
COKE: Efficient Maintenance of
Common Keys in Archives of

Continuous Query Results from Deep
Websites

Fajar Ardian Sourav S Bhowmick

School of Computer Engineering
Nanyang Technological University, Singapore

assourav@ntu.edu.sg

Abstract

In many real-world applications, it is important to create a local archive
containing versions of structured results of continuous queries (queries that
are evaluated periodically) submitted to autonomous database-driven Web
sites (e.g., deep Web). Such history of digital information is a potential gold
mine for all kinds of scientific, media and business analysts. An important
task in this context is to maintain the set of common keys of the underlying
archived results as they play pivotal role in data modeling and analysis, query
processing, and entity tracking. A set of attributes in a structured data is a
common key iff it is a key for all versions of the data in the archive. Due to
the data-driven nature of key discovery from the archive, unlike traditional
keys, the common keys are not temporally invariant. That is, keys identified
in one version may be different from those in another version. Hence, in this
paper, we propose a novel technique to maintain common keys in an archive
containing a sequence of versions of evolutionary continuous query results.
Given the current common key set of existing versions and a new snapshot,
we propose an algorithm called coke (common key maintenance) which in-
crementally maintains the common key set without undertaking expensive
minimal keys computation from the new snapshot. Furthermore, it exploits
certain interesting evolutionary features of real-world data to further reduce
the computation cost. Our exhaustive empirical study demonstrates that coke
has excellent performance and is orders of magnitude faster than a baseline
approach for maintenance of common keys.

2

1 Introduction

Due to the proliferation of database-driven Web sites, there is an enormous volume
of structured data on the Web. For instance, a recent study [4] showed that the deep
Web contains more than 450, 000 Web databases and these are mostly structured
data sources (“relational” records with attribute-value pairs) – with a dominating
ratio of 3.4 : 1 versus unstructured sources. Web users typically retrieve relevant
data from a deep Web source by submitting an html form with valid input values.
Search engines, on the other hand, may employ a technique called surfacing which
automatically submits a large number of queries through the form with valid input
values to crawl the content of a deep Web site [17]. In the paper, we address
an important problem targeted to deep Web users community instead of search
engines.

An important characteristic of deep Web data sources is that they are evolution-
ary in nature. Consequently, the data content published by a site in response to a
query may evolve with time. Hence, Web users may pose continuous queries [5,15]
(queries that are evaluated periodically on a source) to retrieve relevant data over
time. In many applications, it is important to create archives containing previous
versions of such evolutionary query results as such history of digital information is
a potential gold mine for all kinds of scientific, media and business analysts [18].
For example, one may be interested in finding how the average salaries of people
at different cities have changed during 2005 to 2008 to study the effect of subprime
mortgage crisis.

The most common strategy to store continuous query results is to first extract
structured records from the html pages using existing data extraction techniques
and then store them in relational table(s) [1, 3, 6]. Consequently, data extracted
from a remote Web source Q during a time period τ1 to τn can be represented in
the local archive as a sequence of relations S = ⟨R1,R2, . . . ,Rn⟩. For example,
consider two sets of persons’ records shown in Figure 1 that are extracted from the
results of a continuous query at times τ1 and τ2, and stored in relational tables R1
and R2, respectively. Each tuple or record in the table represents a person entity
in the archive. Note that the EID attribute is not part of the records but is used
only to facilitate discussions. Notice that children and income attributes of entity
e4 are updated in R2; entity e8 has been inserted in R2; and entity e3 in R1 has
been deleted. Figure 2 depicts another example of relational representations of
continuous query results from an auction website at two different weeks.

1.1 Motivation

Given a sequence of versions of relation S in the archive, the identification of com-
mon keys is important for accurate tracking of entities, version management, and
query processing over archived relations (we shall elaborate on some of these is-

3

Name Birthdate City

Alicee1

EID IncomeChildren

1 Jan 80 Los Angeles 1 10000

e2 Bob 2 Feb 79 Los Angeles 2 20000

e3 Carol 3 Mar 78 Chicago 3 20000

e4 Alice 4 Apr 77 Los Angeles 4 20000

e5 Dave 5 May 76 Houston 2 30000

Name Birthdate City

Alicee4

EID IncomeChildren

4 Apr 77 Los Angeles 5 40000

e5 Dave 5 May 76 Houston 2 30000

e6 Eve 5 May 76 Houston 2 30000

e7 Bob 6 Jun 75 Los Angeles 5 20000

e8 Isaac 7 Jul 74 Phoenix 6 50000

(a) R1
(b) R2

Figure 1: Continuous query results at times (a) τ1 and (b) τ2.

Title Bid Price

Apple..Digitale1

EID LocationDate

21 350.00 Feb 18 07:54 Florida

e2 Apple..Grade A 29 202.50 Feb 18 08:23 Iowa

e3 Apple..New 21 405.00 Feb 18 08:58 N.Y.

e4 Slightly..16GB 24 227.50 Feb 18 09:21 Illinois

e5 Apple..Grade A 32 138.00 Feb 18 09:36 Iowa

(a) R1 (Week n-1) (b) R2 (Week n)

Title Bid Price

Slightly..16GBe1

EID LocationDate

24 227.50 Feb 18 09:21 Illinois

e2 Apple..Grade A 34 152.50 Feb 18 09:36 Iowa

e3 Apple..Used 21 202.50 Feb 25 10:34 N.Y.

e4 Apple...World 23 202.50 Feb 25 11:10 N.Y.

e5 Apple..MA627LL 27 192.50 Feb 20 09:41 Georgia

Figure 2: Continuous query results from an auction site.

sues in Section 2). A key1 c of a relation Ri in S is a common key iff it is a key
for all the versions of the relation. That is, c is a key of Ri ∀ 0 < i ≤ |S|. For ex-
ample, some of the common keys of R1 and R2 in Figure 1 are {birthdate, name},
{name, children}, and {name, income}. In Figure 2, {date, title, location} and {title,
bid, location} are two examples of common keys. c is a minimal common key iff
none of its proper subset is also a common key. For instance, {date} and {title, bid}
are the minimal common keys in Figure 2. In this paper, we present an efficient
data-driven algorithm to identify a set of common keys in S.

Automated identification of all common keys in an archive containing versions
of continuous query results is a non-trivial problem for several reasons. Firstly,
due to privacy reasons, the remote Web site Q may not publish explicit identifier(s)
(e.g., social security number) of entities. Hence, one may not be able to manually
identify such identifiers as keys. Secondly, even if such identifiers do exist (e.g.,
Vehicle Identification Number (VIN)), an explicit list of all keys is often difficult
to find manually. Thirdly, identification of common keys should be completely
transparent from the Web users and their interaction behaviors with Q should not
be affected. Lastly and more importantly, due to lack of availability of the remote
database schema of Q, it is not possible for the local archive to take the traditional
approach of inferring keys from the schema of Q. Note that this issue is more
challenging for typical Web users compared to search engines. The latter may
submit many queries to retrieve a large number of records with different attribute
values at different time points in order to crawl Q [17]. In this case, it is easier to
determine the common keys quickly. In contrast, the former is only interested in
a subset of data in Q as the Web users’ goal are not to crawl Q. Thus, they may
submit relatively fewer continuous queries to retrieving fewer attributes values,
making it harder to discover common keys quickly.

1A set of attributes is a key of a relation iff there is no two tuples in this relation with the same value for all
attributes in this set.

4

Web site Query
No. of

Attr.

stores.tomshardware.com MP3 Player (Find Products) 7 554

www.careerbuilder.com

Information Technology (Category),

California (State), Database Administrator

(Keywords), 50 (Miles)

12 274D1

D2

ID
Avg. no

of tuples

Figure 3: Real-world data

500

1000

1500

2000

0 10 20 30 40

0

20

40

60

0 10 20 30 40

(a) D1 (b) D2

Figure 4: Evolutionary nature of keys.

Evolutionary Nature of Keys. Discovering keys, especially composite keys
(keys consisting of two or more attributes), is known to be a computationally dif-
ficult problem as the number of possible keys increases exponentially with the
number of database attributes [24]. To address this problem, recently Sismansis
et al. [24] proposed a practical algorithm, called gordian, for discovering compos-
ite keys in a collection of real-world entities. Consequently at first glance, it may
seem that the common key discovery problem can be solved by first discovering
the set of keys K(Ri) of any relation Ri in S where 0 < i ≤ |S| using an existing
data-driven key discovery technique (e.g., gordian [24]). Next, assign K(Ri) to be
the common keys of all the versions in S. Since traditionally keys are temporally
invariant, K(Ri) should remain the same across all versions and therefore looking
at any one version is sufficient to choose common keys of S.

Interestingly, the above approach does not work due to the evolutionary nature
of keys in the archive. We observed that the keys discovered from Ri by any existing
data-driven key discovery technique may not be temporally invariant. That is, a key
in relation Ri archived at time τi may not be a key in Ri+1 downloaded at time τi+1.
For instance, consider R2 in Figure 1. The keys {birthdate}, {children, city}, and
{children, income} of R1 are no more keys in R2. On the other hand, {name} is now
a key of R2. Similarly, in Figure 2 {price} is a key in R1 but not in R2. Hence, the
set of keys discovered from Ri cannot be automatically assigned as the common
key set of the entire sequence S.

To get a better understanding of this problem, we experimented with some ver-
sions of real-world continuous query results from a set of deep Web sites. Figure 3
shows two representative sites and continuous queries that we analyzed over a time
period. A query is shown in the “Query” column and the string inside the bracket
of each query corresponds to the “field” in the search form. Each data set contains

5

a relational archive of a sequence of query results for a continuous query submit-
ted during 20 November, 2007 and 28 February, 2008. We periodically issued the
query every two days and collected 40 snapshots for each of the data sets. The “No.
of Attr.” column specifies the number of attributes in each record in the results and
the “Avg. no. of tuples” column specifies the average number of records returned
by the query at every time point.

Clearly, if an existing common key in the sequence S is not a key in a new rela-
tion Rn, then the existing common key set, denoted by C(S), needs to be modified.
In other words, “invalidity” of a common key results in evolution of C(S). Observe
that whenever a common key is invalid it results in a decrease in the cardinality of
C(S). Hence, we empirically observe the evolutionary nature of keys by analyzing
the change in cardinality of the common key set over time. Figure 4 graphically
elaborates on the evolution of the cardinality of common key sets against the num-
ber of relations over time for the two representative data sets. Observe that the
number of common keys evolves with time for both the data sets and the frequency
of evolution varies widely. For instance, in Figure 4(a) the common keys changed
frequently (13 times) whereas in Figure 4(b), it only changed five times. Also, the
cardinalities of common key sets for both these sources kept changing throughout
the time period. Consequently, the final common keys may not converge quickly
and as a result we may not be able to determined them by observing only first few
versions of the query results.

1.2 Overview

Given the current common key set C(S) of a sequence of relations S and a new
relation Rn, at first glance, it may seem that the common key maintenance problem
can be solved in two steps. First, find the set of minimal keys of Rn by applying
an existing data-driven key discovery technique [16,24]. The set of all keys can be
derived from the set of minimal keys. Second, we can maintain the common keys
by computing the intersection of C(S) and keys of Rn. While this approach clearly
works, it is computationally expensive as the minimal key discovery step is of high
computational cost [24] and we have to execute it for every new relation.

Instead, in Section 5 we propose an algorithm called coke (COmmon Key
MaintenancE) which exploits certain evolutionary features of real-world data and
incrementally maintains C(S) after the arrival of Rn without computing the set of
minimal keys of Rn. Using an efficient partitioning plan, coke first splits Rn based
on each C ∈ C(S) into a set of non-trivial sub-relations where each sub-relation
has at least two tuples and any two tuples in the same sub-relation have the same
value for all attributes in C. Further, any two tuples in two different sub-relations
have different value for at least one attribute in C. Observe that if C is no longer
a key in Rn, then its non-trivial sub-relation contains at least two tuples. Next
for each C and for each non-trivial sub-relation T , coke creates the projected sub-
relation from T by removing all the attributes in C from T . Then, it computes
the minimal keys of the projected sub-relation using an existing data-driven key

6

discovery algorithm. Next, the algorithm efficiently computes the set of minimal
proxy keys of the projected sub-relation over C. A proxy key P is a key of the
projected sub-relation and P ⊇ C. Lastly, the set of minimal common keys of the
new sequence is efficiently computed from the proxy keys. Note that coke can
efficiently determine when the common keys remain unchanged in the new version
as the non-trivial sub-relation set is empty in this case. Consequently, it discards
subsequent steps for computing projected sub-relations and proxy keys.

The above strategy of common keys maintenance is significantly faster than
computing the entire set of keys from Rn directly for the following reasons. Firstly,
we can ignore the computation of all sub-relations that are not non-trivial (i.e.,
sub-relation containing only one tuple). Interestingly, our analysis of a variety of
real-world continuous query results in Section 6 revealed that there are relatively
very few non-trivial sub-relations. Consequently, coke only needs to consider a
small number of such sub-relations. Secondly, the number of tuples in each non-
trivial sub-relation is often very small. This further improves the performance of
coke by reducing the execution cost of a data-driven key discovery algorithm. We
conduct an extensive set of experimental evaluations in Section 7 by comparing
the performance of the coke algorithm with respect to a baseline method on both
synthetic and real-world data sets. The experimental results show that coke is more
scalable and orders of magnitude faster than the baseline approach.

The rest of this paper is organized as follows. Section 2 highlights the useful-
ness of common keys. Section 3 formally introduces the common key maintenance
problem. Section 4 presents a naı̈ve approach to solve the common key mainte-
nance problem. We describe the coke algorithm in Section 5. We report certain
interesting evolutionary features of real-world data that coke exploits in Section 6.
We evaluate and compare the performance of our proposed techniques through an
extensive set of experiments in Section 7. We review related work in Section 8.
Finally, the last section concludes the paper.

2 Usefulness of Common Keys

In this section, we highlight the usefulness of common keys by discussing how
evolutionary nature of keys may adversely affect the accuracy of tracking entities
and in query processing. In this context, we outline how the knowledge of common
keys can help us to alleviate these problems.

Accuracy of tracking entities in a deep Web archive. Monitoring the evolu-
tion of deep Web query results is beneficial for several applications such as trend
analysis, event tracking and notification, etc. For example, a user may wish to be
notified whenever the price of any ipod drops by 50%. A monitoring algorithm
should output high Quality of Data (QoD) so that the quality of overall monitoring
process can be improved. QoD can be measured in different ways, one of which is
accuracy of tracking. That is, a tracking algorithm should be able track an entity
correctly in the query results sequence. For example, consider the results in Fig-

7

ure 2. Suppose that two entities e1 ∈ Ri and e2 ∈ R j are regarded as the same entity
if they have same values for the attribute set {title, date, location}. We refer to such
attribute set as identifier. If the tracking algorithm is “identifier-aware”, then it can
track the evolution of the results with high accuracy. For instance, consider the
second entity in Figure 2(b). Although it shares the same title with the second and
fifth entities in Figure 2(a), it is only identical to the fifth entity as the title, date,
and location values match for these two entities. Note that the identifiers depends
on the continuous queries as different queries may retrieve different set of attributes
from a specific deep Web source. Observe that the values of identifier of an entity
e must be identical in two different results’ snapshots of a continuous query. That
is, if e occurs in Ri and R j then there must exists a one-to-one mapping between
the occurrences of e.

The knowledge of common keys can be used to detect potential identifier(s)
when such information is not explicitly available from the source. An identifier
must satisfy following two criteria. First, an identifier must be a common key in S.
For instance, one of the common keys in Figure 2, namely {date, title, location}
and {title, bid, location}, may be used as an identifier. Second, the value of a
common key of an entity e must be conserved in the historical results sequence of
a query. In other words, if e exists in both R1 and R2 then the common key values
of e in these two relations must be identical and must not evolve with time. For
example, the common key {date, title, location} is an identifier for each auction
entity as the values are conserved in R1 and R2 for every entity. Once we are aware
of this conserved feature, we can determine that the fourth and fifth entities in R1
are identical to the first and second entities in R2, respectively, as they have same
common key values. On the other hand, the common key {title, bid, location}
cannot be an identifier as the value of bid of an entity may evolve with time.

Note that traditional techniques for duplicate record detection or reference rec-
onciliation [8, 9] cannot be used to identify identifiers. They assume that the at-
tributes of the records of the same real-world entity may be represented in different
ways due to typing error, etc., and all attributes of the records can be used to decide
whether or not the records refer to the same entity. However, in our problem this is
not possible as some of the attributes of the entities are evolving.

Query optimization. Consider the archive in Figure 2. Suppose a user wishes
to find all distinct titles with number of bids less than 25 in the last two weeks (R1
and R2). To execute this query, the query processor needs to sort the records in R1
and R2 based on the attribute title in order to eliminate duplicates. Since title is a
key of R2, the query optimizer may rewrite the sql query by removing the distinct
clause. As a result, duplicate elimination can be avoided. However, observe that
it is not a key in R1. Consequently, the above rewriting strategy will generate in-
correct results for R1 (if we assume keys are temporally invariant). In contrast, the
knowledge of common keys of R1 and R2 can accurately guide the query processor
to determine when to avoid duplicate elimination. In the aforementioned example,
it cannot be avoided as title is not a common key. However, if one wishes to find
distinct (title, bid) pairs then duplicate elimination can be avoided as the pair is a

8

Symbol Description

S Sequence of historical relations
Rn New relation
K(R) Set of keys of relation R
MK(R) Set of minimal keys of R
C(S) Set of common keys of S
MC(S) Set of minimal common keys of S
P(S,C) Set of proxy keys of S over C
MP(S,C) Set of minimal proxy keys of S over C
T (R,C) Set of non-trivial sub-relations of R over C

T p The projected sub-relation of T ∈ T (R,C)

Table 1: Symbols.

common key.
As another example, consider the role keys play in order optimization. Suppose

a user wishes to group all records by title and price in the last two weeks (R1 and
R2). A node in a query plan of this query may require that the input records must be
ordered based on attributes title first and then price (GROUP BY title, price).
Suppose that the records that are fed into this node are currently ordered based
on title first and then location. Since the required order is not the same as the
current order, the query processor needs to sort the records before they are fed into
the node. Since title is a key of R2, the records that are ordered by title are also
ordered by attributes title first and then location. Additionally, the records that are
ordered by title are also ordered by title and price. Consequently, the knowledge
of keys ensures that the records need not be sorted before feeding them to the node.
Unfortunately, the above order optimization cannot be used in the old version R1
(sorting cannot be avoided). In contrast, the knowledge of common keys R1 and
R2 can accurately guide the query processor to determine when to avoid sorting
during order optimization. In the above example, based on common keys we know
that sorting cannot be avoided. However, if the user wishes to groups by title, bid,
and price then the knowledge of common keys can guide the query processor to
avoid sorting during order optimization.

3 Preliminaries

We begin by discussing our strategy for modeling a sequence of versions of struc-
tured continuous query results. Then, we formally introduce the notion of common
keys. Finally, we define the problem that we address in this paper. The set of sym-
bols used in this paper is summarized in Table 1.

3.1 Model of Structured Web Data Sequence

We represent structured continuous query results from an autonomous deep Web
source Q as a pair (Q, Γ), where Γ = ⟨τ1, τ2, . . . , τn⟩ is the timestamp sequences

9

recording the times when data was retrieved from Q periodically. We take an entity
view of the data of Q. We consider query results from Q at time τi as primarily a
set of entities: GQτi

= {G1,G2,G3, . . . ,Gr}. Each entity G j ∈ GQτi
consists of a set

of elements E j where each element e ∈ E j is a pair (a, v) where a is the attribute
and v is the literal value (possibly empty) of e. We say that two entities Gℓ ∈ GQτi

and Gm ∈ GQτ j
∀1 ≤ i < j ≤ n are identical, denoted as Gℓ = Gm, if they represent

the same real-world entity.
Let A be the set of all attributes for GQτi

. Then, GQτi
can be stored in a re-

lational table Ri(a1, a2, . . . , a|A|) where ak ∈ A ∀1 ≤ k ≤ |A| and each record
u j represents an entity G j ∈ GQτi

. As Q disseminates data periodically over a
time period, the collection of historical data of Q can be represented as a se-
quence ⟨GQτ1

, GQτ2
,. . ., GQτn

⟩ where τ1 < τ2 < . . . < τn. Also, we assume that
Ai = A j ∀1 ≤ i < j ≤ n where Ai and A j are the sets of attributes for GQτi

and
GQτ j

, respectively. Consequently, data from Q can be represented as a sequence
of relational tables S = ⟨R1(a1, a2, . . . , a|A|),R2(a1, a2, . . . , a|A|), . . . ,Rn(a1, a2, . . . ,
a|A|)⟩. In the sequel, the set of attributes (schema) of Ri (a1, a2, . . . , a|A|) is omitted
if it is understood in the context.

3.2 Common Key

Informally, a key in relation Ri is a common key iff it is a key for all the versions of
the relation in the sequence S.

Definition 1 (Common Key). Let S = ⟨R1,R2, . . . ,Rm⟩ be a sequence of relations
from a Web source Q with a set of attributes A. Let C ⊆ A and C , ∅. Then, C is
a common key of S iff C is a key of Ri ∀1 ≤ i ≤ m. C is a minimal common key
of S if and only if C is a common key of S and none of its proper subset is also a
common key of S.

We denote the sets of common keys and minimal common keys of S as C(S)
andMC(S), respectively. For example, consider the relations R1 and R2 shown in
Figure 1. Let S = ⟨R1,R2⟩. The set of attributes {name, children} is a common key
of S since it is a key of both R1 and R2. This set of attributes is also a minimal
common key of S since none of its proper subsets (i.e., {name} and {children}) is
also a common key of S. Also, MC(S) = {{name, birthdate}, {name, children},
{name, income}}. Notice thatMC(S) is a succinct representation of C(S).

3.3 Common Key Maintenance Problem

Let S = ⟨R1,R2, . . . ,Rn⟩ be a sequence of relations from a deep Web source Q with
a set of attributes A. Note that the keys of R1 can be computed using an existing
data-driven key discovery algorithm. Then for each relation Ri where i > 1, we
can compute the common keys of the new sequence of relations that incorporates
the new relation Ri by examining the common keys of the “old” sequence, and
selecting those that are the keys of Ri.

10

Algorithm 1: Algorithm naı̈ve
Input: MC(So), Rn

Output: MC(Sn)
1 MK(Rn)← call key discovery algorithm on Rn;
2 MC(Sn)← MIN(MC(So) ⊗MK(Rn));
3 returnMC(Sn)

Definition 2 (Common Key Maintenance Problem) Let So = ⟨R1,R2, . . . ,Rm⟩
be the sequence of relations from source Q at times ⟨τ1, τ2, . . . , τm⟩ . Let Rn be
the new relation from Q at time τn > τm. Given MC(So) and Rn, the problem
of common key maintenance is to find MC(Sn) of the updated sequence Sn =

⟨R1,R2, . . . ,Rm,Rn⟩.

4 Algorithm naı̈ve

In this section, we present a simple algorithm for computing MC(Sn). We begin
by defining two operators, namely minimization and pairwise union, that we shall
be using subsequently.

Let X be a collection of sets of elements. The minimization of X , denoted by
MIN(X), is defined as the collection of every set in X whose none of its proper
subset is also in X , i.e., {x|x ∈ X ∧ @y ∈ Xs.t y ⊂ x}. For example, let X = {{name},
{birthdate}, {name, city}}. Then, MIN(X) is {{name}, {birthdate}}. Notice that
{name, city} is not in MIN(X) since one of its proper subset ({name}) is in X .

Let X and Y be collections of sets of elements. The pairwise union of X and
Y , denoted by X ⊗ Y , is defined as the collection of the union of every set in X
with every set in Y , i.e., {x ∪ y|x ∈ X and y ∈ Y }. For example, let X = {{name},
{birthdate}} and Y = {{name}, {city}}. Then, X ⊗ Y is {{name}, {name, birthdate},
{name, city}, {birthdate, city}}. It follows from its definition that pairwise union
operator is commutative (i.e., X ⊗ Y = Y ⊗ X) and associative (i.e., X ⊗ (Y ⊗ Z) =
(X ⊗ Y) ⊗ Z). For simplicity, we use the notation

⊗n
i=1 Xi as a short form of

X1 ⊗ X2 ⊗ · · · ⊗ Xn.

4.1 Algorithm

It follows from the definition of common key that the common keys in C(Sn) must
be in both C(So) and K(Rn). This implies that C(Sn) can be computed by intersect-
ing C(So) and K(Rn). Based on this, we propose a simple algorithm, called naı̈ve,
for computingMC(Sn), which consists of the following two steps as shown in Al-
gorithm 1. First, we computeMK(Rn) from Rn by using key discovery algorithm
(Line 1). Second, we computeMC(Sn) fromMC(So) andMK(Rn) by using the
following theorem (Line 2).

11

Theorem 1 GivenMC(So) andMK(Rn), we can computeMC(Sn) as

MC(Sn) = MIN(MC(So) ⊗MK(Rn))

�

Proof 1 See Appendix A.

Example 1 Consider relations R1 and R2 shown in Figure 1. Let So = ⟨R1⟩ and
Rn = R2. Recall that MC(So) = {{birthdate}, {name, children}, {name, income},
{children, income}, {children, city}}. By using key discovery algorithm, we ob-
tainMK(Rn) = {{name}}. By using Theorem 1, we obtainMC(Sn) = {{birthdate,
name}, {name, children}, {name, income}}.

The main drawback of the naı̈ve algorithm is that it needs to computeMK(Rn),
which can be expensive, especially when Rn has large numbers of attributes and
records. In the next section, we propose a significantly more efficient algorithm,
which not only avoids the computation ofMK(Rn), but also exploits evolutionary
characteristics of Rn.

5 Algorithm coke

In this section, we propose an efficient algorithm, called coke (COmmon Key
MaintenancE), for computing MC(Sn). We restrict this algorithm to in-memory
processing whereMC(So) and Rn reside in memory. We begin by defining proxy
key.

Definition 3 (Proxy Key) Given a R with attributes A, let P ⊆ A, Y ⊆ A, P , ∅ and
Y , ∅. Then, P is a proxy key of R over Y if and only if P is a key of R and P ⊇ Y .
P is a minimal proxy key of R over Y if and only if P is a proxy key of R over Y and
none of its proper subset is also a proxy key of R over Y .

We denote the sets of proxy keys and minimal proxy keys of R over Y as
P(R,Y) andMP(R,Y), respectively. For example, consider the relation R1 shown
in Figure 1. The set of attributes {name, children} is a proxy key of R1 over {name}
since it is a key of R1 and it is a superset of {name}. This set of attributes is also a
minimal proxy key of R1 over {name} since none of its proper subsets (i.e., {name}
and {children}) is also a proxy key of R1 over {name}. Also, MP(R1,{name}) =
{name, children}, {name, income}, {name, birthdate}}. Notice that MP(R,Y) is
a succinct representation of P(R,Y) since not only we can compute P(R,Y) from
MP(R,Y), but alsoMP(R,Y) contains much smaller number of sets of attributes
than P(R,Y).

12

Algorithm 2: Algorithm coke
Input: MC(So), Rn

Output: MC(Sn)
1 T (Rn, ·)← SubRelationConst(MC(So),Rn);
2 MC(Sn)← CommonKeyGen(MC(So),T (Rn, ·));
3 returnMC(Sn)

5.1 Overview

The number of possible common keys is exponential to the number of attributes.
To tackle this problem, we break the search space into several sub-search spaces,
where each sub-search space corresponds to each minimal common key C ∈ MC(So),
and consists of all the supersets of C. For each sub-search space, we compute its
MP(Rn,C) by first splitting Rn based on C into a set of non-trivial sub-relations
(denoted by T (Rn,C)). Then, we compute MP(Rn,C) from T (Rn,C). After
that, from these sets of minimal proxy keys of the sub-search spaces, we compute
MC(Sn) efficiently. We now formally define non-trivial sub-relations.

Definition 4 (Sub-relation) Give a relation R with attributes A, let C ⊆ A and
C , ∅. Let G = {T1,T2, . . . ,Tn} be a collection of sets of records of R. Then,
G is a set of sub-relations of R over C if and only if G satisfies the following four
conditions: (a) R = T1∪T2∪. . .∪Tn, (b) Ti∩Tj = ∅ ∀1 ≤ i < j ≤ n, (c) u[C] = v[C]
∀u, v ∈ Ti ∀1 ≤ i ≤ n, and (d) u[C] , v[C] ∀u ∈ Ti, v ∈ Tj ∀1 ≤ i < j ≤ n. We
call Ti ∈ G as a trivial sub-relation if |Ti| = 1, and as a non-trivial sub-relation if
|Ti| > 1.

For example, consider R1 shown in Figure 1. The collection of sets of records
{{e1, e4}, {e2}, {e3}, {e5}} is a set of sub-relations of R1 over {name} since it satisfies
all the four conditions above. The sub-relation {e2} is a trivial sub-relation since it
contains only one record, while the sub-relation {e1, e4} is a non-trivial sub-relation
since it contains more than one record.

The above idea of computingMC(Sn) is realized in coke by the following two
phases as shown in Algorithm 2. The non-trivial sub-relations computation phase
computes sets of non-trivial sub-relations T (Rn, ·) fromMC(So) and Rn (Line 1).
The common keys computation phase then computes MC(Sn) from MC(So) and
T (Rn, ·) (Line 2). For ease of detailed exposition of these phases, we use the fol-
lowing running example.

Example 2 Consider the relations in Figure 1. Let So = ⟨R1⟩ and Rn = R2. Also,
MC(So) = {{birthdate}, {name, children}, {name, income}, {children, income},
{children, city}}.

13

Algorithm 3: SubRelationConst
Input: MC(So), Rn

Output: T (Rn, ·)
1 root ← call PartitioningPlan(MC(So));
2 foreach w ∈ root.children do
3 SubRelationStub(Rn,w, {w.label});
4 return T (Rn, ·)
5 procedure: SubRelationStub(T,w,C);
6 G← partition T based on w.label;
7 if w is a leaf then
8 foreach non-trivial sub-relation T ′ ∈ G do
9 T (Rn,C)← T (Rn,C) ∪ {T ′};

10 else
11 foreach non-trivial sub-relation T ′ ∈ G do
12 foreach w′ ∈ w.children do
13 SubRelationStub(T ′,w′,C ∪ {w′.label});

5.2 Non-trivial Sub-relations Computation

Sub-relation Computation Using Partitioning Plan. One method for computing
T (Rn, ·) from MC(So) and Rn is that, for each C ∈ MC(So) we can partition the
records in Rn recursively based on each attribute in C. However, the computation
cost can be further reduced if some of the intermediate partitioning steps can be
shared among the minimal common keys in MC(So). For example, the minimal
common keys {name, children} and {children, income} share the attribute children,
and thus they can share some of the intermediate partitioning steps. We explain our
main idea below. First, we compute T (Rn, {children}) by partitioning the records
in Rn based on the attribute children. Second, we computeT (Rn, {name, children})
by partitioning the records in each sub-relation in T (Rn, {children}) based on the
name. Third, we compute T (Rn, {children, income}) by partitioning the records in
each sub-relation in T (Rn, {children}) based on income.

We formalize the above steps of computing T (Rn, ·) by using a partitioning
plan. The partitioning plan is a tree in which each of its nodes, except the root
node, is labeled with an attribute, and each of its paths from the root to the leaf node
represents each minimal common key C ∈ MC(So), and vice versa. For example,
consider theMC(So) and Rn in Example 2. Then, one possible partitioning plan is
shown in Figure 5. Notice that the minimal common key {name, children} is rep-
resented as the path of “children → name”, and the path of “children → income”
represents the minimal common key {children, income} (the root node is not in-
cluded in the path since it is unlabeled).

Algorithm 3 summarizes the steps of computing T (Rn, ·) using the partitioning
plan approach. First, we create a partitioning plan fromMC(So) (Line 1). We will

14

NameBirthdate

Income

Children

Name Income City

Figure 5: Partitioning plan computed fromMC(So).

discuss the method of creating the partitioning plan in the next subsection. The
algorithm starts from the root setting Rn as the current relation, and recursively
visits each of the child nodes (Lines 2-3). At each node, except the root, it partitions
the records in the current relation into multiple sub-relations based on the node’s
label (Line 6). It then checks whether the current node is a leaf node (Line 7). If
it is, then it adds all non-trivial sub-relations into T (Rn,C) where C is the minimal
common key represented by the path from the root to the current node (Lines 8-
9). If it is not, for each non-trivial sub-relation the algorithm sets it as the current
relation, and again recursively visit each of the child nodes (Lines 11-13). Note
that the algorithm does not continue the traversal of the partitioning plan for the
trivial sub-relations because at the leaf node such sub-relations will not be added
into T (Rn,C). We shall justify the reason for not adding the trivial sub-relations
into T (Rn,C) in Section 5.3.

Lemma 1 C ∈ K(Rn) if and only if T (Rn,C) = ∅.

Proof 2 We first prove that if C ∈ K(Rn), then T (Rn,C) = ∅. Suppose C ∈ K(Rn).
Since C ∈ K(Rn), by definition of key, no two records in Rn have the same value
for all attributes in C. Thus, the partition of the records in Rn based on C produces
only trivial sub-relations. Therefore, T (Rn,C) = ∅.

We now prove that if T (Rn,C) = ∅, then C ∈ K(Rn). Suppose T (Rn,C) = ∅.
Since T (Rn,C) = ∅, by definition of sub-relation, the partition of the records in
Rn based on C produces only trivial sub-relations. In other words, no two records
in Rn have the same value for all attributes in C. Therefore, by definition of key,
C ∈ K(Rn).

Example 3 The partitioning plan computed from MC(So) is shown in Figure 5.
The process of computing T (Rn, ·) using the partitioning plan is shown in Figure 6.
Each box in each node represents a sub-relation in that node, and each number in
each box represents a record (represented by its EID) in that sub-relation.

We illustrate the computation using T (Rn, {children, income}) as an exam-
ple. We start from the root node, set Rn as the current relation, and visit the node
children. We partition the current relation, i.e., Rn, based on the attribute children,
and obtain three sub-relations, i.e., {e4, e7}, {e5, e6}, and {e8}. Consider the sub-
relation {e4, e7}. Since it is non-trivial, we set it as the current relation, and visit
the node income. We partition the current relation, i.e., {e4, e7}, based on income

15

e4,e7

Children

e8 e5,e6

Name

e4 e7

Name

e4 e5 e6 e7 e8e5,e6

Birthdate

e4

e4,e5,e6,e7,e8

Income City

e4,e7

Name

e5 e6

Income City

e5,e6

T1 T2 T3 T4

e7 e8

e4 e7 e5,e6

Figure 6: Computation of T (Rn, ·) using the partitioning plan.

and obtain two sub-relations, i.e., {e4} and {e7}. Since we are at the leaf node and
the sub-relations {e4} and {e7} are trivial, we do not add them into T (Rn, {children,
income}). Now consider {e5, e6}. Since it is non-trivial, we set it as the current rela-
tion, and visit the node income. We partition the current relation based on income
and obtain one sub-relation, i.e., {e5, e6}. Since we are at the leaf node and the sub-
relation {e5, e6} is non-trivial, we add it into T (Rn, {children, income}) (denoted
as T3 in Figure 6). Lastly, we consider {e8}. Since this is a trivial sub-relation, we
prune it. Thus, T (Rn, {children, income}) = {T3}. Notice that the node income, the
child of the node name, in the partitioning plan is not traversed since every sub-
relation in the node name is trivial. Also, the set of sub-relations T (Rn, {children,
name}) is an empty set and the corresponding minimal common key {children,
name} is inK(Rn). This agrees with Lemma 1. The remaining sets of sub-relations
are T (Rn, {birthdate}) = {T1} and T (Rn, {children, city}) = {T2, T4}.

Partitioning Plan Construction. Our goal is to construct the partitioning plan
such that the computation cost required to construct it and to compute T (Rn, ·) is
minimum. This problem is challenging as in one hand, we need to take into account
the pruning of the sub-relations and on the other hand, we cannot preprocess Rn too
much since the construction of the plan may be too costly. We propose to create
a plan that contains the minimum number of nodes and ignore the pruning of the
sub-relations. We choose this strategy because it can be computed only from the
set of minimal common keys of So. Further, a plan that contains lesser number of
nodes is likely to reduce the total computation cost.

Theorem 2 The problem of constructing partitioning plan containing minimum
number of nodes fromMC(So) is NP-Hard.

Proof 3 See Appendix B.

We develop efficient heuristics to construct the partition plan. The basic idea is
inspired by the FP-Tree construction algorithm [11]. The objective is to assign the
attributes that exist in large number of minimal common keys inMC(So) as close

16

Eve

Dave Houston 2 30000

Houston 300002

e5

e6

EID Name City Children Income

(a) T p
1

Alice

Bob

40000

20000

4 Apr 77

6 Jun 75

e4

e7

EID Name Birthdate Income

(b) T p
2

Eve

Dave Houston5 May 76

5 May 76 Houston

e5

e6

EID Name Birthdate City

(c) T p
3

Eve

Dave 300005 May 76

5 May 76 30000

e5

e6

EID Name Birthdate Income

(d) T p
4

Figure 7: Projected sub-relations.

Algorithm 4: PartitioningPlan
Input: MC(So)
Output: root (root of the partitioning plan)

1 root ← new node;
2 foreach C ∈ MC(So) do
3 foreach a ∈ C do
4 a. f requency← a. f requency + 1;

5 foreach C ∈ MC(So) do
6 sort the attributes in C according to decreasing frequency;

7 foreach C ∈ MC(So) do
8 w← root;
9 foreach a ∈ C in order of decreasing frequency do

10 w′ ← find the node with label a in w.children;
11 if w′ does not exist then
12 w′ ← new node;
13 w′.label ← a;
14 w.children← w.children ∪ {w′};
15 w← w′;

16 return root

as possible to the root node in order to maximize the number of shared nodes.
Consequently, the number of nodes in the plan is minimized. The algorithm is
shown in Algorithm 4 and consists of the following three steps. Firstly, it computes
the frequency of each attribute. The frequency of an attribute is defined as the
number of minimal common keys inMC(So) that contains the attribute (Lines 2-4).
Secondly, it sorts the attributes in each C ∈ MC(So) based on the descending order
of frequency (Lines 5-6). Attributes with same frequency are ordered arbitrarily.
Thirdly, for each C ∈ MC(So), the algorithm creates a path from the root to a leaf
node, and share its prefix nodes maximally with other paths having the same prefix
(Lines 7-15). We explain this procedure with an example.

Example 4 Consider Example 3. The frequency of name is two since there are
two minimal common keys (i.e., {name, children} and {name, income}) that con-

17

Algorithm 5: CommonKeyGen
Input: MC(So), T (Rn, ·)
Output: MC(Sn)

1 foreach C ∈ MC(So) do
2 foreach T ∈ T (Rn,C) do
3 T p ← create a projection of T ;
4 MK(T p)← call key discovery algorithm on T p;
5 MP(T,C)←∪K∈MK(T p){K ∪C};

6 foreach C ∈ MC(So) do
7 if T (Rn,C) , ∅ then
8 MP(Rn,C)← MIN

(⊗
T∈T (Rn,C)MP(T,C)

)
;

9 else
10 MP(Rn,C)← {C};

11 MC(Sn)← MIN
(∪

C∈MC(So)MP(Rn,C)
)
;

12 returnMC(Sn)

tain this attribute. The frequencies of children, income, birthdate, and city are
three, two, one, and one, respectively. Hence, children > name > income >
birthdate > city. After sorting the attributes in each C ∈ MC(So), we obtain
MC(So) = {{birthdate}, {children, name}, {name, income}, {children, income},
{children, city}}. Note that the partitioning plan depends on the ordering of at-
tributes. The partitioning plan constructed from this MC(So) is shown in Figure
5. Notice that the minimal common key {name, income} is represented as the path
name → income. Furthermore, the paths children → name, children → income,
and children→ city share the prefix node children.

Observe that in the aforementioned approach we continue partitioning the new
sub-relation until we reach the leaf node of the plan. This is because we want
to compute the sets of sub-relations over the minimal common keys where each
minimal common key is represented as a path from the root to the leaf node. Hence,
if we stop the partitioning before reaching the leaf node, the resulting sets of sub-
relations will not be over the minimal common keys.

5.3 Common Keys Computation

We compute the set of minimal common keys of the updated sequence Sn (denoted
as MC(Sn)) from the T (Rn, ·) generated in the previous phase. Note that if the
common keys remain unchanged in the new sequence then non-trivial sub-relation
set is empty (Lemma 1). Hence, in this case Phase 2 does not need to be executed.

Algorithm of Phase 2. The steps for Phase 2 is presented in Algorithm 5. It
consists of three key steps as follows. Firstly, for each C ∈ MC(So) and T ∈
T (Rn,C), it computes the set of minimal proxy keys over C (MP(T,C)) from T
(Lines 1-5). Next, for each C ∈ MC(So), the minimal proxy keys in the new

18

relation (denoted asMP(Rn,C)) is generated fromMP(·,C) (Lines 6-10). Lastly,
the algorithm generatesMC(Sn) fromMP(Rn, ·) (Line 11). We now elaborate on
these steps in turn.

Step 1: Computation of Proxy Keys of Sub-Relations. Given C ∈ MC(So) it
computesMP(T,C) from T ∈ T (Rn,C). First, it creates the projected sub-relation
T p from T by removing all the attributes in C from the attributes of T (Line 3).
Second, it computes the minimal keys of T p (MK(T p)) using an existing key
discovery algorithm (Line 4). Third,MP(T,C) is computed by taking the union of
attributes in C and K ∈ MK(T p) (Line 5).

Example 5 We illustrate the computation ofMP(T1, {birthdate}). We create the
projected sub-relation T p

1 from T1 by removing the attribute birthdate from T1
as shown in Figure 7(a). By using an existing key discovery algorithm, we ob-
tainMK(T p

1) = {{name}}. Then, we can obtainMP(T1, {birthdate}) = {{name} ∪
{birthdate}} = {{name, birthdate}.

Similarly, we can compute the projected sub-relations of T2, T3, and T4. These
are depicted in Figures 7(b)-(d) (denoted as T p

2 , T p
3 , and T p

4 , respectively). The sets
of minimal proxy keys of the sub-relations areMP(T2, {children, city}) = {{name,
children, city}, {income, chidren, city}, {birthdate, children, city}},MP(T3, {children,
income}) = {{name, children, income}}, and MP(T4, {children, city}) = {{name,
children, city}}.

Step 2: Computation of Proxy Keys of Rn. Given C ∈ MC(So), in this step
our goal is to compute the set of minimal proxy keys of Rn over C (denoted as
MP(Rn,C)) fromMP(·,C). Note thatMP(·,C) has already been computed in the
preceding step. We consider the following two cases: (a) If T (Rn,C) = ∅. Based
on Lemma 1, it follows that C ∈ K(Rn). Consequently, MP(Rn,C) = {C} (Line
10). (b) If T (Rn,C) , ∅, then we compute MP(Rn,C) by using the following
theorem (Line 8). Intuitively, for each C we first apply the pairwise union on the
proxy key sets of all the non-trivial sub-relations (MP(T,C)). Then, we extract the
minimal proxy keys by removing the supersets (using minimization).

Theorem 3 Let C ∈ MC(So). GivenMP(·,C),

MP(Rn,C) = MIN

 ⊗
T∈T (Rn,C)

MP(T,C)

Proof 4 See Appendix C.

Note that the above theorem holds regardless of whether or not we add trivial
sub-relations into T (Rn,C). This is the reason why we do not add trivial sub-
relations in T (Rn,C) as discussed in Algorithm 3 (Line 8). Also, as the number
of elements in

⊗
T∈T (Rn,C)MP(T,C) is exponential to the number of sub-relations

in T (Rn,C), we propose a more efficient recursive method based on the following

19

Para
meter

Description Default
value

Ns # attributes in Rn 20
Nt # records in Rn 50,000
Nk # minimal common keys inMC(So) 30
Na # attributes in each minimal common key in

MC(So)
5

Nu # minimal common keys in MC(So) whose set of
non-trivial sub-relations is not empty

10

Np # non-trivial sub-relations in Rn associated with
each minimal common key in MC(So) whose set
of non-trivial sub-relations is not empty

20

Nq # records in each non-trivial sub-relation in Rn as-
sociated with each minimal common key inMC(So)
whose set of non-trivial sub-relations is not empty

10

Table 2: Parameters for analysis.

lemma. It reduces the number of elements in the intermediate computation by
applying minimization operator each time we apply pairwise union operator to
remove unnecessary elements from its results.

Lemma 2 Let {X1, X2, . . ., Xn} be a collection of sets of elements. Then,

MIN

 n⊗
i=1

Xi

 = MIN

X1 ⊗MIN

 n⊗
i=2

Xi

Proof 5 See Appendix D.

Example 6 We first illustrate the computation ofMP(Rn, {name, children}). Since
T (Rn, {name, children})= ∅, we setMP(Rn, {name, children})= {{name, children}}.
Let us now illustrate MP(Rn, {children, city}). Since T (Rn, {children, city}) =
{T2, T4}, we computeMP(Rn, {children, city}) fromMP(T2, {children, city}) and
MP(T4, {children, city}). Using Theorem 3, we obtainMP(Rn, {children, city}) =
MIN({{name, children, city}, {income, children, city},
{birthdate, children, city}} ⊗ {{name, children, city}}) = {{name, children, city}}.
Similarly, we can compute remaining minimal proxy key sets: MP(Rn, {name,
income}) = {{name, income}}, MP(Rn, {birthdate}) = {{name, birthdate}} and
MP(Rn, {children, income}) = {{name, children, income}}.

Step 3: Computation of Common Keys of Sn. Finally, we compute the set of
minimal common keys in Sn (MC(Sn)) fromMP(Rn, ·) generated from the preced-
ing step by applying the minimization operator on the sets of proxy keys (Line 11
in Algorithm 5). Note that the minimization operation ensures removal of super
keys from this set.

Example 7 We obtainMC(Sn) = MIN({{name, children}} ∪ {{name, income}} ∪
{{name, birthdate}} ∪ {{name, children, income}} ∪ {{name, children, city}}) =
{{name, children}, {name, income}, {name, birthdate}}.

20

AMZN1 AMZN2 CNET1 CNET2 DIGG1 DIGG2 EBAY1 EBAY2
Web site amazon.com cnet.com digg.com ebay.com

Query mp3 digital camera camera laptop tech world ipod touch laptop computer
records in R1 (10th Nov, 2008) 3051 3708 10100 10100 10200 20400 10489 21950
records in R2 (17th Nov, 2008) 3996 3998 10200 10100 10200 20400 10635 21951

attributes in R1 and R2 13 14 24 25 18 18 30 29

Table 3: Real-world data sets.

5.4 Complexity Analysis

In this section, we present the time and space complexities of naı̈ve and coke algo-
rithms. We summarize the complexities with respect to seven parameters shown in
Table 2.

Let O(�(R)) and O(�(R)) be the time and space complexities, respectively, of
computingMK(R) using key discovery algorithm. Then,

Theorem 4 The time and space complexities of the naı̈ve algorithm are O(�(Rn))
and O(NsNt + �(Rn)), respectively.

Proof 6 See Appendix E.

Theorem 5 The time and space complexities of the coke algorithm are
O(NkNaNt log Nt + NuNp�(T p)) and O(NsNt + �(T p)), respectively.

Proof 7 See Appendix E.

Remark. Recall that we traverse the partitioning plan in a depth first fashion.
The space that we require in each node in the partitioning plan is at most Nt . We
only store the identifier of the records. Since the depth of the partitioning plan is
at most Na, then the space that we require is at most NtNa. In contrast, the space
that we require to store the new relation is NtNs. Since Ns > Na, then the space
that we require to generate the sets of sub-relations is less than the space required
for storing the new relation. Furthermore, the space required to store the sets of
sub-relations is NuNpNq. Note that one record can be in multiple sub-relations in
multiple minimal common keys. Since Nu, Np, and Nq are small, this space is less
than the space required to store the new relation.

In coke, key discovery algorithm is executed against projected sub-relation T p,
whereas in naı̈ve, it is executed against relation Rn. Since T p has smaller number
of attributes and significantly smaller number of records than Rn, the cost of each
execution of key discovery algorithm in coke is much cheaper than in naı̈ve. How-
ever, in coke, key discovery algorithm is executed NuNp times, whereas in naı̈ve,
it is executed only once. Notice that NuNp is the total number of non-trivial sub-
relations in Rn. Thus, if NuNp is sufficiently large, it is possible that the total cost of
execution of key discovery algorithm in coke to be more expensive than in naı̈ve,
which may in overall make coke slower than naı̈ve. However, as we shall show in
the next section, such scenario is improbable in real-world data sets.

21

 0

 1

 2

 3

 4

 5

 1 1.5 2 2.5 3

α a
vg

N2 (thousand)

N1: 500
N1: 1000
N1: 2000

(a) AMZN1

 0

 5

 10

 15

 20

 1 1.5 2 2.5 3

α a
vg

N2 (thousand)

N1: 500
N1: 1000
N1: 2000

(b) AMZN2

 0

 10

 20

 30

 2 4 6 8 10

α a
vg

N2 (thousand)

N1: 1000
N1: 2000
N1: 4000

(c) CNET1

 0

 10

 20

 30

 2 4 6 8 10

α a
vg

N2 (thousand)

N1: 1000
N1: 2000
N1: 4000

(d) CNET2

 0

 10

 20

 30

 2 4 6 8 10

α a
vg

N2 (thousand)

N1: 1000
N1: 2000
N1: 4000

(e) DIGG1

 0

 20

 40

 60

 80

 100

 4 8 12 16 20

α a
vg

N2 (thousand)

N1: 1000
N1: 2000
N1: 4000

(f) DIGG2

 0

 1

 2

 2 4 6 8 10

α a
vg

N2 (thousand)

N1: 1000
N1: 2000
N1: 4000

(g) EBAY1

 0

 5

 10

 15

 20

 25

 4 8 12 16 20

α a
vg

N2 (thousand)

N1: 1000
N1: 2000
N1: 4000

(h) EBAY2

Figure 8: Anorexic nature (αavg) of real-world data sets.

22

6 Anorexic Nature of Sub-Relations

Recall that we made the assumption that the number of non-trivial sub-relations
in Rn and the number of their records are relatively small. This “anorexic” nature
of the sub-relations reduces the total execution cost of a key discovery algorithm.
Hence, a critical question that needs to be answered is whether this assumption is
practical for evolutionary real-world continuous query results? In this section, we
show that it is indeed the case.

Factors affecting anorexic behavior. In general, there are two factors that
affect the extent to which anorexic characteristics are present in relation Rn: (a)
the domain size of the minimal common keys in MC(So), and (b) the number of
records in Rn. Given two relations R1 and R2, we can show the effect of these two
factors using the following method. We sample N1 records from R1, compute the
set of minimal keys of these N1 records, and use it asMC(So). We can vary the first
factor by varying N1. Specifically, we can increase the domain size of the minimal
common keys by increasing N1. This is because in a relation with large number of
records, it is more likely to get duplicate records for sets of attributes with smaller
domain size than with larger domain size, and thus, the minimal keys of this large
relation are more likely to have larger domain size. Next, we sample N2 records
from R2, and use it as Rn. We can vary the second factor by varying N2.

We study the effect of the above factors by analyzing two parameters: αavg and
βavg. Let M̂C(So) be the set of minimal common keys of So whose set of non-trivial
sub-relations is not empty, i.e., M̂C(So) = {C|C ∈ MC(So) and T (Rn,C) , ∅}.
Then, αavg is defined as the average number of non-trivial sub-relations associated
with each minimal common key whose set of non-trivial sub-relations is not empty,
i.e.,

αavg =

∑
C∈M̂C(So) |T (Rn,C)|

|M̂C(So)|
βavg is defined as the average number of records in each non-trivial sub-relation,
i.e.,

βavg =

∑
C∈M̂C(So)

∑
T∈T (Rn,C) |T |∑

C∈M̂C(So) |T (Rn,C)|

Analysis of αavg and βavg. We applied the above method on real-world data
sets shown in Table 3. Each data set is obtained by submitting the query shown in
row “Query” to the deep Web site shown in row “Web site” using the api provided
by the site. For each data set, we submitted the same query to the same site on 10th
and 17th November, 2008. Thus, for each data set we have two relations. We use
the former relation as R1, and the latter relation as R2. The number of attributes
and records in these relations are shown in rows “# attributes” and “# records”,
respectively. Figure 8 and 9 show the variability of αavg and βavg, respectively,
for these data sets. The horizontal axis shows different values of N2 and each line
represents the variation of αavg or βavg for a specific value of N1.

23

 1

 2

 3

 1 1.5 2 2.5 3

β a
vg

N2 (thousand)

N1: 500
N1: 1000
N1: 2000

(a) AMZN1

 1

 2

 3

 4

 1 1.5 2 2.5 3

β a
vg

N2 (thousand)

N1: 500
N1: 1000
N1: 2000

(b) AMZN2

 1

 2

 3

 2 4 6 8 10

β a
vg

N2 (thousand)

N1: 1000
N1: 2000
N1: 4000

(c) CNET1

 1

 2

 3

 2 4 6 8 10

β a
vg

N2 (thousand)

N1: 1000
N1: 2000
N1: 4000

(d) CNET2

 1

 2

 3

 2 4 6 8 10

β a
vg

N2 (thousand)

N1: 1000
N1: 2000
N1: 4000

(e) DIGG1

 1

 2

 3

 4

 4 8 12 16 20

β a
vg

N2 (thousand)

N1: 1000
N1: 2000
N1: 4000

(f) DIGG2

 1

 2

 3

 2 4 6 8 10

β a
vg

N2 (thousand)

N1: 1000
N1: 2000
N1: 4000

(g) EBAY1

 1

 2

 3

 4

 4 8 12 16 20

β a
vg

N2 (thousand)

N1: 1000
N1: 2000
N1: 4000

(h) EBAY2

Figure 9: Anorexic nature (βavg) of real-world data sets.

24

We can see that αavg and βavg tend to decrease and increase with the increase
in N1 and N2, respectively. This is due to the fact that when the domain size of
the minimal common keys is large, it is less likely that there are records in Rn with
the same value for all attributes in these minimal common keys. Also, when the
number of records in Rn is large, it is more likely that there are records with the
same value for all attributes in these minimal common keys.

It is interesting to observe that the number of records in each non-trivial sub-
relation not only grows very slowly with respect to the number of records in Rn,
but also its value is very small. This is beneficial for coke as the computation cost
of the key discovery algorithm on these sub-relations becomes inexpensive. The
number of non-trivial sub-relations however increases roughly linear to the number
of records in Rn. This can be expensive in coke since the number of executions of
the key discovery algorithm is linear to the number of non-trivial sub-relations.
However, when the domain of the minimal common keys is large, the number
of non-trivial sub-relations is relatively small. In many real-world data sets, the
domain size of the minimal common keys is large, since the minimal common
keys are computed from a relation with large number of records. Hence, we can
conclude that evolution of many real-world data sets indeed generates anorexic
sub-relations.

7 Performance Evaluation

In this section, we present extensive experimental evaluation of the coke algorithm
by using real-world and synthetic data sets. We have implemented naı̈ve algo-
rithm and two variants of coke algorithm, namely coke-p and coke-np. coke-p uses
partitioning plan in computing the sets of non-trivial sub-relations, while coke-np
does not. The purpose of implementing coke-np is to study the effectiveness of
using partitioning plan in computing the sets of non-trivial sub-relations. Recall
that the execution time of Phase 1 of coke is affected by the usage of partitioning
plan. Hence, we distinguish between the Phase 1 of coke-p and coke-np. In the
sequel, the Phase 1 of coke-p and coke-np are denoted as Phase 1-P and Phase
1-NP, respectively. The Phase 2 of these two variants, which is not affected by the
partitioning plan, is denoted as Phase 2.

We use gordian [24] as the key discovery algorithm for naı̈ve as it is efficient
for relation with large number of records. We use Agree Set [16] as the key discov-
ery algorithm for the two variants of coke as it is efficient for relation with small
number of records. The differences between these two algorithms are the follow-
ing. gordian computes the set of minimal keys by traversing the combinations of
attributes, whereas Agree Set computes the set of minimal keys by enumerating all
possible pairs of records. Although gordian uses pruning techniques to eliminate
large number of combinations of attributes, it may still suffer from the exponen-
tial size of the combinations of attributes. In contrast, although Agree Set does
not suffer from exponential size of the combinations of attributes, it suffers from

25

 0.001

 0.01

 0.1

 1

 1 1.5 2 2.5 3

T
im

e
(s

)

N2 (thousand)

Naive
Coke-P

Coke-NP

(a) AMZN1

 0.001

 0.01

 0.1

 1

 1 1.5 2 2.5 3

T
im

e
(s

)

N2 (thousand)

Naive
Coke-P

Coke-NP

(b) AMZN2

 0.001

 0.01

 0.1

 1

 10

 2 4 6 8 10

T
im

e
(s

)

N2 (thousand)

Naive
Coke-P

Coke-NP

(c) CNET1

 0.01

 0.1

 1

 10

 2 4 6 8 10

T
im

e
(s

)

N2 (thousand)

Naive
Coke-P

Coke-NP

(d) CNET2

 0.001

 0.01

 0.1

 1

 10

 2 4 6 8 10

T
im

e
(s

)

N2 (thousand)

Naive
Coke-P

Coke-NP

(e) DIGG1

 0.01

 0.1

 1

 10

 100

 4 8 12 16 20

T
im

e
(s

)

N2 (thousand)

Naive
Coke-P

Coke-NP

(f) DIGG2

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 2 4 6 8 10

T
im

e
(s

)

N2 (thousand)

Naive
Coke-P

Coke-NP

(g) EBAY1

 0.01

 0.1

 1

 10

 100

 1000

 4 8 12 16 20

T
im

e
(s

)

N2 (thousand)

Naive
Coke-P

Coke-NP

(h) EBAY2

Figure 10: Execution times of naı̈ve, coke-p, and coke-np on real-world data sets.

26

quadratic size of the pairs of records. Thus, when the relation contains a small
number of records and a large number of attributes, Agree Set is potentially better
than gordian. Since the non-trivial sub-relations contain small number of records,
we use Agree Set for the two variants of coke so that they can handle relations
with large number of attributes.

We implemented all algorithms in Java. All experiments were performed on a
Windows XP machine with Pentium DC 3.40 GHz processor and 2.99 gb ram.

7.1 Experiments on Real-World Data Sets

We measured the execution time required by the algorithms to compute MC(Sn)
fromMC(So) and Rn.

Data sets and experimental setup. Although our proposed algorithms are
generic in nature and not tied to any particular domain, we chose a set of deep Web
sites to represent real-world data. In particular, eight data sets from various deep
Web sites as shown in Table 3 are used for our study. Details related to retrieval of
these data sets are discussed in Section 6.

For each data set, we first generateMC(So) by randomly sampling N1 records
from R1, compute the set of minimal keys of these N1 records, and use it as
MC(So). For each data set, we generate Rn by randomly sampling N2 records
from R2, and use it as Rn. We set N1 to 500 for AMZN1 and AMZN2 data sets, and
1000 for the remaining data sets. The reason for choosing a relatively small value
is to ensure that each minimal common key in MC(So) is associated with many
non-trivial sub-relations, each with many records. Notice that this setting actu-
ally unfavorable for coke as it increases the total cost of the execution of the key
discovery algorithm.

We measured the performance of the algorithms with respect to the number of
records in Rn by varying N2. We ensure that Rn with smaller number of records is
a subset of Rn with larger number of records. This is to ensure that the number of
non-trivial sub-relations and the number of their records increase as we increase
N2.
Comparison of naı̈ve, coke-p, and coke-np. Figure 10 shows the performances of
coke-p, coke-np, and naı̈ve. We can make the following observations. Firstly, coke-
p is orders of magnitude faster than naı̈ve for both data sets. Secondly, it is evident
that partitioning plan provides slight benefits to the algorithm. In the next section,
using synthetic data, we shall discuss scenarios when partitioning plan provides
significantly large benefits.
Comparison of the phases of coke-p and coke-np. Figures 11 reports the per-
formances of the two phases. We can see that the execution times of both phases
increase roughly linearly with the number of records in Rn. The linear behavior of
Phase 1 is due to the fact that increase in number of records increases the number
of records that need to be partitioned. Recall that the performance of Phase 2 is
influenced by the number of non-trivial sub-relations and their sizes. Hence, as
we increase the number of records in Rn, the number of non-trivial sub-relations

27

 0

 2

 4

 6

 8

 10

 1 1.5 2 2.5 3

T
im

e
(m

s)

N2 (thousand)

Phase 1-P
Phase 1-NP

Phase 2

(a) AMZN1

 0

 5

 10

 15

 20

 1 1.5 2 2.5 3

T
im

e
(m

s)

N2 (thousand)

Phase 1-P
Phase 1-NP

Phase 2

(b) AMZN2

 0

 10

 20

 30

 40

 50

 2 4 6 8 10

T
im

e
(m

s)

N2 (thousand)

Phase 1-P
Phase 1-NP

Phase 2

(c) CNET1

 0

 25

 50

 75

 100

 125

 2 4 6 8 10

T
im

e
(m

s)

N2 (thousand)

Phase 1-P
Phase 1-NP

Phase 2

(d) CNET2

 0

 25

 50

 75

 100

 125

 2 4 6 8 10

T
im

e
(m

s)

N2 (thousand)

Phase 1-P
Phase 1-NP

Phase 2

(e) DIGG1

 0

 100

 200

 300

 400

 500

 4 8 12 16 20

T
im

e
(m

s)

N2 (thousand)

Phase 1-P
Phase 1-NP

Phase 2

(f) DIGG2

 0

 5

 10

 15

 20

 25

 30

 2 4 6 8 10

T
im

e
(m

s)

N2 (thousand)

Phase 1-P
Phase 1-NP

Phase 2

(g) EBAY1

 0

 30

 60

 90

 120

 150

 4 8 12 16 20

T
im

e
(m

s)

N2 (thousand)

Phase 1-P
Phase 1-NP

Phase 2

(h) EBAY2

Figure 11: Execution times of the phases of coke-p and coke-np on real-world data
sets.

28

 0.1

 1

 10

 100

 1000

 10000

 100000

 20 40 60 80 100

T
im

e
(s

)

Ns

Naive
Coke-P

Coke-NP
 0.1

 1

 10

 100

 50 100 150 200 250

T
im

e
(s

)

Nt (thousand)

Naive
Coke-P

Coke-NP
 0.1

 1

 10

 100

 20 40 60 80 100

T
im

e
(s

)

Nk

Naive
Coke-P

Coke-NP

 0.1

 1

 10

 100

 4 7 10 13 16

T
im

e
(s

)

Na

Naive
Coke-P

Coke-NP

 0.1

 1

 10

 100

 1000

 5 10 15 20 25

T
im

e
(s

)

Nu

Naive
Coke-P

Coke-NP

 0.1

 1

 10

 100

 20 40 60 80 100

T
im

e
(s

)

Np

Naive
Coke-P

Coke-NP
 0.1

 1

 10

 100

 10 20 30 40 50

T
im

e
(s

)

Nq

Naive
Coke-P

Coke-NP

Figure 12: Execution times of naı̈ve, coke-p, and coke-np.

increases roughly linear fashion, and their sizes increase very slowly (Recall from
Section 6).

Furthermore, the linear behavior of Phase 2 justifies the usage of Agree Set as
the key discovery technique. Although it is quadratic to the number of records in
the non-trivial sub-relations, the linearity of Phase 2 is due to the fact that there is
not much variation in the number of records in the non-trivial sub-relations with in-
creasing number of records in Rn. Additionally, the impact of a quadratic algorithm
is small since each non-trivial sub-relation contains small number of records.

7.2 Experiments on Synthetic Data Sets

We use synthetic data set to study how the proposed algorithms scale with respect
to each of the seven parameters shown in Table 2.

We measured the execution time required by the algorithms to computeMC(Sn)
fromMC(So) and Rn with respect to each of the seven parameters by varying one
parameter and setting remaining parameters to their default values. The default
values of these parameters are given in Table 2. Note that we do not measure the
IO cost because all are main memory-based algorithms.
Data sets generation. We synthetically generate MC(So) by using the follow-
ing procedure. We create Nk minimal common keys. Each of this is created by
randomly taking Na attributes from the attributes of Rn.

We generate Rn by using the following procedure. We create Nt records each
with Ns attributes. We set the values of the attributes of these records such that each
attribute of Rn is a key of Rn. We randomly take Nu minimal common keys from
MC(So). For each of these Nu minimal common keys, we associate it with a set of
non-trivial sub-relations, created by randomly taking NpNq records from Rn, and
dividing them into Np non-trivial sub-relations each with Nq records. We set the
values of the attributes of these Nq records as the following. For each attribute in the
minimal common key, we set the values of this attribute to same value. We then

29

randomly take two attributes that are not in the minimal common key. For each
of these attributes, we randomly take three records from Nq records and set the
values of this attribute of these records to same value. The reason for taking these
two attributes is to enforce that there are at least two super sets of each minimal
common key that are not a key of Rn. The objective of this is to vary the minimal
common keys inMC(Sn).
Comparison of efficiency and scalability of naı̈ve and coke-p. Figure 12 reports
the performances of the naı̈ve and coke-p algorithms with respect to various pa-
rameters. It is evident that coke-p is more efficient and scalable than the naı̈ve
algorithm. The superiority of coke-p can be mostly seen for the parameters Ns and
Nu. Note that Ns determines the number of possible combinations of attributes.
Although naı̈ve does not suffer from exponential size of the combinations of at-
tributes, it suffers more than coke-p. The reason for this is because coke-p executes
the key discovery algorithm on non-trivial sub-relations. These sub-relations have
smaller number of records as well as smaller number of attributes. Although coke-p
has the overhead of executing the key discovery algorithm multiple times, the total
execution time is still orders of magnitude faster than the naı̈ve. Observe that coke-
p is able to handle a data set with 100 attributes in only 110 seconds. Such size of
data set is intractable for naı̈ve. Also, the parameter Nu affects the performance
of naı̈ve adversely as it needs to find the minimal common keys when it traverses
the possible combinations of attributes. However, in coke-p, the non-trivial sub-
relations contain only small number of records, and thus it is cheaper for the key
discovery algorithm to find the minimal common keys.

Interestingly, the execution time of the naı̈ve algorithm increases up to a certain
value of Na and then decreases. This is because it uses gordian as the key discovery
algorithm. In particular, due to the pruning techniques used by gordian on the
lattice structure, it is fast when the minimal keys contain small number of attributes
or large number of attributes. In contrast, the execution time of coke-p decreases
with Na due to decrease in execution time of Phase 2. This is because the number
of attributes in the projected non-trivial sub-relation is equal to Ns − Na. Thus,
when Na increases, the projected non-trivial sub-relation contains smaller number
of attributes, and thus it is faster for the key discovery algorithm to compute its
minimal key set.
Comparison of coke-p and coke-np. We now study the effect of the usage of
partitioning plan in the coke algorithm. Figure 12 reports the advantage of using
partitioning plan. Specifically, this advantage can be mostly seen for parameters Nt

and Nk. Note that Nt determines the number of records that the algorithms need to
partition. Although the execution times of both coke-p and coke-np increase with
Nt , coke-p has smaller rate of increase. This is expected since by using partition-
ing plan, some of the partitioning can be shared. The parameter Nk determines the
number of minimal common keys inMC(So). Similar to Nt , although the execu-
tion times of both coke-p and coke-np increase with Nk, coke-p has a much smaller
rate of increase. In practice Nk can be large, since the number of possible combi-
nations of attributes is exponential. In this case it is beneficial to use partitioning

30

 0.1

 1

 10

 100

 1000

 20 40 60 80 100

T
im

e
(s

)

Ns

Phase 1-P
Phase 1-NP

Phase 2

 0

 1

 2

 3

 4

 50 100 150 200 250

T
im

e
(s

)

Nt (thousand)

Phase 1-P
Phase 1-NP

Phase 2

 0.1

 1

 10

 100

 20 40 60 80 100

T
im

e
(s

)

Nk

Phase 1-P
Phase 1-NP

Phase 2

 0

 0.5

 1

 1.5

 4 7 10 13 16

T
im

e
(s

)

Na

Phase 1-P
Phase 1-NP

Phase 2

 0

 0.5

 1

 1.5

 5 10 15 20 25

T
im

e
(s

)

Nu

Phase 1-P
Phase 1-NP

Phase 2

 0

 1

 2

 3

 4

 20 40 60 80 100

T
im

e
(s

)

Np

Phase 1-P
Phase 1-NP

Phase 2

 0

 0.5

 1

 1.5

 10 20 30 40 50

T
im

e
(s

)

Nq

Phase 1-P
Phase 1-NP

Phase 2

Figure 13: Execution times of the phases of coke-p and coke-np.

plan. The above results also show that our heuristic algorithm for partitioning plan
construction is quite effective in reducing the effect of Nt and more importantly Nk.
Comparison of the phases of coke-p and coke-np. Figure 13 reports the per-
formance comparison of different phases in coke-p and coke-np. Observe that the
parameter that significantly affect the execution time of Phase 1 is Nt . The param-
eter that mostly affect the execution time of Phase 2 is Ns. Although the number
of possible combinations of attributes is exponential to Ns, the execution time of
Phase 2 does not increase exponentially with Ns. This is because coke-p uses Agree
Set. The other parameters that also affect the execution time of Phase 2 are Nu, Np,
and Nq. The execution time of Phase 2 is linear to Nu and Np. This is as expected
since the number of execution of key discovery algorithm is linearly affected by Nu

and Np. In contrast, the execution time of Phase 2 is super linear to Nq.

8 Related Work

Quality of monitoring the dynamic Web. Monitoring the dynamic Web in re-
sponse to continuous queries have recently triggered a lot of interest. In this con-
text, optimizing the QoS (Quality of Service) and QoD have been the focus of
several research efforts. For example, multi-query optimization has been exploited
in [5] to improve the system throughput, optimization of freshness and currency
of query results were investigated in [21, 23], and Kukulenz and Ntoulas [14] have
studied quality/freshness tradeoff for bounded continuous search queries. How-
ever, we are not aware of any prior work that studied the discovery of common
keys in order to improve accuracy of tracking entities. Note that existing moni-
toring systems [5, 15, 20] deploy variants of HTMLDiff and xml diff algorithms
to detect and track changes to the underlying data. However, these algorithms
are “identifier-oblivious” and as a result they may be confused by similar values
for different attributes associated with each entity. Consequently, these algorithms

31

may adversely affect the QoD by producing erroneous mapping between entities
over time. Hence, our work is complimentary to these efforts.

Also, none of the existing efforts [1, 3, 6] in extracting entity-relation tuples
from text into relational databases focus on maintenance of common keys.

Discovery of keys and functional dependencies. More germane to our work
are efforts related to key discovery problem in structured databases and mining of
functional dependencies (fd). gordian [24] and Agree Set [16] compute the set of
minimal keys indirectly by computing the set of maximal non keys and then con-
verting it into the set of minimal keys. There has also been a great deal of work
related to mining strict and approximate fds from the data. tane [12], fun [19],
and FD Mine [26] take a candidate generate-and-test approach where levelwise
search strategy is used to explore the search space. They reduce the search space
by eliminating candidates using pruning rules. Similar to our approach, tane uses
a partitioning of the tuples with respect to their attribute values to check validity
of functional dependencies. It implicitly identifies keys to prune the search space.
FastFDs [25] and Dep-Miner [16] employ first-depth search and levelwise search
strategies, respectively, to discover fds by considering pairs of tuples. First, a parti-
tioned database is extracted from the initial relation. Then, agree sets are computed
and maximal sets are generated using the partitions. Consequently, a minimum fd
cover according to these maximal sets is discovered. Several association rules and
sampling-based techniques have also been proposed to make fds less restrictive by
allowing some exceptions to the fd rules [13, 22]. Our work differs from these ap-
proaches as follows. First, these techniques focus on discovering keys or fds from
static data whereas we focus on incrementally maintaining common keys. These
techniques do not assume evolving nature of keys or fds and hence they are not
designed to efficiently maintain the common keys. Second, coke exploits anorexic
characteristics of real-world data to devise efficient solution to this problem. Such
characteristics are not exploited in traditional key or fd discovery techniques.

9 Conclusions and Future Work

In this paper, we have described a novel technique for efficiently maintaining com-
mon keys in a sequence of versions of archived continuous query results from deep
Web sites. This is crucial for developing robust techniques for modeling evolution-
ary Web data, query processing, and tracking entities over time. We have proposed
an algorithm called coke to discover common keys from the archived versions of
structured query results represented as relations. It generates minimal common
keys without computing the minimal key set of the new relation. Importantly, it
exploits certain anorexic properties of real-world data to provide efficient solution
to this problem. Our exhaustive empirical study has demonstrated that coke has
excellent real-world performance. We are currently exploring techniques to detect
conserved common keys to support identifiers discovery in order to track entities
accurately in the historical query results sequence.

32

References
[1] A. Arasu, H. Garcia-Molina. Extracting Structured Data from Web Pages. In SIG-

MOD, 2003.

[2] P. Buneman, S. Khanna, K. Tajima, W.-C. Tan. Archiving Scientific Data. In ACM
TODS, 29(2): 2–42, 2004 .

[3] M. J. Catarella et al. Structured Querying of Web Text. In CIDR, 2007.

[4] K. C.-C. Chang, B. He, C. Li et al. Structured Databases on the Web: Observations
and Implications. In ACM SIGMOD Record, 33(3), 2004.

[5] J. Chen, D. DeWitt, F. Tian et al. NiagaraCQ: A Scalable Continuous Query System
for the Internet Databases. In SIGMOD, 2000.

[6] E. Chu, A. Baid et al. A Relational Approach to Incrementally Extracting and
Querying Structure in Unstructured Data. In VLDB, 2007.

[7] T. H. Cormen, C. E. Leiserson, R. L. Rivest, C. Stein. Introduction to Algorithms.
Second Edition, MIT Press, 2001.

[8] X. Dong, A. Y. Halevy, J. Madhavan. Reference Reconciliation in Complex Infor-
mation Spaces. In SIGMOD, 2005.

[9] A. K. Elmagarmid, P. G. Ipeirotis, V. S. Verykios. Duplicate Record Detection: A
Survey. In IEEE TKDE, 2007.

[10] D. Gunopulos, R. Khardon, H. Mannila, et al. Discovering all most Specific Sen-
tences. In ACM Trans. Database Systems, 28(2):140–174, 2003.

[11] J. Han, J. Pei, Y. Yin. Mining Frequent Patterns without Candidate Generation. In
SIGMOD, 2000.

[12] Y. Huhtala et al. TANE: An Efficient Algorithm for Discovering Functional and
Approximate Dependencies. In Computing J., 42(2):100–111.

[13] J. Kivinen, H. Mannila. Approximate Dependency Inference from Relations. Theo-
ret. Comp. Sci., 149:129–149, 1995.

[14] D. Kukulenz, A. Ntoulas. Answering Bounded Continuous Search Queries in the
World Wide Web. In WWW, 2007.

[15] L. Liu, C. Pu, W. Tang. WebCQ: Detecting and Delivering Information Changes on
the Web. In CIKM, 2000.

[16] S. Lopes, J. M. Petit, et al. Efficient Discovery of Functional Dependencies and
Armstrong Relations. In EDBT, 2000.

[17] J. Madhavan, D. Ko, et al. Google’s Deep Web Crawl. In VLDB, 2008.

[18] J. Masanès. Web Archiving. Springer, New York, Inc., Secaucus, N.J., 2006.

33

[19] N. Novelli, R. Cicchetti. FUN: An Efficient Algorithm for Mining Functional and
Embedded Dependencies. In ICDT , 2001.

[20] B. Nguyen, S. Abiteboul et al. Monitoring XML Data on the Web. In SIGMOD,
2001.

[21] S. Pandey, K. Ramamritham, S. Chakrabarti. Monitoring the Dynamic Web to Re-
spond to Continuous Queries. In WWW, 2003.

[22] D. Sánchez, J. M. Serrano et al. Using Association Rules to Mine For Strong Ap-
proximate Dependencies. In DMKD, 16:3143–348, 2008.

[23] M. A. Sharaf, A. Labrinidis, et al. Freshness-Aware Scheduling of Continuous
Queries in the Dynamic Web. In WebDB, 2005.

[24] Y. Sismanis, P. Brown, et al. GORDIAN: Efficient and Scalable Disocovery of
Composite Keys. In VLDB, 2006.

[25] C. Wyss, et al. FastFDs: A Heuristic-Driven, Depth-First Algorithm for Mining
Functional Dependencies from Relation Instances. In DAWAK, 2001.

[26] H. Yao, H. J. Hamilton. Mining Functional Dependencies from Data. In DMKD,
16:197–219, 2008.

34

A Proof of Theorem 1

Theorem 1 states that givenMC(So) andMK(Rn), we can computeMC(Sn) as

MC(Sn) = MIN(MC(So) ⊗MK(Rn))

For convenience, we denote MC(So) ⊗ MK(Rn) as H. We first define maxi-
mization operator which we shall be using for proofs. Let X be a collection of sets
of elements, Y be the universe of the elements in the sets in X , and Z be the power
set of Y . The maximization of X is defined as the collection of every set in Z which
at least one of its subsets is in X , i.e., {z|z ∈ Z and ∃x ∈ X such that x ⊆ z}. We
denote the maximization of X as MAX(X).

To prove the above theorem, it is sufficient to prove that C(Sn) = MAX(H)
since the above theorem can be obtained by applying minimization operator to this
statement.

We first prove that C(Sn) ⊆ MAX(H). Consider an element X ∈ C(Sn). Since
X ∈ C(Sn), based on the definition of common key, it follows that X ∈ C(So) and
X ∈ K(Rn). Since X ∈ C(So), based on the definition of minimal common key,
it follows that there is at least one element C ∈ MC(So) such that X ⊇ C. Since
X ∈ K(Rn), based on the definition of minimal key, it follows that there is at least
one element K ∈ MK(Rn) such that X ⊇ K. Since X ⊇ C and X ⊇ K, it follows
that X ⊇ D where D = C ∪ K. Since D = C ∪ K, C ∈ MC(So), and K ∈ MK(Rn),
based on the definition of pairwise union operator, it follows that D ∈ H. Since
X ⊇ D and D ∈ H, based on the definition of maximization operator, it follows
that X ∈ MAX(H). Since X ∈ MAX(H) whenever X ∈ C(Sn), it follows that
C(Sn) ⊆ MAX(H).

We now prove that MAX(H) ⊆ C(Sn). Consider an element X ∈ MAX(H).
Since X ∈ MAX(H), based on the definition of maximization operator, it follows
that there is at least one element D ∈ H such that X ⊇ D. Since D ∈ H, based on
the definition of pairwise union operator, there is at least one element C ∈ MC(So)
and one element K ∈ MK(Rn) such that D = C ∪ K. Since X ⊇ D and D = C ∪ K,
it follows that X ⊇ C and X ⊇ K. Since X ⊇ C and C ∈ MC(So), based on
the definition of minimal common key, it follows that X ∈ C(So). Since X ⊇ K
and K ∈ MK(Rn), based on the definition of minimal key, it follows that X ∈
K(Rn). Since X ∈ C(So) and X ∈ K(Rn), based on the definition of common key,
it follows that X ∈ C(Sn). Since X ∈ C(Sn) whenever X ∈ MAX(H), it follows that
MAX(H) ⊆ C(Sn).

B Proof of Theorem 2

We prove this theorem by proving that its decision problem version, partition-
ing plan problem, is NP-Hard. partitioning plan problem can be stated as given
MC(So) and an integer N, find whether it is possible to construct a partitioning
plan fromMC(So) with at most N nodes.

35

We use a reduction from the vertex cover problem [7]. Given an instance of
a vertex cover problem consisting of a graph G = (V,E), we transform it into an
instance of a partitioning plan problem consisting of a set of minimal common
keys MC(So) by converting each edge (a, b) ∈ E into a minimal common key
{a, b} ∈ MC(So). This transformation can, clearly, be performed in polynomial
time.

Observe that the partitioning plan constructed fromMC(So) consists of exactly
three levels since each minimal common key in MC(So) consists of exactly two
attributes because its corresponding edge consists of exactly two nodes. We now
examine the number of nodes in each level of the partitioning plan. The first and
the third level consists of a fixed number of nodes regardless of which attribute,
in each minimal common key inMC(So), we assign into the second and the third
level. The first level consists of exactly one root node. The third level consists
of exactly |E | nodes, where |E | denotes the number of edges in E or, equivalently,
the number of minimal common keys inMC(So), since each path from a child-of-
root node to a leaf node represents a minimal common key in MC(So) and vice
versa. The number of nodes in second level, unlike the other levels, depends on the
assignment of the attributes.

We now prove that G has a vertex cover with at most N nodes if and only if it
is possible to construct a partitioning plan with at most 1 + |E | + N nodes.

We first prove that if it is possible to construct a partitioning plan fromMC(So)
with at most 1 + |E | + N nodes, then G has a vertex cover with at most N. Suppose
it is possible to construct a partitioning plan fromMC(So) with at most 1+ |E |+N
nodes. Since there is exactly 1 node in the first level and exactly |E | nodes in
the third level, it follows that there are at most N nodes in the second level. Let
X be the set of nodes in the second level. Since for each minimal common key
{a, b} ∈ MC(So), either a ∈ X or b ∈ X or both, it follows that for each edge
(a, b) ∈ E, either a ∈ X or b ∈ X or both. Since for each edge (a, b) ∈ E, either
a ∈ X or b ∈ X or both, it follows that X is a vertex cover of G. Since X consists of
at most N nodes, it follows that G has a vertex cover with at most N nodes.

We now prove that if G has a vertex cover with at most N nodes, then it is
possible to construct a partitioning plan from MC(So) with at most 1 + |E | + N
nodes. Suppose G has a vertex cover X with at most N nodes. Since X is a vertex
cover of G, it follows that for each edge (a, b) ∈ E, either a ∈ X or b ∈ X or
both. Since for each edge (a, b) ∈ E, either a ∈ X or b ∈ X or both, it follows that
for each minimal common key {a, b} ∈ MC(So), either a ∈ X or b ∈ X or both.
We construct a partitioning plan fromMC(So) as the following. For each minimal
common key {a, b} ∈ MC(So), (1) if a ∈ X and b < X , then we assign a into the
second level and b into the third level, (2) if a < X and b ∈ X , then we assign a
into the third level and b into the second level, and (3) if a ∈ X and b ∈ X , then we
assign anyone of them into the second level and the other one into the third level.
Note that one of these three cases must happen since either a ∈ X or b ∈ X or both.
Observe that the number of nodes in the second level is at most the size of X , i.e.,
N, since we put a node in the second level only if it is in X . Since there is exactly

36

1 node in the first level, exactly |E | nodes in the third level, and at most N nodes in
the second level, it follows that it is possible to construct a partitioning plan from
MC(So) with at most 1 + |E | + N nodes.

C Proof of Theorem 3

Theorem 3 states that let C ∈ MC(So); givenMP(·,C), we can computeMP(Rn,C)
as

MP(Rn,C) = MIN

 ⊗
T∈T (Rn,C)

MP(T,C)

where we assume that we add all trivial sub-relations into T (Rn,C).

For convenience, we denote
⊗

T∈T (Rn,C)MP(T,C) as H. To prove the above
theorem, it is sufficient to prove that P(Rn,C) = MAX(H) since the above theorem
can be obtained by applying minimization operator to this statement.

We first prove that P(Rn,C) ⊆ MAX(H). Consider an element X ∈ P(Rn,C).
Since X ∈ P(Rn,C), based on the definition of sub-relation, i.e., each record be-
longs to exactly one sub-relation, it follows that for every Ti ∈ T (Rn,C), X ∈
P(Ti,C). Since X ∈ P(Ti,C), based on the definition of minimal proxy key, it fol-
lows that there is at least one element Pi ∈ MP(Ti,C) such that X ⊇ Pi. Since for
every Ti ∈ T (Rn,C), X ⊇ Pi, it follows that X ⊇ Q where Q =

∪
Ti∈T (Rn,C) Pi. Since

Q =
∪

Ti∈T (Rn,C) Pi and for every Ti ∈ T (Rn,C), Pi ∈ MP(Ti,C), based on the defi-
nition of pairwise union operator, it follows that Q ∈ H. Since X ⊇ Q and Q ∈ H,
based on the definition of maximization operator, it follows that X ∈ MAX(H).
Since X ∈ MAX(H) whenever X ∈ P(Rn,C), it follows that P(Rn,C) ⊆ MAX(H).

We now prove that MAX(H) ⊆ P(Rn,C). Consider an element X ∈ MAX(H).
Since X ∈ MAX(H), based on the definition of maximization operator, it follows
that there is at least one element Q ∈ H such that X ⊇ Q. Since Q ∈ H, based on
the definition of pairwise union operator, it follows that for every Ti ∈ T (Rn,C),
there is at least one element Pi ∈ MP(Ti,C), such that Q =

∪
Ti∈T (Rn,C) Pi. Since

X ⊇ Q and Q =
∪

Ti∈T (Rn,C) Pi, it follows that for every Ti ∈ T (Rn,C), X ⊇ Pi.
Since X ⊇ Pi and Pi ∈ MP(Ti,C), based on the definition of minimal proxy key, it
follows that X ∈ P(Ti,C). Since for every Ti ∈ T (Rn,C), X ∈ P(Ti,C), based on
the definition of sub-relation, i.e., every two records in two different sub-relations
have different value for at least one attribute in C, it follows that X ∈ P(Rn,C).
Since X ∈ P(Rn,C) whenever X ∈ MAX(H), it follows that MAX(H) ⊆ P(Rn,C).

We now prove that Theorem 3 holds when we add no trivial sub-relations into
T (Rn,C). Let us denote the set of sub-relations where we add no trivial sub-
relations as T̃ (Rn,C). Our aim is to prove that⊗

T∈T (Rn,C)

MP(T,C) =
⊗

T∈T̃ (Rn,C)

MP(T,C)

To prove the above statement, it is sufficient to prove thatMP(Ti,C)⊗MP(Tj,C) =

37

MP(Ti,C) for any sub-relation Ti ∈ T (Rn,C) and any trivial sub-relation Tj ∈
T (Rn,C) since it implies that Tj can be removed from T (Rn,C).

Since Tj contains only one record, based on the definition of minimal proxy
key, it follows thatMP(Tj,C) = {C}. Consider an element P ∈ MP(Ti,C). Since
P ∈ MP(Ti,C), based on the definition of minimal proxy key, it follows that P ⊇ C.
Since P ⊇ C, it follows that P ∪ C = P. Since MP(Tj,C) = {C} and for every
element P ∈ MP(Ti,C), P ∪ C = P, based on the definition of pairwise union
operator, it follows that the statement is true.

D Proof of Lemma 2

Lemma 2 states that given a collection of sets of elements {X1, X2, . . ., Xn}, we can
compute MIN

(⊗n
i=1 Xi

)
recursively as

MIN

 n⊗
i=1

Xi

 = MIN

X1 ⊗MIN

 n⊗
i=2

Xi

For convenience, we denote X1 as P and

⊗n
i=2 Xi as Q. The above theorem can

be rewritten as MIN(P ⊗ Q) = MIN(P ⊗ MIN(Q)). To prove the above theorem,
it is sufficient to prove that MAX(P ⊗ Q) = MAX(P ⊗ MIN(Q)), since the above
theorem can be obtained by applying minimization operator to this statement.

We first prove that MAX(P ⊗ Q) ⊆ MAX(P ⊗MIN(Q)). Consider an element
a ∈ MAX(P⊗Q). Since a ∈ MAX(P⊗Q), based on the definition of maximization
operator, it follows that there is at least one element b ∈ P ⊗ Q such that a ⊇ b.
Since b ∈ P ⊗ Q, based on the definition of pairwise union operator, it follows that
there is at least one element p ∈ P and one element q ∈ Q such that b = p ∪ q.
Since q ∈ Q, based on the definition of minimization operator, there is at least one
element r ∈ Q such that r ⊆ q and r ∈ MIN(Q). Let c = p ∪ r. Since c = p ∪ r,
p ∈ P, and r ∈ MIN(Q), based on the definition of pairwise union operator, it
follows that c ∈ P ⊗ MIN(Q). Since b = p ∪ q, c = p ∪ r, and r ⊆ q, it follows
that b ⊇ c. Since a ⊇ b and b ⊇ c, it follows that a ⊇ c. Since a ⊇ c and
c ∈ P ⊗MIN(Q), based on the definition of maximization operator, it follows that
a ∈ MAX(P⊗MIN(Q)). Since a ∈ MAX(P⊗MIN(Q)) whenever a ∈ MAX(P⊗Q),
it follows that MAX(P ⊗ Q) ⊆ MAX(P ⊗MIN(Q)).

We now prove that MAX(P ⊗MIN(Q)) ⊆ MAX(P ⊗ Q). Consider an element
a ∈ MAX(P ⊗MIN(Q)). Since a ∈ MAX(P ⊗MIN(Q)), based on the definition of
maximization operator, it follows that there is at least one element b ∈ P⊗MIN(Q)
such that a ⊇ b. Since b ∈ P ⊗ MIN(Q), based on the definition of pairwise
union operator, there is at least one element p ∈ P and one element q ∈ MIN(Q)
such that b = p ∪ q. Since q ∈ MIN(Q), based on the definition of minimization
operator, it follows that q ∈ Q. Since b = p ∪ q, p ∈ P, and q ∈ Q, based on
the definition of pairwise union operator, it follows that b ∈ P ⊗ Q. Since a ⊇ b
and b ∈ P ⊗ Q, based on the definition of maximization operator, it follows that

38

a ∈ MAX(P ⊗ Q). Since a ∈ MAX(P ⊗ Q) whenever a ∈ MAX(P ⊗ MIN(Q)), it
follows that MAX(P ⊗MIN(Q)) ⊆ MAX(P ⊗ Q).

E Complexity Analysis

We consider the following seven factors in the analysis:

1. Nt : the number of records in Rn.

2. Ns: the number of attributes of Rn.

3. Nk: the number of minimal keys inMK(Rn). We assume thatMC(So) con-
tains Nk minimal common keys. We assume thatMC(Sn) contains Nk min-
imal common keys. We assume that for each C ∈ MC(So) with non-trivial
sub-relations,MP(Rn,C) contains Nk minimal proxy keys. We assume that
for each C ∈ MC(So) with non-trivial sub-relations and T ∈ T (Rn,C),
MP(T,C) contains Nk minimal proxy keys. We assume that for each C ∈
MC(So) with non-trivial sub-relations and T ∈ T (Rn,C),MK(T p,C) con-
tains Nk minimal keys.

4. Na: the number of attributes in each minimal key in MK(Rn). We assume
that each minimal common key in MC(So) contains Na attributes. We as-
sume that each minimal common key inMC(Sn) contains Na attributes. We
assume that for each C ∈ MC(So) with non-trivial sub-relations, each mini-
mal proxy key inMP(Rn,C) contains Na attributes. We assume that for each
C ∈ MC(So) with non-trivial sub-relations and T ∈ T (Rn,C), each minimal
proxy key in MP(T,C) contains Na attributes. We assume that for each
C ∈ MC(So) with non-trivial sub-relations and T ∈ T (Rn,C), each minimal
keyMK(T p,C) contains Na attributes.

5. Nu: the number of minimal common keys in MC(So) with non-trivial sub-
relations.

6. Np: the number of sub snapshots in T (Rn,C) for each C ∈ MC(So) with
non-trivial sub-relations.

7. Nq: the number of records in each sub snapshot in T (Rn,C) for each C ∈
MC(So) with non-trivial sub-relations.

We use the following additional assumptions:

1. The time complexity of computing MK(R) of a relation R by using key
discovery algorithm is O(�(R)), where � is a function that depends on the
key discovery algorithm used.

39

2. The space complexity of computing MK(R) of a relation R by using key
discovery algorithm is O(NA+PQ+�(R)), where N is the number of records
in R, A is the number of attributes of R, P is the number of minimal keys in
MK(R), Q is the number of attributes in each minimal key inMK(R), and
� is a function that depends on the key discovery algorithm used. Note
that O(NA) is the space complexity of Rn, O(PQ) is the space complexity of
MK(R), and O(�(R)) is the additional space complexity specific to the key
discovery algorithm used.

3. The time complexity of computing MIN(X) of a collection of sets of ele-
ments X is O(NA log N + NMA), where N is the number of sets in X , M is
the number of sets in MIN(X), and A is the number of elements in each set
in X . Note that O(NA log N) is the time complexity for sorting the sets of
elements in X , and O(NMA) is the time complexity for removing the sets
whose proper subset is also in X .

4. The space complexity of computing MIN(X) of a collection of sets of ele-
ments X is O(NA), where N is the number of sets in X , and A is the number
of elements in each set in X .

5. The time complexity of computing X ⊗ Y of two collections of sets of ele-
ments X and Y is O(N2A), where N is the number of sets in X and Y , and A
is the number of elements in each set in X and Y .

6. The space complexity of computing X ⊗ Y of two collections of sets of ele-
ments X and Y is O(N2A) where N is the number of sets in X and Y , and A
is the number of elements in each set in X and Y .

Time Complexity of naı̈ve Algorithm. The time complexity of each of the steps
in naı̈ve algorithm is:

1. ComputingMK(Rn). The time complexity of this step is O(�(Rn)).

2. ComputingMC(Sn). The time complexity of computing the pairwise union
is O(N2

k Na). The time complexity of computing the minimization is O(N3
k Na)

since the set of pairwise union contains O(N2
k) elements. In total, the time

complexity of this step is O(N3
k Na).

Thus, the time complexity of naı̈ve is O(�(Rn) + N3
k Na). For small Nk and Na,

the time complexity becomes O(�(Rn)).

Space Complexity of naı̈ve Algorithm. The space complexity of Rn is O(NtNs).
The space complexity ofMC(So) is O(NkNa). Hence, the space complexity of each
of the steps in naı̈ve algorithm is:

1. ComputingMK(Rn). The space complexity of computingMK(Rn) is O(�(Rn)).
The space complexity ofMK(Rn) is O(NkNa). In total, the space complexity
of this step is O(�(Rn) + NkNa).

40

2. Computing MC(Sn). The space complexity of the set of pairwise union is
O(N2

k Na). The space complexity ofMC(Sn) is O(NkNa). In total, the space
complexity of this step is O(N2

k Na).

Thus, the space complexity of naı̈ve is O(NtNs + �(Rn) + N2
k Na). For small Nk

and Na, the space complexity becomes O(NtNs + �(Rn)).

Time Complexity of coke Algorithm. The time complexity of each of the steps
in coke is:

1. Computing T (Rn, ·). The time complexity of each of the sub-steps is:

(a) Constructing the partitioning plan. The time complexity of computing
the frequencies of the attributes is O(NkNa). The time complexity of
sorting the attributes in the minimal common keys is O(NkNa log Na).
The time complexity of creating the paths for the minimal common
keys is O(NkNa log Nk) since we assume that the time complexity of
finding a child of a node with a desired label is O(log Nk). In total, the
time complexity of this sub-step is O(NkNa log Nk + NkNa log Na).

(b) Computing T (Rn, ·). The time complexity of partitioning the records in
each node is O(Nt log Nt) since there are O(Nt) records that must be par-
titioned. In total, the time complexity of this sub-step is O(NkNaNt log Nt)
since there are O(NkNa) nodes in the partitioning plan.

Thus, the time complexity of this step is O(NkNa log Nk + NkNa log Na +

NkNaNt log Nt).

2. ComputingMC(Sn). The time complexity of each of the sub-steps is:

(a) Computing MP(T,C). The time complexity of computing MK(T p)
by using a key discovery algorithm is O(�(T p)). The time complexity
of computing MP(T,C) is O(NkNa). In total, the time complexity of
this sub-step is O(�(T p) + NkNa). Thus, the time complexity of com-
putingMP(T,C) for all C ∈ MC(So) with non-trivial sub-relations and
T ∈ T (Rn,C) is
O(NuNp�(T p) + NuNkNaNp).

(b) ComputingMP(Rn,C). The time complexity of computing each pair-
wise union O(N2

k Na). The time complexity of computing each mini-
mization is O(N3

k Na) since we assume that the result of minimization
contains O(Nk) elements. In total, the time complexity of this sub-step
is O(N3

k NaNp) since there are O(Np) pairwise union and minimization
computations. Thus, the time complexity of computingMP(Rn,C) for
all C ∈ MC(So) with non-trivial sub-relations is O(NuN3

k NaNp).

41

(c) Computing MC(Sn). The time complexity of computing the union
is O(N2

k Na). The time complexity of computing the minimization is
O(N3

k Na) since the union contains O(N2
k) elements. In total, the time

complexity of this sub-step is O(N3
k Na).

Thus, the time complexity of this step is O(NuNp�(T p) + NuN3
k NaNp).

Thus, the time complexity of coke is O(NkNa log Na+NkNaNt log Nt+NuNp�(T p)+
NuN3

k NaNp). For Nt log Nt ≥ log Na and Nt log Nt ≥ NuN2
k Np, the time complexity

is O(NkNaNt log Nt + NuNp�(T p)).

Time Complexity of coke Algorithm. The space complexity of Rn is O(NtNs).
The space complexity ofMC(So) is O(NkNa). The space complexity of each of the
steps in coke is:

1. Computing T (Rn, ·). The space complexity of each of the sub-steps is:

(a) Constructing the partitioning plan. The space complexity of the fre-
quencies of the attributes is O(Ns). The space complexity of the la-
bels of the nodes in the partitioning plan is O(NkNa) since there are
O(NkNa) nodes in the partitioning plan. The space complexity of stor-
ing the children of the nodes in the partitioning plan is O(N2

k Na) since
there are O(NkNa) nodes in the partitioning plan and there are O(Nk)
children in each node. In total, the space complexity of this sub-step is
O(Ns + N2

k Na).

(b) Computing T (Rn, ·). The space complexity of the records during the
depth-first traversal of the partitioning plan is O(NtNa) since there are
O(Nt) records and the maximum depth of the traversal is O(Na). The
space complexity of T (Rn, ·) is O(NuNpNq) since the space complexity
of each T (Rn,C) is O(NpNq). In total, the space complexity of this
sub-step is O(NtNa + NuNpNq).

Thus, the space complexity of this step is O(Ns + N2
k Na + NtNa + NuNpNq).

2. ComputingMC(Sn). The space complexity of each of the sub-steps is:

(a) ComputingMP(T,C). The space complexity of computingMK(T p)
is O(�(T p)). The space complexity ofMK(T p) is O(NkNa). The space
complexity of MP(T,C) for all C ∈ MC(So) with non-trivial sub-
relations and T ∈ T (Rn,C) is
O(NuNkNaNp). In total, the space complexity of this sub-step is O(�(T p)+
NuNkNaNp).

(b) ComputingMP(Rn,C). The space complexity of computing each pair-
wise union is O(N2

k Na). The space complexity of computing each min-
imization is O(NkNa) since we assume that the result of minimization

42

contains O(Nk) elements. The space complexity ofMP(Rn,C) for all
C ∈ MC(So) with non-trivial sub-relations is O(NuNkNa). In total, the
space complexity of this sub-step is O(N2

k Na + NuNkNa).

(c) Computing MC(Sn). The space complexity of the union is O(N2
k Na).

The space complexity ofMC(Sn) is O(NkNa). In total, the space com-
plexity of this sub-step is O(N2

k Na).

Thus, the space complexity of this step is O(�(T p) + NuNkNaNp + N2
k Na).

Thus, the space complexity of coke is O(NtNs + NtNa + NuNpNq + �(T p) +
NuNkNaNp + N2

k Na). Since Ns ≥ Na and for Nt ≥ NuNpNq, Nt ≥ NuNkNp, and
Nt ≥ N2

k , the space complexity is O(NtNs + �(T p)).

43

