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Abstract

Keyword search for smallest lowest common ancestors (slca s) in xml
data has been widely accepted as a meaningful way to identify matching
nodes where their subtrees contain an input set of keywords. Although slca
and its variants (e.g.,mlca) perform admirably in identifying matching nodes,
surprisingly, they perform poorly for searches on irregular schemas that have
missing elements, that is, (sub)elements that are optional, or appear in some
instances of an element type but not all (e.g., a <population> subelement
in a <city> element might be optional, appearing when the population is
known and absent when the population is unknown). In this paper, we gener-
alize the slca search paradigm to support queries involving missing elements.
Specifically, we propose a novel property called optionality resilience that
specifies the desired behaviors of an xml keyword search (xks) approach for
queries involving missing elements. We present two variants of a novel algo-
rithm called messiah (missing element-conscious high-quality slca search),
which are optionality resilient to irregular documents. messiah logically
transforms an xml document to a minimal full document where all missing el-
ements are represented as empty elements, i.e., the irregular schema is made
“regular”, and then employs efficient strategies to identify partial and com-
plete full slca nodes (slca nodes in the full document) from it. Specifically,
it generates the same slca nodes as any state-of-the-art approach when the
query does not involve missing elements but avoids irrelevant results when
missing elements are involved. Our experimental study demonstrates the
ability of messiah to produce superior quality search results.
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Figure 1: Missing label ratio on different datasets.

1 Introduction

Keyword search on xml data (xks) has gained popularity as it relieves users from
learning complex xml query languages (e.g., XPath, XQuery) and from having to
know the structure of underlying data. However, the lack of expressivity and in-
herent ambiguity bring in two key challenges in performing xks [9]. First, we need
to automatically connect the nodes that match the search keywords in an intuitive,
meaningful way. Second, we should effectively identify the desired return informa-
tion. Specifically, the first challenge involves finding some nodes (e.g., slca nodes)
whose subtrees contain all matching nodes [2, 8, 17] while the second challenge
focuses on filtering nodes within these subtrees to produce relevant and coherent
results [1, 4, 7, 9, 10]. In this paper, we focus on the first challenge.

The smallest lowest common ancestor (slca) [17] is arguably the most popular
technique for locating highly-related data nodes and has become the foundation
for many recent xks approaches [1, 4, 7, 9, 10]. A keyword search using the slca
semantics returns nodes in the xml tree that satisfy the following two conditions:
(a) the subtrees rooted at the nodes contain all the keywords, and (b) the nodes
do not have any proper descendant that satisfies condition (a). The set of returned
data nodes is referred to as the slca s of the keyword search query. For example,
the only slca node satisfying the query Q1(Provo area) on the xml document D2
in Figure 2 is the node with id 0.4.3 (for brevity, in the sequel we will use nid to
denote a node with id id). Figure 3(b)(i) shows the slca node n0.4.3 (shaded) along
with its matches to all Q1’s keywords.

1.1 A Problem with SLCA

Nested, tagged elements are the building blocks of xml. Each tagged element has
a sequence of zero or more attribute/value pairs, and a sequence of zero or more
subelements. An implication of this “relaxed” structure of xml data is that a subele-
ment may appear in one nested substructure of an xml document but not in another
“similar” substructure. For example, consider the xml document D1 in Figure 2.
Notice that although the area element appears in the first city substructure, it is
missing in the last two substructures.

There can be many reasons for such missing elements. For instance, a specific
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Figure 2: Sample xml documents D1 and D2 (D2 contains all the nodes of D1 and
an additional area element (rightmost node)).

entity may not have an element (as an attribute) as it is meaningless in this con-
text (e.g., the spouse attribute of a person entity who is single is meaningless).
Elements may also be missing due to incompleteness of data or human error. What-
ever may be the semantics of a missing (or optional) element in a specific context,
we refer to this scenario collectively as the missing element1 phenomenon and the
label of the missing element (e.g., area) a missing label. Note that “missing el-
ement” covers the “missing attribute” scenario as well. Furthermore, the missing
element could contain subelements that are also missing, i.e., it could be a missing
subtree in a data model instance. Note that in xml documents it is not mandatory
to explicitly mark such missing data using empty elements (i.e., <tag></tag> or
<tag/>) or empty attributes (i.e., tag="")).

Is the missing element phenomenon prevalent in real xml documents? Interest-
ingly, our initial investigation with several popular real-world xml datasets reveal
that it is indeed so. Figure 1 shows a glimpse of this phenomenon. The third
column shows the missing label ratio, which is the ratio between the number of
missing labels and the number of unique labels in a specific dataset. Notice that in
all but one of the datasets more than 40% of the labels are missing labels. Hence,
it is highly possible for users’ queries to involve missing elements. However, it
is unrealistic to expect the users to be aware of elements which may be missing.
Hence, it is imperative for the underlying xks engine to handle this phenomenon
appropriately.

Surprisingly, slca-based xml keyword search (xks) techniques perform poorly
in the presence of the missing element phenomenon. Specifically, the quality of
slca nodes is adversely affected when a keyword query contains a missing label.
For instance, for Q1 on D1, n0.4 is selected as the slca node by [14, 17] as shown
in Figure 3(b)(ii). However, n0.4.1 is not a relevant match as it is not Provo’s area
and does not conform to the user’s search intention in Q1. That is, selecting n0.4 as

1We adopt the “missing element” term from [13] where it refers to elements that are declared optional in the
dtd.
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Figure 3: The DataGuide tree of the sample documents and a sample results.

an slca node would produce a result subtree containing irrelevant data.
At first glance, an advocate of classical slca computation techniques may argue

that the selection of n0.4 as an slca node may be considered relevant and meaningful
if we accept that it gives an “approximation” of the desired result. However, we ar-
gue that such approximation is often irrelevant to the search intention. To illustrate
this point further, let us consider the query QM(York latitude) on the Mondial
dataset. One of the cities containing the keyword York but without latitude infor-
mation is York city in the uk. For this result, slca-based approaches [14, 17] will
return the country node of the uk which contains all cities in the uk. Observe
that this result has two core drawbacks. First, it is too broad. There are nearly 100
cities of the uk in the dataset and it is unrealistic to expect users to explore all of
them to find desired results. Second, it does not provide a precise or direct answer
to the query and user’s search intention. Since QM is specifically about York’s lati-
tude information, retrieving “approximate” results containing many irrelevant data
without answering the question directly may annoy users. Note that the core reason
for such poor performance is that most xks techniques consider matches “close” to
each other as relevant but when the most relevant matches (e.g., n0.4.3.2 or York’s
latitude) are missing, even the closest one may be irrelevant.

It may also seem that approaches built on top of slca nodes that effectively
identify the desired return information (e.g., [1, 4, 7, 9, 10]) can address the above
limitation. Although these efforts certainly improve the result quality, when query-
ing in the presence of missing elements, they make the same assumptions as slca-
based techniques and cannot improve the poor input from [14, 17] significantly. In
fact, for Q1 on D1, these techniques produce the same result as [14, 17].

1.2 Challenges

A straightforward approach to address the aforementioned limitation is to first
modify the xml document by adding empty elements (<tag/>) to represent missing
elements and then adopt an existing technique (e.g., [17]) to find slca nodes. We
refer to such a modified xml document as a full document. The intuition being that
if there is no missing element in the full document, the aforementioned problem
does not occur. For example, document D3 in Figure 4 is a full document of D1 in
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Figure 4: An example of full document

which all missing elements are represented by empty elements (depicted by a dot-
ted box). For instance, the area node for Provo, which is missing in D1, is now
shown in D3 using an empty area element. Clearly, an existing slca-based xks can
now find high quality slca nodes in the full document. For instance, Figure 3(b)(iii)
shows the slca node n0.4.3 (and all of its matches) for Q1 on D3. Notice that the
irrelevant area node n0.4.1 is no longer considered a match. The node n0.4.3.2 is
depicted in a dotted box to indicate that it is not originally in D1.

Unfortunately, the aforementioned naı̈ve solution to identify high quality slca
nodes demands modification of the xml document which is usually undesirable
in real-world applications. Firstly, an xml document may be accessed by multi-
ple, heterogeneous applications such that altering it may have undesirable effect on
some of these applications. Secondly, creating a copy of the existing document and
adding empty elements to it will necessitate strict consistency checks, which is usu-
ally expensive to maintain especially for frequently updated documents. Thirdly, a
full document version is not as space efficient as the original document, potentially
affecting xml query performance. Fourthly, as mentioned earlier, an element may
be missing in a document for various reasons. For instance, it may be meaning-
less for certain entities. Hence, explicitly adding it into these entities compromises
data semantics. Lastly, often write permission of an xml document on the Web
may not be available due to technical or legal reasons, making the aforementioned
approach impractical. Furthermore, a direct consequence of such modification is
the necessity of automatically pruning slca nodes in the full document which are
empty elements. Otherwise, it may confuse end-users as they will not be able to
locate some slca nodes when they browse the original xml document.

1.3 Contributions

Given a query Q on document D, how can we identify high-quality slca nodes in D
that are also slca s in the full document version of D without physically creating the
latter? In this paper, we address this core challenge. To the best of our knowledge,
this is the first work that systematically addresses the slca computation problem
germinated from the missing element phenomenon in xml data. More specifically,
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we make the following contributions.

• In Section 3, we propose a novel property called optionality resilience that
specifies the desired behaviors of an xks approach for queries with missing
elements. We analyze the optionality resilience of existing xks approaches
to systematically identify their limitations in handling the missing element
phenomenon.

• In Section 4, we introduce the notion of full slca (fslca) that satisfies the
optionality resilience property. Full slca s are slca s in the original document
as well as in the full document version of it. Specifically, the set of fslca
nodes is identical to slca nodes when the query does not contain missing
elements but avoids irrelevant results when missing elements are involved.
Hence, identifying fslca nodes in a document enables us to produce high-
quality slca nodes even when the query involves missing elements.

We introduce two variants of fslca nodes, namely partial and complete
fslca, to give users flexibility in viewing results containing missing ele-
ments. Complete fslca does not return result nodes containing missing ele-
ments (n0.4.3 in D1 for Q1). Alternatively, partial fslca returns result nodes
with missing elements (e.g., Figure 3(b)(iii)). In this representation the user
is explicitly informed that the desired data is missing.

• In Section 5, we propose two variants of a novel algorithm called messiah
(missing element-conscious high-quality slca search), that efficiently iden-
tifies sets of complete and partial fslca nodes for a given keyword query
(possibly containing missing labels) on document D. An important feature
of messiah is that it does not physically add missing elements to D. Partic-
ularly, a full document is logically created with the sole goal of facilitating
the generation of superior quality fslca nodes. Furthermore, messiah can be
integrated seamlessly with state-of-the-art techniques for retrieving relevant
information (Step 2 of xks) [1, 7, 9–11], potentially inheriting the strengths
of these approaches.

• In Section 6, extensive experiments with real datasets are conducted to vali-
date our solution’s effectiveness, superiority, efficiency, and scalability. Specif-
ically, we show that the quality of results generated by messiah is identical to
state-of-the-art slca computation techniques when the query does not contain
missing labels. However, when the query contains missing labels then mes-
siah consistently generates superior quality results compared to these state-
of-the-art techniques. Importantly, such superior result quality is achieved
without any significant performance overhead of the proposed algorithms.

2 Preliminaries

We model an xml document D as an ordered and node-labeled tree. Each node
n ∈ D is assigned two functions �(n) and �(n) returning n’s label (i.e., tag) and
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text value, respectively. A node n is called an empty node (element) when �(n)
returns empty string. We use notation n1 ≺ n2 to denote n2 is a descendant of
n1. Each node n ∈ D is assigned an identifier (id), denoted as id(n), satisfying the
following condition: ∀n1, n2 ∈ D, id(n1) < id(n2) iff n1 precedes n2 in document
order. Note that the preorder attribute in containment encoding scheme [18] or
Dewey number in Dewey encoding scheme [15] can be used as identifiers of nodes.
Consistent with several existing xks techniques, we also use Dewey numbers as
node identifiers which enable fast lca computation. The ids of nodes in Figures 2
and 4 are their Dewey numbers in the corresponding documents.

Similar to [1, 7], we use prefix paths to indicate the type of a node. Two nodes
are considered of the same type when they share the same prefix path. Using
path as type enables us to use DataGuide [3] as type structure. A DataGuide �
is a prefix tree representing all unique paths in D i.e., each unique path p in D is
represented in � by a node (referred to as schema node) whose root-to-node path
is p. Hence, each schema node in � also corresponds to a type and the hierarchical
relationship among schema nodes represents type relations. Specifically, a type t2
is called a child (descendant) type of another type t1 if t2’s corresponding schema
node is a child (descendant) of t1’s schema node in �. We shall use t1 ≺� t2 to
denote t2 is a descendant type of t1. Notice the subscript � is added to indicate
type relation on �. For instance, Figure 3(a) depicts the DataGuide of document
D1 in which tstate ≺� tcity. We also denote ND(t) as the set of all nodes of type
t and ND(T ) as

⋃
ND(t), t ∈ T . For example, ND1(tstate) = {n0.2, n0.3, n0.4} and

ND1({tstate, tterritory}) = {n0.1, n0.2, n0.3, n0.4}. Note that it is not mandatory for an
xml document to be accompanied by its DataGuide as it can be easily extracted
from a “schemaless” document in linear time [3]. In fact, DataGuides have been
exploited in research related to xks [1, 7, 9].

Given a query Q(w1, . . . ,wk), if a keyword wi is contained in either �(n) or
�(n) then the node n is called a label match or a value match to wi, respectively.
The sets of all label and value matches to wi in D are denoted as LD(wi) and VD(wi),
respectively. The set of all matches to wi in D, MD(wi), is equal to LD(wi)∪VD(wi).
Notably, if a node is a label match to wi then all nodes of the same type are also
label matches to wi. We call this type a type match to wi whose set is denoted as
TD(wi). When the context is clear, we denote VD(wi), LD(wi), MD(wi), TD(wi) as
Vi, Li, Mi, Ti, respectively. For example, in D1 (Figure 2), VD1(city)= {n0.4.2.0},
LD1(city)= {n0.3.1, n0.4.2, n0.4.3}, TD1(city)= {tcity}.

Given a query Q(w1, . . . ,wk), the xks process can be broadly divided into two
steps: (a) locating result nodes and (b) retrieving result matches [9]. The first step
corresponds to selecting a set of result nodes R(Q,D) from document D satisfying
Q. For each result node r ∈ R(Q,D), the second step retrieves a set of matches
SD(r) ⊆ (MD(w1) ∩ · · · ∩MD(wk) ∩ descD(r)) where descD(r) is the descendant set
of r in D. In this paper, we focus on the first step.

As mentioned in Section 1, one of the most popular approaches to repre-
sent results nodes is slca [17]. Formally, for a query Q(w1 . . .wk) on a docu-
ment D, let lca(m1, . . . ,mk) be the lca of k matches m1,. . . ,mk and LCA(Q,D) =
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{lca(m1, . . . ,mk)|mi ∈ Mk∀i ∈ [1, k]}. Then, slca returns the result nodes R(Q,D) =

SLCA(Q,D) = {n ∈ LCA(Q,D)|@n′ ∈ LCA(Q,D), n ≺ n′}. Since each type cor-
responds to a schema node in �, we extend the lca and slca concepts to types as
well. For instance, lca�(tstate/name, tstate/city) = tstate.

3 Optionality Resilience

Optionality resilience describes the desired behaviors of an xks system when han-
dling the missing element phenomenon. Specifically, it captures how the query
result changes when an optional node is missing from the document. In this sec-
tion, we first identify two types of optionality resilience, namely result resilience
and match resilience, corresponding to the two steps of xks. Next, we analyze
existing xks approaches in terms of these two properties.

3.1 Result Resilience

In an xks query, the relevance of a result depends on the search intention as well as
result matches. Since users are rarely aware of the missing element phenomenon,
missing nodes should not change the search intention (i.e., an xks system should
not return new results that are irrelevant to the search intention). More specifically,
a missing element may make an existing result irrelevant but should not add a new
result. For example, consider the documents D1 and D2 where n0.4.3.2 is the only
node missing in D1 but appears in D2. Consider now the query Q2(city, area)

on D1 and D2. The search intention is probably to find the areas of all cities. Hence,
the results should include all city subtrees in the document with an area child
(e.g., n0.3.1 and n0.4.3 on D2). However, when the area of n0.4.3 is missing as in
D1, the corresponding area subtree becomes irrelevant. Consequently, introducing
new result n0.4 related to state for Q2 on D1 is likely to be irrelevant. Similarly,
absence of the area of Provo (n0.4.3.2) should not make areas of other cities
such as Salt Lake City (e.g., n0.4.2) more relevant to Provo than Salt Lake City.

Definition 1 [Result Resilience] Let Q be an xks query on two documents D and
D′ where D′ = D\{n} and n is a label match to Q. Then, an xks system is called
result-resilient if R(Q,D′) ⊆ R(Q,D).

3.2 Match Resilience

In an xks query, label keywords reflect the desired data in the final result tree [1,9].
Reconsider the query Q2 on D1 and D2. The node n0.3.1 is a common result of Q2 in
both these documents. The match resilience property asserts that the match set of
n0.3.1 should remain the same in D1 and D2 as n0.4.3.2 is not a descendant of n0.3.1.
On the other hand, consider the query Q3(Utah, city, population, area).
The common result of this query is the subtree rooted at n0.4. Then, the match
resilience property also asserts that the result tree of n0.4 should be (non-strictly)
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smaller in D1 than in D2 as the missing node n0.4.3.2 in D1 is a descendant of this
subtree in D2.

Definition 2 [Match Resilience] Consider a label query Q(w1, . . . ,wn) and two
documents D, D′ where D′ = D\{n} and n is a label match to Q. An xks system is
match-resilient if for each result r ∈ R(Q,D) ∩ R(Q,D′) any one of the following
holds: (a) SD′(r) = SD(r) if n < SD(r); (b) SD′(r) ⊆ SD(r) if n ∈ SD(r).

3.3 Optionality Resilience Analysis of Existing Approaches

Smallest Lowest Common Ancestor (SLCA). The slca approach introduced in
[17] has been arguably the most popular technique to locate the result nodes and has
become the backbone of various other approaches such as XSeek [9], XReal [1],
XBridge [7], MaxMatch [10], etc. However, slca violates result resilience which
explains its inability to handle missing elements as highlighted in Section 1. For
example, consider the query Q1(Provo, area) on D2. The slca approach returns
the node n0.4.3 but it returns n0.4 on D1 = D2\{n0.4.3.2}.

Meaningful Related Lowest Common Ancestor (MLCA). The mlca-based
technique [8] returns each result tree as a group of matches, called pattern match,
containing exactly one match for each keyword. Two nodes n1 and n2 that match
keywords w1 and w2, respectively, are meaningfully related if there does not exist
n′1 and n′2 that match w1 and w2 such that the lca of n1 and n2 is an ancestor of
the lca of n′1 and n′2. When a set of nodes are pair-wise meaningfully related, their
lca is called an mlca. Each returned pattern match contains an mlca node and its
corresponding pair-wise related matches.
mlca does not satisfy result resilience. Consider the query Q4(USA, Tennessee,

Utah, area) to find the areas of both Tennessee and Utah. The results on D1 is
empty since no matter which area node is chosen in the pattern match, it is not
related to at least one value match. Specifically, node n0.4.1 is not related to n0.2.0
and node n0.2.1 is not related to node n0.4.0. Meanwhile, if n0.4.1 is removed from
the document, mlca returns a pattern match in which n0.0, n0.2.0, n0.4.0 and n0.2.1
are matches for USA, Tennessee, Utah and area, respectively.

XSEarch. In XSEarch [2], two nodes n1 and n2 are considered related if the
path between them consists of no same-label nodes except n1 and n2 themselves.
For example, in D1 (Figure 2), nodes n0.4.3.0 and n0.4.1 are considered related. A
pattern match is considered related if all of its matches are related to each other.
XSEarch considers two semantics, namely, all-pair and star. All-pair semantics
requires all pairs of matches to be related. Star-semantics only requires at least one
match which is related to all other matches.

XSEarch also violates result resilience. For Q1, XSEarch returns same results
as slca on D1 and D2. Notice that n0.4.3.0 is considered related to both n0.4.3.2 and
n0.4.1.

Structural Consistency. In [6], the authors propose a new constraint for the
slca list called structural consistency. A list of slca nodes are structural consis-
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tent when there are no ancestor-descendant relationships among them not only in
instance-level (as in the original definition of slca) but also in schema-level. How-
ever, structural consistency is not sufficient to ensure result resilience when missing
elements are involved. In fact, [6] returns same results as slca for Q1 on D1 and
D2 since there is only one slca node in both cases.

XSeek. A sub-task in retrieving result nodes is to deduce the result type. XSeek
is a result type deduction technique built on top of slca [17]. Specifically, it at-
tempts to locate entity nodes using a heuristic that entity nodes usually have same-
label siblings. Then, for each slca node na, XSeek’s result node is the lowest entity
node ne such that ne � na. However, XSeek still violates result resilience. For
example, for Q1, it produces identical results to slca on D1 and D2 since both n0.4
and n0.4.3 are entity nodes.

XReal and XBridge. XReal [1] and XBridge [7] are also result type detection
techniques but based on match statistics. In a nutshell, XReal computes the confi-
dence of a type T to be the result type by counting the number of T -typed nodes
containing the matches for each query keyword but penalizes types that are too
close to the root node. On the other hand, XBridge computes the result type confi-
dence by aggregating the confidence for all results of that type. The confidence of
each result is computed based on its match frequency and distribution in the query
answer. Notably, the confidence value from both XReal and XBridge is zero when
the result type has no results with at least one match for each keyword (i.e., non-
zero match frequency). Consequently, both these approaches fail to satisfy result
resilience. For example, for Q1 on D2, the returned result type is city since the
only result with non-zero match frequency for all keywords is of that type. On
D1, however, the returned result type is state. Since the result types are different,
their results fail to satisfy result resilience.

AllMatch. PathReturn and SubtreeReturn are two typical techniques for the
second step of xks [4, 9, 10]. PathReturn returns all descendant matches of each
result node and the paths connecting them while SubtreeReturn returns the full
subtrees rooted at each result node. Since PathReturn and SubtreeReturn return
the same set of matches (i.e., all descendant matches) for each result node, in this
paper, we refer to them as AllMatch. The result trees from AllMatch satisfy match
resilience. For each result node r, all descendant matches are returned. On the
other hand, when a node is removed from the document, r will not get any new
descendants. Thus, no new descendant matches of r are introduced.

MaxMatch and Relaxed Tightest Fragment (RTF). While PathReturn and
SubtreeReturn do not violate result resilience, they suffer from low recall and pre-
cision [9]. MaxMatch [10] and rtf [4] are introduced to address this problem.
MaxMatch filters irrelevant matches under an slca node by returning only contrib-
utors. For each node n, its contribution is defined as the set of query keywords
whose matches are descendant of n. A node is a contributor if its contribution is
not subsumed by any of its siblings. rtf extends this notion of contributor to the
so-called valid contributor, which is a node whose contribution is not subsumed
by any of its same-label siblings.
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MaxMatch [10] also incorporates four desirable properties of xks by compar-
ing xks results when the document or query changes. However, these properties do
not guarantee desirable behavior when missing elements are involved in the query.
Specifically, both MaxMatch and rtf violate match resilience. For instance, con-
sider Q5(Utah, city, population, area)whose intention is probably to find
the population and area of all cities of Utah. The only result node from [1, 9, 17]
on both D1 and D2 is n0.4. For n0.4, on D2, both MaxMatch and rtf select n0.4.3.1
as relevant match. Notice that n0.4.2.1, the population of Salt Lake City, is not
selected since it only has population but not area whereas Provo city has both
these elements. On the other hand, on D1 the matches for both Salt Lake City and
Provo are returned as Provo’s area information is missing.

4 Full SLCA (FSLCA)

Recall from Section 1, if an xml document is full then all missing elements are
specified by empty elements. Consequently, slca nodes identified during keyword
search on a full xml document will be able to satisfy optionality resilience property
as there are no missing elements. Among these identified slca nodes, we refer
to the nodes that exist in the original document as full slca (fslca) nodes. For
example, reconsider the query Q1 on D1. The only slca node matching the query
is n0.4 which is undesirable. Document D3 (Figure 4) displays the full version of
D1. If we now compute the slca nodes on D3 for Q1, it would produce n0.4.3 since
its descendant node n0.4.3.0 matches to Provo and node n0.4.3.2 matches to area.
Since n0.4.3 also exists in D1, it is an fslca of Q1. We now formally introduce the
concepts of full xml document and fslca.

4.1 Full XML Document
Definition 3 [Full Node] Given a document D, a node n ∈ D with type t is full,
denoted as FullNode(n), if for each child type tc of t, n has at least one child node
with type tc.

For example, in D1, n0.3.1 is a full node since type city has three child types,
namely name, population and area, and n0.3.1 has corresponding child nodes n0.3.1.0,
n0.3.1.1 and n0.3.1.2, respectively.

Definition 4 [Full Document] An xml document D is considered full, denoted as
F(D), iff all of its nodes are full. That is, ∀n ∈ D, FullNode(n) = true.

For example, D3 in Figure 4 is a full document. Noticeably, a document D can
be transformed to a full document F(D) by adding empty elements as children to
nodes that are not full in D. For instance, D1 can be transformed to D3 by adding
empty elements (in dotted rectangles). Observe that there are infinite numbers of
full documents F(D) of D. For example, adding any numbers of area nodes as
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siblings of n0.4.3.2 would create another full document of D1. In practice, we only
consider the minimal full document of D.

Definition 5 [Minimal Full Document] Given an xml document D, a full docu-
ment F(D) is minimal, denoted as Fmin(D) iff the following conditions are true: (a)
∀n ∈ D, n ∈ Fmin(D); (b) for each n′ ∈ Fmin(D), n′ is either in D or removing it
would make Fmin(D) no longer a full document; and (c) all nodes in Fmin(D)\D are
empty nodes.

For example, D3 in Figure 4 is a minimal full document of D1. In the sequel,
for brevity, we shall use F(D) or F instead of Fmin(D) when the context is clear.
Clearly, given a document D, the DataGuides of D and F(D) are identical.

4.2 FSLCA Definition

Since a full document may contain empty nodes that do not exist in the original
document, each fslca node belongs to one of the following two categories:

• Category 1: Both the fslca node and its matches are in the original document
D. For example, consider the query Q2(area, city) on D1. Then the fslca
node n0.3.1 belongs to this category as its subtree includes matches for both
city and area.

• Category 2: The fslca node is in D but its matches are not in D. For example,
for Q2 on D1, fslca nodes n0.4.2 and n0.4.3 belong to this category as both do
not have any area element as descendant.

In this paper, we refer to the result sets consisting of only Category 1 fslca
nodes as complete fslca nodes while the results sets consisting of both the afore-
mentioned categories are called partial fslca nodes. Formally,

Definition 6 [Partial & Complete fslca ] Given a query Q on a document D,

• the set of partial fslca nodes of Q on D, denoted as PFSLCA(Q,D) is defined
as, PFSLCA(Q,D) = SLCA(Q,F(D)) ∩ D.

• the set of complete fslca nodes of Q on D, denoted as CFSLCA(Q,D) is
defined as, CFSLCA(Q,D) = PFSLCA(Q,D) ∩ SLCA(Q,D).

Remark. The complete and partial fslca s are designed to allow two differ-
ent strategies of returning result nodes containing missing elements. The most
obvious approach is to ignore result nodes containing missing elements, which is
realized by complete fslca. For example, consider the query Q2(city,area) on
D1. Here, CFSLCA(Q2,D1) = {n0.3.1} as n0.4.2 and n0.4.3 do not have area el-
ement as descendant. Alternatively, partial fslca does not eliminate such results
nodes and returns them explicitly indicating the missing elements. For example,
PFSLCA(Q2,D1) = {n0.3.1, n0.4.2, n0.4.3} and the area elements in n0.4.2 and n0.4.3
are represented as empty nodes (an empty node is represented as a box with a
dashed line border).
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4.3 Proofs for Optionality Resilience

Theorem 1 Both partial and complete fslca nodes satisfy result resilience.

Proof 1 For any pairs of document D and D′ = D\{n} where n ∈ D, we have
F(D) = F(D′). Therefore, SLCA(Q,F(D)) = SLCA(Q,F(D′)) for any query Q.
Since D′ ⊂ D, PFSLCA(Q,D′) ⊆ PFSLCA(Q,D).

For all result nodes r ∈ CFSLCA(Q,D′), r has descendant matches to all
keywords in D′. Meanwhile, since D ⊆ F(D) = F(D′), there are no results in
SLCA(Q,D) that is a descendant of r. Thus, r ∈ SLCA(Q,D). But r ∈ SLCA(Q,F(D′)) =

SLCA(Q,F(D)). Therefore, r ∈ CFSLCA(Q,D).

The following lemmas prove that existing xks approaches built on top of fslca
nodes instead of slca nodes satisfy the optionality resilience property.

Lemma 1 The results of XSeek on top of either partial or complete fslca nodes
satisfy result resilience.

Proof 2 Let n0 be a node in document D. Let xseek(n0) be a function returning the
lowest ancestor entity node of n0 as described in Section 3.3. Since PFSLCA(Q,D′) ⊆
PFSLCA(Q,D) and CFSLCA(Q,D′) ⊆ CFSLCA(Q,D), their images through func-
tion xseek() maintain inclusion relation ⊆.

Lemma 2 If matches to empty elements are considered, the results of MaxMatch
and rtf on top of either partial or complete fslca nodes satisfy match resilience.

Proof 3 Let Q be a query on two documents such that D′ = D\{n}, n ∈ D and n is
a label match of Q. Let r be a result node and r0 be a node within the result tree
rooted at r. If n is not a descendant of r0, its contribution is unchanged in D and
D′. If n is a descendant of r0, r0 would have at least one label match with same
label with n in F(D) and F(D′). Therefore, the contribution of r0 is unchanged for
both MaxMatch and rtf.

5 FSLCA Computation

In this section, we present two variants of the messiah algorithm, namely p-messiah
and c-messiah, to compute partial and complete fslca nodes, respectively. These
algorithms can retrieve fslca nodes without the need of physically generating full
documents. Also, it is not necessary for the xml document to be accompanied by
its schema or dtd as a DataGuide tree can be easily generated from a “schemaless”
xml document [3]. Note that such DataGuide tree has also been used in several
prior work related to xks [1,7,9]. We first summarize the principle behind existing
slca computation approach which serves as a foundation for the fslca computation
problem.
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5.1 Principles for SLCA Computation

The core idea behind all existing slca computation techniques can be summarized
by the following lemmas (see [17] for full proofs).

Lemma 3 Given a node n ∈ D and a query keyword w, the level of the slca be-
tween n and matches of w on D, denoted as slcaLvl(n,D,w), is equal to
max(lvl(lca(n, lm(n,MD(w)))), lvl(lca(n, rm(n,MD(w))))) where lvl() returns the
level of a node and lm(n,MD(w)) and rm(n,MD(w)) return the last node before
n and the first node after n in MD(w), respectively.

Lemma 4 Given a node n ∈ D and keywords w1, . . . ,wk, the level of the slca
between n and matches of w1, . . . ,wk on D, denoted as slcaLvl(n,D,w1, . . . ,wk),
is equal to min(slcaLvl(n,D,w1), . . . , slcaLvl(n,D,wk)).

Lemma 3 focuses on a special case of slca computation where there are only
two sets in which one set is a single element n. It reduces the slca into the lca
of n to either lm() or rm(). Lemma 4 extends this results to multiple sets. For
brevity, for a query Q = {v1, . . . , vk}, we shall denote slcaLvl(n,D,w1, . . . ,wk) as
slcaLvl(n,D,Q) and the ancestor of n at level slcaLvl(n,D,Q) as slca(n,D,Q).

The complete slca candidate list is then computed by concatenating slca(n,D,Q)
for all nodes n of a set of matches M. The set M is selected so that, for all slca
node s, there exists at least one match m in M such that s � m (see [17] and [14]
for more details). We call the set satisfying this property an “anchoring match set”.
The difference between [17] and [14] lies on how to get the anchoring match set
M. [17] chooses M = MD(w1) in which w1 is the keyword with smallest match
set whereas [14] reduces M further by exploiting several optimizations. Mean-
while, [19] considers all ancestor-or-self of MD(w1) as M but uses equality com-
parison instead of lm() and rm().

Finally, the slca candidate list is then validated using ancestor-descendant re-
lationship following Lemma 5 (here, we show a more general lemma compared to
the lemma used in [17] and [14]).

Lemma 5 For a query Q on document D, given two sets of slca candidates S1, S2
such that SLCA(Q,D) ⊆ S1, S2 ⊆ LCA(Q,D),

SLCA(Q,D) = {s ∈ S1|@s′ ∈ S2, s ≺ s′}

Proof 4 It follows the definition of slca. Notice that� is a partial order in LCA(Q,D)
and SLCA(Q,D) is its minimal element set.

Both [17] and [14] exploit a non-indexed and an indexed approach to support
lm() and rm(). The indexed approach uses random access to retrieve lm() and rm()
from a B-tree, which is suitable when M is small. When M is large, non-indexed
approach using sequential scan is more suitable. For all cases, the time complexity
is O(dk|M|log(|Mmax|) where d is the document depth and Mmax is the largest match
set.
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5.2 Key Strategies behind MESSIAH

The key idea of fslca computation using messiah is based on the following two ob-
servations. First, slca or fslca computation only requires checking whether a node
has descendant matches but not retrieving the matches directly. Note that existing
approaches compute slca by retrieving the matches first and then computing slca
from them. However, this approach cannot be used in messiah as some matches
are “virtual” (missing elements) and cannot be retrieved. Second, since a full doc-
ument does not have missing nodes, we can infer the subtree structure of a node
by analyzing its type only. For instance, in a full document, we can infer that each
state has some city as child and each city has name, population and area as
children. These two observations are materialized in the following theorem.

Theorem 2 In a minimal full document F , given a node n with type t, n has a
descendant label match n′ to a keyword w iff there exists a type match t′ to w such
that t �� t′.

Proof 5 It follows from the definition of minimal full document (Definition 5).

Corollary 1 Let F be the minimal full document of D. Given node n ∈ D and a
query keyword w, slcaLvl(n,F,w) = max(lvl(lca(n, lm(n,MD(w)))),
lvl(lca(n, rm(n,MD(w)))), slcaLvl(t,�,w)) where t is the type of n and slcaLvl(t,�,w)
is the level of the slca between t and all type matches of w in �.

Corollary 2 Given a node n ∈ D, minimal full document F , and keywords w1, . . . ,wk,
slcaLvl(n,F,w1, . . . ,wk) = min(slcaLvl(n,F,w1), . . . , slcaLvl(n,F,wk)).

Corollary 1 and 2 are useful generalization of Lemma 3 and 4, respectively.
Observe that the left-hand-sides of the equations in these corollaries leverage F
while the matches are retrieved from D (i.e., MD(w)). Importantly, as DataGuides
for most practical datasets are small [1], slcaLvl(t,�,w) can be computed effi-
ciently (can even be pre-computed). In the following subsections, we shall denote
slca(n,F,Q) and slcaLvl(n,F,Q) as f slca(n,D,Q) and f slcaLvl(n,D,Q), respec-
tively.

5.3 Partial FSLCA Computation

Partial fslca computation needs to address a novel challenge compared to existing
slca computation techniques. Observe that Lemma 3-4 and Corollary 1-2 assume
that each slca/fslca node has a match n in D (called anchor node in [14]). However,
some partial fslca nodes may not have any match in D. To address this challenge,
we split the partial fslca computation problem into two cases, namely fslca node
with at least one value match and fslca node with only label match, and address
each them in turn.

Case 1: FSLCA with at least one descendant value match. Corollary 1 and
2 can be applied for Case 1 since all value matches are in D (converting D to F is
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Only 
Label

Only 
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Both 
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Value

Only 
Label

Figure 5: This table shows when the two cases L1 and L2 are considered for a query
of 2 keywords. Each keyword can match to only labels, only values or both labels
and values. NE-SW diagonal line means L1 is computed while NW-SE diagonal
line means L2 is considered.

not necessary). However, since the value matches can be matches of any keywords,
the set of anchor nodes is V1 ∪ · · · ∪ Vk instead of M as used in slca computation.
Formally, for query Q on D, the set of fslca candidates in case 1, denoted as L1, is:

L1 = { f slca(n,D,Q)|n ∈
k⋃

i=1

Vi}

Case 2: FSLCA with at least one label match to each keyword. When a
partial fslca node na has at least one descendant label match n` to each keyword,
it may not have any match in the original document D. Consequently, locating
anchor nodes is challenging. We propose a technique to retrieve the candidate
node na without using anchors.

Based on Theorem 2, na has a descendant label match to keyword w if and
only if its type ta has a descendant type match to w. Therefore, ta must have at
least one descendant type match to each keyword. In other words, ta is an slca
of the type matches of all keywords w (i.e., given a query Q(w1, . . . ,wk) on D,
ta ∈ SLCA�(TD(w1), . . . ,TD(wk))). Thus, to retrieve na, we can find the set Ta of
all ta and then retrieve all corresponding na in D (i.e. ND(Ta)). Notice that this
strategy does not require any anchors. Furthermore, it is extremely efficient since
label matches are not retrieved and the number of possible values of ta is small.
Formally, for query Q(w1, . . . ,wk) on D, the set of fslca candidates in case 2,
denoted as L2, is:

L2 = ND(Ta)

where
Ta = SLCA�(TD(w1), . . . ,TD(wk))
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Figure 5 illustrates when the two cases are considered for a query of two key-
words. Importantly, although there are some combinations where both cases need
to be considered, in most of the times, only one case is considered. Thus, while our
algorithm needs to consider the more general and complete situation, in practice,
the algorithm is usually much simpler and potentially more efficient. Note that in
practice only few keywords (if any) in a dataset match both values and labels.

Finally, we shall provide the theoretical background of our technique to com-
pute PFSLCA(Q,D) in the general situation with both cases. First, as each slca
node in F must contain either at least one label match to each keyword or at least
one value match, it is obvious that:

SLCA(Q,F) ⊆ L1 ∪ NF (Ta)

Following Lemma 5,

SLCA(Q,F) = {s ∈ L1 ∪ NF (Ta)|@s′ ∈ L1 ∪ NF (Ta), s ≺ s′}

From Definition 6,

PFSLCA(Q,D) = SLCA(Q,F) ∩ D

= {s ∈ L1 ∪ ND(Ta)|@s′ ∈ L1 ∪ NF (Ta), s ≺ s′}

= {s ∈ L1 ∪ L2|@s′ ∈ L1 ∪ NF (Ta), s ≺ s′} (1)

The p-messiah Algorithm. Algorithm 1 outlines the procedure of p-messiah which
realizes Equation 1. Observe that the inputs are value matches and type matches
for Q which can be retrieved directly from D. Lines 2-3 retrieves L2 (Case 2). All
candidate nodes generated for this case (i.e., having at least one descendant label
match for each keyword) are stored in Cand2. The Anchor1 stores all value matches
for Q which shall serve as anchor matches. The merge() function in Lines 3 and 4
merges the input sets into a single sorted set of nodes and returns them in stream
format. Note that if all of the input sets are sorted stream, the merge() function can
be implemented efficiently without sorting and consumes minimal memory. Both
Anchor1 and Cand2 are required to be sorted for pruning which we shall discuss
later. The symbols a1 and c2 denote the current cursor node of streams Anchor1 and
Cand2, respectively. They are assumed to be null when there are no more nodes in
the stream.

Lines 7-14 materialize L1 (Case 1). The loop in Lines 7-22 is executed for
each anchor node a1 in Anchor1. Lines 10-14 use Corollary 1 and 2 to com-
pute f slca(a1,D,Q). Notably, instead of using lm() and rm() functions, we use
peekLast(i) and peekNext(i) which return the last and next node, respectively, in
the i-th input stream (i.e., Vi) in Anchor1. Although the latter functions return same
results as lm(a1,Vi) and rm(a1,Vi), respectively, peekLast(i) and peekNext(i) are
more efficient since they can be easily supported in streams by storing the last
retrieved node and looking ahead the next retrieved node of each input stream.
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Algorithm 1: The p-messiah Algorithm.
Input: A query Q with k keywords w1 . . .wk

Input: The list of value matches Vi and type matches Ti for each wi in document D
whose Dataguide is �

Output: The list of fslca nodes of Q on D

1 Result = ∅;
2 Ta = SLCA�(T1, . . . ,Tk);
3 Cand2 ← merge({ND(t)|t ∈ Ta});
4 Anchor1 ← merge(V1,. . . ,Vk);
5 c′1 ← root;
6 c2 ←Cand2.next();
7 while there are more nodes in Anchor1 do
8 a1 ← Anchor1.next();
9 t1 ← the type of a1;

10 for i = 1→ k do
11 if a1 < Vi then
12 `i = max(lvl(lca(a1,Anchor1.peekLast(i))),

lvl(lca(a1,Anchor1.peekNext(i))), slcaLvl(t1,�,wi));

13 ` = min1≤i≤k(`i);
14 c1 = ancestor(a1, `);
15 if type(c1) is not an ancestor type of a type in T then
16 if id(c′1) ≤ id(c1) then
17 if c′1 � c1 then
18 Result = Result ∪ {c′1};

19 while c2 is not null and id(c2) ≤ id(c1) do
20 if c2 � c1 then
21 Result = Result ∪ {c2};

22 c2 ←Cand2.next();
23 c′1 ← c1;

24 Result = Result ∪ {c′1};
25 while c2 is not null do
26 Result = Result ∪ {c2};
27 c2 ←Cand2.next();
28 return Result

Specifically, they take O(1) time compared to O(log(Vi)) time of lm(a1,Vi) and
rm(a1,Vi).

Lines 15-23 check whether the candidate nodes c′1 and c2 can be partial fslca
nodes. Specifically, Line 15 ensures that the candidate c′1 has no descendant nodes
in NF (Ta). Since c′1 is also in F , such descendant checking can use type (Theo-
rem 2). Meanwhile, Line 17 ensures that c′1 has no descendant nodes in L1. As
c′1 ∈ L1, c′1 only needs to be checked with the next node in L1. Similarly, Lines 19-
22 validates all c2 between c′1 and c1 against c1 to ensure that they do not have
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descendant candidate in L1. Notice that nodes in NF (Ta) do not have ≺ between
themselves so that validating c2 against NF (Ta) is unnecessary. Lines 24-27 are
similar to Lines 15-23 to evaluate the last c′1 and c2.

Time Complexity. Let T be the result returned in Line 2 and d be the doc-
ument depth. Then the time complexity of Algorithm 1 is O(dk

∑
1≤i≤k |Vk| +

dlog(k)
∑

t∈T |ND(t)|). These two terms correspond to Case 1 and 2, respectively.
In particular, Case 1 produces O(

∑
1≤i≤k |Vk|) candidate nodes, each takes O(dk)

time (due to Line 12). Case 2 produces O(
∑

t∈T |ND(t)|) candidates, each takes
O(d log(k)) time (due to the merge function in Line 3).

Remark 1. Since the complexity of ile algorithm [17] is O(kd|M1|log(|Mk|),
it may seem that our complexity is worse. However, notice that the result size
between two cases are not equal. In practice, as demonstrated in Section 6, p-
messiah outperforms ile. First, the ile algorithm uses lm() and rm() functions with
random access while our algorithm exploits stream extensively without random ac-
cess. Second, for most keywords w, L(w) � V (w). Hence,

∑
1≤i≤k |Vk| is potentially

much smaller than |M1|log(|Mk|). Third, the dlog(k)
∑

t∈T |ND(t)| term only appears
when T (wi) , ∅∀i.

Remark 2. p-messiah follows an “eager” strategy i.e., fslca nodes are returned
in document-order and the first output node can be returned even before all of input
nodes are read. This property is highly desirable in practice since it greatly reduces
query response time (i.e., the time the users need to wait to view the first result).

Example 1 Consider Q2(city,area) on D1. We have VD1(city) = {n0.4.2.0},
TD1(city) = {tcity}, VD1(area) = ∅, TD1(area) = {tterritory/area, tstate/area, tcity/area}.
Using the DataGuide in Figure 3(a), Line 2 returns tcity. Thus, Cand2 = {n0.3.1, n0.4.2,
n0.4.3}. Meanwhile, Anchor1 = {n0.4.2.0} so that the first and only value for a1 is
n0.4.2.0. For this a1, ` = 3 and c1 = n0.4.2. The conditions in Line 15 and 16 are
satisfied but the one in Line 17 is not. As c2 = n0.3.1 precedes c1 = n0.4.2, the while-
loop in Lines 19-22 proceeds to check Line 20 condition and adds n0.3.1 as the first
result. However, when c2 = n0.4.2, it is not added as c2 = c1 (fails Line 20 condi-
tion). Next, c1 = n0.4.2 is assigned to c′1 which is added to the result at Line 24.
Finally, Lines 25-26 add the remaining node in Cand2, n0.4.3, as results. The final
results is {n0.3.1, n0.4.2, n0.4.3}.

5.4 Complete FSLCA Computation

From Definition 6, we have:

CFSLCA(Q,D) = SLCA(Q,D) ∩ PFSLCA(Q,D)

= SLCA(Q,D) ∩ SLCA(Q,F)

From Lemma 5,

SLCA(Q,F) = {s ∈ LCA(Q,F)|@s′ ∈ L1 ∪ NF (Ta), s ≺ s′}
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Algorithm 2: The c-messiah Algorithm.
Input: A query Q with k keywords w1 . . .wk

Input: The matches Mi in document D
Input: The value matches Vi in document D
Input: The DataGuide tree � of D
Output: The list of complete fslca nodes of Q on D

1 Result = ∅;
2 Choose M as an anchoring match set for Q in D;
3 Ta = SLCA�(T1, . . . ,Tk);
4 c′ ← root;
5 while there are more nodes in M do
6 a← M.next();
7 Compute c = slca(a,D,Q);
8 if type(c) is not an ancestor type of a type in T then
9 if id(c′) ≤ id(c) then

10 if c′ � c and checkDescFSLCA(Q,c,V1,. . . ,Vk,T1,. . . ,Tk)=False then
11 Result = Result ∪ {c′};

12 c′ ← c;

13 if checkDescFSLCA(Q,c,V1,. . . ,Vk,T1,. . . ,Tk)=False then
14 Result = Result ∪ {c′};

15 return Result

Therefore,

CFSLCA(Q,D) = SLCA(Q,D) ∩ {s ∈ LCA(Q,F)|@s′ ∈ L1 ∪ NF (Ta), s ≺ s′}

= {s ∈ SLCA(Q,D) ∩ LCA(Q,F)|@s′ ∈ L1 ∪ NF (Ta), s ≺ s′}

Since SLCA(Q,D) ⊆ LCA(Q,F), SLCA(Q,D) ∩ LCA(Q,F) = SLCA(Q,D),

CFSLCA(Q,D) = {s ∈ SLCA(Q,D)|@s′ ∈ L1 ∪ NF (Ta), s ≺ s′} (2)

The c-messiah Algorithm. The c-messiah algorithm is outlined in Algorithm 2.
Similar to [17], each anchor node a in the anchoring match set M is processed one-
by-one (Lines 4-7) and the computed candidate c is pruned based on document
order and ≺ relation (Lines 9-10). Our algorithm can work on any M satisfying the
anchoring set condition mentioned in Section 5.3. The differences between slca
and c-messiah algorithm lie on the validating of each slca candidate at Line 8 and
10 following Equation 2. Line 8 ensures that the candidate node does not have
any descendants in NF (Ta) following Theorem 2. Notice that we do not need to
retrieve either NF (Ta) or ND(Ta). Line 10 is used to ensure that all candidates do not
have a descendant in L1 (see Section 5.3) using the checkDescFSLCA() procedure
described in Algorithm 3.

A naı̈ve way to realize checkDescFSLCA() procedure is to compute all (partial)
fslca in L1 as in Algorithm 1 and then validate each candidate against these nodes.
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Algorithm 3: The checkDescFSLCA algorithm.
Input: A query Q with k keywords w1 . . .wk

Input: A candidate c
Input: The list of value matches Vi and type matches Ti of each wi in document D

whose DataGuide is S
Output: The list of complete fslca nodes of Q on D

1 for each i from 1 to k do
2 for each ai ∈ Vi such that c � ai do
3 Compute c′ = ancestor(ai, lvl(c) + 1);
4 if c′.keywords is null then
5 Initialize c′.keywords by finding all keywords w j such that

∃t ∈ Tj, type(c′) � t;

6 Add i to c′.keywords;
7 if c′.keywords = Q then
8 return True

9 return False

Obviously, it is expensive. To eliminate the fslca computation cost, we leverage
the fact that a node has a descendant partial fslca node if and only if one of its
children matches to all query keywords in F . In particular, for each child c′ of
the candidate c (Line 3), we first calculate its descendant label matches based on
its type (through Theorem 2) (Lines 4-5) and then expand its matching keywords
by traversing the value match lists (Line 6). Once a child contains matches to all
keywords (Line 7), the candidate c must contain at least one descendant partial
fslca node in L1.

Time Complexity. Assuming that all computations on � can be computed in O(1)
since � is usually much smaller than D, the time complexity of Algorithm 3 is
O(d|N|) where d is the document depth and N is the number of value matches un-
derneath the candidate. Then, in the worst case, the time complexity of Algorithm 2
is O(dk|M| log(|Mmax|) + d(

∑
|Vi|)) where Mmax is the largest match set.

Remark 1. From the definition of complete fslca nodes (see Definition 6),
it is natural that c-messiah algorithm costs about the combined cost of slca and
p-messiah algorithm. However, with some optimizations, the cost overhead, espe-
cially from p-messiah algorithm, is minimized. Specifically, first, unlike in Algo-
rithm 1, candidates from L2 (i.e. ND(Ta)) are never retrieved. Second, only value
matches descendant of an slca candidate at Line 10 of Algorithm 2 are used. Third,
the value match lists are not merged into a stream as document order among them
is not required.

Remark 2. At first glance, it seems that c-messiah introduces an overhead of
O(d(
∑
|Vi|)) to the slca algorithm. However, in practice, such overhead is usually

small as demonstrated in Section 6. As mentioned in Section 5.3, the value match
set Vi is usually small as the useful value keywords are usually selective and not
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all value matches are used. Furthermore, in fact, in some cases, c-messiah even
outspeeds slca. The reason is that, using DataGuide and the type checking in
Line 8, some slca candidates are pruned sooner, minimizing the validating cost.

Remark 3. c-messiah follows an “eager” strategy i.e., results nodes are re-
turned in document-order and the first output node can be returned even before all
of input nodes are read.

Remark 4. Algorithm 2 is proposed to compute complete fslca nodes for all
queries and all methods of choosing M. However, its cost can be dramatically
reduced for a majority of queries by choosing suitable M. Specifically, if the query
Q contains at least one keyword wi without optionality (i.e., wi matches to either
only value matches or non-missing labels or, formally, MD(wi) = MF (wi)), by
choosing M = MD(wi), the only match to wi in F within slca(a,D,Q)’s subtree is
the anchor node a itself. Therefore, Algorithm 3 is reduced to evaluate whether
slca(a,D,Q) = f slca(a,D,Q) and the condition in Line 8 of Algorithm 2 is no
longer necessary. Motivated by this observation, in our experiment, we shall select
M to be the matches of the most selective keyword without optionality. If such
keyword does not exist, we then choose the most selective keyword.

Example 2 Consider Q2(city,area) on D1. Let’s choose M = MD1(city) =

{n0.3.1, n0.4.2, n0.4.2.0, n0.4.3}. Choosing these nodes at anchor nodes, the list of slca
candidates computed by Line 7 are (n0.3.1, n0.4, n0.4, n0.4). Similar to Example 1,
Ta = {tcity}. Thus, n0.4 is filtered out by the condition in Line 8 so that only n0.3.1
is the remaining candidate. Evaluating n0.3.1 using Algorithm 3, as the only value
match of the query n0.4.2.0 is not a descendant of n0.3.1.2, Algorithm 3 returns False
for n0.3.1 and it is our only complete fslca node.

5.5 Heuristics-based Algorithm Selection

Recall that c-messiah ignores result nodes containing missing elements (returns
complete fslca) whereas p-messiah does not eliminate such results nodes and re-
turns them explicitly indicating the missing elements as empty nodes (returns par-
tial fslca). That is, p-messiah returns all complete fslca nodes of c-messiah as
well as additional results containing missing elements. Given a query Q, how can
we automatically deduce which variant of messiah needs to be executed? In this
section, we present a heuristics-based selection strategy to answer this question.
Specifically, our heuristic is based on the statistics of underlying xml data and not
on their semantics.

Intuitively, the selection choice is influenced by the usefulness of the additional
results generated by p-messiah. We advocate that it depends on the number of
complete fslca s as well as the number of results (denoted by N) desired by a user.
In the context of keyword search, N is typically small. So if an xks system returns
more than N complete fslca results, then a user may not be interested in the results
with missing elements. Consequently, c-messiah is relatively more appropriate for
this case. On the other hand, if there are fewer than N complete fslca results,
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then displaying additional results with missing elements using p-messiah will be
potentially useful.

The challenge here is to estimate the number of complete fslca s apriori. We
address it by adopting a lightweight version of the XSketch-index [12]. In short,
an XSketch-index is a directed acyclic graph synopsis G where each synopsis node
g represents a set of data nodes with same labels and each edge (gp, gc) signifies
the parent-child relationship between the data nodes of gp and gc. Each internal
(resp. leaf) synopsis node stores the structural (resp. value) distribution of the
child labels (resp. value tokens) among its data nodes. For example, a synopsis
node gcity representing all city elements in D1 will have the structural distribution
of 100% for name and population but 33% for area since all city elements
have name and population but only one out of three has area. Similarly, for
the gcity/area synopsis node representing all city/area elements in D1, the value
distributions of Houston, Salt, Lake, City, and Provo are all 33%.

We use a lightweight version of XSketch-index where the synopsis graph G is
represented using the DataGuide tree �. Specifically, each synopsis node corre-
sponds to exactly one schema node in �. Note that G can be built while computing
� and stored with it. It is worth mentioning that although a more detailed XSketch-
index would provide a better estimation, it takes more space. A detailed discussion
on the space-accuracy trade-off is provided in [12]. As we shall see later, such
lightweight version is sufficient to select the correct variant of messiah with high
accuracy.

To illustrate the estimation process, let us reconsider Q1 and Q2 on D1. For
Q1(Provo area), from the XSketch-index, all cities have name but only 33% of
name have value Provo. Meanwhile, only 33 % of cities have area. Assuming
independent distribution between the two, 11% of cities have both Provo and
area. Since there are 3 city elements in D1, the estimated result size is 3×0.11 =

0.33. Similarly, for Q2(city area), 33% of city elements have area which
leads to the estimated result size of 1. Let N = 1. Since 0.33 < 1, p-messiah is used
for Q1 but c-messiah is used for Q2. This estimation reflects the intuition that Q1
is more likely to have no relevant results in the document so results with missing
elements are desirable.

6 Experimental Study

We conducted experiments to compare performance of messiah against state-of-
the-art slca computation approaches, namely, se and ile [17]; and ims and iims [14].
For complete fslca, we also provide two implementations, non-indexed (denoted
by nc-messiah) and indexed (denoted by ic-messiah), corresponding to two methods
to realize lm() and rm() functions as in [14, 17]. Notice that partial fslca does
not use lm() and rm(), so we only provide one implementation (p-messiah). All
techniques are implemented using Java 1.7 on top of Berkeley db 4.0.103. The
experiments were performed on an Intel Xeon X5570 machine with 4gb memory.
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Figure 6: Query set.

Since the techniques to select relevant return nodes within the slca subtrees (e.g.,
[1, 9, 10]) are orthogonal to messiah, we do not compare them.

6.1 Experimental Setup

Dataset. The experiments are performed on four xml datasets, Mondial (1.72mb),
Interpro (69mb), dblp (740mb) and Shakespeare (9.1mb). Mondial is a data-centric
xml dataset with many short texts while Shakespeare is a text-centric xml docu-
ment consisting of mostly long texts. Interpro and dblp are datasets with both
short and long text. Note that these data sources are also used for empirical study
in prior works [1, 9, 10, 17].

Queryset. The set of queries studied for each dataset is reported in Figure 6.
The queries for Mondial, Interpro, dblp, and Shakespeare are denoted as qm1-
qm8, qp1-qp8, qd1-qd8, and qs1-qs8, respectively. They are selected as follow. We
employ ten unpaid volunteers who have knowledge of xml but are not involved in
this project. Since our focus is on queries involving missing elements, for each
volunteer, we ask them to generate four queries without missing labels and four
with missing labels for each dataset. The missing labels for each dataset are pro-
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Figure 7: Precision.

vided beforehand. For each dataset, with 80 sample queries, we keep 8 queries
with diversity in numbers of keywords, keyword selectivity and whether the key-
word matches to a label or a value for experiments. The first four queries do not
contain missing elements whereas the last four queries do. Thus, the result size of
each of the first four queries is identical for all benchmark approaches. Observe
that the result sizes of complete fslca, partial fslca and slca may not be identical
in the last four queries. Note that the first four queries are used to compare the
performance of messiah with state-of-the-art techniques when missing labels are
not in users’ queries.

Indexes used. To support efficiently evaluation of Algorithm 1, we exploit the
following two indexes. (a) Inverted List: Our inverted list maps each keyword w
to a sorted set of value matches to w and a set of type matches to w. They are
used to find the input set for Algorithm 1. Notice that while the value match is
sorted, a sorted index such as B+-tree is not required for p-messiah since we do not
employ random access at all. Instead, a hash index can be used which allows faster
sequential traversal. The node order is maintained when the index is built while
parsing the document. (b) Type Index: It maps each type t to a sorted ND(t). It is
invoked in Line 3 of Algorithm 1. Similar to the inverted list, the order of ND(t) is
not required to be maintained by a B+-tree but by inserting them in correct order.

6.2 Results

Search quality. In this experiment, we compare the quality of results returned by
slca and fslca approaches. Since all slca approaches return the same results, we
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Figure 8: Recall.

only use the results returned by [17] as representative results. Since the difference
between partial and complete fslca approaches are some explicitly marked missing
data results which do not contribute to precision or recall, we use complete fslca
(c-messiah) as representative for fslca.

For each query, we ask each volunteer to specify the search intention. We then
provide document schema and ask them to convert their intention to XQuery/XPath
query. The results of these queries are considered as correct results. The volunteers
can discuss among themselves but unanimity is not required.

To measure the search quality, we use precision and recall, defined as follow:

precision =
|Rel ∩ Ret |
|Ret |

, recall =
|Rel ∩ Ret |
|Rel|

where Rel is the set of nodes retrieved by an xml query (as described above) and Ret
is the set of result type matches returned by slca/fslca. For instance, for qm6, the
XPath query agreed by all of our volunteers is //city[contains(name,’York’)]/
latitude. The set of latitude nodes retrieved by this query is denoted as Rel.
Ret is the set of all latitude matches returned by fslca (resp. slca)-based tech-
niques.

Since the focus of our paper is on queries with missing labels, some of our
experimental queries actually do not have relevant results (qd6, qd8, qm5, qm8, qp5,
qp8, qs5, qs7 and qs8). For these queries, recall is not available since the sets of
relevant nodes, Rel, are empty. Hence, for precision measurement, if the approach
returns empty results, we consider the precision in this case (0/0) is 100%. On the
other hand, if non-empty results are returned, the precision is considered 0%.
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Figure 9: Execution times (in msec). Note that y-axis is in log scale.

The recall of both slca and fslca are consistently high. Specifically, except
for the no-relevant-result queries (qd6, qd8, qm5, qm8, qp5, qp8, qs5, qs7 and qs8)
whose recall is unavailable, the recall of both slca and fslca are 100% for all
other queries. It shows that our approach matches slca’s ability to produce high
recall [9, 10].

Figure 7 reports the precision of messiah in comparison with slca-based tech-
niques. It is clear that our approach has higher or equal precision than slca-based
approaches for all queries, especially queries with missing elements (i.e., queries
with subscripts 5 to 8). In particular, for queries qd6, qd8, qm5, qm8, qp5, qp8, qs5,
qs7 and qs8, slca approaches have zero precision. There are no relevant results for
these queries. For complete fslca approach, no results are returned. On the other
hand, slca returns lots of irrelevant result matches. For instance, consider qd6. The
intention of this query is to find the citations in all of Aradhye’s papers. Notice
that dblp only stores the citation information for only few publications [5] and do
not have any data on Aradhye’s citations. For this query, complete fslca returns
empty results. Meanwhile, existing slca techniques’ only result is the root node
containing many irrelevant cite nodes.

A similar problem also arises for qm6. Note that there are five cities in the world
with name containing York but only one (i.e., New York) contains latitude data
in the Mondial dataset. For this query, complete fslca approach returns a single
city node corresponding to New York. Meanwhile, partial fslca will return all 5
cities with York. Except for New York, the remaining cities’ subtrees do not in-
clude any latitude data. Hence, these partial fslca s explicitly indicate that their
latitude data are missing. On the other hand, for slca, besides the latitude of
New York city, the latitudes of cities belonging to the same province or same
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Figure 10: Execution times (in msec).

country as York are returned instead.
While fslca consistently outperforms slca-based approaches, for some queries,

both suffer poor precision. For instance, considering qm1, most of our volunteers
expect the result to be the city of London, UK. However, there are other cities
containing London such as East London in South Africa which are unexpectedly
returned by both fslca and slca. Consider another example qp4 whose intention
is probably to find proteins published in Science in 2002. However, a protein
can be involved in multiple publications. Hence if a protein has one publication in
Science but not in 2002 and another publication in 2002 but not in Science, then
this protein is still returned as a result. All volunteers agree that both Science and
2002 should be associated with the same publication. Nevertheless, we note that
these problems lie on the semantics of slca itself which is orthogonal to this work.

We also notice that both fslca and slca have low precision on text-centric doc-
uments (e.g., Shakespeare) compared to data-centric documents (e.g., dblp, Mon-
dial). The reason is that all slca approaches match each keyword individually
while, for long-text-attributes, collective matching is expected. For example, con-
sider qs3. Its intention is probably to find the speaker of the line to be or not
to be. Thus, the keywords to be or not to be are expected to be matched
collectively to a single node in that order. However, fslca and all slca-based ap-
proaches process those keywords individually so that a result can have different
matches for to, be, not, etc. Nevertheless, this problem can be solved by rank-
ing [1, 16] or collective matching as used in ir.
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Execution times. In this set of experiments, we study the execution times of mes-
siah against state-of-the-art algorithms to compute slca nodes. Notice that we only
measure the time to retrieve the slca/fslca nodes without retrieving the matches.
The results are reported in Figure 9 (messiah is shown in solid colors).

Clearly, p-messiah is faster than most of the slca-based approaches for major-
ity of the queries. It is an order of magnitude faster than the fastest slca-based
approaches for several queries (e.g., qd4, qm7, qp3, qp4, qs3). Notice that these
queries have a lot of label keywords (e.g., publication, inproceedings). In an
xml document, these keywords typically have a huge number of matches, signifi-
cantly deteriorating performance of slca algorithms while p-messiah is independent
of the number of label matches (see Section 5.3). Also, c-messiah is consistently
fast for all queries with only one query exceeding 100ms.

On the other hand, the execution times of c-messiah (both indexed and non-
indexed) are generally worse than p-messiah even when its result size is smaller.
It is because, unlike p-messiah, c-messiah requires retrieval of label matches. As
discussed in [17], the indexed implementations (ic-messiah, ile, iims) are generally
faster and perform well when there are selective keywords in the query (i.e., qm6,
qp5, etc.) while the non-indexed implementations are generally slower but perform
well when all keywords have high frequency (e.g., qd5). However, notice that c-
messiah is still faster than its corresponding counterparts in [14] and [17].

Note that larger result size of p-messiah compared to slca-based approaches
does not mean slower subtree retrieval cost for the former. Since messiah is con-
scious of the missing element phenomenon, results of p-messiah are usually specific
descendants of slca’s results. Thus, the size of each result subtree returned by p-
messiah is smaller than that of slca-based approaches. For instance, consider qd6.
The result size of slca is 1 but its only result subtree is, in fact, the whole xml tree!

Scalability. In this experiment, we vary the data size of dblp dataset by trimming
it to 161mb, 322mb, 485mb and 646mb. The performance of qd5 is then measured
on these datasets. Note that qd5 is chosen because it involves missing elements
and has a large result size, ensuring significantly different result size when the data
size varies. The results are shown in Figure 10(a). Expectedly, the execution time
increases when the data size increases for all approaches. More importantly, our
approaches are significantly faster than all slca approaches across all datasets.
Also notice that, in this case, nc-messiah is faster than p-messiah. It is because
cite is a relatively rare label in dblp [5] so that there are much fewer complete
fslca nodes than partial fslca nodes.

Number of missing elements. In this experiment, we vary the number of nodes
which are missing in the document and study its effect on the execution times of
the benchmark approaches. The query used for this experiment is interpro name
on the Interpro dataset. Notice that each interpro node in Interpro has exactly
one leaf child with label name. We remove K% of these name nodes and measure
the performance on the modified document with missing nodes. Here, we vary
K from 0 to 80 where K = 0% refers to the original document. The results are
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reported in Figure 10(b). We can make two key observations. Firstly, for existing
slca algorithms and c-messiah algorithms, more missing elements tend to reduce
the execution time. It is expected since more missing elements means fewer slca
(complete fslca) interpro nodes to be returned. Secondly, the execution time of
p-messiah does not change significantly when the number of missing nodes varies.
Recall that the time complexity of Algorithm 1 is independent of the number of
label matches. Observe that removing the name node for query interpro name
only affects the number of label matches to name.

Number of keywords. Next, we study the effect of number of keywords in a query
on the execution time. We use the query XML title inproceedings author
Torsten Grust 2007 (on dblp) containing seven keywords for this purpose. We
first start with the query XML and then incrementally add more keywords from left
to right. In each step, the execution time is measured and reported in Figure 10(c).
The results show that the performances of all approaches except p-messiah vary
with different number of keywords. On the other hand, the execution time of p-
messiah is faster than these approaches and generally do not vary significantly with
the number of keywords. Observe that when the number of keywords increases,
a query has more input nodes but the result size also decreases. For slca-based
approaches the effect of the input nodes dominates since output size is generally
not as large as input size. However, for p-messiah, for each keyword, we only
retrieve the value matches and type matches and not the label matches. Hence,
the input size is typically much smaller resulting in significant performance gain.
Also notice that, when the number of keywords increase, the query becomes more
selective so that indexed algorithms tend to be faster than non-indexed algorithms.
Figure 10(c) also clearly shows that our c-messiah algorithms are faster than the
corresponding slca counterparts.

Heuristics for algorithm selection. Lastly, we study the accuracy of our pro-
posed heuristic in choosing c-messiah or p-messiah appropriately. As c-messiah and
p-messiah share identical result set for all queries with subscripts 1 to 4, we only
consider sample queries with subscripts 5 to 8. We set N = 20 (desired number
of results). Figure 11 shows the results of our study. Clearly, our approach esti-
mates the number of complete fslca nodes with reasonable accuracy (see Figure 6)
and more importantly uses it to make accurate choice. Specifically, for all queries
where c-messiahwould return empty results (e.g., qd5, qp5, qd6) or very few results
(e.g., qp7, qs6), p-messiah is suitably chosen to effectively inform a user existence
of missing elements in desired result sets. On the other hand, for queries with rea-
sonably large results size (e.g., qm7, qp6, qd5), c-messiah is employed as discussed
in Section 5.5.
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Figure 11: Heuristic-based algorithm selection (underline means c-messiah is se-
lected, otherwise p-messiah).

7 Conclusions

The quest for high quality keyword search in xml data has become more press-
ing because many users favor the simplicity and familiarity of search queries to
formulating a syntactically correct query using a complex xml query language.
State-of-the-art xml keyword search techniques adopt smallest lowest common an-
cestors (slca s) and its variants as a meaningful way to identify matching nodes
in xml data. However, slca-based approaches perform poorly for queries involv-
ing missing elements as they are not optionality resilient. In this paper, we present
two variants of a novel algorithm called messiahwhich identify optionality-resilient
fslca nodes instead of slca nodes to address this limitation. messiah exploits the
notion of a full document and the small size of its DataGuide to efficiently iden-
tify superior quality fslca nodes. A compelling benefit of messiah is that it can
be integrated seamlessly with state-of-the-art techniques for relevant return nodes
selection, potentially improving the strengths of these approaches. Our empirical
study demonstrated that messiah not only produces superior quality results but also
is significantly faster than state-of-the-art slca computation techniques.
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