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Abstract

Finding all occurrences of a twig pattern in a database is a core opera-
tion in xml query processing. Recent study showed that tree-aware relational
framework significantly outperform tree-unaware approaches in evaluating
structural relationships in xml twig queries. In this paper, we present an
efficient strategy to evaluate a specific class of structural relationship called
nca-twiglet in a tree-unaware relational environment. Informally, nca-twiglet
is a subtree in a twig pattern where all nodes have the same nearest common
ancestor (the root of nca-twiglet). We focus on nca-twiglets having parent-
child relationships. Our scheme is build on top of our Sucxent++ system. We
show that by exploiting the encoding scheme of Sucxent++ we can reduce
useless structural comparisons in order to evaluate nca-twiglets. Through a
comprehensive experiment, we show that our approach is not only more scal-
able but also performs better than a representative tree-unaware approach on
all benchmark queries with the highest observed gain factors being 352. Ad-
ditionally, our approach reduces significantly the performance gap between
tree-aware and tree-unaware approaches.
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Figure 1: Example of twig queries and SUCXENT++ schema.

1 Introduction

Finding all occurrences of a twig pattern in a database is a core operation in xml
query processing, both in relational implementations of xml databases [3, 7–9, 13,
16,17,21,22], and in native xml databases [1,4,5,11,12,14]. Consequently, in the
past few years, many algorithms have been proposed to match twig patterns. These
approaches (i) first develop a labeling scheme to capture the structural information
of xml documents, and then (ii) perform twig pattern matching based on the labels
alone without traversing the original xml documents.

For the first sub-problem of designing appropriate labeling scheme, various
methods have been proposed that are based on tree-traversal order [1, 9, 10], re-
gion encoding [4, 22], path expressions [12, 17] or prime numbers [19]. By apply-
ing these labeling schemes, one can determine the structural relationship between
two elements in xml documents from their labels alone. The goal of second sub-
problem of matching twig patterns is to devise efficient techniques for structural
relationship matching. In general, structural relationship in a twig query may be
categorized in two different classes: (a) nca-twiglet, and (b) path expression. Given
a query twig pattern Q = (V,E), the nearest common ancestor (denoted as nca) of
two nodes x ∈ V , y ∈ V is the common ancestor of x and y whose distance to x
(and to y) is smaller than the distance to x of any other common ancestor of x and
y. The twig substructure rooted at such nca node is called nca-twiglet. For exam-
ple, consider the twig query in Figure 1(a). The twig structure rooted at entry
node is an example of nca-twiglet as it is the nca of location and name nodes.
On the other hand, path expression is a linear structural constraint. For example,
/uniprot/entry is a path expression in Figure 1(a). In this paper, we focus on ef-
ficient evaluation of nca-twiglets in a relational implementation of xml databases.

In literature, evaluation strategies of twig pattern matching can be broadly clas-
sified into the following three types: (a) binary-structure matching, (b) holistic twig
pattern matching, and (c) string matching. In the binary-structure matching ap-
proach, the twig pattern is first decomposed into a set of binary (parent-child and
ancestor-descendant) relationships between pairs of nodes. Then, the twig pattern
can be matched by matching each of the binary structural relationships against the
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xml database, and “stitching” together these basic matches [1, 8, 10, 11, 16, 22]. In
the holistic twig pattern matching approach, the twig query is decomposed into its
corresponding path components and each decomposed path component is matched
against the xml database. Next, the results of each of the query’s path expressions
are joined to form the result to the original twig query [4,6,12]. Lastly, approaches
like ViST [18] and PRIX [14] are based on string matching method and transform
both xml data and queries into sequences and answer xml queries through subse-
quence matching.

One of the key challenge in nca-twiglets evaluation (as well as twig pattern
matching in general) is to develop techniques that can reduce generation of large
intermediate results. For instance, the binary-structure matching approaches may
introduce very large intermediate results. Consider the sample document fragment
from UniProtKB/ Swiss-Prot and the nca-twiglet in Figures 2 and 1(a), respec-
tively. The path match (e2, g2, n1) for path entry/geneLocation/name does not
lead to any final result since there is no comment/location path under e2. Note
that this problem is exacerbated for queries that are high-selective1 but each path in
the query is low-selective. For example, the query in Figure 1(a) is very selective
as it returns only 8 results. However, all the paths are low-selective. Note that the
number associated with each node in the queries in Figure 1 represents the num-
ber of occurrences of the path from the root node to the specific node in the xml
database. Similarly, the query in Figure 1(b) is a high-selective query as it does not
return any results although all the paths are low-selective. To solve this problem,
the holistic twig pattern matching has been developed in order to minimize the in-
termediate results. In this approach, only those root-to-leaf path matches that will
be in the final twig results are enumerated. However, when the twig query con-
tains parent-child relationships, these solutions may still generate large numbers of
useless matches [5]. Hence, in this paper we focus our attention on nca-twiglets
containing parent-child relationship and are components of high-selective queries
having low-selective paths.

The rest of the paper is organized as follows. Section 2 gives the framework
of our work and highlights the key contributions. Next, in Section 3, we formally
introduce the notion of nca-twiglet and present the algorithmic details about how
nca-twiglets are efficiently matched in our relational framework. Results of the
performance evaluation are presented in Section 4. Section 5 briefly discusses
related research in twig query processing in a relational environment. Finally, the
last section concludes the paper.

2 Framework and Contributions

The problem of efficiently finding ncas in a general tree has been studied exten-
sively over the last three decades in an online and offline setting, and in various

1Throughout the paper, we use “high-selective” or “very selective” to characterize a twig query with few
results and “low-selective” to characterize a query with many results.
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Figure 2: Example of XML data.

models of computation [2]. Most of these approaches work using some mapping
of the tree to a completely balanced tree, thereby exploiting the fact that for com-
pletely binary trees the problem is easier. Different algorithms differ by the way
they do the mapping. However, these techniques cannot be directly used in the
xml context for the following reasons. (i) Although the labels of the nodes used
in some of the nca algorithms can compute the label of nca in constant time [2],
they are not generic enough to efficiently support evaluation of various xpath axes.
Indeed, as mentioned earlier, the xml community has resorted to devising novel
labeling schemes to support efficient twig matching. (ii) Due to the nature of xml
data, the mapping of an xml tree to a completely binary tree may not be an efficient
technique for processing different types of xpath axes. Consequently, the research
community has proposed various techniques on native and relational frameworks
to evaluate nca-twiglets and twig queries in general.

2.1 Relational Approaches for Twig Query Processing and our Con-
tributions

While a variety of approaches have been proposed in the literature to process
twig queries in native xml storage [4, 5, 11, 12, 14], finding ways to evaluate such
queries in relational environment has gained significant momentum in recent years.
Specifically, there has been a host of work [3, 4, 7, 9, 10, 22] on enabling relational
databases to be tree-aware by invading the database kernel to implement xml sup-
port. On the other side of the spectrum, some completely jettison the approach of
internal modification of the rdbms for twig query processing and resort to alterna-
tive tree-unaware approach [8,13,15,16] where the database kernel is not modified
in order to process xml queries.

While the state-of-the-art tree-aware approaches are certainly innovative and
powerful, we have found that these strategies are not directly applicable to rela-
tional databases. The rdbms systems need to augment their suite of query pro-
cessing strategies by incorporating special purpose external index systems, algo-
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rithms and storage schemes to perform efficient xml query processing. Therefore,
the integration of external modules into commercial relational databases could be
complex and inefficient. On the other hand, there are considerable benefits in tree-
unaware approaches with respect to portability as they do not invade the database
kernel. Consequently, they can easily be incorporated in an off-the-shelf rdbms.
However, one of the key stumbling block for the acceptance of tree-unaware ap-
proaches has been query performance. Worse, this shortcoming is exacerbated
when the number of relations participating in the query as well as their sizes are
scaled upwards. In fact, recent results reveal that the tree-aware approaches ap-
pear scalable and, in particular, perform orders of magnitude faster than several
tree-unaware approaches [3, 9].

We observe that the superiority of tree-aware approaches is primarily due to
the following key factors.

• Most of the tree-aware approaches are based on the tree-traversal order and
region encoding labeling schemes to label nodes within an xml document.
However, in relational environment, efficient evaluation of containment queries
using these labeling schemes requires modification of the SQL query op-
timizer [9, 22]. Consequently, existing tree-unaware approaches based on
these labeling schemes suffer from performance degradation.

• In tree-unaware approaches, the relational kernel is unaware of the fact that
it is operating on tree-shaped data rather than any arbitrary data points. This
results in unnecessary computation as well as generation of poor query plans
when processing tree-structured queries.

• MonetDB [3], an innovative and powerful tree-aware approach, is a main
memory database system, which did not consider all the overhead that would
have been incurred in a disk-bound database system.

In this paper, we explore the challenging problem of efficient evaluation of nca-
twiglets in a tree-unaware relational framework.

In summary, the main contributions of this paper are as follows. (a) Based
on a novel labeling scheme, in Section 3, we present an efficient algorithm for
determining nearest common ancestor (nca) of two elements in an xml document.
Our strategy accesses much fewer nodes compared to existing state-of-the-art tree-
unaware approaches in order to evaluate nca-twiglets. Importantly, our proposed
algorithm is capable of working with any off-the-shelf rdbms without any internal
modification. (b) Through an extensive experimental study in Section 4, we show
that our approach significantly outperforms a state-of-the-art tree-unaware scheme
(Global-Order [17]) for evaluating benchmark nca-twiglets. Additionally, our
approach reduces significantly the performance gap between tree-aware (monetdb
[3]) and tree-unaware approaches.
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2.2 Overview of SUCXENT++ Approach

Our approach for nca-twiglet evaluation is based on the Sucxent++ system [15]. It
is a tree-unaware approach and is designed primarily for query-mostly workloads.
Here, we briefly review the storage scheme of Sucxent++ which we shall be using
in our subsequent discussion. The Sucxent++ schema is shown in Figure 1(c).
Document stores the document identifier DocId and the name Name of a given input
XML document T . We associate each distinct (root-to-leaf) path appearing in T ,
namely PathExp, with an identifier PathId and store this information in Path table.
For each element leaf node n in T , we shall create a tuple in the PathValue table.

Sucxent++ uses a novel labeling scheme that does not require labeling of
internal nodes in the xml tree. For each leaf node it stores four additional at-
tributes namely LeafOrder, BranchOrder, DeweyOrderSum and SiblingSum. Also,
it encodes each level of the xml tree with an attribute called RValue. We now
elaborate on the semantics of these attributes. Given two leaf nodes n1 and n2,
n1.LeafOrder < n2.LeafOrder iff n1 precedes n2. LeafOrder of the first leaf node in
T is 1 and n2.LeafOrder = n1.LeafOrder+1 iff n1 is a leaf node immediately pre-
ceding n2. Given two leaf nodes n1 and n2 where n1.LeafOrder+1 = n2.LeafOrder,
n2.BranchOrder is the level of the nca of n1 and n2. The data value of n is stored in
n.LeafValue.

To discuss DeweyOrderSum, SiblingSum and RValue, we introduce some aux-
iliary definitions. Consider a sequence of leaf nodes C: ⟨n1, n2, n3, . . . , nr⟩ in T .
Then, C is a k-consecutive leaf nodes of T iff (a) ni.BranchOrder ≥ k for all i ∈
[1,r]; (b) If n1.LeafOrder > 1, then n0.BranchOrder < k where n0.LeafOrder+1 =
n1.LeafOrder; and (c) If nr is not the last leaf node in T , then nr+1.BranchOrder <
k where nr.LeafOrder+1 = nr+1.LeafOrder. A sequence C is called a maximal k-
consecutive leaf nodes of T , denoted as Mk, if there does not exist a k-consecutive
leaf nodes C′ and |C|<|C′|.

Let Lmax be the largest level of T . The RValue of level ℓ, denoted as Rℓ, is
defined as follows: (i) If ℓ = Lmax − 1 then Rℓ = 1; (ii) If 0 < ℓ < Lmax − 1 then
Rℓ = 2Rℓ+1 × |Mℓ+1| + 1. For example, consider the xml tree shown in Figure 2.
Lmax = 5. The values of |M1|, |M2|, |M3|, and |M4| are 9, 4, 1, and 1, respectively.
Then, R4 = 1, R3 = 3, R2 = 2 × 3 × |M3| + 1 = 7, and R1 = 2 × 7 × |M2| + 1 =
57. Note that due to facilitate evaluation of xpath queries, the RValue attribute in
DocumentRValue stores Rℓ−1

2 + 1 instead of Rℓ.
DeweyOrderSum is used to encode a node’s order information together with its

ancestors’ order information using a single value. Consider a leaf node n at level ℓ
in T . Ord(n, k) = i iff a is either an ancestor of n or n itself; k is the level of a; and
a is the i-th child of its parent. DeweyOrderSum of n, n.DeweyOrderSum, is defined
as
∑ℓ

j=2 Φ( j) where Φ( j)=[Ord(n, j)-1]×R j−1. For example, consider the rightmost
name node in Figure 2 which has a Dewey path “1.4.3.1”. DeweyOrderSum of
this node is: n.DeweyOrderSum = (Ord(n, 2) − 1) × R1 + (Ord(n, 3) − 1) × R2 +

(Ord(n, 4) − 1) × R3 = 3 × 57 + 2 × 7 + 0 × 3 = 185. Note that DeweyOrderSum
is not sufficient to compute position-based predicates with QName name tests, e.g.,
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entry[2]. Hence, the SiblingSum attribute is introduced to the PathValue table.
SiblingSum encodes the local order of nodes which are with the same tag name

of n, namely same-tag-sibling order. For example, consider the children of the
fourth entry element in Figure 2. The local orders of the three geneLocation
and the comment nodes are 1, 2, 3 and 4, respectively. On the other hand, the
same-tag-sibling order of these nodes are 1, 2, 3, and 1, respectively. Formally, let
Sibling(n, k) = i iff a is either an ancestor of n or n itself; k is the level of a; and the
i-th τ-child of its parent (τ is the tag name of a). SiblingSum of n, n.SiblingSum, is∑ℓ

j=2Ψ( j) where Ψ( j) = [Sibling(n, j)-1]×R j−1.
To evaluate non-leaf nodes, we define the representative leaf node of a non-

leaf node n to be its first descendant leaf node. Note that the BranchOrder attribute
records the level of the nca of two consecutive leaf nodes. Let C be the sequence
of descendant leaf nodes of n and n1 be the first node in C. We know that the nca
of any two consecutive nodes in C is also a descendant of node n. This implies (a)
except n1, BranchOrder of a node in C is at least the level of node n and (b) the
nca of n1 and its immediately preceding leaf node is not a descendant of node n.
Therefore, BranchOrder of n1 is always smaller than the level of n. The reader
may refer to [15] for details on how these attributes are used to efficiently evaluate
ordered xpath axes.

3 Evaluation of NCA-Twiglets

In this section, we present the evaluation strategy of nca-twiglets in Sucxent++.
We begin by formally introducing the notion of nca-twiglet.

3.1 Data Model and NCA-Twiglet

We model xml documents as ordered trees. In our model we ignore comments,
processing instructions and namespaces. Queries in XML query languages make
use of twig patterns to match relevant portions of data in an xml database. The twig
pattern node may be an element tag, a text value or a wildcard “*”. We distinguish
between query and data nodes by using the term “node” to refer to a query node
and the term “element” to refer to a data element in a document. In this paper,
we focus only on parent-child relationships between the nodes in the twig pattern.
Recall that existing holistic twig pattern matching approaches achieve optimality
for ancestor-descendant relationships but may generate large numbers of useless
matches when the twig query contains parent-child relations [5]. We now formally
define nca-twiglet.

Definition 1 (nca-Twiglet) Given a query twig pattern Q = ⟨V,E⟩, a nca-Twiglet
N = ⟨Vn,En,ℜ⟩ in Q, denoted as N ≺ Q, is a subtree in Q rooted at node ℜ ∈ V
such that (a) Vn ⊂ V is a set of nodes whose nearest common ancestor is ℜ, and
(b) En ⊆ E.
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A nca-twiglet consists of a collection of rooted path patterns, where a rooted
path pattern (RP) is a root-to-leaf path in the nca-twiglet. The level of the rootℜ is
called nca-level. For example, the nca-twiglet in Figure 1(a) consists of the rooted
paths entry/comment/location and entry/geneLocation/name. Note that
each of the above RPs has a parent-child relationship between the nodes. The path
from Root(Q) toℜ is called the reachability path of N. For instance, in the above
example /uniprot/entry is the reachability path.

Given a nca-twiglet N ≺ Q and an xml document D, a match of N in D is
identified by a mapping from the nodes in N to the elements in D, such that: (a)
the query node predicates are satisfied by the corresponding database elements,
wherein wildcard “*” can match any single tag; (b) the parent-child relationship
between query nodes are satisfied by the corresponding database elements; and (c)
the reachability path of N is satisfied by the database elements. Next, we present
our approach to match N in D.

3.2 NCA-Twiglet Matching

Recall that in Sucxent++ we each root-to-leaf path of an xml document is encoded
with the attributes LeafOrder, BranchOrder, DeweyOrderSum, and SiblingSum. Ad-
ditionally each level of the xml tree is associated with a RValue. Hence, given the
nca-twiglet N ≺ Q and document D, our goal is to use these attributes to effi-
ciently determine those root-to-leaf paths that satisfies N. We begin by formally
introducing some lemmas to facilitate efficient evaluation of N.

Lemma 1
∑ℓ

j=k Φ( j) ≤ Rk−2−1
2 where Φ( j) =[Ord(n, j)-1]×R j−1, k ∈ (2,ℓ] and n is

a leaf node in an XML document at level ℓ. �

Proof 1 Let M j be the maximum consecutive j-consecutive leaf node set. Then,
the maximum number of consecutive leaf nodes with BranchOrder ≥ j is |M j |.
Given any node at level j, all but one of the descendants of this node has BranchOrder
≥ j. Hence, any node at level j has at most |M j | + 1 descendant leaf nodes.

In Sucxent++, the first sibling has LocalOrder equal to 1. Given Ord(n,t) of n
at each level t ∈ [k, ℓ], any ancestor of n at level t − 1 has at least [Ord(n,t)-1] that
are not n nor n’s ancestor. Each of these nodes either is a leaf node, or has at least
one descendant leaf node. Hence, an ancestor of n at level t − 1 has, excluding n,
at least [Ord(n,t)-1] descendant leaf nodes, all of which are descendants of the n’s
ancestor at level k − 1 and are not descendants of any n’s ancestor at level greater
than t−1. Therefore, there is a node at level k−1 with at least (

∑ℓ
t=k[Ord(n,t)-1])+1

descendant leaf nodes (including n). This implies that
∑ℓ

t=k[Ord(n,t)-1] ≤ |Mk−1|.
Therefore,
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ℓ∑
j=k

Φ( j) =
ℓ∑

j=k

[Ord(n, j) − 1] × R j−1

≤
ℓ∑

j=k

[Ord(n, j) − 1] × Rk−1

≤ |Mk−1| × Rk−1

≤ Rk−2 − 1
2

Lemma 2 Let n1 and n2 be two leaf nodes in an XML document. If
|n1.DeweyOrderSum - n2.DeweyOrderSum| < Rℓ−1

2 + 1 then the level of the near-
est common ancestor is greater than ℓ. �

Proof 2 Assume the level of the nearest common ancestor of n1 and n2 is ≤ ℓ,
then |n1.DeweyOrderSum - n2.DeweyOrderSum|< (Rℓ - 1)/2 + 1. Let ℓ1 be the level
of n1 in X and ℓ2 be the level of n2 in X .
When level of nearest common ancestor is ℓ: In this case, Φ1( j)−Φ2( j) = 0 for

all j < ℓ + 1 and Φ1( j) − Φ2( j) , 0 for j ≥ ℓ + 1. Consider the following cases.

Case n1.LeafOrder > n2.LeafOrder:

∆ = n1.DeweyOrderSum − n2.DeweyOrderSum

=

ℓ1∑
j=ℓ+1

Φ1( j) −
ℓ2∑

j=ℓ+1

Φ2( j)

= [Ord(n1, ℓ + 1) − 1] × Rℓ − [Ord(n2, ℓ + 1) − 1] × Rℓ +

ℓ1∑
j=ℓ+2

Φ1( j) −
ℓ2∑

j=ℓ+2

Φ2( j) (1)

Since, Ord(n1,ℓ+1) , Ord(n2, ℓ + 1) and Ord(n1, ℓ + 1) > Ord(n2, ℓ + 1), the
above equation satisfies the following:

∆ ≥ Rℓ +

ℓ1∑
j=ℓ+2

Φ1( j) −
ℓ2∑

j=ℓ+2

Φ2( j)

≥ Rℓ −
R′ℓ − 1

2
(From Lemma 1)

≥ Rℓ − 1
2
+ 1

Case n1.LeafOrder < n2.LeafOrder:
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Since in this case, Ord(n1,ℓ+1) , Ord(n2, ℓ+1) and Ord(n1, ℓ+1) < Ord(n2, ℓ+
2), Equation 1 satisfies the following:

∆ ≤ −Rℓ +

ℓ1∑
j=ℓ+2

Φ1( j) −
ℓ2∑

j=ℓ+2

Φ2( j)

≤ −Rℓ +
Rℓ − 1

2
(From Lemma 1)

≤ −(
Rℓ − 1

2
+ 1)

Therefore,

|∆| ≥ (
Rℓ − 1

2
+ 1) (contradiction)

When level of nearest common ancestor is less than ℓ: Let level of nearest

common ancestor be k. Then,
Case n1.LeafOrder > n2.LeafOrder:

∆ ≥ Rk − 1
2
+ 1 (Shown to be true above)

> (
Rℓ − 1

2
+ 1) since k < ℓ (contradiction)

Case n1.LeafOrder < n2.LeafOrder:

|∆| ≥ Rk − 1
2
+ 1

> (
Rℓ − 1

2
+ 1) since k < ℓ (contradiction)

Hence, nodes n1 and n2 cannot have a nearest common ancestor at level lesser
than or equal to ℓ. The level of nearest common ancestor must be greater than ℓ.

Lemma 3 Let n1 and n2 be two leaf nodes in an XML document. If
|n1.DeweyOrderSum - n2.DeweyOrderSum| ≥ Rℓ−1

2 + 1 then the level of the near-
est common ancestor is equal to or smaller than ℓ. �

Proof 3 Assume the level of the nearest common ancestor of n1 and n2 is > ℓ,
then |n1.DeweyOrderSum - n2.DeweyOrderSum| ≥ (Rℓ - 1)/2 + 1. Let ℓ1 be the
level of n1 in X and ℓ2 be the level of n2 in X . Let k > l be the level of the
nearest common ancestor. Therefore Φ1( j) − Φ2( j) = 0 for all j < k + 1 and
Φ1( j) − Φ2( j) , 0 for j ≥ k + 1.
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Case n1.LeafOrder > n2.LeafOrder:

|∆| = |n1.DeweyOrderSum − n2.DeweyOrderSum|

=

ℓ1∑
j=k+1

Φ1( j) −
ℓ2∑

j=k+1

Φ2( j)

≤
ℓ1∑

j=k+1

Φ1( j)

Case n1.LeafOrder < n2.LeafOrder:

|∆| = −
ℓ1∑

j=k+1

Φ1( j) +
ℓ2∑

j=k+1

Φ2( j)

≤
ℓ2∑

j=k+1

Φ2( j)

Based on Lemma 1:

|∆| ≤ Rk−1 − 1
2

≤ Rℓ − 1
2

<
Rℓ − 1

2
+ 1 (contradiction)

Combining Lemma 2 and Lemma 3 above, we can find the exact level of the
nca.

Theorem 1 Let n1 and n2 be two leaf nodes in an XML document. If Rℓ+1−1
2 +

1 ≤|n1.DeweyOrderSum - n2.DeweyOrderSum|< Rℓ−1
2 +1 then the level of the near-

est common ancestor of n1 and n2 is ℓ + 1. �

Let us illustrate with an example the above lemmas and theorem. Consider
the last leaf node in Figure 2. The DeweyOrderSum of this node is 193. Let D1
be the DeweyOrderSum of leaf nodes that have nca at level 2. Using the above
theorem, D1 falls within the following range: (R2 − 1)/2 + 1 ≤ |D1 − 193| <
(R1 − 1)/2 + 1 ⇒ 4 ≤ |D1 − 193| < 29 which returns the sixth, seventh, and
eighth leaf nodes (DeweyOrderSums are 171, 178, and 185, respectively). Let D2
be the DeweyOrderSum of leaf nodes that have nca at level 4. Then D2 falls within
the following range: (R4 − 1)/2 + 1 ≤ |D2 − 193| < (R3 − 1)/2 + 1 ⇒ 1 ≤
|D2 − 193| < 2 which returns the ninth leaf node (DeweyOrderSum is 192). Now
let say we want to get the leaf nodes that have nca at level 2 or deeper and let
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Figure 3: An example of NCA-twiglet evaluation.

D3 be the DeweyOrderSum of these nodes. D3 falls within the following range:
|D3 − 193| < (R1 − 1)/2 + 1 ⇒ |D3 − 193| < 29 which returns the last five leaf
nodes.

We now illustrate Theorem 1 further in the context of a twig query. Consider
the query in Figure 1(a) and the fragment of the PathValue table in Figure 3 (Step
1). Note that for clarity, we only show the DeweyOrderSums of the root-to-leaf
paths in the PathValue table. Let Da be DeweyOrderSum of the representative leaf
nodes satisfying /uniprot/entry/comment/location (second, fifth, and ninth
leaf nodes) and Db be DeweyOrderSum of the representative leaf nodes satisfying
/uniprot/entry/geneLocation/name (fourth, seventh, and eighth leaf nodes).
This is illustrated in step 2 of Figure 3. From the query we know that Da and
Db have nca at level 2 (/uniprot/entry level). Hence, based on Theorem 1 we
can find pairs of (location,name) nodes which have nca at level 2. Da and Db

fall on the following range: (R2 − 1)/2 + 1 ≤ |Da − Db| < (R1 − 1)/2 + 1 ⇒
4 ≤ |Da −Db| < 29 which return the (seventh, ninth) and (eighth, ninth) leaf nodes
pairs (Step 3 of Figure 3). We can easily return the entry subtree by applying
Lemma 2 on any one of these pairs (Steps 4 and 5 of Figure 3). As we are only
interested in finding subtrees that matches a specific nca-twiglet, in this paper we
focus on the Steps 1 to 4 of Figure 3. That is, the retrieval of all descendants for
complete subtree construction (Step 5) is beyond the scope of this paper. Note that
since from the xpath we know that Da and Db can not have nca at level greater
than 2, we only need to use Lemma 2 for matching nca-twiglets. Observe that the
above approach can reduce unnecessary comparison as we do not need to find the
grandparent of location and name nodes. We can determine the nca directly by
using the DeweyOrderSum and RValue attributes.

3.3 Query Translation Algorithm

Given a query twig (xpath), the evaluateNCATwiglet procedure (Figure 4(a))
outputs sql statement. A sql statement consists of three clauses: select sql, f rom sql
and where sql. We assume that a clause has an add() method which encapsulates
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evaluateNCATwiglet ( queryTwig )

01 i = 1
02 for every rootedPath in the queryTwig {
03   from_sql.add("PathValue as V i ")
04   where_sql.add("V i .pathid in rootedPath i .getPathId()")
05   where_sql.add("V i .branchOrder < rootedPath i .level()")
06   if (i > 1) {
07     where_sql.add("V i .DeweyOrderSum BETWEEN 
         V i-1 .DeweyOrderSum –
             RValue(rootedPath i .NCAlevel() - 1) + 1 AND
         V i-1 .DeweyOrderSum + 
             RValue(rootedPath i .NCAlevel() - 1) - 1")
08   }
09   i++
10 }
11 select_sql.add("DISTINCT V i-1 .docId, V i-1 .DeweyOrderSum")
12 return select_sql + from_sql + where_sql

XPath: /uniprot/entry[comment/location and 
  geneLocation/name]

01 SELECT DISTINCT V2.DocId, V2.DeweyOrderSum
02 FROM PathValue V1, PathValue V2
03 WHERE V1.pathid in (2,3,4)
04 AND V1.branchOrder < 4
05 AND V2.docId = V1.docId
06 AND V2.pathid in (5)
07 AND V2.branchOrder < 4
08 AND V2.DeweyOrderSum BETWEEN 

V1.DeweyOrderSum - CAST(29 as BIGINT) + 1 AND
V1.DeweyOrderSum + CAST(29 as BIGINT) - 1 

(a) evaluateNCATwiglet algorithm (b) An example of Translated SQL query

Figure 4: evaluateNCATwiglet algorithm.

some simple string manipulations and simple Sucxent++ joins for constructing
valid sql statements. In addition to preprocessing PathId, for a single XML docu-
ment, we also preprocess RValue to reduce the number of joins.

The procedure firstly breaks the query twig into its subsequent rooted path
(Line 02). Then for every rooted path, it gets the representative leaf nodes of the
rooted path by using PathId and BranchOrder (Lines 04-05). After that, for the
second rooted path onwards, it uses Lemma 2 to get the pair of leaf nodes that have
nca at the nca-level (Line 07). After processing the set of rooted paths, we return
the DocId and DeweyOrderSum of the rightmost rooted path (Line 11) since only
either one of the pairs is needed to construct the whole subtree. Finally, we collect
the final sql statement (Line 12). For example, consider the query in Figure 1(a).
The output sql statement can be seen in Figure 4(b). Lines 03-04 and Lines 06-07
are used to get the representative leaf nodes of the respective rooted path. Line 08
is used to get the pair of leaf nodes that have nca at the nca-level.

4 Performance Study

In this section, we present the performance results of our proposed approach and
compare it with a state-of-the-art tree-unaware approach. Since there are several
tree-unaware schemes proposed by the community, our selection choice was pri-
marily influenced by the following two criteria. First, the storage scheme of repre-
sentative approach should not be dependent on the availability of dtd/xml schema.
Second, the selected approach must have good query performance for a variety of
xpath axes (ordered as well as unordered) for query-mostly workloads. Hence, we
chose the Global-Order storage scheme as described in [17]. Prototypes for Sucx-
ent++ (denoted as sx), and Global-Order (denoted as go) were implemented with
JDK 1.5. The experiments were conducted on an Intel Pentium 4 3GHz machine
running on Windows XP with 1GB of ram. The rdbms used was Microsoft SQL
Server 2005 Developer Edition.
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Figure 5: Query and data sets.

Data and Query Sets: In our experiments, we used XBench DCSD [20] as
synthetic dataset and UniProt2 as real dataset. We vary the size of xml documents
from 10MB to 1GB for XBench and from 20MB to 2GB for UniProt. Note that the
size of the the original UniProt data is 2GB. Hence, we truncated this document
into smaller xml documents of 20MB and 200MB sizes. Recall that we wish to
explore twig queries that are high-selective although the paths are low-selective.
Hence, we modified XBench dataset so that we can control the number of subtrees
(denoted as K) that matches the nca-twiglet and the number of occurrences of the
rooted paths. We set K ∈ {0, 10, 20, 30} for XBench dataset. Note that we did not
modify the UniProt dataset. Figures 5(a) and 5(c) depict the benchmark queries
on XBench and UniProt, respectively. We vary the number of rooted paths in the
queries from 2 to 4. The number of occurrences of subtrees that satisfies a nca-
twiglet and the minimum and maximum numbers of occurrences of rooted paths in
the datasets are shown in Figures 5(b) and 5(d) for XBench and UniProt queries,
respectively.

Test Methodology: Appropriate indexes were constructed for all approaches
(except for monetdb) through a careful analysis on the benchmark queries. Par-
ticularly, for Sucxent++ we create the following indexes on PathValue table: (a)
unique clustered index on PathId and DeweyOrderSum, and (b) non-unique, non-
clustered Index on PathId and BranchOrder. Furthermore, since our dataset consists
of a single xml document, we removed the DocId column from the tables in sx and
go. Prior to our experiments, we ensure that statistics had been collected. The
bufferpool of the rdbms was cleared before each run. Each query was executed 6
times and the results from the first run were always discarded.

2Downloaded from www.ebi.ac.uk/uniprot/database/download.html.
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Figure 6: Performance results.

Since go and sx have different storage approaches, the structure of the returned
results are also different. Recall from Section 3.2, the goal of our study is to identify
subtrees that matches the nca-twiglet, we do not reconstruct the entire matched
subtree. Particularly, for the go approach, we return the identifier of the root of the
subtree (without its descendants) that matches the nca-twiglet. Whereas for sx, we
return the DeweyOrderSum of the root-to-leaf path of the matching subtree. This
path must satisfy the rightmost rooted path of the nca-twiglet. For example, for
the query in Figure 1(a), we return the identifiers of the entry nodes in go and
the DeweyOrderSums of the root-to-leaf paths containing the rightmost rooted path
entry/geneLocation/name nodes in sx. Lastly, for sx we enforce a “left-to-
right” join order on the translated sql query using query hints. The performance
benefits of such enforcement is discussed in [15].
nca-twiglet evaluation times: Our experimental goal is to measure the evalu-

ation time for determining those subtrees that match a nca-twiglet with a specific
reachability path in the twig queries in Figure 5. Figures 6(a) and 6(b) depict
the nca-twiglet evaluation times of Sucxent++ and Global-Order, respectively.
Figure 6(d) depicts the evaluation time for UniProt data set. We observe that sx
significantly outperforms go for all queries with the highest observed factor being
352 (Query U5 on 2GB dataset). Particularly, sx is orders of magnitude faster for
high-selective queries. Observe that for XBench dataset, when K = 0, sx is up to
332 times faster (Query Q6 on 1GB dataset) and on average 56 times faster than go.
This is significant in an environment where users would like to issue exploratory ad
hoc queries. In this case, the user would like to know quickly if the query returns
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any results. If the result set is empty then he/she can further refine his/her query
accordingly.
sx is significantly faster than go because of the following reasons. Firstly, sx

uses an efficient strategy based on Theorem 1 to reduce useless comparisons. Fur-
thermore, the number of join operations in go is more than sx. For example, for
Q6, go and sx join six tables and three tables, respectively. Secondly, go stores
every node of an xml document whereas sx stores only the root-to-leaf paths. Con-
sequently, the number of tuples in the Edge table is much more than that in the
PathValue table.

Comparison with monetdb: Recently, in [3], it has been shown that monetdb is
among the fastest and most scalable XQuery processor and outperforms the current
generation of XQuery systems by quite a big margin. Although monetdb, being
a main-memory database systems, does not incur additional overhead like disk-
bound database systems, we would still like to observe how “far off” our proposed
technique is from monetdb. We used the Windows version of monetdb/XQuery
0.16.0 [3] downloaded from http://monetdb.cwi.nl/XQuery/Download/index.html
(Win32 builds). Note that the evaluation time of monetdb includes the time for
subtree construction whereas the evaluation time of sx and go includes only com-
puting the root (rooted path for sx) of the matched subtrees. Consequently, the
evaluations times do not precisely reflect comparative performances of go and sx
against monetdb. However, they do tell us how “far off” tree-unaware approaches
are compared to a state-of-the-art XQuery processor. The key observation here is
that go is significantly slower than monetdb even without the construction of the
entire subtree. However, this performance gap is significantly reduced when it is
compared against sx. Interestingly, for all queries on real dataset (U1-U5 in Fig-
ure 6(d)), sx is 3-21 times faster than monetdb! Note that we did not show any
results of monetdb for 1GB dataset as it is currently vulnerable to the virtual mem-
ory fragmentation in Windows environment. Consequently, it failed to shred 1GB
XBench (2GB for UniProt) dataset.

5 Related Work

We now compare our proposed approach with existing tree-unaware techniques.
Note that we do not compare our work with tree-aware schemes [1, 3, 7, 9–11, 22]
as these techniques modify the database internals. The tree-unaware approaches
in [8, 16] typically decompose the query twig pattern into a set of parent-child or
ancestor-descendant binary components. Our approach is different from this class
of techniques since it does not decompose the path expressions into binary rela-
tions and hence does not suffer from the explosion of the size of the intermediate
result set as well as number of joins. XRel [21] stores the path of each node in
the document. Then, the resolution of path expressions only requires the paths
(which can be represented as strings) to be matched using string matching opera-
tors. However, the XRel approach uses several theta joins to resolve containment
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queries that have been shown to be quite expensive due to the manner in which an
RDBMS processes joins [22]. In [17], Tatarinov et al. proposed the first solution
for supporting ordered xml query processing by using a tree-unaware relational
database. A modified Edge table [8] was the underlying storage scheme. In com-
parison, our approach uses a novel encoding scheme that can evaluate nca-twiglets
more efficiently (as discussed in Section 4). Lastly, all previous tree-unaware ap-
proaches (except for [13,15]), reported query performance on xml documents with
small/medium sizes – smaller than 500 MB. We investigate query performance on
large synthetic and real datasets (up to 2GB). This gives more insights on the scal-
ability of the state-of-the-art tree-unaware approaches for twig query processing.

Our work in this paper differs from our previous approaches [13, 15] in the
following ways. In [13], along with BranchOrder, we store an attribute called
BranchOrderSum for each leaf node. These two attributes are used along with
RValue to process recursive queries and also to find the minimum level of nca.
However, in our approach, the DeweyOrderSum enables us to exactly determine
the level of a nca. Additionally, BranchOrderSum does not support efficient eval-
uation of ordered xpath axes. Consequently, DeweyOrderSum and SiblingSum are
proposed in [15] to replace BranchOrderSum in order to address this problem. In
this paper we do not focus on evaluating ordered path expressions. Rather, we in-
vestigate how the encoding scheme in [15] can be used for efficiently processing
nca-twiglet, a specific class of structural relationship in a twig pattern query.

6 Conclusions

The key challenge in xml twig pattern evaluation is to efficiently match the struc-
tural relationships of the query nodes against the xml database. In general, struc-
tural relationship in a twig query may be categorized in two different classes:
path expression and nca-twiglet. A path expression enforces linear structural con-
straint whereas nca-twiglet specifies tree-structured relationship. In this paper, we
present an efficient strategy to evaluate nca-twiglets having parent-child relation-
ship in a tree-unaware relational environment. Our scheme is build on top of Sucx-
ent++ [15]. We show that by exploiting the encoding scheme of Sucxent++ we
can reduce useless structural comparisons in order to evaluate nca-twiglets. Our
results showed that our proposed approach outperforms Global-Order [17], a rep-
resentative tree-unaware approach for all benchmark queries. Although tree-aware
approaches are often the best in terms of query performance [3], our scheme re-
duces significantly the performance gap between tree-aware and tree-unaware ap-
proaches. Importantly, unlike tree-aware approaches, our scheme does not require
invasion of the database kernel to improve query performance and can easily be
built on top of any off-the-shelf commercial rdbms.
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