactical visuAl Graph QUery
blEnder) (see Section 4) that seamlessly supports evaluation of subgraph contain-
ment and similarity queries as well as efficient visual query modification3. During
visual query formulation, it creates a novel data structure called spindle-shaped
graph (SPIG) for each new edge eℓ added by the user. A SPIG succinctly records
information related to the set of supergraphs of eℓ in the query fragment q and their
containment relationships (see Section 5 for details). The source (vertex with no
incoming edge) and target (vertex with no outgoing edge) vertexes of a SPIG repre-
sent eℓ and q, respectively. The intermediate vertexes represent various supergraphs
of eℓ in q.

The algorithm monitors the status of Rq at each step. If Rq remains non-empty
at each step then SPIG-based subgraph containment search is invoked as q has ex-

3Note that there are two different research streams processing graph queries [14]. One stream handles a large
number of small graphs. The other stream handles a small number of large graphs using approximate graph
search. The former is the focus of our study.

6

act matches in the database (see Section 6). However, if Rq becomes empty then it
again exploits the SPIG set to efficiently support the following two steps. (a) If the
user chooses to modify the query fragment (e.g., the user may wish to retrieve only
exact matches) then it automatically suggests the edge ed that needs to be deleted
to make Rq non-empty. Specifically, it exploits the SPIG set to efficiently com-
pute ed whose deletion would maximize the size of the candidate graph set of the
modified query fragment. Note that the user may ignore this suggestion and is free
to delete any edge (at any time during query formulation) that has been previously
constructed by her (see Section 7). (b) Otherwise, it invokes substructure similarity
search to retrieve approximate matches to q (see Section 6).

In Section 8, our experimental study demonstrates that PRAGUE has excellent
performance as the system response time (SRT) and query modification cost grow
gracefully with increasing number of data graphs. Importantly, our results show
that the latency offered by the GUI at every step during visual query formulation
is sufficient to efficiently support practical subgraph query processing in the new
paradigm. We also show that PRAGUE has significantly smaller candidate size com-
pared to several traditional substructure similarity search techniques [12, 17, 20].
Consequently, in spite of adopting a simple subgraph similarity verification tech-
nique [4], its SRT is often significantly smaller than these techniques. In summary,
the main contributions of this paper are as follows.

• We present a novel data structure called spindle-shaped graph (SPIG) which
facilitates efficient pruning and retrieval of partial results satisfying subgraph
containment and similarity query fragments. It also provides an efficient
framework to support modification to the visual query at any time during its
construction.

• We present a novel algorithm that unifies subgraph containment and similar-
ity search in the new paradigm by efficiently exploiting the SPIGs and latency
offered by the visual querying environment.

• We present an efficient and novel SPIG-based framework to support modifi-
cations to the visual query fragment during query construction by exploiting
the GUI latency.

• By applying PRAGUE to real-world and synthetic datasets, we show its ef-
fectiveness, significant improvement of candidate graph size and SRT over
existing methods based on traditional paradigm, and ability to handle in-
creasing number of graphs for exact and approximate subgraph matches as
well as query modification.

2 Related Work

Recently, there have been a number of studies to speed up evaluation of subgraph
containment [3, 6, 15, 22, 24–27] and subgraph similarity queries [6, 9, 12, 16–18,

7

20, 23] over large graph databases. All these efforts follow the conventional query
processing paradigm where the formulation of a query graph is independent of its
evaluation against the database. Typically, the complete query is first specified
before it is processed. Consequently, the indexing schemes and query processing
strategies are effective only when the complete query is known [10]. In contrast,
in PRAGUE query processing is initiated when the entire query is not known and
leverages on the GUI latency and users’ interaction behaviors for efficient pruning
and retrieval. Hence, our proposed method for substructure similarity search is
orthogonal to these existing techniques.

More germane to this work is our previous effort in [10] called GBLENDER.
The main idea behind GBLENDER is to compute efficiently the identifier of data
graphs containing unique discriminative infrequent fragments (DIFs) (for infre-
quent queries) or frequent fragments (for frequent queries) with the addition of
each new edge by utilizing the candidate matches of the preceding step. The can-
didate space for final verification is generated by intersecting the identifier sets of
the data graphs (Rq) containing these fragments.

Our work differs from GBLENDER in the following ways. Firstly, we focus on
a practical querying environment where we assume that a user is oblivious to the
nature of the query fragment match (exact or approximate) at different formula-
tion steps. Our proposed query evaluation technique automatically responds to the
evolving nature of the query fragment type by invoking exact or substructure simi-
larity search. In contrast, in GBLENDER the visual query framework assumes that
the formulated query fragment must have exact matches to the data graphs. Other-
wise, it returns empty results set. Secondly, we present an efficient framework to
support modifications to a visual query any time during query formulation. Query
modification was not discussed in [10].

Thirdly and more importantly, although GBLENDER and PRAGUE exploit the
same action-aware indexing schemes they have very distinct query processing strate-
gies. GBLENDER is based on the assumption that as the size of a query graph in-
creases the size of candidate data graphs decreases. Consequently, it only records
the most recent Rq. Although this assumption is sufficient to support efficient
subgraph containment query processing, it is not conducive for subgraph simi-
larity queries as the candidates set size may not decrease after each formulation
step. Furthermore, it also makes update of candidate data graphs expensive when
a user modifies the visual query graph during formulation. For instance, suppose
at Step i a user deletes an edge that was formulated at Step k (k < i). Then,
GBLENDER needs to recompute Rq for each step again starting from the earliest
step which obviously involves unnecessary processing. In contrast, PRAGUE ex-
ploits a novel data structure called spindle-shaped graph (SPIG) which efficiently
records the DIFs and frequent fragments extracted during all (not only the most
recent) query formulation steps for future processing. It exploits these information
effectively to support both exact and approximate matches to users’ queries as well
as query modifications. Specifically, for each query formulation step, a new SPIG is
generated and recorded. Each vertex of a SPIG represents a partial query graph for-

8

Table 1: Key symbols.
Symbol Definition
D A graph database
g, G A (sub)graph
q, Q A query graph (fragment)
Dg A set of FSGs of g
fsgIds(g) Set of identifiers of the data graphs in Dg

delId(g) A subset of fsgIds(g) used in indexes
difi A discriminative infrequent fragment (DIF)
infi A non-discriminative infrequent fragment (NIF)
Id A set of DIFs in D
a2fId(·) Identifier of each node in A2F-index
a2iId(·) Identifier of a DIF in A2I-index
α Minimum support threshold
σ Subgraph distance threshold
β Fragment size threshold
eℓ A new edge added by user
Sℓ = (Vℓ, Eℓ) A SPIG

LE(g) Edge List associated with the vertex v ∈ Vℓ containing a list of
labels of edges in g

Lfrag(g) The Fragment List of a vertex v ∈ Vℓ representing g
freqId(g) frequent id attribute of Lfrag(g)
difId(g) DIF id attribute of Lfrag(g)
Φ(g) frequent subgraph id set attribute of Lfrag(g)
Υ(g) DIF subgraph id set attribute of Lfrag(g)
S A set of SPIGs
Rq Identifiers of data graphs containing q
Rfree Identifiers of verification-free candidate graphs
Rver Candidate graphs that need verification

mulated in previous steps. A novel and efficient SPIG management strategy is also
proposed to build, update, and remove SPIGs during query formulation in order to
support practical subgraph query processing.

3 Background

For the sake of completeness, in this section we briefly describe the action-aware
indexing schemes of GBLENDER [10], which we shall be exploiting in the sequel.
Note that it is important for PRAGUE to seamlessly support subgraph similarity
queries on top of existing indexing structure as it is inelegant to maintain two dis-
tinct index structures to support subgraph containment and similarity queries. We
begin by introducing subgraph isomorphism that is fundamental to the understand-

9

ing of graph query processing. First, we briefly describe frequent and infrequent
graph fragments [10]. Then, we discuss the indexing schemes to index these frag-
ments. The key notations used in this paper are summarized in Table 1.

3.1 Subgraph Isomorphism

A graph G is denoted as (V,E), where V is the set of nodes and E ⊆ V × V is
the set of (directed or undirected) edges in the graph. Nodes and edges can have
labels as attributes specified by mappings ϕ : V →

∑
Vℓ

and ψ : E →
∑

Eℓ

respectively, where
∑

Vℓ
is the set of node labels and

∑
Eℓ

is the set of edge labels.
In this paper, we assume that G (data or query graph) has at least one edge, and all
nodes in G are connected (no dangling edges or nodes). The size of G is defined
as |G| = |E|. For ease of presentation, we present our method using undirected
graphs with labeled nodes. It is straightforward to extend our method to process
edge-labeled and/or directed graphs.

A graph G1 = (V1, E1) is a subgraph of another graph G2 = (V2, E2) (or
G2 is a supergraph of G1) if there exists a subgraph isomorphism from G1 to G2,
denoted by G1 ⊆ G2 (or G2 ⊇ G1). We may also simply say that G2 contains G1.
The graph G1 is called a proper subgraph of G2, denoted as G1 ⊂ G2, if G1 ⊆ G2

and G1 + G2.

Definition 1 (Subgraph Isomorphism) A subgraph isomorphism is an injective
function f : V1 → V2, such that (1) ∀u ∈ V1, ϕ1(u) = ϕ2(f(u)), and (2) ∀(u, v) ∈
E1, (f(u), f(v)) ∈ E2 and ψ1(u, v) = ψ2(f(u), f(v)).

3.2 Frequent and Infrequent Fragments

Informally, we use the term fragment to refer to a small subgraph existing in graph
databases or query graphs. Let D be a graph database containing a set of data
graphs. We assign an unique identifier to each data graph inD. Let g be a subgraph
of Gi ∈ D (0 < i ≤ |D|) and has at least one edge. Then, g is a fragment in D.
Given a fragment g ⊆ G andG ∈ D,G is referred to as the fragment support graph
(FSG) of g. We denote the set of FSGs of g as Dg. We refer to |Dg| as (absolute)
support, denoted by sup(g). We denote the set of identifiers of the data graphs in
Dg as fsgIds(g). Note that we shall refer to a fragment in a query graph as query
fragment in order to distinguish it from a fragment in a data graph.

A fragment g is frequent if its support is no less than α|D| where α is the
minimum support threshold [10]. That is, if g ∈ D and sup(g) ≥ α|D| and 0 <
α < 1 then g is a frequent fragment in D. We denote the set of frequent fragments
in D as F . For example, let |D| = 10000 and α = 0.1. Then, all the fragments
with support larger than or equal to 1000 are frequent fragments. The fragments
f0 − f6 in Figure 4 are frequent fragments (support values shown in parenthesis).
Note that a frequent fragment’s subgraph must be a frequent fragment [22].

10

Given a fragment g ∈ D, if sup(g) < α|D| then g is an infrequent frag-
ment [10]. For example, in Figure 4 dif0-dif2 and inf0-inf7 are infrequent frag-
ments. We denote the set of infrequent fragments in D as I. Specifically, only
discriminative infrequent fragments (DIFs) are indexed in GBLENDER as it is com-
putationally expensive to index all infrequent fragments in the database. Infor-
mally, a DIF is a smallest infrequent subgraph of an infrequent fragment. Given
g ∈ I, let sub(g) be the set of all subgraphs of g. If sub(g) ⊂ F or |g| = 1, then g
is a discriminative infrequent fragment (DIF) inD. For example in Figure 4, dif1 is
a DIF as all its subgraphs are frequent fragments (f0, f1, f2, f3, and f5). Similarly,
dif0 and dif2 are DIFs. However, inf0 is not a DIF as one of its subgraph (C-S-C)
is infrequent. We denote a set of DIFs in D as Id.

A DIF satisfies the following properties (see [10]).

• Let g′ ∈ Id and g ∈ D. If g′ ⊂ g then g ∈ I.

• Given g ∈ I, ∃g′ ∈ Id such that g′ ⊆ g.

• Given g ∈ I, if ∀gi ⊂ g and gi ∈ F , g ∈ Id.

For distinction, we refer to an infrequent fragment that is not a DIF as
non-discriminative infrequent fragment (NIF). For example, inf0-inf7 are NIFs.
Note that if one of the subgraphs of g is a DIF, then g is an infrequent fragment.
Therefore, a DIF can be used in turn to identify an infrequent fragment. In prac-
tice, the number of DIFs is significantly smaller than the total number of infrequent
fragments [10].

3.3 Action-Aware Indexes

The action-aware frequent index (A2F) is a graph-structured index having a memory-
resident and a disk-resident components called memory-based frequent index (MF-
index) and disk-based frequent index (DF-index), respectively. Small-sized fre-
quent fragments (frequently utilized) are stored in MF-index whereas larger fre-
quent fragments (less frequently utilized) reside in DF-index. Informally, DF-
index is an array of fragment clusters. A fragment cluster is a directed graph
C = (VC , EC) where each vertex4 v ∈ VC is a frequent fragment f where the size
of f (denoted as |f |) is greater than the fragment size threshold β (i.e., |f | > β).
There is an edge (v′, v) ∈ EC iff f ′ is a proper subgraph of f (denoted as f ′ ⊂ f)
and |f | = |f ′|+1. The root vertex (vertex with no incoming edge) of C is denoted
by root(C). Each fragment f of v is represented by its CAM code [7], denoted as
cam(g). That is, g is represented by an adjacency matrix M . Every diagonal entry
ofM is filled with the label of the corresponding node and every off diagonal entry
is filled with 1 or 0 if there is no edge. The CAM code is formed by concatenating
lower triangular entries of M , including the entries on the diagonal. The order is
from top to bottom and from the leftmost entry to the rightmost entry. We choose

4For clarity, we distinguish between a node in a query graph fragment and a node in action-aware indexes
and SPIGs by using the terms “node” and “vertex”, respectively.

11

CCC C C C C S

C

f1 (1800)

C C

f0 (2000) f2 (1600) f3 (1700) f4 (1300)

f5 (1300)

C C C

S

dif2 (300)

C

dif0 (500)f6 (1100) dif1 (400)

C C

C

S C

S

S

C C

C C S

C CC

C

S

CS

C S

C

C CS

C

C

C

C

C

S

inf4 (0)

inf2 (250) inf3 (300)inf1 (250)

C

C CSCC

C C CS

S

C

inf5 (150) inf6 (200)

C C S C CC

CS C

inf7 (0)

C S C

C

inf0 (400)

C S

C
C

C

C S

Figure 4: Frequent and infrequent fragments.

the maximal code among all possible codes of a graph by lexicographic order as
this graph’s canonical code. Details about CAM code can be found in [7]. Each
vertex with fragment f in C points to a set of FSG identifiers of f (fsgIds(f)).
Note that it is not space efficient to attach the complete list of fsgIds(f) on each
vertex as the size can be large. Fortunately, given the frequent fragments f and f ′,
if f ′ ⊂ f then fsgIds(f) ∩ fsgIds(f ′) = fsgIds(f) [3]. That is, node v′ (rep-
resenting f ′) and its child node v (representing f) share a large number of FSGs.
GBLENDER exploits this to store only delId(f) ⊂ fsgIds(f).

MF-index indexes all frequent fragments having size less than or equal to β.
Similar to a fragment cluster, it is a directed graph GM = (VM , EM) where
the vertexes and edges have same semantics as C. In addition, by abusing no-
tations for trees, vertexes representing frequent fragments of size β are leaf ver-
texes in GM . Each leaf vertex v ∈ VM (representing f) is additionally asso-
ciated with a fragment cluster list L where each entry Li points to a fragment
cluster Cj in the DF-index such that f ⊂ root(Cj). An example of MF-index is
depicted in Figure 5(a) (β = 4) based on the frequent fragments in Figure 4. Note
the distinction between delId(f) and fsgIds(f). For instance, |delId(f0)| =
|fsgIds(f0)| − |fsgIds(f2)| − |fsgIds(f3)|. Also, each vertex v in A2F-index is
assigned an identifier, denoted by a2fId(v) (e.g., a2fId(v0) = 0 in Figure 5(a))

The action-aware infrequent index (A2I) indexes DIFs to prune the candidate
space for infrequent queries. It consists of an array of DIFs arranged in ascending
order of their sizes. Each entry stores the CAM code of a DIF g and a list of FSG

identifiers of g. Figure 5(b) depicts a A2I-index based on the DIFs in Figure 4. The
identifier of each DIF g in the index is denoted by a2iId(g) (e.g., a2iId(dif1) = 1
in Figure 5(b)).

12

delId(f0) delId(f1)

delId(f2) delId(f3)

delId(f4)

delId(f6)

delId(f5)

V0: Id0

cam(f0) cam(f1)

cam(f3)cam(f2)

cam(f6)

cam(f5)cam(f4)

V1: Id1

V2: Id2 V3: Id3

V4: Id4 V5: Id5

V6: Id6

Discriminative
Fragment Array

CAM(dif3)

CAM(dif0)

CAM(dif2)

CAM(dif1)

0

3

1

2

fsgIds(dif0)

fsgIds(dif1)

fsgIds(dif2)

fsgIds(dif3)

FSG Ids

(a) (b)

Figure 5: Examples of MF-index and A2I-index.

4 Overview of PRAGUE

In this section we first present the substructure similarity search problem and then
give an overview of the PRAGUE algorithm. In subsequent sections, we discuss the
algorithm in detail.

4.1 Substructure Similarity Search Problem

While many techniques have been proposed in the literature for evaluating sub-
graph containment queries [3, 6, 9, 10, 22, 24–27], very few algorithms exist for
processing subgraph similarity queries [6, 12, 17, 18, 20, 23]. Most of the existing
subgraph similarity query processing techniques measure similarity between two
graphs using distance measures that are either based on graph edit distance [6, 18,
23] or maximum common subgraph [17, 20]. In the former approach, the similar-
ity of two graphs is defined by the least edit operations (insertion, deletion, and
relabeling) used to transform one graph into another. Each of these operations re-
laxes the query graph by removing or relabeling one edge. The latter approach
detects the Maximum Common Subgraph (MCS) [2] between the query graph and
the data graphs, and measures the similarity based on the difference of the query
graph and the MCS. Grafil [20] uses MCS to compute similarity between graphs.
Since the maximum common subgraph is not necessarily connected, it may include
many low-quality results in substructure similarity search [17]. This is because it
is possible that different parts of a query are mapped to very different locations
in a data graph which are far away from each other. To alleviate this problem,
Shang et al. [17] adopted maximum connected common subgraphs (MCCS) for the
substructure similarity search problem. Given two graphs Q and G, the maximum
common connected subgraph of Q and G is the largest connected subgraph of Q
that is subgraph-isomorphic to G, denoted as mccs(G,Q).

In spite of the applicability of edit distance for any type of graphs and its supe-
rior quality of results over MCS for several cases [23], in this paper we use MCCS

for similarity search for the following reasons. Firstly, as highlighted in [2] any
edit distance measure critically depends on the costs of the underlying edit opera-

13

Algorithm 1: PRAGUE
Input: GUI Action, query q, candidate set Rq , subgraph distance threshold σ,

graph database D.
Output: Query results Results

1 if Action is New then
2 q ← q + eℓ;
3 Sℓ ← SpigConstruct(q, Q, eℓ, S) /*Algorithm 2*/;
4 if simFlag = false then
5 Rq ← ExactSubCandidates(Sℓ.vtarget) /*Algorithm 3*/;
6 if Rq = ∅ then
7 Action← OptionDialogueDisplay();

8 else
9 (Rfree, Rver)← SimilarSubCandidates(q, σ, S) /*Algorithm 4*/;

10 else if Action is Modify then
11 q ←QueryModification(q,Rq , S, σ) /*Algorithm 7*/;

12 else if Action is SimQuery then
13 Set simFlag = true;
14 (Rfree, Rver)← SimilarSubCandidates(q, σ, S);
15 else if Action is Run then
16 if simFlag = false then
17 Results← ExactVerification(Rq);
18 if Results = ∅ then
19 (Rfree, Rver)← SimilarSubCandidates(q, σ, S);
20 Results← SimilarResultsGen(q, Rfree, Rver, σ) /*Algorithm 5*/;

21 else
22 Results←SimilarResultsGen(q, Rfree, Rver, σ);

tions. How these edit costs are obtained is still a challenging problem. The costs
that are assigned to the edit operations have an important influence on the match-
ing results. Two graphs that are similar under one particular cost function may
be no longer similar under another cost function. Secondly and more importantly,
in a visual querying system the choice of similarity measure needs to take into
account the cognitive overhead associated with the end-users to interpret the sim-
ilarity matches. Visually displaying edit operations on query results to highlight
similarity between a pair of graphs add significant cognitive overhead to end-users
who may not have any knowledge about edit distance. Comparatively, missing
edges (used for MCCS) are more intuitive in a visual system and easier to interpret.
It can easily be depicted in the results by highlighting the MCCS in the matched
data graphs.

Definition 2 (Subgraph Similarity Degree) Given two graphs Q and G, the sub-
graph similarity degree from G to Q is defined as: δ = |mccs(G,Q)|

|Q| .

The subgraph distance measures the maximum number of edges that are al-

14

lowed to be missed (deleted) in Q in order to match G.

Definition 3 (Subgraph Distance) Given two graphsG andQ and their subgraph
similarity degree δ, the subgraph distance, denoted as dist(Q,G), is defined as
follows: dist(Q,G) = ⌊(1− δ)|Q|⌋.

Observe that the subgraph similarity degree and subgraph distance are used to
measure the similarity between two graphs. Two graphs G1 and G2 with a larger δ
or smaller dist are more similar to each other. If δ = 1 or dist(G1, G2) = 0, then
G1 and G2 are subgraph isomorphism to each other.

Definition 4 (Substructure Similarity Search) Given a query graph Q, a graph
database D = {g1, g2, . . . , gn}, and subgraph distance threshold σ, the goal of
substructure similarity search problem is to retrieve all the graphs gi ∈ D with
dist(Q, gi) ≤ σ.

Example 1 Reconsider the query and data graphs in Figure 1. If we set σ as 1 (one
edge miss), then Figure 1(b) is an approximate match with δ = 6/7. If we relax σ
to 2, then Figure 1(c) is also an approximate match with δ = 5/7.

4.2 Algorithm Overview

The PRAGUE algorithm is outlined in Algorithm 1. In the sequel, we assume that
subgraph queries in PRAGUE are formulated using the GUI in Figure 2. Let q be
the visual query being formulated by the user. Let simFlag be a boolean vari-
able to indicate if q is subgraph similarity or containment query (true or false,
respectively). We monitor four visual actions on the GUI, namely New for new
edge addition, Modify for deletion of an existing edge, SimQuery for invoking
substructure similarity search, and Run for executing q. When the user adds a
new edge eℓ to q, the algorithm first constructs the spindle-shaped graph (SPIG) Sℓ
(Line 3). If simFlag is false, it retrieves the FSG identifiers of q (Rq) by invoking
the ExactSubCandidates procedure (Line 5). Note that this step follows a different
strategy from GBLENDER [10] as it exploits the SPIG to determine candidates. As
mentioned earlier, SPIGs are not generated by GBLENDER.

If Rq is empty, then there is no exact match for q after the addition of eℓ. Con-
sequently, PRAGUE gives the user options to either modify q (Action is Modify)
or enable retrieval of approximate matches (Action is SimQuery) by popping out
an option dialogue box (Line 7). If the user chooses to modify q, then it provides
suggestion on which edge she should delete in order to ensure Rq is not empty.
The user may select the suggested modification or perform a different modification
to q. These steps are encapsulated in the procedure QueryModification (Line 11).
On the other hand, if the user intends to continue formulating the query without
modification (Action is SimQuery), then the algorithm identifies q as a subgraph
similarity query. The SimilarSubCandidates procedure retrieves the candidate data

15

graphs that match approximately with q by exploiting the SPIG set S (Line 14).
These steps are repeated for each new edge until the user clicks the Run icon
(Line 15). If simFlag is false, then the exact results Results are returned from
the candidate graphs (Line 17). If Results is empty after candidate verification
(subgraph isomorphism test) then the substructure similarity search is invoked to
retrieve approximate matches (Lines 19-20). Otherwise, if it is already a substruc-
ture similarity search (simFlag is true), then a list of data graphs that match the
query approximately is returned to the user. This step is encapsulated in the pro-
cedure SimilarResultsGen (Lines 22). We now elaborate on these procedures in
detail.

Example 2 Consider the visual query in Figure 2 and the graph fragments in Fig-
ure 4. Figure 3 depicts two distinct sequences of visual actions (also referred to as
steps) for formulating this query. In these steps, we assume σ = 2. In Sequence
1, the query remains as frequent in the first three steps. After Step 4, it evolves to
an infrequent query. Note that in these steps, the candidates satisfying the query
fragments are computed by the ExactSubCandidates procedure (Line 5). When
the edge 5 is added to the query fragment in Step 5, the exact candidate set (Rq)
becomes empty. Consequently, the OptionDialogueDisplay procedure pops out an
option dialogue for the user to choose if she intends to modify the query fragment
to retrieve exact matches or invoke substructure similarity search (Line 7). If the
user chooses to modify the query, then the QueryModification procedure is invoked
(Line 13). Otherwise, PRAGUE considers it to evolve to a subgraph similarity query
(Steps 5 and 6) and SimilarSubCandidates procedure is invoked to retrieve candi-
date set for approximate match (Line 16). After the user clicks the Run icon (Step
7), the SimilarResultsGen is invoked to return the list of data graphs that match the
query approximately (Line 25).

5 Spindle-Shaped Graph (SPIG)

We now present in detail the concept of spindle-shaped graph.

5.1 Definition of SPIG

For each new edge eℓ created by the user, we create a spindle-shaped graph (SPIG).
We allocate each edge a unique identifier according to their formulation sequence.
That is, the ℓ-th edge constructed by a user is denoted as eℓ where ℓ is the label
of the edge. The edge with the largest ℓ is referred to as new edge (most recently
added). For example, in Figure 3 (Sequence 1) after Step 4, four edges have been
constructed and they are uniquely identified as e1 to e4. The new edge is e4 (C-C)
as ℓ = 4 is largest in this step.

A SPIG is a directed graph Sℓ = (Vℓ, Eℓ) where each vertex v ∈ Vℓ represents
a subgraph g of the query fragment containing the new edge eℓ. In the sequel, we

16

C CS

C

CS

C

C C

S C C C

C C S

CS

C

C C

S

S

S

f1

f3

f5

f6 dif1

inf4

5

5 1

5

5

55

1

1 1

2

2 24

4

3

31 2
C

CAM Edge List

(a)

V(5,1)

V(5,2)

V(5,3)

V(5,4)

V(5,5)

V(5,6)

Node

CAM(f1)

CAM(f3)

CAM(f5)

CAM(f6)

CAM(dif1)

CAM(inf4)

Fragment List

(b)

1

3

5

6

1

1, 26

5

1,5

1,2,5

1,2,4,5

1,2,3,5

1,2,3,4,5

Figure 6: The vertices of the spindle-shaped graph in step 5.

refer to a vertex v and its associated query fragment g interchangeably. There is
a directed edge from vertex v′ to vertex v if g′ ⊂ g and |g| = |g′| + 1. Each v
is associated with the CAM code of the corresponding g, a list of labels of edges
of g, and a list of identifier set called Fragment List to capture information related
to frequent or infrequent nature of g or its subgraphs. We now elaborate on the
structure of a Fragment List.

A Fragment List contains four attributes, namely frequent id, DIF id, frequent
subgraph id set, and DIF subgraph id set.

• If g is in A2F-index or A2I-index (see Section 3), then the identifier of the
vertex or entry representing g in the corresponding index is stored in frequent
id or DIF id attribute, respectively. Recall from Section 3, the identifier of
a vertex or an entry in A2F-index or A2I-index is denoted by a2fId(g) or
a2iId(g), respectively.

• If g is neither in A2F-index nor in A2I-index, then the frequent subgraph id
set stores the frequent ids of all largest proper subgraphs of g that are in A2F-
index. Note that size of these subgraphs is |g| − 1. The DIF subgraph id set
of g contains the DIF ids of all subgraphs of g that are indexed by A2I-index.

The source vertex (vertex with no incoming edge) in the first level of Sℓ, de-
noted by Sℓ.vsource, represents eℓ and the target vertex (vertex with no outgoing
edge) in the last level, denoted by Sℓ.vtarget, represents the entire query fragment
at a specific step. Since there is only one vertex at the first and the last level and a
set of vertices in the “middle” levels, the shape of Sℓ is like a spindle.

Definition 5 (Spindle-shaped Graph (SPIG)) Let eℓ be the new edge added to a
visual graph query q during Step ℓ. Then, the spindle-shaped graph (SPIG) of eℓ is
a directed graph Sℓ = (Vℓ, Eℓ) that satisfies the following conditions.

17

Algorithm 2: SpigConstruct
Input: Query q, Vertex queue Q, new edge eℓ, set of SPIGs S
Output: Spindle-shaped graph Sℓ

1 vℓ,1 ← f(eℓ);
2 Enqueue(vℓ,1,Q);
3 Insert(vℓ,1, Sℓ);
4 while Q ̸= ∅ do
5 vℓ,i ← Dequeue(Q);
6 foreach vℓ,j ∈ Sℓ is the parent of vℓ,i do
7 Add vℓ,j’s FragmentList to vℓ,i;

8 if gi /∈ A2F-index or A2I-index then
9 g′i ← gi − eℓ;

10 if g′i is connected then
11 v′ℓ,i ← Search cam(g′i) in the |g′i|-th level of Sℓ′ ;
12 Attach v′ℓ,i’s FragmentList to vℓ,i;
13 else
14 Let g′i1 and g′i2 be the two connected components of g′i;
15 Perform Lines 11-12 on both g′i1 and g′i2;

16 else
17 Attach vℓ,i with difId(gi) or freqId(gi);

18 if |gi|=|q| then
19 Add Sℓ in S;
20 return Sℓ;
21 else
22 foreach gi ⊂ gj ⊂ q and |gj |=|gi|+1 do
23 if vℓ,j ̸∈ Q then
24 vℓ,j ← f(gj);
25 Enqueue(vℓ,j ,Q);

26 Insert(vℓ,j , Sℓ);
27 Connect edge(vℓ,i, vℓ,j);

• For each v ∈ Vℓ, ∃ an injective function f : v → f(g) s.t. eℓ is contained in
g and g ⊆ q.

• By abusing the notations of trees, each (v′, v) ∈ Eℓ represents the parent-
child relationship between two vertices v′ and v where v is the child of v′ iff
g′ ⊂ g and |g| = |g′|+ 1.

• Each v ∈ Vℓ is a 3-tuple v = (cam(g),LE(g),Lfrag(g)) where cam(g) is
the CAM code of g, LE(g) is the Edge List containing a list of labels of edges
in g, and Lfrag(g) = (freqId(g), difId(g),Φ(g),Υ(g)) is the Fragment
List.
freqId(g), difId(g), Φ(g), and Υ(g) refer to frequent id, DIF id, frequent
subgraph id set, and DIF subgraph id set, respectively such that:

18

(d) S4L4
L3
L1L2

(f) S6
(e) S5L6

L5

v4,1 v6,1v5,1

v4,4

v4,2
v5,2 v6,2

v6,3v5,3

v4,3

v6,4v5,4 v6,5v5,5

v4,5

v6,7v6,6v5,6

v4,6

v6,8

(c) S3
v3,1

v3,2

v3,3
(b) S2(a) S1 v2,1

v2,2

v1,1

0 10 0 1

2 2

5

3 3 3

5 4

6

3

124,5

1,26

1

0

03

0,2 5 0

0,2 0,1

0,1,2

cam(f0) cam(f0)

cam(f2)

cam(f1)

cam(f3)

cam(f5)

cam(f0)

cam(f3) cam(f2)

cam(f4)cam(dif2)

cam(f1)

cam(f3)

cam(f5)

cam(f6) cam(dif1)

cam(f1)

cam(dif0)

cam(inf4)

cam(inf1)

cam(inf0)

cam(inf3)cam(inf2)

cam(inf6)cam(inf5)

cam(inf7)

[1] [2][1,2] [6][5][4][3][2,3] [3,4] [2,4] [1,5] [6,3][1,2,3] [1,2,4][2,3,4] [1,2,5] [2,3,6][1,2,3,4] [1,2,4,5] [1,2,3,4] [2,3,4,6] [1,2,3,6][1,2,3,4,5] [1,2,3,4,6] [1,2,3,5,6]
[1,2,3,4,5,6]

Figure 7: The SPIG set for Sequence 1 (Edge Lists are in square brackets and
Fragment Lists are shown in rectangular boxes.)

1. if g ∈ A2F-index, then freqId(g) = a2fId(g) and difId(g) =
Φ(g) = Υ(g) = ∅.

2. if g ∈ A2I-index, then difId(g) = a2iId(g) and freqId(g) = Φ(g) =
Υ(g) = ∅.

3. if g /∈ A2F-index and g /∈ A2I-index, then ∀g′ ⊂ g where |g′| = |g| − 1,
if g′ ∈ A2F-index, then Φ(g) contains a2fId(g′), and freqId(g) =
difId(g) = ∅. Also, ∀g′ ⊂ g where g′ ∈ A2I-index, Υ(g) contains
a2iId(g′).

• Each v is uniquely identified by the pair (ℓ, k) where k is the position of v
based on depth-first traversal order starting from Sℓ.vsource.

Example 3 Consider Step 5 (Sequence 1) in Figure 3. Figure 6(a) depicts the
SPIG S5 after the addition of the new edge labeled 5 (e5). Each vertex repre-
sents a subgraph of the query fragment containing e5 and is identified by a pair
of identifiers containing label of e5 and its position. For instance, v5,3 refers to
the third vertex in S5. Information associated with each vertex in S5 is shown
in Figure 6(b). Particularly, the entries from left to right in the Fragment List
are freqId, difId, Φ, and Υ, respectively (we follow this sequence in all rele-
vant figures). Note that v5,1, v5,2, v5,3 and v5,4 represent the frequent fragments
f1, f3, f5 and f6 (Figure 4), respectively. Therefore, their freqIds are 1, 3, 5, and
6, respectively. Since v5,5 represents dif1, the difId is 1 (Figure 5(b)). How-
ever, v5,6 represents the NIF inf4. Hence, it satisfies the Condition 3 in Defini-
tion 5 as inf4 is neither indexed by A2F-index nor by A2I-index. Consequently,
freqId(v5,6) = difId(v5,6) = ∅. Among all the largest proper subgraphs of
inf4 (size of these subgraphs is |inf4| − 1), the subgraph f6 (see Figure 4) is a

19

frequent fragment and hence stored in the A2F-index (vertex id 6 in Figure 5(a)).
Hence, Φ(v5,6) = {6}. Also, among all the subgraphs of inf4, the subgraphs dif1
and dif2 (see Figure 4) are DIFs and are indexed by A2I-index (having entry ids 1
and 2 in Figure 5(b)). Consequently, Υ(v5,6) = {1, 2}.

5.2 Algorithm for SPIG Construction

The algorithm for building a spindle-shaped graph is shown in Algorithm 2. It
takes as input the new edge eℓ added to the query fragment q, a set of SPIGs S from
previous step, and a queue Q to temporarily store the vertexes of Sℓ. The building
process starts from the new edge (Lines 1-2). It first attaches the CAM code and
edge label of eℓ to vertex vℓ,1. Let vℓ,i be the vertex dequeued from Q (Line 5).
For each vℓ,j in Sℓ, if vℓ,j is the parent of vℓ,i, then vℓ,i inherits the frequent and
DIF ids of vℓ,j . That is, it attaches freqId(vℓ,j) to Φ(vℓ,i), difId(vℓ,j) and Υ(vℓ,j)
to Υ(vℓ,i) (Lines 6-7). If gi is not a DIF or a frequent fragment (Line 8), then
the algorithm first extracts the largest subgraph of gi without eℓ (denoted by g′i)
(Line 9). g′i can be either connected or unconnected. If g′i is connected, let ℓ′

be the new edge in g′i where ℓ′ < ℓ. Since Sℓ′ has already been constructed and
stored in S , the algorithm retrieves v′ℓ,i from the|g′i|-th level of Sℓ′ (Line 11). Then
it attaches the relevant ids in FragmentList of v′ℓ,i to vℓ,i (Line 12). Note that
as all the largest subgraphs of vℓ,i can be found in S, the identifiers of frequent
and infrequent fragments can be efficiently inherited without decomposing it to
its subgraphs and retrieving them by probing action-aware-indices. When g′i is
not connected, since gi is originally connected, eℓ must be a bridge of gi and g′i
contains two connected components, g′i1 and g′i2. Similar to g′i in the previous
case, both g′i1 and g′i2 are subgraphs of gi and in their respective SPIGs in S. Thus,
the same process in Lines 11-12 are performed on both g′i1 and g′i2 to update the
FragmentList of vℓ,i.

If gi is a DIF or a frequent fragment, then it attaches frequent fragment id or
DIF id of gi on vℓ,i’s freqId or difId, respectively (Line 17). If |gi| = |q|, then
the SPIG construction process is terminated and Sℓ is added to S (Lines 18-20).
Otherwise, vertex vℓ,j is constructed as the child of vℓ,i in Sℓ. For each gj ⊃ gi in
q, if vℓ,j does not exist in Q then it attaches the CAM code and edge labels of gj to
vℓ,j and inserts the vertex in Q. Lastly, it adds vℓ,j in Sℓ and connects vℓ,i and vℓ,j
with a directed edge (Lines 22-27).

Observe that the aforementioned procedure does not incrementally build Sℓ
from Sℓ′ (ℓ′ < ℓ) as eℓ is different in each formulation step. Consequently, the
fragments represented by the vertices of Sℓ are often different from those in Sℓ′ .
For instance, Figure 7 depicts a set of SPIGs constructed for Steps 1 to 6 in Se-
quence 1 in Figure 3. Observe that the fragments in two consecutive SPIGs (e.g.,
S5 and S6) can be quite different.

Example 4 Reconsider the SPIG S5 in Example 3. As the edge labeled 5 is the new
edge, the SPIG construction starts off by creating the vertex v5,1 representing fre-

20

(d) S4L4L3
L1L2

(f) S6(e) S5L6L5

v4,1 v6,1v5,1

v4,4

v4,2 v5,2 v6,2

v6,3v5,3

v4,3

v6,4

v5,4

v6,5v5,5

v4,5

v6,7v6,6

v5,6v4,6

v6,8

(c) S3
v3,1

v3,2

v3,3
(b) S2(a) S1 v2,1

v2,2

v1,1 cam(f1) cam(f1) cam(f0)

cam(f3)

cam(f0)

cam(f2) cam(f3)

cam(dif2)

cam(f0)

cam(f2)

cam(f4)

cam(inf3)

cam(f1)

cam(inf5)

cam(inf2)

cam(inf6)cam(inf4)

cam(inf7)

cam(dif0)

cam(inf0) cam(inf0) cam(f5)

cam(inf1)

cam(f3)

cam(f5)

cam(dif1)cam(f6)

v5,7

Figure 8: The spindle-shaped graph set for Sequence 2.

quent fragment f1 (Line 1). Then the algorithm connects v5,2 with v5,1 as its child
as f3 is the child of f1. Also, id 3 is attached to freqId entry of the fragmentList
of v5,2 (Line 17). Next, v5,3 is constructed as the child of v5,2. Since v5,3 repre-
sents f5, id 5 is attached to the freqId entry of v5,3. Then, the children of v5,3 is
constructed. As v5,4 represents f6 and v5,5 represents dif1, ids 6 and 1 are inserted
in freqId and difId entries of v5,4 and v5,5, respectively. In the next step, the
algorithm constructs v5,6 to represent inf4 (Lines 8-15). Observe that the largest
subgraphs of inf4 are f6, dif1, and inf1. The new edges of f6, dif1 and inf1 are
edges labeled 5 and 4, respectively. Hence, it searches the vertices v5,4, v5,5 in S5
and v4,6 in S4 ∈ S (Line 11). Note that all these vertices are in level 4 of their
respective SPIGs. Consequently, Υ(v5,6) inherits the identifiers from Υ(v5,5) and
Υ(v4,6), and Ψ(v5,4) is assigned to Ψ(v5,6). Finally, the construction of S5 termi-
nates as v5,6 represents the current query fragment (Line 18) and S5 is inserted into
S.

Figure 7 depicts a set of SPIGs constructed for Steps 1 to 6 in Sequence 1 in
Figure 3. Observe that the fragments represented by vertices of two consecutive
SPIGs (e.g., S5 and S6) can be quite different.

5.3 Analysis of SPIG Construction

Size of SPIG set. The cost of SPIG construction depends on the number of edges in
the query as it influences the number of levels and vertex set size of the SPIG. Let
q be a visual query graph fragment with n distinct edges. That is, q has n edges
with unique node label pairs (vi, vj). Then the maximum number of vertexes in
the k-th level of Sℓ is Ck−1

n−1. Consequently, the total number of vertices in Sℓ is:

21

Algorithm 3: ExactSubCandidates
Input: Target vertex v in Sℓ, A2F-index, A2I-index
Output: Set of candidate identifiers Rq

1 if freqId(v) ̸= ∅ then
2 i = freqId(v);
3 Rq ← retrieve fsgIds(gi) from A2F-index;

4 else if difId(v) ̸= ∅ then
5 i = difId(v);
6 Rq ← retrieve fsgIds(gi) from A2I-index;

7 else
8 foreach i ∈ Φ(v), j ∈ Υ(v) do
9 Rq ← Rq ∩ fsgIds(gi) ∩ fsgIds(gj);

∑n
k=1 C

k−1
n−1. However in practice, often some nodes in q share the same vertex

labels. For example, in the query in Figure 2 there are only two distinct edges
(C-S and C-C). Consequently, the number of unique vertexes in the k-th level of
Sℓ is much less than the worst-case scenario. For instance, only two vertexes are
in the fourth level of S6 (Figure 7(f)). We shall empirically study the cost of SPIG

set construction in Section 8.

LEMMA 1 The total number of vertexes in the k-th levels of SPIGs in S is: N(k) ≤
Ckn. 2

Proof 1 (Sketch) ∀gi ⊆ q, vi ∈ S . The number of gi with k edges ≤ Ckn, n = |q|,
so N(k) ≤ Ckn.

Effect of query formulation sequence. Different sequence of formulation steps
for a query q (e.g., Sequences 1 and 2 in Figure 3) will result in different SPIG

sets. However, the total number of vertexes in the k-th level will remain identical
in different SPIG sets. That is, given Si and Sj generated by two distinct sequence
of formulation steps for q, Ni(k) = Nj(k).

For example, Figure 8 depicts the set of SPIGs that are created when we fol-
low Sequence 2 in Figure 3 to formulate the query. For brevity, in this figure we
ignore displaying the Edge List and Fragment List. Now reconsider the SPIG set in
Figure 7. Observe that S5 in these two SPIG sets are different. Although the ver-
texes representing inf1, inf2, inf3, f6, dif1 are in the fourth level of the SPIGs for
Sequences 1 and 2, they are distributed in different SPIGs. For instance, in SPIGs
generated by Sequence 1, inf1 is in S4, f6 and dif1 are in S5, inf2 and inf3 are
in S6. However for Sequence 2, inf2 is in S4, inf1 and inf3 are in S5, and f6
and dif1 are in S6. Also observe that the total number of vertexes in the k-th level
are identical in both SPIGs. That is, given two SPIG sets Si and Sj , generated by
two distinct sequence of formulation steps for the query q, Ni(k) = Nj(k). For
instance, the total number of vertexes in the fourth level is 5 in Figures 7 and 8.

22

6 Substructure Similarity Search

In this section, we elaborate on the similarity search procedure. We begin by
describing SPIG-based candidates generation for exact substructure search (Exact-
SubCandidates procedure). Note that this procedure will be exploited by substruc-
ture similarity search and our query modification strategy.

6.1 Exact Substructure Candidates Set Generation

Algorithm 3 outlines the SPIG-based procedure for retrieving Rq at a specific step.
Given the target vertex v in the SPIG Sℓ representing the query fragment q, if v
represents a frequent fragment, then it retrieves FSG identifiers of v from A2F-
index (Lines 1-3). Otherwise, if v represents a DIF, then the algorithm retrieve
the FSG identifiers from A2I-index (Lines 4-6). If v represents a NIF then for each
identifier in the frequent subgraph id set (Φ(v)) and DIF subgraph id set (Υ(v))
of v, it retrieves the corresponding FSG identifiers from A2F-index and A2I-index,
respectively, and then intersect them with Rq to generate the candidate set (Lines
8-9).

6.2 Similar Substructure Candidates Set Generation

A key challenge in substructure similarity search is that the similar subgraph ver-
ification for a large candidate set is prohibitively expensive [20]. Our strategy for
reducing the verification cost is as follows: (a) retrieve only candidates that are
“nearly” similar to the query fragment and (b) identify verification-free candidates
among them.

Algorithm 4 describes the SimilarSubCandidates procedure. It separates the
candidate set into two parts, namely Rfree and Rver. Rfree stores the identifiers of
verification-free candidate graphs whereas Rver stores identifiers of candidate data
graphs that need verification. Given the subgraph distance threshold σ, the algo-
rithm exploits the SPIG set S to identify the relevant subgraphs of q that need to be
matched for retrieving approximate candidate sets. Specifically, these subgraphs
are query fragments represented by the vertices at levels |q| − 1 to |q| − σ in S
(Lines 1). Let Rfree(i) and Rver(i) store the verification free candidates and can-
didates that need verification in the i-th (|q|-σ ≤ i < |q|) level of S , respectively.
For each vertex vj in the i-th level, if it is a frequent fragment or DIF, then the
algorithm retrieves the candidates satisfying vj using the ExactSubCandidates(vj)
procedure and combine them with Rfree(i) (Lines 3-4). Otherwise, vj is a NIF.
Consequently, Rver(i) is computed by combining Rver(i) with the candidates re-
turned by ExactSubCandidates(vj) (Lines 5-6). Next, it removes the candidates
that exist in both Rfree(i) and Rver(i) from Rver(i) as these are already identified
as verification-free candidates (Line 7). Finally, it adds Rver(i) and Rfree(i) in
Rver and Rfree, respectively (Line 8).

23

Example 5 Reconsider the SPIG set in Figure 7 generated based on the query for-
mulation sequence in Sequence 1 (Figure 3). In the first step, edge e1 is added and
S1 is constructed as shown in Figure 7(a) (Line 3 in Algorithm 1). As freqId(v1,1) =
0, ExactSubCandidates procedure is invoked (Line 5 in Algorithm 1) to locate
it in A2F-index and retrieve fsgIds(f0) as the candidate set of current query
fragment (Lines 1-3 in Algorithm 3). In the second step, the SPIG S2 is con-
structed. Since freqId(v2,2) = 2 (v2,2 is the target vertex), its FSG identifiers
are again retrieved by probing A2F-index using the ExactSubCandidates proce-
dure. After Step 3, v3,3 is the target vertex in S3 and freqId(v3,3) = 5. Hence
fsgIds(f5) is retrieved by probing A2F-index as the candidate set for exact sub-
structure match. Observe that so far the query is a frequent fragment. After Step
4, the target vertex v4,6 in S4 is a NIF and Ψ(v4,6) = {4, 5} and Υ(v4,6) = 2.
Hence, the FSG identifiers of these fragments are retrieved by executing Lines 8-
9 in Algorithm 3 (fsgIds(v4,6)=fsgIds(dif2) ∩ fsgIds(f4) ∩ fsgIds(f5) =
fsgIds(inf1)). Also, |fsgIds(v4,6)| = 250.

After Step 5 since the target vertex is v5,6 in S5 and
fsgIds(inf4) = 0, the user is given an option to either modify the query or re-
lax it to a subgraph similarity query and retrieve approximate matches (Line 11 in
Algorithm 1). Suppose the user chose the latter option. Then, the SimilarSubCan-
didates procedure is invoked. Assume that σ = 2. That is, in Step 5 two edges are
allowed to be missed in the results of substructure similarity search (i ∈ {3, 4} in
Algorithm 4). Therefore, Lines 2-8 in Algorithm 4 are executed twice. Rfree(3)
andRver(3) are generated for the vertexes in the third levels of the SPIGs in S (v3,3,
v4,4, v4,5 and v5,3). Rver(3) = ∅ and Rfree(3) = fsgIds(v3,3) ∪ fsgIds(v4,4) ∪
fsgIds(v4,5) ∪ fsgIds(v5,3) = fsgIds(f5) ∪ fsgIds(dif3) ∪ fsgIds(f4) ∪
fsgIds(dif5). Observe that |Rfree(3)| ≥ 1300. Rfree(4) and Rver(4) are gen-
erated for the vertexes in the fourth levels of the SPIGs in S (v5,4, v5,5, and v4,6).
Consequently,Rfree = Rfree(4) = fsgIds(v5,4)∪fsgIds(v5,5) = fsgIds(f6)∪
fsgIds(dif1) (Line 4) whereas Rver = Rver(4) = fsgIds(v4,6) (Lines 7-8). Ob-
serve that |Rfree(4)| ≥ 1100 and |Rver(4)| = 250. If the user clicks on the
Run icon now, at most 250 candidate graphs in Rver need candidate verification.
However, at least 2400 candidate graphs in Rfree are returned directly without
verification.

When another edge is added in Step 6, Rfree=Rfree(4) ∪ Rfree(5) and
Rver=Rver(4) ∪Rver(5) where

Rver(4) = Rver(4) ∪ fsgIds(v6,4) ∪ fsgIds(v6,5)
= Rver(4) ∪ fsgIds(inf2) ∪ fsgIds(inf3)

Note that |Rver| ≤ 800. Similarly, Rfree(5) = 0 and Rver(5) = fsgIds(v5,6) ∪
fsgIds(v6,6)∪fsgIds(v6,7). Since fsgIds(v5,6) = 0, fsgIds(v6,6)=fsgIds(dif0)∩
fsgIds(dif2) and fsgIds(v6,7)= fsgIds(dif0) ∩ fsgIds(dif1). Also, since
|fsgIds(v6,7)| = 200 and |fsgIds(v6,6)| = 150, |Rver(5)| ≤ 350.

Analysis of candidate graph set. Observe that the candidate set is equal to the

24

Algorithm 4: SimilarSubCandidates
Input: Query fragment q, σ, SPIG set S
Output: Rfree, Rver

1 for i=|q|-1 to |q|-σ do
2 foreach vj in ith level of S do
3 if freqId(vj) ̸= ∅ or difId(vj) ̸= ∅ then
4 Rfree(i)← Rfree(i)∪ ExactSubCandidates(vj);
5 else
6 Rver(i)← Rver(i)∪ ExactSubCandidates(vj);

7 Rver(i)← Rver(i)− (Rfree(i) ∩Rver(i));
8 Add Rfree(i) in Rfree and Rver(i) in Rver;

Algorithm 5: SimilarResultsGen
Input: q, Rfree, Rver and σ
Output: Ordered result set Results

1 for i=|q|-σ to |q|-1 do
2 Results← Results ∪Rfree(i);
3 Rver(i)← Rver(i) ∩Results;
4 Results← Results∪ SimVerify(q, Rver(i), i);

union of the FSG identifiers of vertexes in the levels |q|-σ to |q| − 1 of the SPIGS in
S.

LEMMA 2 Let Rcand be the candidate set for a query fragment at a specific for-
mulation step. Then,

Rcand =

|q|−1∪
k=|q|−σ

N(k)∪
i=0

fsgIds(vi)

Proof 2 (Sketch) ∀gi ⊂ q, |gi| ≥ |q| − σ,
∑N(k)

i=0 vi is the sum of vertices in the
k-th level of S .

∪N(k)
i=0 fsgIds(vi) is its candidates. Therefore, the candidates

satisfying σ edge missing are given as follows.
∪|q|−1

k=|q|−σ

∪N(k)
i=0 fsgIds(vi).

Notably, the query formulation sequences do not have any effect on the can-
didate graphs set for both subgraph containment and similarity queries. That is,
given two SPIG sets Si and Sj of a query q, Rcand(i) = Rcand(j). Consequently,
different formulation sequences do not have significant effect on the SRT as it is
primarily influenced by the size of candidate set. In fact, the time take to evaluate a
query fragment at each formulation step is only slightly effected by different SPIG

construction for different formulation sequences. Our empirical study in Section 8
confirms this argument.

25

Algorithm 6: SimVerify
Input: query q, candidate graph g, σ, M(s)
Output: the matching result

1 if M(s) covers |q|-σ edges of q then
2 return true;
3 else
4 Compute the candidate pairs set P (s) from q, g;
5 foreach (n,m) ∈ P (s) do
6 if F (s, n,m) then
7 s′ = s ∪ (n,m);
8 SimVerify(s′);

9 Restore M(s);

6.3 Generation of Approximate Query Results

Typically, the data graphs in the result set of a substructure similarity search have
varying degree of similarity with respect to the query graph. Therefore, it is
important to order these result matches. We order them based on the following
rule. Let g1 and g2 be two candidate graphs that approximately match the query q.
If dist(g1, q) < dist(g2, q) then Rank(g1) < Rank(g2). Note that a lower rank
of g indicates that g is more similar to q.

Algorithm 5 outlines the procedure for generating ordered query results. As
the subgraph distance of candidate graphs associated with the i-th level of SPIGs
in S is |q| − i, the higher level the candidate graph is in S, the more similar it is
to the query graph. For the candidate graphs that are associated with level i, firstly
the verification-free candidates (Rfree(i)) are added in Results (Line 2). Next, it
generates the result set from the candidates in Rver(i) (Lines 3-4). Here we ex-
tend VF2 [4] to handle MCCS-based similarity verification. This procedure is en-
capsulated by the SimVerify procedure (discussed below). The verified candidates
are then added to Results (Line 4). The aforementioned procedure is repeatedly
executed up to (|q|-1)-th level of the SPIGs. The results are returned ordered by
increasing σ values.

SimVerify method. The SimVerify procedure is outlined in Algorithm 6, which is
a simple extension of VF2 [4]. Given q=(N1, E1), g=(N2, E2), M denotes a set
of pairs (n,m) (n ∈ N1,m ∈ N2). A mapping M ⊂ N1 × N2 is said to be a
subgraph isomorphism iff M is an isomorphism between q and g. Let M(s) ⊂M
contains only the nodes of q and g associated with state s. If M(s) covers |q|-σ
edges of q, the algorithm returns true (Lines 1-2). Otherwise, it computes all the
possible pairs candidate P (s) for current state s. P (s) is obtained by considering
the sets of nodes directly connected to q and g (Line 4). For each pair (n,m) in
P (s), if it satisfies the feasibility Rules [4], where F (s, n,m) is a boolean function
to prune the search tree, then it updates s to s′ by combining (n,m). Next, it calls
SimV erify to verify the new state s′ (Lines 5-8). If there is no possibility of state

26

s′ to reach the required coverage, then the algorithm restores the state s for new
candidate pairs computation (Line 9).

It is worth mentioning that our focus here is not to develop an efficient similar
subgraph verification technique. In fact, we can easily replace the implementation
of SimVerify with a more efficient technique (e.g., [17]). Fortunately, in spite of
using such a simple verification technique, PRAGUE has very good performance
due to its superior candidates pruning ability as well as its ability to exploit GUI

latency (demonstrated in Section 8).

7 Supporting Query Modification

In PRAGUE a user may modify a visual query due to two key reasons: (a) if the
candidate set of the formulated query fragment is empty then she may modify
the query when prompted by the system (Lines 6-7 in Algorithm 1); (b) she may
commit a mistake or may change her mind during query formulation and modify
the query fragment accordingly (Lines 10-11 in Algorithm 1). We now discuss
how such query modification is efficiently supported.

In the current version of PRAGUE, modification to a query is achieved by edge
deletion5. The user can delete any edge as long as the modified query graph is
a connected graph at all times. For clarity, we introduce our query modification
algorithm based on single edge deletion at a time. It is trivial to extend it to support
multiple edge deletions.

Algorithm 7 outlines our SPIG-based strategy for handling query modifications.
Let eℓ be the most recently added edge in q and ed be the edge deleted from q where
0 < d ≤ ℓ. When the candidate set of subgraph containment query fragment q be-
comes empty and the user opts for query modification then Lines 3-8 are executed
to provide modification suggestion to her. For each possible deleted edge in q, it
matches the corresponding vertex vi in the |q′|-th level of the SPIGs in S by per-
forming the graph isomorphism test of q′ and vi. Note that two graphs g and g′ are
isomorphic to each other, if and only if cam(g) = cam(g′) [7]. It recommends
the edge, that returns the largest candidate set Rq′ , for deletion to the user (Lines
6-8). On the other hand, if ed is selected by the user at any time during query
formulation, the new query fragment q′ is formed by deleting ed from q (Line 11).
The SPIG set S is updated by removing SPIGs and vertexes related to ed (Lines 12-
14). Finally, if modification occurs when the query fragment is already a subgraph
similarity query, then the new candidate set is generated by SimilarSubCandidates
procedure (Line 16). Otherwise, the candidate set is generated by invoking the
ExactSubCandidates procedure.

Example 6 Consider Step 5 of Sequence 1 in Figure 3. The state of the query
fragment is depicted in Figure 9(a). Assume that the user selects the query modi-
fication option when prompted by PRAGUE (Figure 9(b)). Since |fsgIds(v5,4)| =

5Node relabeling can be expressed as deletion of edge(s) following by insertion of new edge(s) and node.

27

Algorithm 7: QueryModification
Input: Query q, Deleted edge ed, Spindle-shaped graph set S, Rq , σ
Output: Rq

1 Initialize ed to be deleted edge;
2 if Rq=∅ and ed = ∅ then
3 foreach ei ⊂ q do
4 q′ ← q − ei;
5 vi ←Match q′ in the |q′|-th level of S;
6 if |fsgIds(vi)| > |Rq′ | then
7 ed ← ei;
8 Rq′ ← fsgIds(vi);

9 else
10 ed ← edge deleted by the user;
11 q′ ← q − ed;

12 Remove Sd from S;
13 foreach vi ∈ Sj , ed ∈ LE(vi) do
14 Sj ← Delete vi and its edges in Sj ;

15 if Rq=∅ then
16 SimilarSubCandidates(q′, σ, S);
17 else
18 ExactSubCandidates(q′);

|fsgIds(f6)| = 1300 is larger than both |fsgIds(v4,6)| and |fsgIds(v5,5)| in the
fourth level of the SPIGs in Figure 7, q′ is modified to f6 and the edge 3 is suggested
for deletion (Figure 9(c)). As we shall see in the next section, PRAGUE can finish
computing this process by exploiting the latency offered by the GUI in the current
step. Figure 9(d) shows the modified query fragment q′ after the user accepted the
suggestion. At the same time, the spindle-shaped graph set is updated by removing
S3 and updating the SPIGs S4 and S5 by deleting the vertexes with edge 3 in their
Edge Lists. The updated S is shown in Figure 10.

Now suppose the user chooses to invoke substructure similarity search instead
at Step 5 and then deletes edge 6 after Step 6. Now q′ matches v5,6 and the target
vertex of S5. Hence, the updated S consists of (S−S6). At last, the new candidates
are calculated based on this updated S .

8 Performance Study

PRAGUE is implemented in Java JDK 1.6 and the results display component is im-
plemented using ZGRViewer [13]. We run all experiments on an AMD 3.4GHz
machine with 3.25GB RAM, running Ubuntu 9.10 system. Since there is no exist-
ing system that realizes our new paradigm in the context of substructure similarity
search, we are confined to compare PRAGUE (denoted by PRG for brevity) against
the following state-of-the-art MCS-based substructure similarity search methods

28

1 2 34C

C

C SC

C5
1 2C

C

C SC

C1 2C

C

C C

C 3455 4(a) (b)
(c)(d)

Figure 9: The query modification procedure in Step 5.

v4,3

v4,5L3
L1L2

(c) S4(b) S2(a) S1 v2,1

v2,2

v1,1cam(f0) cam(f0)

cam(f2)

cam(f0)

cam(f2)

cam(f4)

v5,1

v5,2

v5,3

v5,4

(d) S5

cam(f1)

cam(f3)

cam(f5)

cam(f6)

v4,1

L4
Figure 10: The updated SPIG set after deleting edge 3 in Step 5.

based on traditional paradigm: Grafil [20] (denoted by GR), SIGMA [12] (denoted
by SG), and restricted version6 of DistVP [17] (denoted by DVP). These programs
are all implemented in C++. We do not compare against [23] as it performs sub-
structure similarity search based on edit distance.

8.1 Experimental Setup

Datasets. Two kinds of datasets were used for our experimental study: one real
dataset and a series of synthetic datasets. We use the AIDS Antiviral dataset con-
taining 40K (40, 000) graphs as real-world dataset. It has been widely used by
many graph querying techniques (e.g., [12, 14, 20]). The average size of a graph
is 25 vertices and 27 edges. The maximum size of a graph is 222 vertices and 251
edges. We use the Graphgen of FG-Index [3] to generate five synthetic datasets
with sizes from 10, 000 to 80, 000 (denoted by 10K - 80K). Note that all existing
substructure similarity search techniques [6, 12, 17, 20, 23] have used datasets con-
taining at most 10K data graphs. In our study, we push the boundary of the number

6The publicly-available executable file limits our performance evaluation due to problems highlighted later.
We do understand that such problems may exist as it is not an official release version.

29

S

C

C

N C

S
1

1

2 2 3

3
4 7

5

5 6

6

7

8
CC

C

C

C

CGa

C

C

C
9

Q1 (35s) Q2 (30s)

4

O

Hg
8

1
2

3

4

5

6
7

C

N

N

C

OHg

C

O

Q4 (31s)

85

8 10

1

2 4

6

1
5

 Q5 (30s)

7

3

11

12

1
2

3
4

5
6

7

1

0

3

1112

1

0

0

Q6 (33s)

2

1

0

1

5

 Q8 (32s)

3

5

1112

1

0

11

0

12

3

1

1

9

5

1 2

4

6

7 2

6
5

4

7

Q7 (30s)

NC N

N N

1

2 4

8

 Q3 (30s)

C

3

O

Hg

1

5

6

7

Figure 11: Queries on real and synthetic datasets.

Table 2: Index size comparison (MB)
DVP

PRG SG/GR
σ 1 2 3 4

Size 179.5 381.4 630.4 918.7 36.1 11.1

of graphs by a factor of 8 to test scalability. We set the number of distinct labels to
10. The avg. number of graph edges in each dataset is set to 30 and the avg. graph
density is 0.1.

Query Sets. Q1−Q4 are queries on the AIDS dataset whereasQ5−Q8 are queries
on the synthetic datasets. Since these queries are formulated by end users using
the visual interface, it is not realistic to expect a user to formulate large queries
visually. Therefore, we chose query graphs whose sizes do not exceed 10. Note
that PRG can handle larger query graphs gracefully. Additionally, unlike traditional
approaches [6, 12, 17, 20, 23] where the benchmark queries are automatically gen-
erated from the graph database, the queries here are visually formulated by real
end users. Hence, it is not possible to generate a large number of visual queries
as our preliminary study revealed that such aspiration strongly deters end users to
participate in the empirical study.

The labels on the edges of a query in Figure 11 represent the default sequence
of steps for query formulation in PRG. For example, in Q3 the default sequence of
steps for query formulation is: [(Hg,O), (O,C), (C,C), (C,N), (N,N), (N,N), (N,N),

(C,N)]. Unless mentioned otherwise, we shall be using the default sequence for
formulating a particular query. The specific step in a query when Rq becomes
empty is shown by bold edge (e.g., Step 4 in Q1).

Recall that the candidate set of PRG consists of two parts: Rfree and Rver.
Obviously, the more candidates are in Rfree, the better it is for PRG as these candi-
dates are verification-free. Hence, we chose the query set to study best and worst
case behaviors of PRG with respect to Rfree and Rver. Specifically, all candidates

30

 0

 10

 20

 30

 40

 50

Q1 Q2 Q3 Q4 Q5 Q6

SR
T

(m
s)

Query

GBR
PRG

(a) SRT (msec.) of queries in [10]

 10000

 15000

 20000

 25000

 30000

 35000

 40000

1 2 3 4

C
an

di
da

te
s

Distance σ

PRG
SG
GR

DVP

(b) Candidate size (Q1)

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

1 2 3 4

C
an

di
da

te
s

Distance σ

PRG
SG
GR

DVP

(c) Candidate size (Q2)

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

1 2 3 4

C
an

di
da

te
s

Distance σ

PRG
SG
GR

DVP

(d) Candidate size (Q3)

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

1 2 3 4

C
an

di
da

te
s

Distance σ

PRG
SG
GR

DVP

(e) Candidate size (Q4)

 0

 50

 100

 150

 200

1 2 3 4

S
R

T
 (

s)

Distance σ

PRG
SG
GR

DVP

(f) SRT of Q1 (in sec.)

 0

 5

 10

 15

 20

 25

 30

 35

1 2 3 4

S
R

T
 (

s)

Distance σ

PRG
SG
GR

(g) SRT of Q2 (in sec.)

 0

 20

 40

 60

 80

 100

1 2 3 4

S
R

T
 (

s)

Distance σ

PRG
SG
GR

(h) SRT of Q3 (in sec.)

 0

 10

 20

 30

 40

 50

 60

1 2 3 4

S
R

T
 (

s)

Distance σ

PRG
SG
GR

(i) SRT of Q4 (in sec.)

 0

 5

 10

 15

 20

 25

0.05 0.1 0.15 0.2

R
es

po
ns

e
Ti

m
e

(s
)

α

Q1
Q2
Q3
Q4

(j) Effect of α (in sec.).

Figure 12: Experimental results for real dataset.
31

Table 3: Query modification costs for AIDS dataset (msec.).
Query e4 e5 e6 e7 e8 e9
Q1 20 36 36 36 37 37
Q2 0 0 0 15 15
Q3 0 0 0 0 0
Q4 16 16 16 16

of Q1 is in Rfree (“best” case). In contrast, all candidates of Q2, Q3, Q5 − Q8

are in Rver (“worst” case). For Q4, the candidate data graphs are scattered in both
Rver and Rfree.

Participants profile. Eight unpaid male volunteers (ages from 21 to 27) partici-
pated in the experiments. None of them are familiar with any graph query lan-
guages. They were first trained to use the GUI of PRG. For every query, the partici-
pants were given some time to determine the steps that are needed to formulate the
query visually. This is to ensure that the effect of thinking time is minimized during
query formulation. Note that faster a user formulates a query, the lesser time PRG

has for SPIG construction. The participants were given one query at a time. That is,
only after the correct formulation of the current query, a participant was given the
next query. If an error was committed by a participant then that particular formu-
lation effort is ignored and he had to start afresh. Each query was formulated five
times by each participant (using the default sequence unless specified otherwise)
and reading of the first formulation was ignored. The average query formulation
time (QFT) for a query by all participants is shown in parenthesis in Figure 11.

8.2 Performance on Real Graph Dataset

We discuss the performance of PRG on the AIDS dataset from a variety of aspects.
For the AIDS dataset, we set α = 0.1, β = 8 for PRG and σ = 3 for all tech-
niques unless specified otherwise. Note that we do not study the effect of different
values of β here as in [10] we have demonstrated that it has negligible effect
on frequent subgraph containment queries (candidate pruning depends on frequent
fragments). For subgraph similarity query, the candidate pruning is mainly based
on DIFs. Hence, the variation of β has even lesser effect on similarity queries.
For other parameters, we use the default settings of GR, SG, and DVP as suggested
in [20], [12] and [17], respectively.

Index size comparison. Table 2 shows the index sizes of PRG, GR, SG, and DVP.
Note that GR and SG use the same indexing scheme. Except DVP, all the indexing
strategies of representative systems are independent of σ. Observe that the index
size of DVP is significantly larger than PRG for all σ (highest observed factor being
25).

SPIG-based subgraph containment query performance. Recall that if a query
has exact matches, then PRG will invoke Algorithm 3. However, in contrast to the

32

exact subgraph matching strategy in [10] (denoted by GBR), Algorithm 3 generates
exact matches by exploiting the SPIGs. Hence, we compare PRG and GBR here over
subgraph containment queries. We use the subgraph containment queries used for
empirical study in [10] (denoted by Q1 - Q6 in [10]) as test queries. Figure 12(a)
depicts the query performance. The average SRT is computed by taking the av-
erage of the SRTs of all participants (last four formulations). In the sequel, SRT of
PRG refers to this average SRT unless specified otherwise.

Observe that the SRT of PRG is similar to GBR (SRTs of Q1-Q3 are less than
0.1ms). This is favorable to PRG as it can support a unified framework for both
subgraph containment and similarity queries without sacrificing performance of
the former type of queries in comparison to GBR.

Candidate size and system response time (SRT). Next, we compare the perfor-
mances of the representative systems for evaluating subgraph similarity queries by
varying σ from 1 to 4. Figures 12(b)-(e) report the candidate sizes of representa-
tive queries for different values of σ. Note that in PRG, GR, and SG, candidate size
refers to |Rfree ∪ Rver|. In fact, GR and SG do not separate the candidates into
these two categories. However, candidate size in DVP refers to |Rver| only7. Ob-
serve that for most cases the candidate size of PRG is significantly less than GR, SG,
and DVP. In Figures 12(c) and (d) (“worst” case queries), although the candidate
size of PRG is larger than GR and SG when σ ∈ {1, 2}, it becomes less than these
approaches when σ increases to 3 and 4. The candidate pruning of PRG depends on
the DIFs and frequent fragments. Typically, DIFs have stronger pruning ability. In
contrast, pruning of SG and GR mainly depends on the frequent fragments. In the
worst cases, there are less DIFs in the queries with smaller σ, which weakens prun-
ing ability of PRG. Additionally, the candidate sizes of DVP in Q1 (“best” case) is
significantly lesser than PRG for σ ∈ {3, 4}. This is primarily because DVP only
reports |Rver|. For Q1, |Rver| = 0 in PRG. For Q2-Q4, the candidate sizes of DVP

are close to the entire dataset (∼ 40K).
Figures 12(f)-(i) report the SRTs for different values of σ. In GR, SG, and DVP,

SRT refers to the execution time of a query. Each query was executed five times in
each approach and the results from the first run were always discarded. Observe
that we only display the SRTs of DVP for Q1 only. This is because in contrast to
the remaining approaches, DVP returns empty results for the remaining queries8.

It is evident that the performance of PRG is better than the existing strategies.
Although in Figures 12(g) and (h) (worst case queries), the SRT of PRG is a little bit
longer than GR and SG for σ ∈ {1, 2}, it is less than these approaches for larger σ.
SG/GR converts the subgraph similarity verification problem to the exact subgraph
isomorphism verification problem. The latter is typically faster than the former. In
the worst cases, all the candidates in PRG need to be verified. Note that SG/GR loses
this advantage when σ increases as they have to perform a large number of exact
subgraph verification. More importantly, the SRT of PRG grows gracefully with

7The current version of DVP program outputs only |Rver|.
8We have also manually verified that the result sets are indeed non-empty.

33

Query Sequence Step1 Step2 Step3 Step4 Step5 Step6 Step7 Step8 Step9 Avg.
SRT

Q1

1,2,3,4,5,6,7,
8, 9

0 0 0 0 0.004 0.006 0.045 0.069 0.477 9.3

1,2,3
4,5,6,8,7, 9

0 0 0 0 0.005 0.007 0.021 0.285 0.478 9.5

Q2

1,2,3,4,5,6,
7, 8

0 0.15 0.3 0.134 0.343 0.21 0.312 0.24 8.2

1,2,3,8,7,6,
5, 4

0 0.15 0.3 0 0.135 0.3 0.34 0.35 8.4

Q3

1,2,3,4,6,8,
7, 5

0.002 0.003 0 0 0 0.004 0.004 0.168 10

3,2,1,5,7,8,
6, 4

0 0.002 0.002 0 0 0.002 0.004 0.128 10.2

Q4

1,2,3,4,5,6,7 0.1 0.32 0.15 0.21 0.35 0.12 0.32 4.8
1,2,4,3,6,7,5 0.1 0.32 0.33 0.14 0.2 0.4 0.15 5

Q5

1,2,3,4,5,6 0.015 0 0 0.01 0.015 0.016 0.58
1,2,3,5,6,4 0.015 0 0 0.03 0.02 0 0.54

Q6

1,2,3,4,5,6,7 0 0 0.01 0.03 0.01 0.015 0.024 1.1
4,3,2,1,5,7,6 0.015 0 0.015 0.015 0.026 0 0.03 1

Q7

1,2,3,4,5,6,7 0.01 0.014 0 0.015 0.015 0.02 0.015 0.73
1,2,4,6,7,5,3 0.01 0.014 0.02 0.032 0.016 0 0.015 0.6

Q8

1,2,3,4,5,6,7 0.023 0.013 0.023 0.02 0.013 0.016 0.015 0.62
7,6,5,4,3,2,1 0.015 0 0.015 0.03 0.02 0 0.023 0.54

Table 4: Effect of variation in query formulation sequence on SPIG construction (in
sec.)

σ. Lastly, only PRG orders the query results according to their subgraph distance.
Inevitably, this increases the SRT of PRG.

Query modification costs. We now compare the cost of modifying a visual query
using Algorithm 7. We vary the steps when a user performs modification, namely
from addition of the 4-th edge (e4) to the 9-th edge (e9) if any. We always delete
the first edge (e1) from Q1 − Q4 to simulate worst case scenario. Table 3 reports
the performances. Observe that the modification cost of PRG is cognitively negli-
gible (virtually “zero”). This also implies that the cost of updating the SPIG set is
negligible. Since the time taken to construct an edge in PRG typically is at least 2
seconds, query modification can easily be completed by exploiting the GUI latency.

SPIG construction cost and query formulation sequence. Next, we assess the
effect of different formulation sequences on the SPIG construction time and SRT.
Table 4 lists different formulation sequences for Q1 − Q8 and the average time
(all participants) to construct the SPIGs at different steps. Observe that the SPIG

construction process at each step is very efficient and takes negligible time. It is
significantly lower (almost an order of magnitude) than the available GUI latency
(at least two seconds to draw an edge9). Also, SPIG construction is not adversely
affected by addition of new edges to a query fragment. In summary, SPIGs can
easily be constructed by exploiting the latency offered by the GUI. Lastly, the
formulation sequences only have minor effect on the SPIG construction time and

9Here we ignore the ‘user thinking time”. As the thinking time increases, the latency offered by the GUI
increases as well at each step.

34

 0

 50

 100

 150

 200

 250

10 20 40 60 80

In
de

x
S

iz
e

(M
b)

Dataset Size (k graphs)

PRG
SG/GR

Figure 13: Index size comparison.

Table 5: Query modification cost for synthetic dataset (msec).
Query 10K 20K 40K 60K 80K
Q5 0 0 0 16 16
Q6 0 0 0 0 15
Q7 0 0 0 15 30
Q8 0 0 15 30 40

SRT highlighting the robustness of our technique.

Effect of α. Lastly, we compare the performance of PRG under different values
of α from 0.05 to 0.2. α affects the number of frequent fragments and DIFs built
in the action-aware indices and also the distribution of candidates in Rfree and
Rver. Figure 12(j) reports the SRT of Q1-Q4 in Figure 11 for different values of α.
Observe that the SRTs fluctuate in a small range in most cases with the variations of
α. Notice that although the SRTs of subgraph containment queries (Figure 12(a))
is in the order of msec, the response time of similarity queries in Figure 12(j) is in
the order of seconds. This is because the candidate sets of similarity queries are
typically larger than that of containment queries. Besides, the verification cost of a
similarity query is typically higher than that of a containment query.

8.3 Performance on Synthetic Graph Dataset

We now assess the scalability of PRG using the synthetic datasets and the queries
Q5 to Q8. For synthetic datasets, we set β = 4 and α = 0.05 for PRG and σ = 3
for PRG, SG and GR. Note that since DVP failed to build indices for the synthetic
datasets10, we are not able to compare its performance here.

Size of indexes. Figure 13 reports the size of indexes with increase in dataset size.
Observe that the index size of PRG increases slowly and is smaller than SG/GR for
all datasets.

10DVP simply exits index building. No specific error message is displayed.

35

 0

 5

 10

 15

 20

10 20 40 60 80

S
R

T
 (

s)

Dataset Size (k graphs)

PRG
SG
GR

(a) SRT in sec. (Q5)

 0

 5

 10

 15

 20

 25

 30

10 20 40 60 80

S
R

T
 (

s)

Dataset Size (k graphs)

PRG
SG
GR

(b) SRT in sec. (Q6)

 0

 5

 10

 15

 20

 25

 30

10 20 40 60 80

S
R

T
 (

s)

Dataset Size (k graphs)

PRG
SG
GR

(c) SRT in sec. (Q7)

 0

 5

 10

 15

 20

 25

10 20 40 60 80

S
R

T
 (

s)

Dataset Size (k graphs)

PRG
SG
GR

(d) SRT in sec. (Q8)

 0

 5000

 10000

 15000

 20000

 25000

10 20 40 60 80

C
an

di
da

te
s

Dataset Size (k graphs)

PRG
SG
GR

(e) Candidate size (Q5)

 0

 5000

 10000

 15000

 20000

10 20 40 60 80

C
an

di
da

te
s

Dataset Size (k graphs)

PRG
SG
GR

(f) Candidate size (Q6)

 0

 5000

 10000

 15000

 20000

10 20 40 60 80

C
an

di
da

te
s

Dataset Size (k graphs)

PRG
SG
GR

(g) Candidate size (Q7)

 0

 5000

 10000

 15000

 20000

10 20 40 60 80

C
an

di
da

te
s

Dataset Size (k graphs)

PRG
SG
GR

(h) Candidate size (Q8)

Figure 14: Experimental results for synthetic datasets.

36

SRT and size of candidate graphs. Figures 14 depicts the SRTs and sizes of candi-
date graphs of Q5 −Q8 for the five datasets. Clearly, SRT of PRG is lower than SG

and GR and it has the least candidates across all datasets and queries, confirming
the strengths of PRG. More importantly, our proposed paradigm enables PRG to
scale gracefully. Note that the sharp increase in SRT for Q5 (for 80K dataset) in
PRG is primarily due to the simple verification method we have used rather than its
candidates pruning ability. As mentioned earlier, a more efficient similarity verifi-
cation technique (e.g., [17]) can significantly lower the SRTs of PRG even further.

Query modification cost. Table 5 reports the modification costs of Q5 − Q8.
For each query we modify at the last step and the first edge is always deleted.
Observe that the modification is very efficient for PRG and scales gracefully across
all datasets. Importantly, it can be easily completed during the latency provided by
the GUI.

9 Conclusions and Future Work

In this paper, we have presented PRAGUE - a practical and unified visual frame-
work that supports processing of modification-efficient subgraph containment and
similarity queries by blending their evaluation with visual query formulation. It
employs a data structure called SPIG, which succinctly records various information
related to the set of supergraphs of newly added edge in the visual query frag-
ment. These information along with the latency offered by the GUI-based query
formulation are exploited by our innovative subgraph query evaluation algorithms
and query modification technique to efficiently retrieve and update candidate data
graphs. Importantly, it gracefully accommodates modifications to a visual query
during construction. All these features are important for deployment of PRAGUE

in real-world environment. Experimental studies on real and synthetic graphs vali-
dated the practical merit and superiority of PRAGUE.

We intend to extend PRAGUE to support richer variety of queries (e.g., query
nodes representing variables, selection predicates). Also, we wish to support more
advanced GUI that allows users to add canned subgraphs at each visual step.

Acknowledgments. The authors thank X. Yan for providing gSpan; H. Shang for provid-
ing DistVP; M. Mongiovi for providing Grafil and SIGMA.

References
[1] S. Abiteboul, R. Agrawal, P. Bernstein et al. The Lowell Database Research Self-

Assessment. In CACM, 48(5), 2005.
[2] H. Bunke and K. Shearer. A graph distance metric based on the maximal common

subgraph. In Pattern Recognition Letters, 1998.
[3] J. Cheng, Y. Ke, W. Ng, A. Lu. FG-Index: Towards Verification-Free Query Process-

ing On Graph Databases.In SIGMOD, 2007.

37

[4] L.P. Cordella, P. Foggia, C. Sansone, M. Vento. An improved algorithm for matching
large graphs. Proceedings of the 3rd IAPR TC-15 Workshop on Graph-based Repre-
sentations in Pattern Recognition, pages 149-159, 2001.

[5] H. He, A. K. Singh. Graphs-at-a-time: Query Language and Access Methods for
Graph Databases. In SIGMOD, 2008.

[6] H. He, A. K. Singh. Closure-Tree: An Index Structure for Graph Queries. In ICDE,
2006.

[7] J. P. Huan, W. Wang. Efficient Mining of Frequent Subgraph in the Presence of Iso-
morphism. In ICDM, 2003.

[8] H. V. Jagadish, et al. Making Database Systems Usable. In SIGMOD, 2007.
[9] H. Jiang, H. Wang, P. S. Yu, S. Zhou. GString: A Novel Approach for Efficient Search

in Graph Databases. In ICDE, 2007.
[10] C. Jin, et al. GBLENDER: Towards Blending Visual Query Formulation and Query

Processing in Graph Databases. In ACM SIGMOD, 2010.
[11] U. Leser. A Query Language for Biological Networks. In Bioinformatics, 21:ii33–

ii39, 2005.
[12] M. Mongiovi, R. Di Natale, et al. SIGMA: A Set-cover-based Inexact Graph Matching

Algorithm. In J. of Bioinformatics and Comp. Biology, 2010
[13] E. Pietriga. A Toolkit for Addressing HCI Issues in Visual Language Environments.In

IEEE Symp. on Vis. Lang. and Human-Centric Comp., 2005.
[14] W.-S Han et al. iGraph: A Framework for Comparisons of Disk Based Graph Index-

ing Techniques. In VLDB, 2010.
[15] H. Shang, Y. Zhang, X. Lin, J. X. Yu. Taming Verification Hardness: An Efficient

Algorithm for Testing Subgraph Isomorphism. In VLDB, 2008.
[16] H. Shang, K. Zhu, X. Lin, Y. Zhang, R. Ichise. Similarity Search on Supergraph

Containment. In ICDE, 2010.
[17] H. Shang, et al. Connected Substructure Similarity Search. In SIGMOD, 2010.
[18] Y. Tian, R. C. McEachin, C. Santos, et al. SAGA: A subgraph matching tool for

biological graphs. In Bioinformatics, 2006.
[19] J. R. Ullman. An Algorithm for Subgraph Isomorphism. J. ACM, 23(1), 1976.
[20] X. Yan, et al. Substructure Similarity Search in Graph Databases. In SIGMOD, 2005.
[21] X. Yan, J. Han. gSpan: Graph-based Substructure Pattern Mining. In ICDM, 2002.
[22] X. Yan, et al. Graph Indexing: A Frequent Structure-Based Approach. In SIGMOD,

2004.
[23] Z. Zeng, A. K. H. Tung, J. Wang, et al. Comparing Stars: On Approximating Graph

Edit Distance. In VLDB, 2009.
[24] S. Zhang, et al. TreePi: A Novel Graph Indexing Method. In ICDE, 2007.
[25] S. Zhang, et al. GADDI: Distance Index Based Subgraph Matching in Biological

Networks. In EDBT, 2009.
[26] P. Zhao, et al. Graph Indexing: Tree + delta ≥ Graph. In VLDB, 2007.
[27] P. Zhao, J. Han. On Graph Query Optimization in Large Networks. In VLDB, 2010.
[28] J. L. Zou, et al. A Novel Spectral Coding in a Large Graph Database. In EDBT , 2008.

38

