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Abstract

xml query languages use directional path expressions to locate data in an
xml data collection. They are tightly coupled to the structure of a data col-
lection, and can fail when evaluated on the same data in a different structure.
This paper extends path expressions with a new non-directional axis called
the rank-distance axis. Given a context node and two parameters, α and β ,
the rank-distance axis returns those nodes that are ranked between α and
β in terms of closeness from the context node in any direction. This paper
shows how to evaluate the rank-distance axis in a tree-unaware xml database.
A tree-unaware implementation does not invade the database kernel to sup-
port xml queries, instead it uses an existing rdbms such as Microsoft’s sql
server as a back-end and provides a front-end layer to translate xml queries
to sql. This paper presents an algorithm that translates queries with a rank-
distance axis to sql. It also reports on several experiments that demonstrate
the efficiency of the query evaluation plan produced by the translation.
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Figure 1: Examples of xml data.

1 Introduction

A wealth of existing literature has extensively studied evaluation of various nav-
igational axes in XPath expressions in a relational environment [9]. These well-
studied axes are all directional since they locate nodes in a fixed direction relative
to a context node (e.g., the descendent axis corresponds to the “down” direction).
Unfortunately, queries that rely on directional axes become dependent on the data
being in the specified direction, even though data has no “natural” direction and
can be organized in different hierarchies. Users who are unfamiliar with a docu-
ment structure or are knowledgeable about a structure which subsequently changes
will sometimes formulate unsatisfiable queries, which are queries that fail to pro-
duce desired results. In contrast to incorrect queries, which result in a compilation
error, unsatisfiable queries are difficult to debug since they run to completion and
produce a result, though not the intended or desired result.

1.1 Motivating Example

As an example of the directional nature of XPath queries, consider the xml docu-
ment in Figure 1(a). It contains league information organized by teams. Each team
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consists of a set of players. Suppose that a user, Sally, wishes to find the names of
teams in the southwest division founded prior to 1970. Sally can issue the following
XPath query to retrieve desired information: Q1: //team[division=‘southwest’
and founded<1970]/name. Suppose now that Sally wishes to also find the
names of the players for the teams, she can issue another query Q2:
//team[division=‘southwest’ and founded<1970]//player/name, to re-
trieve this information. Finally, the name of the league the teams play for can be
retrieved by issuing the following query Q3: /league/name. Note that these three
XPath fragments can be combined into a single XPath query using the union op-
erator (Q1|Q2|Q3), or combined in a single XQuery.

To properly formulate these queries, Sally has to know something about the
hierarchical structure of the xml data. For instance, she must know that the player
elements are descendants of a team element and information related to the name
of a team is available in some part of the team subtree. Furthermore, the name of
a league is available in the league subtree. This subtree also includes information
related to teams and players. But if Sally misunderstands the structure or if the
structure changes over time then this partial knowledge may not be useful anymore
for formulating satisfiable queries as demonstrated below.

Assume that the xml document in Figure 1(a) is now reorganized to the struc-
ture depicted in Figure 1(b). Now the league information is organized according
to players instead of teams. Both documents contain the same data and same el-
ement labels but they have different hierarchical relationships. These documents
may reflect the scenario where (a) the structure of a document has evolved into
another or (b) two different sources represent similar data in different hierarchies.
Due to the lack of non-directional axes in XPath, for some queries different path
expressions are needed to query each hierarchy. Consequently, some of the above
XPath fragments may become unsatisfiable on the document in Figure 1(b). Sally
has to formulate a different set of XPath fragments to retrieve relevant informa-
tion. For instance, Q2 needs to be replaced now with the following query Q′2:
//player[team/division=‘southwest’ and team/founded<1970]/name.

At first glance, it may seem that the above structural heterogeneity can be ad-
dressed by simply appending Q′2 to the XPath query over the document in Fig-
ure 1(a) using the union operator. While this approach surely works, it is not
a practical solution as it requires a user to be familiar with the structural hetero-
geneities of different xml documents. This is unrealistic to expect from users as
such “structure-awareness” does not scale with increasing structural heterogene-
ity. Is it possible to retrieve the above information using a single query without
being aware of the underlying structural heterogeneities of elements? Ideally, such
a query technique should work even if the document structure is reorganized. In
order to answer this question affirmatively, in this paper we propose a new non-
directional parametric XPath axis called rank-distance axis, which enables us
to locates elements relative to the context node in any direction.
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1.2 Current Approaches

The xml community has recognized the difficulty of constructing satisfiable queries
and has proposed several solutions. These efforts can be broadly classified into the
following three categories.

1. Inexact query answer: Techniques have been proposed to find data that inex-
actly or approximately matches a query [1,2,12,13], relaxing the notion that
only strictly satisfying answers be returned by query evaluation [7]. A rank-
distance axis, like every other axis, is an exact and precise specification,
and could be relaxed using the above techniques.

2. Query correction: In this approach, similar satisfiable queries are automat-
ically generated when the user query is unsatisfiable [7]. The user can then
choose a satisfiable query of interest and receive strictly satisfying results to
the query. This method requires the existence of a structural summary (or
schema) of the documents in order to generate similar queries. A limita-
tion of this strategy is that the user may have to choose a query from among
many potential queries. Requiring further input from a user may be feasi-
ble in some interactive sessions, but not for many applications that query a
database.

3. Structure-independent querying: The above two approaches exploit the un-
derlying document structure to a certain extent. Recently, techniques based
on the Meaningful Lowest Common Ancestor [14], node interconnection [8],
Smallest Lowest Common Ancestor (SLCA) [4, 15, 16, 18, 21], and closest
XPath axis [24] have been proposed to enable formulation and evaluation of
queries independent of the structure of underlying xml data. This allows a
user to query xml data without knowing its exact structure. That is, a user
simply needs to know the names of relevant elements and attributes and/or
their possible relationships to properly formulate a query.

In this paper, we focus on the last category. Specifically, the XPath language
is extended with a non-directional locator, called the rank-distance axis, to
support non-directional exploitation of xml data. The proposed axis allows a user
to formulate precise queries knowing only the labels of nodes and unaware of the
exact hierarchy.

1.3 Overview

Reconsider the XPath queries in Section 1.1 over the xml documents in Figure 1.
To retrieve players’ information in Figure 1(a), a query has to navigate down from
the team node. On the other hand, in Figure 1(b), the direction of navigation is
reversed. Consequently, a key reason for the brittleness of these queries is the
directional nature of classical XPath axes. We address this issue in this paper by
extending XPath language with a non-directional axis called rank-distance.
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Informally, given a context node and two positive integers α and β , the
rank-distance axis returns those nodes that are ranked between α and β in terms
of “closeness” from the context node. Here “closeness” is measured by the distance
from the context node in any direction in the xml tree. For example, assume that
the team and name nodes in Figure 1(a) are the context and test nodes, respectively.
Observe that the name of a team is closest to the team node (at distance one). The
second most closest node is the name of the league (at distance two). Lastly, the
name node(s) that are furthest from the context node are the names of the players
(at distance three). Hence, if α = 1 and β = 3 for a rank-distance query Q in-
volving these context and test nodes, then all the above name nodes are part of the
answer set. Observe that Q will retrieve the same information when it is evaluated
over Figure 1(b) as well. More importantly, a user does not need to be aware of
the structural relationship between the context and test nodes. By arbitrarily ma-
nipulating α and β , he/she can retrieve relevant information from a collection of
structurally heterogeneous xml documents.

Our proposed algorithm for evaluation of a rank-distance axis is built on
top of the Sucxent++ system [5, 17], a tree-unaware relational approach designed
primarily for query-mostly workloads. Different from other encoding schemes,
namely pre-post encoding [10, 23] and Dewey numbering [19], Sucxent++ uses a
novel numbering scheme that only explicitly encodes the leaf nodes and the levels
of the xml tree. Internal nodes are encoded implicitly. In this paper, we show that
this scheme can be effectively used, without any further extension, to evaluate the
rank-distance axis. Note that this feature is important as queries with non-
directional axis should seamlessly blend with conventional XPath processing. Fur-
thermore, our proposed algorithm computes distance information of relevant nodes
“on-the-fly” for generating the answer set. Consequently, there is no overhead of
computing, maintaining, and storing distance information (O(n2) space complex-
ity) a priori.

In summary, this paper makes three main contributions. Firstly, we extend
classical XPath query language with a non-directional rank-distance axis in
Section 2. Secondly, based on the labeling scheme of Sucxent++ [17], in Sec-
tion 3 we present a novel sql translation algorithm for evaluating queries contain-
ing a rank-distance axis. Importantly, our proposed algorithm does not require
a priori computation of distances between all possible pairs of xml nodes and is
capable of working with several off-the-shelf rdbms without any internal modifi-
cation. To the best of our knowledge, this is the first concrete implementation of a
non-directional XPath axis in a relational environment. Thirdly, through an exten-
sive experimental study on synthetic and real data sets, in Section 4, we show that
our approach can retrieve rank-distance nodes effectively in a tree-unaware rdbms
environment.
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2 Rank-Distance Axis

In this section, we first present a data model for xml documents. Then we formally
define the rank-distance axis.

2.1 XML Data Model

We model xml documents as ordered, labeled trees. We first define such an xml
data model.

Definition 1 A tree is a tuple (N ,E,Σ,L,F,T, S), where

• N is the node set. r ∈ N is a special node called the root of the tree,
• Let O be the domain of ordinals. Then E ⊆ O × N × N is the edge set such

that (a) each edge has an ordinal oi ∈ O to represent ordering among the
children; (b) there is a path between every pair of nodes; (c) there is no cycle
among the edges; and (d) every edge has a single incoming edge, except r,
which has no incoming edge,

• Σ is an alphabet of labels and text values,
• L : N → Σ is a label function that maps each node to its label,
• F : N → Σ ∪ {ε} is a value function that maps a node to its value, in which

F(n) = ε if node n has an empty value, and
• T : N → S is a type function that maps each node to a type, which is a value

in the type set S.

This simple model, which is sufficient for this paper, ignores comments, attributes,
processing instructions and namespaces.1 The model distinguishes between labels
and types. The label function maps each node to its label, that is, its element
tag. So a <founded> node would map to the label founded. The type function
specifies the type of each node, where two nodes with the same label could have
different types. The type could be defined in various ways, we assume only that
each node has a known type. In schema-validated xml documents, the type is
usually specified in the schema. For schema-less documents, the type of a node
n ∈ N could be defined as the concatenation of the labels on the path from the root
to n. For example, suppose that there exist name nodes in subtrees rooted at team
and player nodes. Then the path from the root node to a team name node and a
player name node differs; therefore they are of different types.

2.2 Node Distance

Informally, the distance between nodes u and v is the number of edges in the
unique, simple undirected path between u and v. Formally, the distance is defined
as follows.

1Though the rank-distance axis will locate only elements in this simple model used for expository purposes,
in a completely defined data model all kinds of nodes could be in the axis.
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Definition 2 Suppose (N ,E,Σ,L,F,T, S) is a tree and c ∈ N is the context node.
Let level(v) denotes the level of a node v and nca(u, v) be the nearest common
ancestor (nca) of nodes u and v where u, v ∈ N . Then, the distance between nodes
c and v, denoted as dist(c, v), is defined as follows: dist(c, v) =

|level(c) − level(nca(c, v))| + |level(v) − level(nca(c, v))|

For example, consider the leftmost team (c) and founded (v) nodes in Figure 1(a).
Here level(c) = level(v) = 2, level(nca(c, v)) = 1. Therefore, dist(c, v) = |2 − 1| +
|2 − 1| = 2.

2.3 Defining the Axis

Informally, given a context node c and two parameters, α and β where α ≤ β , the
rank-distance axis returns those nodes that are ranked between α and β from
the context node based on their distances from c. Note that the rank-distance
axis can be thought of as a family of axes in which a specific axis is specified by
the parameters α and β . We now formally define the notion of rank-distance
axis. We first introduce some terminology to facilitate the exposition. Given a
context node c, let Pk

ℓ
(c) be a set of nodes such that ∀ ni ∈ Pk

ℓ
(c), L(ni) = ℓ and

dist(c, ni) = k. A k-distance node set, denoted as Ωk
c, is a set of all nodes hav-

ing different labels that are k distance away from the c. That is, Ωk
c = Pk

ℓ1
(c) ∪

Pk
ℓ2

(c) ∪ . . . ,∪Pk
ℓm

(c). Then, a k-distance nodeset list, denoted as Lc, is a list of
all k-distance node sets ordered by their k values in ascending order. That is,
Lc = [Ωk1

c,1,Ω
k2
c,2,Ω

k3
c,3, . . . ,Ω

kmax
c,ρ ] where k1 < k2 < . . . < kmax. The subscript

0 < i ≤ ρ is called the rank of a k-distance node set in Lc. When the context
is obvious, we simply denote them as Pk

ℓ
, Ωk, and L, respectively. For example,

consider the context node c1 in Figure 1(a). Then, P1
name = {e1} as the label of e1

is name and dist(c1, e1) = 1. Similarly, P1
f ounded = {e4} and P2

name = {e2}. Then,
Ω1 = P1

name ∪ P1
division ∪ P1

arena ∪ P1
f ounded ∪ P1

players ∪ P1
league = {e1, e2, e3, e4, e5, e6},

Ω2 = P2
name∪P2

f ounded∪P2
player = {e7, e8, e9, e10}, andΩ3 = P3

name∪P3
position∪P3

nationality

= {e11, e12, e13, e14, e15, e16}. Then, Lc1 = [Ω1
c1,1

,Ω2
c1,2

,Ω3
c1,3

].
Next, we introduce the notion of selection on k-distance nodeset list. Given

a context node c, a selection on Lc with respect to label ℓ, denoted as σ (Lc, ℓ),
generates a list Lc(ℓ) = [Ωk1

c,1(ℓ),Ωk2
c,2(ℓ),Ωk3

c,3(ℓ), . . . ,Ωkm
c,ρ (ℓ)] where Ωk j

c,i(ℓ) ⊆ Ω
k j
c,s,

Ω
k j
c,s ∈ Lc, ∀d ∈ Ωk j

c,i(ℓ), L(d) = ℓ, and ∀i |Ωk j
c,i(ℓ)| > 0. That is, the selection returns

a set ofΩk in ranked order where each element contains one or more nodes with la-
bel ℓ. For instance, in the above examples σ (Lc1 , name) =

where Ω1
c1,1

(name) = {e1}, Ω2
c1,2

(name) = {e8}, Ω3
c1,3

(name) = {e11, e14}.

Definition 3 Suppose (N ,E,Σ,L,F,T, S) is a tree and c ∈ N is the context node.
Let α and β be two integers such that α, β > 0, α ≤ β and β is less than or equal
to the maximum distance from a node n ∈ N to c. Let Lc = [Ωk1

c,1,Ω
k2
c,2,Ω

k3
c,3, . . . ,Ω

kv
c,ρ ]
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be the k-distance nodeset list for c. Then, rank-distance nodes of c are: rank −
distance(c,α, β ) = [n1, n2, . . . , n j] where

• n1, n2, . . . , n j ∈ N and j ≥ 1,

• ∀ ni ∈ rank − distance(c,α, β ), ni ∈ Ωka
c,ρr

, Ωka
c,ρr
∈ Lc where 0 < a ≤ v,

ρr ≥ α and ρr ≤ β ,

• ∀ n ∈ N , n < rank − distance(c,α, β ) iff n ∈ Ωkb
c,ρ ′ , Ω

kb
c,ρ ′ ∈ Lc where

0 < b ≤ v and ρ ′ < α or ρ ′ > β ,

• ∀p, q, 1 ≤ p < q ≤ j, np precedes nq in document order.

Observe that the rank-distance axis is defined as a function that takes a
context node and returns a node sequence. The function has two key conditions.
First, the node selection condition constrains the nodes that appear in the result.
It stipulates that the rank-distance axis retrieves for each label in the tree the
node that is between a pair of specified ranks based on its distance to the context
node. Second, the node ordering condition states that the result preserves document
order. At first glance it may seem that sorting the results by distance instead of
document order is a more appropriate choice. However, introducing a distance-
based ordering would impact evaluation of subsequent location steps. Hence we
decided to use document order.

The syntax of for expressing rank-distance nodes is of the form
rank-distance(α to β)::NodeTest. We refer to α and β as lower and up-
per rank, respectively. For example, consider the query Q4: //team [founded
<’1970’]/rank-distance(1 to 3)::name on the document in Figure 1(a). It
returns the nodes e1, e8, e11, and e14. These nodes contain information related to the
name of the league, the names of teams which were founded before 1970, and their
players’ names. Note that these nodes are in Ω1

1(name), Ω2
2(name) and Ω3

3(name)
of Lc1(name). That is, σ (Lteam, name) = {e1, e8, e11, e14}. Since the results are
in document order, the output will be [name:NBA, name:Rockets, name:Mutombo,
name:Wells, . . .].

Note that Q4 will also return the name element of each of the remaining teams
(denoted as e′) as its distance from the context node c1 is also three. However,
this may not be desirable for certain applications. Fortunately, we can easily filter
out e′ by post-processing the result set using node type information. Specifically,
both e1 and e′ have same node type (league.team.name) but different ranks with
respect to c1 (1 and 3, respectively). Hence, for nodes with identical types we can
filter out irrelevant nodes by selecting the one with lowest rank (e1) as part of the
result set. Note that we do not incorporate this filtering into the axis by default as
its usefulness depends on specific applications as some users may wish to view all
nodes instead.

Now consider the xml document in Figure 1(b). Although the document struc-
ture of Figure 1(b) is different, Q4 returns the above information when evaluated on
this document. Specifically, in this case the first team element is the context node
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and it will return the name elements of team, league and players (e.g., Mutombo)
as they are ranked 1, 3, and 2, respectively, based on the distance from the context
node. Hence, the output in document order will be [name:NBA, name:Mutombo,
name:Rockets, . . ., name:NBA, name:Wells, name:Rockets, . . .]. Note that in this
case there is no need to post-process the result set based on node types.

Remark. Reconsider the XPath queries in Section 1.1 over the documents in
Figure 1. In order to ensure Q2 is satisfiable on the document in Figure 1(b), Sally
needs to modify the axis of one or more steps in Q2 or rearrange the labels to
satisfy document hierarchy. As mentioned earlier, this requires partial knowledge
of the underlying document(s). In contrast, in a rank-distance query a user does not
need to undertake such modifications. He/she can explore different results of the
query by setting different values for α and β . Intuitively, this has lesser cognitive
overhead as a user does not need to have knowledge of the underlying document
structure. In the next section, we shall see that our proposed evaluation strategy
supports such exploratory querying by exploiting the previously computed answer
set whenever a user modifies α or β .

3 Evaluation of Rank-Distance Axis

We now formally present the algorithm for translating an XPath expression with a
rank-distance axis into an sql query over Sucxent++ [5, 17]. We begin by first
justifying our choice of using Sucxent++ as the underlying framework and then
briefly review its storage scheme.

3.1 Choice of Underlying Framework

Querying xml data over relational framework has gained popularity due to its
stability, efficiency, expressiveness, and its wide spread usage in the commercial
world. On the one hand, there has been a host of work, c.f., [6], on enabling rela-
tional databases to be tree-aware by invading the database kernel to support xml.
On the other hand, some completely jettison the invasive approach and resort to
a tree-unaware approach, c.f., [5, 10, 17, 19, 23], where the database kernel is not
modified to support xml queries.

Generally, the tree-unaware approach reuses existing code, has a lower cost
of implementation, and is more portable since it can be implemented on top of
off-the-shelf rdbmss. This has triggered recent efforts to explore how far we can
push the idea of using mature, tree-unaware rdbms technology to design and build
a relational XQuery processor [10, 11]. Furthermore, several commercial rdbms
provide efficient support for ranking (e.g., DENSE RANK in ms sql server) which
we can exploit to rank nodes based on their distances. Consequently, we build a
rank-distance axis evaluation strategy on a tree-unaware relational framework.

Since there are several tree-unaware schemes proposed by the community [5,
9, 10, 17, 19, 23], our selection choice was primarily influenced by the following
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Figure 2: Encoding scheme of sucxent++.

two criteria. First, the representative storage scheme should not be dependent
on the availability of dtd/xml schema. Second, the selected approach must have
good query performance for a variety of conventional XPath axes. Since superior
query performance of Sucxent++ system compared to several state-of-the-art tree-
unaware schemes have been demonstrated in [5,17], we chose it for our framework.

3.2 SUCXENT++ Schema

We begin by providing an overview of the encoding scheme of Sucxent++ for xml
trees. This scheme does not require a relational back-end to support sql/xml stan-
dard or xml data type. Consider Figure 2. Each level ℓ of an xml tree is associated
with an attribute called RValue (denoted as Rℓ). Each leaf node n is associated with
four attributes, namely LeafOrder, BranchOrder, DeweyOrderSum, and SiblingSum.
Each non-leaf node n′ is implicitly assigned the DeweyOrderSum of the first de-
scendant leaf node for reasons discussed later. Each attribute node (denoted as ai)
is associated with AttrOrder, LeafOrder of its parent node, and its PathId.

The schema of Sucxent++ [5, 17] is as follows.

• Document(DocID,Name)

• Path(PathId,PathExp)

• PathValue(DocID,DeweyOrderSum,PathId,BranchOrder,
LeafOrder,SiblingSum, LeafValue)

• Attribute(DocID, LeafOrder,PathId, LeafValue,AttrOrder)

• DocumentRValue(DocID, Level,RValue)

Document stores the document identifier DocID and the name Name of a given
input xml document D. Each distinct root-to-leaf path appearing in D, namely
PathExp, is associated with an identifier PathId and stored in Path table. Essentially
each path is a concatenation of the labels of the nodes in the path from the root to
the leaf. An example of the Path table containing the root-to-leaf paths of Figure 1
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Figure 3: Relations in Sucxent++.

is shown in Figure 3. Note that ‘#’ is used as a delimiter of steps in the paths
instead of ‘/’ for reasons described in [23]. The Attribute table stores the attribute
nodes. We do not elaborate on this table as it is beyond the scope of the paper.

For each leaf node n in D, Sucxent++ creates a tuple in the PathValue table
which stores the LeafOrder, BranchOrder, DeweyOrderSum, and SiblingSum val-
ues of n. The data value of n is stored in LeafValue. We now elaborate on these
attributes. Given two leaf nodes n1 and n2, n1.LeafOrder < n2.LeafOrder iff n1
precedes n2 in document order. LeafOrder of the first leaf node in D is 1 and
n2.LeafOrder = n1.LeafOrder+1 iff n1 is a leaf node immediately preceding n2. For
example, the integer superscript of each leaf node in Figure 1 denotes its LeafOrder
value. Given two leaf nodes n1 and n2 where n1.LeafOrder+1 = n2.LeafOrder,
n2.BranchOrder is the level of the nearest common ancestor (nca) of n1 and n2.
For example, the BranchOrder of the division leaf node with LeafOrder value 4
in Figure 1(a) is 2 as the nca of this node and the preceding name node is at the
second level. Note that the BranchOrder of the first leaf node is 0.

The BranchOrder has an interesting property. Let s be a non-leaf node at level
ℓ. Let n1 be the first descendant leaf node of s. Then, except for n1, BranchOrder
values of all the descendant leaf nodes of s are at least ℓ. The BranchOrder of n1
is less than ℓ. Observe that the nca of n1 and its immediately preceding leaf node
is not a descendant of s. For example, consider the non-leaf node n6 at level 2 in
Figure 2. The descendants n9, n10, and n12 all have BranchOrder greater than or
equal to 2. However, the BranchOrder of the first descendant n7 is 1. This property
will be exploited later to implicitly encode the non-leaf nodes.

We now introduce the notion of maximal k-consecutive leaf-node list which is
used to define RValue. Consider a list of consecutive leaf nodeS: [n1, n2, n3, . . . , nr]
in D. Let k ∈ [1,Lmax] where Lmax is the largest level of D. Then, S is called a k-
consecutive leaf-node list of D iff ∀0 < i ≤ r ni.BranchOrder ≥ k. S is called a
maximal k-consecutive leaf-node list, denoted as Mk, if there does not exist a k-
consecutive leaf-node list S′ such that |S|<|S′|. For example, M2 in Figure 1(a)
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Algorithm 1: The RankDistance algorithm.
Input: XPath P
Output: Translated sql Srd

1 (E1,E2)← decomposeXPath(P) ;
2 S1 ← translate(E1) ;
3 S2 ← SQLToFindNCA(S1,E1,E2) ;
4 S3 ← SQLToComputeDistance(E1,E2) ;
5 S4 ← SQLForRankDistance() ;
6 Srd ← finalTranslatedSQL(S2, S3, S4) ;
7 return Srd

contains nine leaf nodes as |S| = 9 for M2.
The RValue of level ℓ, denoted as Rℓ, is defined as follows: (i) If ℓ = Lmax − 1

then Rℓ = 1; (ii) If 0 < ℓ < Lmax − 1 then Rℓ = 2Rℓ+1 × |Mℓ+1| + 1. For
example, consider Figure 1(a). Here Lmax = 5. The values of |M2|, |M3|, |M4|, and
|M5| are 9, 5, 2, and 1, respectively. Then, R4 = 1, R3 = 2 × 1 × |M4| + 1 = 5,
R2 = 2 × 5 × |M3| + 1 = 51, and R1 = 2 × 51 × |M2| + 1 = 919. In order
to facilitate evaluation of XPath queries, the RValue attribute in DocumentRValue
stores Rℓ−1

2 + 1 instead of Rℓ (denoted as R′ℓ). For instance, in Figure 3 the R1 is
stored as 460 instead of 919.

DeweyOrderSum is used to encode a node’s order information together with its
ancestors’ order information using a single value. Let parent(w) denote the parent
of an node w. Consider a leaf node n at level ℓ in D. Then, for 1 < k ≤ ℓ, Ord(n, k)
= i iff (i) there exists an node a at level k which is either an ancestor of n or n itself;
and (ii) a is the i-th child of parent(a). For example, consider the rightmost leaf
node in Figure 1(a) (denoted as d). Ord(d, 2) = 3 as the team node in the second
level is an ancestor of d as well as the third child of the root. Similarly, Ord(d, 3) =
5.

Then DeweyOrderSum of n, n.DeweyOrderSum, is defined as
∑ℓ

j=2 Φ( j) where
Φ( j)=[Ord(n, j)-1]×R j−1. The DeweyOrderSum of the first leaf node is 0. Recon-
sider the rightmost leaf node again. It has a Dewey path “1.3.5.2.3”. DeweyOrderSum
of this node is: n.DeweyOrderSum = (Ord(n, 2)− 1)×R1 + (Ord(n, 3)− 1)×R2 +

(Ord(n, 4)−1)×R3+(Ord(n, 5)−1)×R4 = 2×919+4×51+1×5+2×1 = 2049. The
DeweyOrderSum of remaining nodes are shown in the DeweyOrderSum attribute of
the PathValue table in Figure 3. Note that the DeweyOrderSum is not sufficient
to compute position-based predicates with name tests, e.g., team[2]. Hence, the
SiblingSum attribute is introduced. We do not elaborate on this as it is beyond the
scope of the paper.

Comparison of ordering of non-leaf nodes: Sucxent++’s strategy for com-
paring the order of non-leaf nodes is based on the following observation. If node n0
precedes (resp. follows) another node n1, then descendants of n0 must also precede
(resp. follow) the descendants of n1. Therefore, instead of comparing the order be-
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Input: SQL Query S1, XPath E1, XPath E2

Output SQL Query S

01  C = getMaxPV(S1)

02  Level = findMaxLevel(E1)

03  Name = getLabel(E2)

04  PathIDList = getPathIDs(E2)

05  R1 = getRValue(1)

06  S1.addItemIntoFromClause("DOCUMENTRVALUE RX")

07  S1.addItemIntoFromClause("PATHVALUE V"+(C+1))

08  S1.addAndCondition("V"+C+".BranchOrder < "+ Level)

09  S1.addAndCondition("V"+(C+1)+".PathID in ("+ PathIDList +")")

10  QA = S1

11  QA.addAndCondition("V"+(C+1)+".DeweyOrderSum BETWEEN 

V"+C+".DeweyOrderSum - CAST(RX.RValue AS BIGINT) + 1 AND "+ 

"V"+C+".DeweyOrderSum + CAST(RX.RValue AS BIGINT) - 1")

12  QA.addAndCondition("V"+(C+1)+".DeweyOrderSum <> 

                        V"+C+".DeweyOrderSum")

13  QA.replaceSelectClause("SELECT V"+C+".DeweyOrderSum , V"+C+".PathID, 

    V"+C+".BranchOrder, V"+(C+1)+".DeweyOrderSum, "+ "V"+(C+1)+".PathID, 

    MAX(RX.Level+1) AS NCA_LEVEL")

14  QA.addGroupBy("GROUP BY V"+C+".DeweyOrderSum , V"+C+".PathID, 

    V"+C+".BranchOrder, V"+(C+1)+".DeweyOrderSum, V"+(C+1)+".PathID")

15  QB = S1

16  QB.addAndCondition("ABS(V"+(C+1)+".DeweyOrderSum –

                        V"+C+".DeweyOrderSum) >= "+ R1)

17  QB.replaceSelectClause("SELECT V"+C+".DeweyOrderSum , V"+C+".PathID, 

    V"+C+".BranchOrder, V"+(C+1)+".DeweyOrderSum, "+ "V"+(C+1)+".PathID, 

    1 AS NCA_LEVEL")

18  QC = S1

19  QC.addItemIntoFromClause("PATH P")

20  QC.addAndCondition("V"+(C+1)+".DeweyOrderSum = V"+C+".DeweyOrderSum)

21  QC.addAndCondition("V"+(C+1)+".PATHID = P.PATHID)

22  QC.replaceSelectClause("SELECT V"+C+".DeweyOrderSum , V"+C+".PathID, 

    V"+C+".BranchOrder, V"+(C+1)+".DeweyOrderSum, "+ "V"+(C+1)+".PathID, 

    MINVAL("+ Level +", computeLevel('"+ Name +"', P.PATHEXP)) AS NCA_LEVEL")

23  return QA + " UNION "+ QB + " UNION " + QC

Figure 4: The SQLToFindNCA algorithm (Phase 3).

tween non-leaf nodes, the order between their descendant leaf nodes is compared.
For this reason, the first descendant leaf node of a non-leaf node n is defined as the
representative leaf node of n. Here the property of BranchOrder as discussed earlier
is exploited to identify the first descendant leaf node. The DeweyOrderSum of the
representative leaf node is conceptually propagated to its ancestor non-leaf nodes.
Figure 2 illustrates this propagation by depicting the DeweyOrderSum values of
the non-leaf nodes (shown inside square brackets). Note that these values are not
stored explicitly in Sucxent++ as they can be retrieved from the DeweyOrderSum
of representative leaf nodes.

Figure 3 depicts an example of storage of xml representation of league data
(Figure 1(a)) in Sucxent++. Note that large text content (e.g., protein sequence) is
stored in a separate relation called TextContent that has same schema as PathValue.

Computation of NCA. We now briefly discuss how to compute the nca of two
nodes efficiently in Sucxent++ using the following theorem.

Theorem 1 Let n1 and n2 be two distinct leaf nodes in an xml tree and ℓ > 0. If
Rℓ+1−1

2 + 1 ≤|n1.DeweyOrderSum - n2.DeweyOrderSum| < Rℓ−1
2 + 1 then the level of

the nca of n1 and n2 is ℓ + 1. �

The reader may refer to [5] for the proof. Consider the last leaf node in Fig-
ure 1(a). The DeweyOrderSum of this node is 2049. Let X be the DeweyOrderSum
of leaf nodes that have nca at level 3. Using the above theorem, X falls within the
following range: (R3−1)/2+1 ≤ |X−2049| < (R2−1)/2+1⇒ 3 ≤ |X−2049| < 26
which returns the 7th, 8th, and 9th leaf nodes (DeweyOrderSums are 2042, 2043,
and 2044, respectively). Note that Theorem 1 can also be used for internal nodes
as Sucxent++ represents each internal node with its first descendant leaf node.

Corollary 1 Let n1 and n2 be two distinct leaf nodes in an xml tree. If
|n1.DeweyOrderSum - n2.DeweyOrderSum| ≥ R1−1

2 + 1 then the nca of n1 and n2
is the root node. �

For example, consider the leaf nodes with LeafOrder values 2 and 4 in Fig-
ure 1(a). The DeweyOrderSums of these nodes are 919 and 1839, respectively.
Since 1839 − 919 > 460, the nca is the root node (league).
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Note that the above theorem and corollary involve non-identical nodes. When
the pair of nodes are identical, then the nca is computed as follows. (a) If n1 and n2
are non-leaf nodes and their representative leaf nodes are identical, then the level
of the nca of n1 and n2 is MIN(level(n1), level(n2)). (b) Suppose that n1 is a non-
leaf node and n2 is a leaf node. If the representative leaf node of n1 is identical to
n2, then the level of the nca of these nodes is the level of n1. (c) If n1 and n2 are
identical leaf nodes then the nca level is the level of n1 or n2.

3.3 SQL Translation Algorithm

Algorithm 1 depicts the algorithm for sql query translation. For simplicity, we as-
sume that an XPath expression has a single rank-distance axis and parent-child
directional axis. Note that our strategy can be extended to expressions contain-
ing multiple rank-distance axes and we plan to explore this exhaustively in the
future. The algorithm consists of the following phases.

Phase 1: XPath Decomposition. In this phase, the algorithm splits the XPath
expression P into two types of XPath components (Algorithm 1, Line 01). One
of them represents the XPath fragments that do not contain a rank-distance
axis and the other represents the rank-distance axis expressions. For example,
consider the expression P = /league/team/rank-distance(1 to 3)::name
over the xml document in Figure 1(a). In this phase, P is split into the fragments
E1 and E2 representing /league/team and //name, respectively. Note that we
transform rank-distance::NodeTest into //NodeTest as the rank-distance
axis is non-directional and the path of NodeTest cannot yet be determined. As we
shall see later, the DeweyOrderSum and RValue attributes enable us to efficiently
prune NodeTest nodes that are not “close” to the context node.

Phase 2: Directional XPath to sql Translation. Next, the algorithm invokes
the sql translation algorithm for the XPath expression without a rank-distance
axis in Line 02 in Algorithm 1. Since this algorithm has already been described
in [5, 17], we do not elaborate on this further. Here we focus our attention on
the translation of the rank-distance axis component. Figure 6(a) depicts the
translated sql query of E1 (denoted as S1).

Phase 3: NCA Computation. Recall that the distance computation between
nodes u and v requires the level of nca(u,v). In Algorithm 1, Line 03 is used
to generate an sql query to determine the level of nca using S1, E1, and E2 as
input. The idea is to find the level of the nca of the context node (in our example,
team node) and the test node (name node). Figure 4 depicts the SQLToFindNCA
algorithm in detail. First, it computes the number of instances of the PathValue
table in the query S1 (denoted as C). In our example, C = 1. In the next step, it
finds the level of the context node by analyzing E1. In our example, the context
node is team whose level is 2. Next, the algorithm fetches the names and ids of
paths that satisfy E2 (Lines 03-04 in Figure 4). The RValue of level 1 is fetched
in Line 05. Lines 06–07 in Figure 4 are used to add two additional instances of

15



Input: -

Output: S4

01 S4="SELECT C.V1DeweyOrderSum, C.V2DeweyOrderSum, C.DISTANCE, "+

      "  DENSE_RANK() OVER(PARTITION BY  C.V1DeweyOrderSum "+

      "                    ORDER BY C.DISTANCE) "+

      "FROM [S3] C ";

02 return S4

(c) The SQLForRankDistance Algorithm

Input: NCA Level NLevel

       Closest node test name Name1

       Context node name Name2

       Path Expression of candidate closest node P1

       Path Expression of context node P2

Output: Distance between context and candidate  closest nodes D

01  P1Level = computeLevel(Name1, P1)  

02  P2Level = computeLevel(Name2, P2)

03  D = ABS(P1Level – NLevel) + ABS(P2Level – NLevel)

04  return D

Input: XPath P1, XPath P2

Output SQL Query S

01  Name1 = getLabel(P1)

02  Name2 = getLabel(P2)

03  S.set("SELECT B.V1DeweyOrderSum, B.V1PathID,  

B.V1BranchOrder, B.V2DeweyOrderSum, computeLevel('" + Name2 

+ "', P2.PATHEXP), "+ "   computeDistance(B.NCALEVEL, '" + 

Name2 + "', P2.PATHEXP, '" + Name1 + "', P1.PATHEXP) AS 

DISTANCE "+ "FROM [S2] B, PATH P2 , PATH P1 "+ "WHERE 

B.V2PATHID = P2.PATHID AND B.V1PATHID = P1.PATHID");

04  return S

(a) The SQLToComputeDistance Algorithm

(b) The computeDistance Algorithm

Figure 5: Algorithms for Phase 4.
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01 SELECT V1.PATHID, V1.DEWEYORDERSUM, 

V1.LEAFVALUE

02 FROM PATHVALUE V1

03 WHERE V1.PATHID IN (5,4,6,3,7,9,8)

01  SELECT V1.DEWEYORDERSUM, V1.PATHID, V1.BRANCHORDER, 

V2.DEWEYORDERSUM, V2.PATHID, MAX(RX.LEVEL+1) AS NCA_LEVEL

02  FROM DOCUMENTRVALUE RX, PATHVALUE V1, PATHVALUE V2

03  WHERE V1.PATHID IN (5,4,6,3,7,9,8) 

AND V1.BRANCHORDER < 2

04    AND V2.PATHID IN (1,3,7)

05    AND V2.DEWEYORDERSUM BETWEEN V1.DEWEYORDERSUM -

CAST(RX.RVALUE AS BIGINT) + 1

AND V1.DEWEYORDERSUM + CAST(RX.RVALUE AS BIGINT) - 1

06    AND V1.DEWEYORDERSUM <> V2.DEWEYORDERSUM

07  GROUP BY V1.DEWEYORDERSUM, V1.PATHID, V1.BRANCHORDER, 

V2.DEWEYORDERSUM, V2.PATHID

08  UNION

01 SELECT B.V1DEWEYORDERSUM, B.V1PATHID, B.V1BRANCHORDER, 

B.V2DEWEYORDERSUM, computeLevel('.name#', P1.PATHEXP), 

computeDistance(B.NCALEVEL, '.name#', P1.PATHEXP, '.team#', 

        P2.PATHEXP) AS DISTANCE

02 FROM [S2] B, PATH P2 , PATH P1

03 WHERE B.V2PATHID = P2.PATHID AND B.V1PATHID = P1.PATHID

(a) SQL query for Phase 2

(b) SQL query for NCA computation (Phase 3)(c) SQL query for distance computation (Phase 4)

09  SELECT DISTINCT V1.DEWEYORDERSUM, V1.PATHID, 

V1.BRANCHORDER, V2.DEWEYORDERSUM, V2.PATHID, 1 AS NCA_LEVEL

10  FROM PATHVALUE V1, PATHVALUE V2

11  WHERE V1.PATHID IN (5,4,6,3,7,9,8) AND V1.BRANCHORDER < 2

12    AND V2.PATHID IN (1,3,7)

13    AND ABS(V1.DEWEYORDERSUM - V2.DEWEYORDERSUM) >= 460

14  UNION

15  SELECT DISTINCT V1.DEWEYORDERSUM, V1.PATHID, 

V1.BRANCHORDER, V2.DEWEYORDERSUM, V2.PATHID, 2 AS NCA_LEVEL

16  FROM PATHVALUE V1, PATHVALUE V2

17  WHERE V1.PATHID IN (5,4,6,3,7,9,8) AND V1.BRANCHORDER < 2

18    AND V2.PATHID IN (1,3,7)

19    AND V1.DEWEYORDERSUM = V2.DEWEYORDERSUM

Figure 6: sql queries generated by Phases 1 - 3 for the running example.

the DocumentRValue (denoted as RX ) and PathValue (denoted as VC+1) tables into
the FROM clause of S1. Line 08 ensures that only representative leaf nodes of the
context nodes are used in the comparison. Line 09 adds the path ids that satisfy E2
(the node test of rank-distance axis).

Next, the algorithm generates three different sql queries based on S1, namely
QA, QB, and QC, to handle different scenarios of nca computation. QA computes the
level of nca(u,v) if nodes u and v are distinct. QB is used when nca(u,v) is the root
node. If nodes u and v are identical, then QC is used. Lines 11-12 are used to add
two additional conditions to QA. Line 11 is used to determine the level of nca of
the context and rank-distance nodes based on Theorem 1. Line 12 ensures that the
nca between two non-distinct leaf nodes (the context nodes is identical to the rank-
distance node) is not computed. Then, the algorithm replaces the SELECT clause
and adds the GROUP BY function (Lines 13 and 14, respectively). For QB, the algo-
rithm adds an additional condition based on Corollary 1 to ensure that the context
and rank-distance nodes that have nca at level 1 are only used in the comparison
here (Line 16). Lines 19-22 are used to complete the construction of QC.The al-
gorithm adds two conditions in the WHERE clause (Lines 20-21) and replaces the
SELECT clause (Line 22). In particular, the MINVAL function is used to computer
the minimum value between the level of the context node, and the level of the test
nodes, computed by invoking the computeLevel function. We shall elaborate on the
computeLevel function in the next phase. Finally, Line 23 combines QA, QB, and
QC using the UNION operator and returns the generated query. In our example, the
invocation of the generateSQLToFindNCA algorithm will generate the sql query
shown in Figure 6(b).

Phase 4: Ranked Distance Computation. The next step is to compute the
ranked distances between the context and test nodes (Algorithm 1, Line 04). Intu-
itively, we can compute the distances of only those nodes that have rank at most β
based on their distances from the context node. The advantage of this approach is
that it is not necessary to compute and rank distances of all test nodes. However,
if a user wishes to explore more results by modifying values of α or β then the
algorithm may have to either compute new results incrementally or from scratch.
Hence, we first compute distances of all pairs of context and test nodes for the
query and rank them. Then, nodes satisfying user-specified α and β values can
be efficiently retrieved using a simple SELECT query (achieved in Phase 5). Note
that this approach supports efficient exploratory query evaluation as the ranks of all
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relevant nodes have been already computed.
The SQLToComputeDistance algorithm depicted in Figure 5(a) generates an

sql query S3 for computing the distance between the context nodes and the test
nodes. First, the algorithm determines the node labels of the context and test nodes
(Lines 01–02 in Figure 5(a)). Then, these labels are used in a query template
as shown in Line 03. Finally, the algorithm returns the generated sql query. In
our example, Figure 6(c) depicts the sql query generated due to invocation of the
SQLToComputeDistance algorithm. Note that [S2] in Line 02 of Figure 6(c) refers
to the translated sql query returned by Phase 3 (Algorithm 1, Line 03).

Note that the user-defined sql function computeDistance (Figure 6(c), Line 01)
is used to compute the distance. Figure 5(b) shows the details of this function. Let
us elaborate on it with an example. Suppose that the team and right-most name
nodes in Figure 1(a) are candidate context and test nodes, respectively. The in-
puts to the computeDistance function are nca levels of these nodes (denoted as
NLevel), labels of the nodes denoted as Name1 and Name2, and path expres-
sions of the test and context nodes denoted as P1 and P2, respectively. Here
Name1 = ".name#", Name2 = ".team#", P1 = ".league#.team#.players#.
player#.name#", and P2 =".league#.team#.name#". Observe that as team
is a non-leaf node, it is represented by its left-most descendant leaf node (name
node). The first step in the computeDistance function (Lines 01-02, Figure 5(b))
is to find the levels of name and team nodes in P1 (denoted as P1Level) and P2
(denoted as P2Level), respectively. Here P1Level = 5 and P2Level = 2. Next, the
function computes the distance D = |5 − 2| + |2 − 2| = 3 (Line 03, Figure 5(b)).
In addition, we have to compute the level of rank-distance node test by invoking a
user-defined sql function computeLevel (Figure 6(c), Line 1). The level of rank-
distance node test is used for retrieving the final result of the translated sql query
(Figure 6(d), Line 24). The intuition behind this function is straight-forward. It
computes the level of node n in the given path expression P. In our example,
as n = ".name#" and P = ".league#.team#.players#.player#.name#", the
function returns 5.

Finally, the algorithm ranks the test nodes based on their distances from the
context node (Algorithm 1, Line 05) by invoking the SQLForRankDistance func-
tion. It returns the sql query S4 as depicted in Line 01 (Figure 5(c)). Here we
exploit the ranking function "DENSE RANK"2 of an industrial-strength rdbms. Note
that it ranks the result set, without any gaps in the ranking.

Phase 5: SQL Merge. At this point of time, we have three sql queries, namely,
S2, S3, and S4. The finalTranslatedSQL function (Figure 7) combines these sql
queries to generate the final translated query of P (Algorithm 1, Line 06). We illus-
trate this procedure using the running example. Figure 8 depicts the final translated
sql query. Lines 01–19 in Figure 8 are used to determine the level of the nca. The
distances between context nodes and test nodes are computed by Lines 20–24.
Lines 25–28 rank the test nodes based on their distance (Phase 4). Lines 29-39 re-

2The "DENSE RANK" is part of the sql:1999 olap amendment.
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Input: SQL Queries S2, S3, S4
Output: SQL Query S

01  S = "WITH S2 (V1DeweyOrderSum, V1PathID, V1.Bra nchOrder, "+ 
        "     V2DeweyOrderSum, V2PathID, NCALEVEL) AS "+
        " ( " + S2 +" ), "+ 
        "     S3 (V1DeweyOrderSum, V1PathID, V1Bran chOrder, "+
        "         V2DeweyOrderSum, V2Level, Distanc e) AS "+
        " ( " + S3 +" ), "+ 
        "     S4 (V1DeweyOrderSum, V2DeweyOrderSum Distance , Rank) AS "+
        " ( " + S4 +" ) "+ 
        "SELECT DISTINCT C.V1DeweyOrderSum, U.LeafV alue, V.* "+
        "FROM [S4] X, [S3] C, PathValue U, Document RValue R, "+
        "     PathValue V "+
        "WHERE C.V1DeweyOrderSum = X.V1DeweyOrderSu m "+
        "  AND C.V2DeweyOrderSum = X.V2DeweyOrderSu m "+
        "  AND C.Distance = X.Distance "+
        "  AND X.RANK BETWEEN    AND   "+
        "  AND U.DeweyOrderSum = C.V1DeweyOrderSum "+
        "  AND U.PathID = C.V1PathID "+
        "  AND U.BranchOrder = C.V1BranchOrder "+
        "  AND R.Level = (C.V2Level - 1) "+
        "  AND V.DeweyOrderSum BETWEEN "+
        "         C.V2DeweyOrderSum – CAST(R.RVALUE  AS BIGINT) + 1 "+
        "     AND C.V2DeweyOrderSum + CAST(R.RVALUE  AS BIGINT) - 1 "+
        "ORDER BY C.V1DeweyOrderSum, V.DeweyOrderSu m "+
        "OPTION (FORCE ORDER) ";
02  return S

Figure 7: The finalTranslatedSQL algorithm (Phase 5).

turn tuples containing pairs of context nodes and the test nodes satisfying the lower
and upper distance ranks. The algorithm in Figure 7 includes two optional steps
which are common to producing results in real-world queries. First, it extends the
query result to include all of the nodes in the subtree rooted at the test nodes by
performing an additional join with the PathValue table (denoted as V ). Second, the
context node values are added to the result through another join with the PathValue
table (denoted as U). Line 38 sorts the result according to the document order.
Line 39 enforces the join order option due to performance benefits as highlighted
in [10, 17].

3.4 Temporary Tables-Based SQL Translation

Although the above algorithm can identify rank-distance nodes accurately, we ob-
serve that the subqueries of the translated sql query in Figure 8 are executed more
than once. For instance, S2 is executed two times. It is referred by S3 (Line 22)
and S3 itself is referred two times in Lines 27 and 30. In fact, as we shall see later,
S2 is often the most expensive subquery. Therefore, multiple execution of S2 can
adversely affect the performance of the rank-distance axis evaluation.
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01 WITH S2 (V1DEWEYORDERSUM, V1PATHID, V1.BRANCHORDER, V2DEWEYORDERSUM, V2PATHID, NCALEVEL) AS ( 
02    SELECT V1.DEWEYORDERSUM, V1.PATHID, V1.BRANCHORDER, V2.DEWEYORDERSUM, V2.PATHID,
             MAX(RX.LEVEL+1) AS NCA_LEVEL
03    FROM DOCUMENTRVALUE RX, PATHVALUE V1, PATHVALUE V2
04    WHERE V1.PATHID IN (5,4,6,3,7,9,8) AND V1.BRANCHORDER < 2
05      AND V2.PATHID IN (1,3,7)
06      AND V2.DEWEYORDERSUM BETWEEN V1.DEWEYORDERSUM - CAST(RX.RVALUE AS BIGINT) + 1
                                 AND V1.DEWEYORDERSUM + CAST(RX.RVALUE AS BIGINT) - 1
07      AND V1.DEWEYORDERSUM <> V2.DEWEYORDERSUM
08    GROUP BY V1.DEWEYORDERSUM, V1.PATHID, V1.BRANCHORDER, V2.DEWEYORDERSUM, V2.PATHID
09    UNION
10    SELECT DISTINCT V1.DEWEYORDERSUM, V1.PATHID, V1.BRANCHORDER, V2.DEWEYORDERSUM, V2.PATHID, 1 

AS NCA_LEVEL
11    FROM PATHVALUE V1, PATHVALUE V2
12    WHERE V1.PATHID IN (5,4,6,3,7,9,8) AND V1.BRANCHORDER < 2
13      AND V2.PATHID IN (1,3,7) AND ABS(V1.DEWEYORDERSUM - V2.DEWEYORDERSUM) >= 460
14    UNION
15    SELECT DISTINCT V1.DEWEYORDERSUM, V1.PATHID, V1.BRANCHORDER, V2.DEWEYORDERSUM, 
                      V2.PATHID, MINVAL(2, computeLevel('.name#', P.PATHEXP))  AS NCA_LEVEL
16    FROM PATHVALUE V1, PATHVALUE V2, PATH P
17    WHERE V1.PATHID IN (5,4,6,3,7,9,8) AND V1.BRANCHORDER < 2 AND V2.PATHID IN (1,3,7)
18      AND V2.PATHID = P.PATHID AND V1.DEWEYORDERSUM = V2.DEWEYORDERSUM
19 ), 

20 S3 (V1DEWEYORDERSUM, V1PATHID, V1BRANCHORDER, V2DEWEYORDERSUM, V2LEVEL, DISTANCE) AS ( 
21    SELECT B.V1DEWEYORDERSUM, B.V1PATHID, B.V1BRANCHORDER, B.V2DEWEYORDERSUM,
         computeLevel('.name#', P1.PATHEXP), comput eDistance(B.NCALEVEL, 
         '.name#', P1.PATHEXP, '.team#', P2.PATHEXP ) AS DISTANCE
22    FROM [S2] B, PATH P2 , PATH P1
23    WHERE B.V2PATHID = P2.PATHID AND B.V1PATHID = P1.PATHID
24 ), 
25 S4 (V1DeweyOrderSum, V2DeweyOrderSum, DISTANCE, RANK) AS ( 
26   SELECT C.V1DeweyOrderSum, C.V2DeweyOrderSum, C.DISTANCE,
            DENSE_RANK() OVER( PARTITION BY C.V1DeweyOrderSum ORDER BY C.DISTANCE)
27   FROM [S3] C
28 )
29 SELECT DISTINCT C.V1DeweyOrderSum, U.LeafVALUE, V.*
30 FROM [S4] X, [S3] C,  PATHVALUE U, DOCUMENTRVALUE R, PAT HVALUE V
31 WHERE C.V1DeweyOrderSum = X.V1DeweyOrderSum AND C.DISTANCE = X.DISTANCE
32   AND C.V2DeweyOrderSum = X.V2DeweyOrderSum 
33   AND U.DEWEYORDERSUM = C.V1DeweyOrderSum AND U.BRANCHORDER = C.V1BRANCHORDER
34   AND U.PATHID = C.V1PATHID AND V.PATHID = C.V2PATHID
35   AND R.LEVEL = (C.V2LEVEL - 1)
36   AND X.RANK BETWEEN 1 AND 3
37   AND V.DeweyOrderSum BETWEEN C.V2DeweyOrderSum - CAST(R.RVALUE AS BIGINT) + 1 
                            AND C.V2DeweyOrderSum + CAST(R.RVALUE AS BIGINT) - 1
38 ORDER BY C.V1DeweyOrderSum, V.DEWEYORDERSUM
39 OPTION (FORCE ORDER)

Figure 8: Final sql query generated by Algorithm 1.

S2 (V1DeweyOrderSum, V2DeweyOrderSum, 

V1PathID, V1.BranchOrder, V2PathID, 

NCALevel)

S3 (V1DeweyOrderSum, V2DeweyOrderSum, 

V1PathID, BranchOrder, V2Level, 

Distance)

S4 (V1DeweyOrderSum,V2DeweyOrderSum, 

Distance, Rank)

(a) Schema of temporary tables

01  INSERT INTO S2

02    … … … (Lines 02-18, Figure 8) … … 

03  OPTION (FORCE ORDER);

04  INSERT INTO S3  

05    … … … (Lines 21-23, Figure 8) …  

06  OPTION (FORCE ORDER) ;

07  INSERT INTO S4

08    … … … (Lines 26-27, Figure 8) … … 

09  ;

10    … … … (Lines 29-39, Figure 8) … … 

(b) Temporary table-based SQL query

Figure 9: Schema of temporary tables and sql statement.

In order to address this issue, we present a translation strategy that exploits
materialized indexed temporary tables (instead of using WITH clause) for storing
the results of the subqueries and reusing them whenever necessary. This is achieved
by replacing the WITH statement used in the query by an INSERT statement for each
subquery. Due to space constraints, we do not present the formal algorithm here.
Rather, we illustrate the translated sql using an example based on the sql query
depicted in Figure 8. Observe that this query has three subqueries: S2, S3, and
S4. Consequently, the algorithm creates temporary tables for storing the results of
S2, S3, and S4. The schemas of these temporary tables are shown in Figure 9(a).
Figure 9(b) depicts the modified sql query based on temporary tables. Observe
that the WITH clause in Figure 8 defines three common table expressions (cte)3.
These ctes are replaced by a set of INSERT statements (Lines 01, 04, and 07).
Also, S2 is only referenced once. Note that these sql subqueries must be executed
sequentially.

4 Performance Evaluation

We have implemented the rank-distance axis support on Sucxent++ in Java
JDK1.6. The experiments were conducted on an Intel Core2 Duo E6550 2.33GHz

3A common table expression (CTE) can be thought of as a temporary result set that is defined within the
execution scope of a single SELECT, INSERT, UPDATE, DELETE, or CREATE VIEW statement.
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ID Query

XQ1 /catalog/item[position()=1 to 100]/rank-distance(1 to 1)::name_of_city

XQ2 /catalog/item[position()=1 to 100]/rank-distance(2 to 2)::name_of_city

XQ3 /catalog/item[position()=1 to 100]/rank-distance(1 to 2)::name_of_city

XQ4 /catalog/item/subject[text()=’SUBJECT_2']/rank-distance(1 to 1)::phone_number

XQ5 /catalog/item/subject[text()=’SUBJECT_2']/rank-distance(2 to 2)::phone_number

XQ6 /catalog/item/subject[text()=’SUBJECT_2']/rank-distance(1 to 2)::phone_number

UQ1 /uniprot/entry[sequence=’MAAA%’]/rank-distance(1 to 1)::name

UQ2 /uniprot/entry[sequence=’MAAA%’]/rank-distance(2 to 2)::name

UQ3 /uniprot/entry[sequence=’MAAA%’]/rank-distance(3 to 3)::name

UQ4 /uniprot/entry[sequence=’MAAA%’]/rank-distance(1 to 2)::name

UQ5 /uniprot/entry[sequence=’MAAA%’]/rank-distance(1 to 4)::name

Dataset

XBench

Uniprot/KB

(b) Query Set

DatasetID
File 

Size (MB)

Number of 

Nodes

XBenchDC10 10 225,234

XBenchDC100 100 2,242,200

XBenchDC1000 1,000 22,442,612

UniprotU28 28 574,738

UniprotU284 284 5,733,977

UniprotU2843 2,843 57,368,191

Depth

8

8

8

5

5

5

DatasetID
File 

Size (MB)

Number of 

Nodes
Depth

Non-Unique Clustered Index:  (PathID, BrancOrder)

Unique Non-Clustered Index:  (DocID, PathID, 

DeweyOrderSum)

Non-Unique Non-Clustered Indexes

  (PathID, SiblingSum)

  (PathID, DeweyOrderSum, BranchOrder, SiblingSum) 

include (LeafValue)

  (PathID, DeweyOrderSum)

(c) Indexes on The PathValue Table(a) Data Sets

Figure 10: Data and query sets.

processor machine running on Windows XP SP3 with 3.25gb of ram. The rdbms
used was Microsoft sql Server 2005 Developer Edition. We denote the sql transla-
tion techniques described in Sections 3.3 and 3.4 as sx-with and sx-temp, respec-
tively.

Data and Query Sets. We use XBench dcsd [22] as a synthetic data set and
Uniprot/KB xml4 as a real-world data set. We vary the size of xml documents from
10mb to 1gb for XBench dcsd data set and from 28mb to 2.77gb for the Uniprot/KB
data set. Figure 10(a) depicts the characteristics of the data sets. Figure 10(b)
depicts the query sets for XBench dcsd (xq1–xq6) and Uniprot/KB data sets (uq1–
uq5).

Test Methodology. Appropriate indexes were constructed for Sucxent++ (Fig-
ure 10(c)). Furthermore, since our data set consists of a single xml document, we
removed the DocID column from the tables in Sucxent++. For all queries, we re-
turn entire subtrees of the matched test nodes (optional) as it gives us the upper
bound of query performance. Prior to our experiments, we ensured that statistics
had been collected. The bufferpool of the rdbms was cleared before each run. Each
query was executed six times and the results from the first run were always dis-
carded.

4.1 Query Evaluation Times

Figure 11 depicts the query evaluation times of our benchmark query set. We can
make the following observations. First, query evaluation cost increases with the
number of nodes for all queries. Second, temporary tables-based strategy improves
the query performance in all cases. In particular, the performance gain increases
with the size of the data set (highest observed factor being 3.8). Next, we shall
justify why sx-temp performs consistently better than sx-with by analyzing the
performance of subqueries.

Evaluation times of sub queries. In this set of experiments, we shall show
the evaluation time of each subquery executed in our approach. Recall that sx-temp
is proposed because in sx-with S2 is executed multiple times. We fix the lower
and upper ranks to 1 (α = β = 1) and use the queries in Figure 12(a) to study
the evaluation times of the subqueries. Recall that although we set α and β to

4Downloaded from ftp://ftp.uniprot.org/pub/databases/uniprot/current release/ knowledge-
base/complete/uniprot sprot.xml.gz.
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(a) Query Evaluation Time: XBench

(b) Query Evaluation Time: Uniprot/KB

# of Rows SX-WITH SX-TEMP # of Rows SX-WITH SX-TEMP # of Rows SX-WITH SX-TEMP

XQ1 100 613.60     463.88     100 810.00     724.42     100 13,698.70 3,613.22  

XQ2 258 723.42     499.96     249 858.90     767.46     266 13,804.30 3,557.16  

XQ3 358 921.62     513.30     349 1,442.52  759.84     366 13,935.64 3,630.86  

XQ4 50 294.68     229.52     50 1,240.64  685.36     50 13,969.66 3,853.34  

XQ5 131 364.56     259.14     131 1,481.82  704.44     146 14,136.02 3,840.22  

XQ6 181 450.18     270.00     181 1,788.24  699.80     196 14,126.70 3,890.38  

DC10 DC100 DC1000
Query

# of Rows SX-WITH SX-TEMP # of Rows SX-WITH SX-TEMP # of Rows SX-WITH SX-TEMP

UQ1 11 951.54     707.06     93 5,426.92  3,512.84  984 49,190.16 30,468.44 

UQ2 69 974.56     690.90     581 5,262.44  3,287.62  6309 52,807.78 29,754.80 

UQ3 8 883.16     663.20     81 4,517.94  2,677.98  596 44,367.16 22,275.94 

UQ4 80 1,048.36  716.48     674 5,451.60  3,318.00  7293 55,295.72 29,918.46 

UQ5 88 1,071.40  762.82     755 5,842.64  3,338.54  7889 59,575.76 29,693.50 

Query
U28 U284 U2843

Figure 11: Query evaluation times (in msec.).

1, our approach already computes the distance between all context and test nodes
(Phase 4). Figures 12(b)-(c) report the evaluation times of the subqueries on the
largest benchmark data sets. Note that S5 denotes the subquery used to filter nodes
based on user-specified lower and upper ranks and retrieve the final results (e.g.,
Lines 29–39 in Figure 8). The highest observed percentage of the contribution of
S2 to the overall query evaluation time is 97.9% (query xq10). In almost all queries,
the evaluation time of S2 is the largest. The second most expensive query is S5 that
retrieves the final results. S4, used to compute node distances and rank them, has
the least contribution to the overall performance. The above results explain why
sx-with is slower than sx-temp consistently. In sx-with, S2 is executed multiple
times. On the other hand, sx-temp executes S2 only once.

Observe that although S5 is second most expensive component, in most cases
it takes less than a second to execute. This is beneficial for exploratory querying
as any modification to α or β by the user results in re-evaluation of S5. Note that
we do not need to re-evaluate the remaining subqueries as the ranks of all matched
test nodes have already been computed by S4.

4.2 Effect of Number of Context Nodes

We now study the effect of number of context nodes that satisfies a rank-distance
axis query. Note that the number of distance computations increases with the num-
ber of context nodes that match a query. We denote the number of context nodes as
Z and vary it from 0 to 500. We use the queries xq7, xq8, and xq9 in Figure 12(a)
as representative queries and fix α = β = 1. Figure 13 reports the query evaluation
times. We observe that the query evaluation times increases sub-linearly with Z.
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/catalog/item/authors/author/contact_information/

phone_number[text()='PHONE_1']/rank-distance(1 to 1)::email_address

/catalog/item/subject[text()='SUBJECT_1']/rank-distance(1 to 1)::author

/catalog/item[title='TITLE_1']/rank-distance(1 to 1)::quantity_in_stock

/catalog/item[description='DESCRIPTION_1']/rank-distance(1 to 1)::pricing

XQ7

XQ10

XQ8

XQ9

ID Query

/uniprot/entry[position()=1 to 100]/name/rank-distance(1 to 1)::sequence

/uniprot/entry/reference/scope[text()=’PROTEIN SEQUENCE’]/rank-

distance(1 to 1)::source

/uniprot/entry[sequence=’MAAA%’]/rank-distance(1 to 1)::accession

UQ6

UQ8

UQ7

10

395

10

40

Max# of 

Rows

100

5,819

1,632

(a) Query set

Query S2 S3 S4 S5

XQ7 2,681.94 86.10 74.40 181.60

XQ8 2,689.48 109.90 83.24 178.80

XQ10 30,708.72 119.50 74.20 403.76

XQ9 4,920.22 96.50 80.38 190.60

(b) XBench DC1000

Query

UQ6 365.04 102.00 76.28 279.80

UQ7 6,503.06 240.78 118.22 987.92

UQ8 3,049.10 612.80 189.14 4,577.16

(c) Uniprot/KB U2843

S2 S3 S4 S5

Figure 12: Evaluation times of subqueries (in msec.).

Also, sx-temp is much more scalable than sx-with and outperforms it for major-
ity of the queries (highest observed factor being 61.6). This further confirms that
the strategy for using the temporary tables improves the query performance con-
sistently as smaller queries are less likely to stress the query optimizer. Although
tree-unaware schemes are not designed to compute node distances in an xml tree,
the above results demonstrate that by exploiting the encoding scheme of Sucx-
ent++ and ranking support of underlying rdbms, as well as materializing relevant
intermediate results in temporary tables we can effectively support non-directional
axis evaluation.

5 Related Work

There is a wealth of work on evaluating XPath expressions in a tree-unaware
rdbms [9]. Our work differs from these efforts in the following ways. Firstly, unlike
a conventional XPath axis, the rank-distance axis is non-directional. Secondly,
evaluation of the rank-distance axis requires the computation of distances be-
tween pairs of nodes in an xml tree. None of the traditional XPath evaluation
mechanisms require such distance computation.

Our objective to flexibly issue xml queries independent of the structure is
shared by several recent papers. [8] presents a semantic search engine for xml.
The search relies on an interconnection relationship to decide whether nodes are
semantically related. Two nodes are interconnected if and only if the path between
them contains no other node that has the same label as the two nodes. [14] pro-
poses a schema-free XQuery, facilitated by a Meaningful Lowest Common Ances-
tor Structure (mlcas) operation. Both these techniques are similar to the “closest”
relationship between nodes. Unlike rank-distance axis, these approaches do not
retrieve nodes based on distances from the context node. Furthermore, these ap-
proaches do not leverage on relational technology for structure-independent query
evaluation.

Recently, several xml keyword search techniques [15,16,18,21] have been pro-
posed to offer more user-friendly solution for retrieving relevant results. Essen-
tially, these approaches return variants of the subtree rooted at the lowest common
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Z=0 Z=50 Z=100 Z=500 Z=0 Z=50 Z=100 Z=500

XQ7 142.54    226.96      277.32      710.12       120.72    234.58    277.70    482.00    

XQ8 191.28    598.54      805.32      2,296.22     102.30    331.02    402.00    519.74    

XQ9 201.18    666.84      907.62      2,866.06     109.96    601.54    492.00    762.88    

Query
SX-TEMPSX-WITH

(a) DC10

Z=0 Z=50 Z=100 Z=500 Z=0 Z=50 Z=100 Z=500

XQ7 232.66    364.12      407.26      873.92       149.82    344.72    393.94    627.26    

XQ8 278.78    3,053.52   5,078.46   20,761.16   181.30    797.58    802.92    927.28    

XQ9 434.78    3,627.10   5,669.52   21,911.00   316.82    1,293.40 1,384.54 1,708.24 

Query
SX-WITH SX-TEMP

(b) DC100

Z=0 Z=50 Z=100 Z=500 Z=0 Z=50 Z=100 Z=500

XQ7 1,324.34 1,577.12   1,570.28   2,078.70     637.54    2,855.62 2,901.82 3,137.08 

XQ8 970.90    19,272.82 37,038.58 179,619.18 582.52    2,748.60 2,756.94 2,915.48 

XQ9 1,857.30 34,010.96 51,864.14 192,811.92 1,416.00 5,108.50 5,164.16 5,443.74 

Query
SX-WITH SX-TEMP

(c) DC1000

Figure 13: Effect of number of context nodes (in msec.).

ancestor (e.g., vlca, slca) of all the keywords. Due to the lack of expressivity and
inherent ambiguity of keyword search, several techniques have been also been de-
veloped to infer and retrieve relevant results for a search query [4, 15, 16]. Our
work differs from the keyword search paradigm in the following ways. Firstly, we
retrieve nodes based on distances from the context node and not the entire lca-
variant of all the keywords. Note that existing keyword search strategies do not
exploit node distances for retrieving results. Secondly, as a rank-distance query
is an extension of conventional XPath query, it can impose more complex predi-
cates compared to keyword search queries. Furthermore, it does not suffer from
expressivity and ambiguity issues similar to keyword search.

In [3], Balmin et al. propose a system, called seda, that enables users to start
with simple keyword-style querying, and interactively refine the query based on
result summaries, and obtain result data cubes. In contrast, our proposed approach
does not require iterative keyword-style querying. In [20], the data cube is com-
puted based on matching tree patterns with structural relaxations. Both these meth-
ods still require the formulation of directional xml queries to perform olap com-
putation. Furthermore, none of these techniques exploit node distances similar to
rank-distance queries.

More germane to this work is the effort by Zhang and Dyreson [24]. They
extended the XPath language with a symmetric locator, called the closest axis,
which locates nodes that are closest to a context node. The authors focused on
the syntax and semantics of closest axis and showed how the closest axis can be
implemented using main-memory and a native xml dbms. It was shown that this
axis can replace many directional steps in path expressions in xml queries. Our
work differs from this effort in the following ways. First, rank-distance is a
more generic non-directional axis compared to the closest axis. Not only it can
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find closest node(s) (by setting α and β to one) but also nodes that are further away
from the context node. Second, in [24] the closest node types are computed prior
to query execution and stored in a special index to facilitate closest axis evaluation.
In contrast, in our proposed approach the node distances are computed on-the-fly
during query execution. Third, closest axis is built on top of a native xml database
whereas we show how an industrial-strength rdbms can be exploited effectively to
support a non-directional XPath axis.

6 Conclusions and Future Work

In this paper, we present an efficient relational-based strategy to evaluate a non-
directional parametric XPath axis, called the rank-distance axis, to locate nodes
that are within the specified distance range with respect to a context node. The
rank-distance axis is useful for formulating xml queries in an environment
where there is insufficient familiarity with an underlying xml document’s structure
or changes to the structure. Our scheme is built on top of the Sucxent++ sys-
tem [17]. We showed that by exploiting the encoding scheme of Sucxent++ and
ranking facility of an off-the-shelf rdbms, we can effectively compute the distances
between pairs of nodes and rank them in order to compute rank-distance nodes.
In this context, we proposed two variants of an XPath-to-sql translation algorithm
(denoted as sx-with and sx-temp in the paper) to translate a rank-distance axis
query to its equivalent sql form. Our empirical study showed that sx-temp is su-
perior to sx-with as smaller queries in the former are less likely to stress the rela-
tional optimizer. More importantly, we demonstrated that a tree-unaware relational
framework can be effectively used to support a non-directional XPath axis.

In future, we plan to extend our approach to yet other non-directional axes,
which we believe can be supported using the techniques presented in this paper.
For instance, we are currently investigating the neighborhood axis that can find
common neighbors between a pair of nodes in any direction.
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