
1

FERRARI: An Efficient Framework for Visual
Exploratory Subgraph Search in Graph Databases

[Technical Report]

Chaohui Wang1,4 Miao Xie1,5 Sourav S Bhowmick1 Byron Choi2 Xiaokui Xiao3 Shuigeng Zhou4
1School of Computer Science & Engineering, Nanyang Technological University, Singapore

2Department of Computer Science, Hong Kong Baptist University, Hong Kong SAR
3School of Computing, National University of Singapore, Singapore

4Shanghai Key Lab of Intelligent Information Processing, School of Computer Science, Fudan University, China
5Alibaba Group, Hangzhou, China

assourav@ntu.edu.sg, choi@hkbu.edu.hk, xkxiao@nus.edu.sg, sgzhou@fudan.edu.cn

Abstract—Exploratory search paradigm assists users who do
not have a clear search intent and are unfamiliar with the
underlying data space. Query formulation evolves iteratively in
this paradigm as a user becomes more familiar with the content.
Although exploratory search has received significant attention
recently in the context of structured data, scant attention has
been paid for graph-structured data. An early effort for building
exploratory subgraph search framework on graph databases
suffers from efficiency and scalability problems. In this paper, we
present a visual exploratory subgraph search framework called
FERRARI, which embodies two novel index structures called
VACCINE and ADVISE, to address these limitations. VACCINE is an
offline, feature-based index that stores rich information related
to frequent and infrequent subgraphs in the underlying graph
database and how they can be transformed from one subgraph
to another during visual query formulation. ADVISE, on the
other hand, is an adaptive, compact, on-the-fly index instantiated
during iterative visual formulation/reformulation of a subgraph
query for exploratory search and records relevant information to
efficiently support its repeated evaluation. Extensive experiments
and user study on real-world datasets demonstrate superiority of
FERRARI to a state-of-the-art visual exploratory subgraph search
technique.

I. INTRODUCTION

Large collections of small- or medium-sized data graphs
are prevalent nowadays in a variety of domains such as
cheminformatics (e.g., chemical compounds), bioinformatics
(e.g., protein structures), and computer vision (e.g., object
recognition). For example, more than a million chemical
compounds and drugs are publicly available from sources such
as DrugBank1, eMolecules2, and PubChem3. Subgraph search,
which retrieves data graphs containing exact or approximate
match of a user-specified query graph (i.e., subgraph query),
is a common and important query primitive for querying
these data graphs. Given a subgraph containment query (resp.
substructure/subgraph similarity query) q on a set of data
graphs D, the aim is to find all data graphs in D that contain
exact (resp. approximate) match of q [39], [40].

1https://www.drugbank.ca/
2https://www.emolecules.com/
3https://pubchem.ncbi.nlm.nih.gov/

Majority of research and commercial efforts for subgraph
search have focused on “lookup” (i.e., one-shot) query with
the assumption that users have clear intent and sufficient
knowledge of D to accurately specify their search goal in
form of a connected query graph. Exploratory search [25],
[36] represents a class of search activities that involves more
complicated search process than lookup retrieval. The search
process is evolving in nature, and users typically issue multiple
queries due to evolving information need. In particular, the
search state is ambiguous in the beginning and the query
formulation evolves iteratively as a user becomes more fa-
miliar with the content. Hence, exploratory search activities
are considered as open-ended [36].

Recently, exploratory search has received increasing atten-
tion in the IR and database communities [1], [22], [25], [30].
In the database community, a growing number of efforts have
focused on building search and exploration frameworks for
structured data (e.g., relational) [11], [15], [17], [33]. However,
there is a dearth of work for realizing such search paradigm
on graph-structured data. Consider the following scenario.

Example 1: The recent spate of chemical attacks in Syria,
UK, and Malaysia has piqued the interest of Alice, a chemist,
to seek information about chemical structures of various
nerve agents. She has access to a large database of chemical
compounds and is only aware of the fact that non-carbamate
nerve agents contain the PO2 structure. Hence, her initial
query graph Q1 is shown in Figure 1(a). While browsing
the result matches (denoted as R1) to Q1, she observed that
many nerve agents have a F or S atom attached to the P
atom. Hence, she first modifies Q1 to Q2 (Figure 1(b)) by
adding the F atom and executes it. She now observes that the
results R2 contain Novichok-5 (a Novichok agent was used in
the recent UK attack) and RpRc-Soman (a G-series category
agent was used in Syria). The substructures contained in these
two agents are shown in Figures 1(c) and 1(d), respectively.
Hence, she reformulates Q2 to Q3 (Figure 1(c)) by adding the
shaded nodes and associated edges and executes it. Alice can
now view the chemical structures of various Novichok agents
(e.g., Novichok-5, Novichok-7) in the results as many share
this common substructure. Next, she modifies Q3 by deleting

2

Fig. 1. Motivating example.

relevant edges and then reformulates it to Q4 (Figure 1(d))
by adding the shaded nodes. Execution of this query retrieves
the chemical structures of a set of G-series agents (e.g., RpRc-
Soman, SpRc-Soman).

Satisfied, Alice now wishes to explore the nerve agents
containing the S atom. She has noticed in R1 that Sp-VX, a
V-series agent (this type of nerve agent was used to kill Kim
Jong Nam), contains the substructure depicted in Figure 1(e).
Hence, she alters Q4 to Q5 (Figure 1(e)) by adding the
highlighted nodes and associated edges. Execution of this
query retrieves a set of V-series agents (e.g., Sp-VX, Rp-VX)
that share this common substructure.

As Alice is a non-programmer, she demands a user-friendly
visual interface that supports direct manipulation-style in-
teraction [31]4 to formulate these search queries. In fact,
direct-manipulation interfaces are already deployed by several
commercial entities (e.g., DrugBank, eMolecules, PubChem)
in this domain for lookup queries. Hence, there is a compelling
need for a visual exploratory subgraph search (VESS) frame-
work to easily formulate, reformulate, and execute subgraph
queries iteratively and efficiently.

The aforementioned scenario highlights several interesting
characteristics of an exploratory subgraph search framework.
First, it entails ways to formulate, reformulate, and process
a query graph where multiple and iterative query formula-
tion and execution are necessary. This guides users to learn
about the underlying graph data and identify possible search
directions beyond the initial query graph. Consequently, the
initial query graph may often grow in size during exploration
as users become familiar with the data space. For instance,
in the above example, Q1 grew from size 2 to size 14 (Q5)
during exploration. Second, it is paramount to provide a
direct manipulation-based visual query interface (a.k.a GUI)
for exploratory search in order to make it accessible to non-
programmers. Since the query graph size may become large
during exploration, it is desirable for such a GUI to expose
template patterns (i.e., small subgraphs) that can potentially
decrease the time taken to visually construct a query. A tem-
plate pattern (pattern for brevity) enables a user to construct
multiple nodes and edges in a query graph by performing

4The central ideas in direct-manipulation interfaces are visibility of the objects and
actions of interest; rapid, reversible, incremental actions; and replacement of typed
commands by a pointing action on the object of interest [31].

a single click-and-drag action (i.e., pattern-at-a-time mode)
in lieu of iterative construction of edges one-at-a-time (i.e.,
edge-at-a-time mode). Furthermore, HCI research shows that
users may become frustrated if a large number of small atomic
actions (e.g., repeated edge construction) are necessary to
accomplish a higher-level task (e.g., subgraph query) [31]. Nat-
urally, template patterns may ease such frustration especially
for constructing larger query graphs.

At first glance, it may seem that such exploratory search
queries can be processed using any state-of-the-art traditional
subgraph search techniques designed for a large collection of
small- or medium-sized data graphs [27], [40]. However, given
that the topologies of query graphs during iterative exploratory
search often overlap significantly, this strategy is inefficient
as each query is processed from scratch without leveraging
on the computation results of previous queries (shown in
Section VIII). For instance, in Example 1 the five query graphs
will be evaluated from scratch by any traditional subgraph
search technique.

PICASSO [13] is the first effort to crystallize visual ex-
ploratory subgraph search (VESS) on graph databases. It lever-
ages the visual subgraph query processing framework of [18]
to evaluate each formulation/reformulation incrementally by
blending (i.e., interleaving) visual query construction and
processing. Our initial investigation, however, revealed that
the visual subgraph query processor [18] of PICASSO is not
efficient and scalable to support iterative query evaluation
in a VESS environment as it was originally designed for
lookup queries. This is especially so for the following two
scenarios that are prevalent in a VESS environment (Exam-
ple 1): (a) The initial query graph evolves to a large query
during exploration, and (b) template patterns are added to a
query graph during formulation/reformulation. These scenarios
make the construction and maintenance costs of the online
index deployed in PICASSO prohibitively expensive. Note that
PICASSO constructs an online index called SPIG [18] for each
newly constructed edge at each formulation step within the
available GUI latency (i.e., time to construct a query edge
or template pattern visually). That is, a query graph with n
edges creates n SPIGs in PICASSO. Although this is effective
in a lookup querying environment where query graphs are
typically small (i.e., n is small) in practice [3], the VESS
environment demands efficient blending of a larger set of
edges (e.g., template patterns) within similar GUI latency to
support larger query graphs. Unfortunately, the time cost of
creating and maintaining n SPIGs corresponding to a tem-
plate pattern can be significantly higher than the available
GUI latency, rendering the blending impractical in PICASSO
(detailed in Section IV). This limitation also adversely impacts
the scalability of the framework to deal with larger graph
databases containing more than a million data graphs (e.g.,
eMolecules). Hence, it is important to design novel indexes
that can efficiently support these two scenarios in the VESS
paradigm.

In this paper, we present a VESS framework called
FERRARI (Framework for ExploRatory subgRaph
SeArch in gRaph reposItory) that embodies two novel
indexing schemes, VACCINE and ADVISE, to address

3

the aforementioned challenges. VACCINE is an offline,
feature-based index structure that leverages the widespread
availability of modern machines with large memory to store
richer information related to frequent and infrequent
subgraphs (i.e., fragments) in the underlying graph
database and how they can be transformed from one fragment
to another during visual query formulation. Note that such
transformation information is not captured by existing
indexes for traditional subgraph query processing [32],
[39], [40] as query formulation activity (visual or textual)
is orthogonal to the design goals in such environment.
ADVISE, on the other hand, is an adaptive on-the-fly index
designed to support incremental evaluation of subgraph
queries in a VESS environment. It is instantiated during visual
formulation/reformulation of a subgraph query by utilizing
the VACCINE index. In contrast to a set of SPIGs in PICASSO,
it is more compact and only one instance of ADVISE is
necessary to support VESS. This enables us to blend template
patterns within the available GUI latency efficiently, paving
the way for handling larger queries in the VESS environment.
Our experimental study with real-world datasets demonstrates
that FERRARI is up to 4 orders of magnitude faster and more
scalable than PICASSO in evaluating exploratory subgraph
search queries. In summary, the main contributions of this
paper are as follows.

• A unified model. We present a unified framework called
FERRARI for visual exploratory subgraph search that can
be instantiated into different existing VESS approaches.

• A new offline index. We present a novel offline index
called VACCINE that unifies all the frequent and dis-
criminative infrequent fragments in the underlying graph
database in a single main memory-based data structure
capturing rich information w.r.t the way a fragment can
be visually formulated from another fragment in a VESS
environment.

• A new online index. We present a novel adaptive, on-
the-fly, space-efficient index called ADVISE to facilitate
efficient pruning and retrieval of partial results during
query formulation/reformulation in a VESS environment
where template patterns may be used to formulate search
intentions. Using these indexes, we show how iterative
subgraph query evaluation is realized in FERRARI.

• Experimental study. Using real-world datasets containing
up to 1.3 million data graphs, we show the superiority of
our indexing schemes in supporting VESS compared to
state-of-the-art techniques.

For clarity, we distinguish between a node in a query/ data
graph and a node in indexes by using the terms “node” and
“vertex”, respectively. We use v and its variants, v1, v2, . . .,
to denote nodes in the former and n and m along with their
variants to denote vertices in VACCINE and ADVISE indexes,
respectively.

The rest of the paper is organized as follows. We introduce
concepts related to this work in Section II. We formally
present the VESS problem and the FERRARI framework in
Section III. We motivate the need for designing novel in-
dexes in FERRARI to efficiently support template patterns in

Section IV. Sections V and VI describe the VACCINE and
ADVISE indexes, respectively. Section VII narrates how these
indexes are exploited in FERRARI to evaluate subgraph queries
iteratively in a VESS environment. We present experimental
results in Section VIII. Section IX presents related work.
Section X concludes the paper. Proofs of theorems and lemmas
are given in Appendix A.

II. BACKGROUND

We begin by introducing some key graph terminologies that
we shall use in this paper. Next, we present the GUI actions
for formulating visual subgraph queries. Lastly, we briefly give
an overview of PICASSO [13], a state-of-the-art framework for
VESS.

A. Terminology

We denote a graph as G = (V,E), where V is a set of
nodes and E ⊆ V × V is a set of (directed or undirected)
edges. A node/vertex in G has an identifier j and is referred
to as vj ∈ V . Nodes and edges can have labels as attributes.
We assume that G is a connected graph with at least one edge.
The size of G is defined as |G| = |E|. For ease of presentation,
we present data graphs and visual subgraph queries using
undirected simple graphs with labeled nodes. The label of node
v ∈ V is denoted as `(v) (` when the context is clear).

A graph G is a subgraph of another graph G′ if there exists
a subgraph isomorphism from G to G′, denoted by G ⊆ G′.
In other words, G′ is a supergraph of G (G′ ⊇ G). We may
also simply call that G′ contains G. The graph G is called
a proper subgraph of G′, denoted as G ⊂ G′, if and only if
G ⊆ G′ and G + G′.

B. Frequent and Infrequent Features

In this paper, we focus on a graph database or repository
containing a large collection of small- or medium-sized data
graphs (e.g., chemical compounds, protein structure). Given
such a graph database D, we assign a unique identifier (i.e.,
id) to each data graph in D. A data graph G with id i is denoted
as Gi. Let g be a subgraph of Gi ∈ D (0 < i ≤ |D|) that has
at least one edge. Then, g is a fragment in D. Informally, we
use the term fragment to refer to a small subgraph in a data
graph or a query graph. Given a fragment g ⊆ G and G ∈ D,
G is referred to as the fragment support graph (FSG) of g [18].
We denote the set of FSGs of g as Dg . We refer to |Dg| as
(absolute) support, denoted by sup(g). We denote the set of
identifiers of the data graphs in Dg as fsgIds(g). Note that
in this paper we shall refer to a fragment in a query graph as
query fragment in order to distinguish it from a fragment in a
data graph.

A fragment g ∈ D is frequent if sup(g) ≥ α|D| where α is
the minimum support threshold. We denote the set of frequent
fragments in D as F . We refer to a frequent fragment g as
frequent edge if |g| = 1. On the other hand, if sup(g) <
α|D|, then g is an infrequent fragment. We denote the set
of infrequent fragments in D as I. Specifically, we classify
infrequent fragments into two types, discriminative and non-
discriminative [18], [19]. Given g ∈ I, let sub(g) be the set
of all proper subgraphs of g. If sub(g) ⊂ F or |g| = 1 (i.e., if

4

g is an infrequent edge), then g is a discriminative infrequent
fragment (DIF) in D. We denote a set of DIFs in D as Id.
Likewise, we refer to an infrequent fragment that is not a DIF
as non-discriminative infrequent fragment (NIF). Note that if
one of the subgraphs of g is a DIF, then g is an infrequent
fragment [18].

C. GUI Actions for Visual Subgraph Query Formulation

We introduce a set of GUI actions (actions for brevity)
that a user takes to formulate a subgraph query in any direct
manipulation-based visual subgraph query interface.
• add(q,g): The add action denotes a user adding a query

fragment (an edge or a template pattern) or a node g to an
existing query graph q, and returns the augmented query.

• modify(q,g): This action denotes that a user revokes
(deletes) a query fragment or a node g, and returns the
modified query graph.

• run(q): The run action models the execution of the
visually formulated query fragment by clicking on the
Run icon (or equivalent of Run) in a GUI. Note that
a user may invoke the run action multiple times in an
exploratory search.

We refer to a sequence of such GUI actions taken by a
user as exploration action sequence (EAS). Reconsider the
exploratory search in Example 1 from Q1 to Q4. Here,
an EAS, denoted by A, can be: [add(Q1, P-O), add(Q1,
P-O), run(Q1), add(Q2, P-F), run(Q2), add(Q3, C-O),
add(Q3, C-C), add(Q3, C-O), run(Q3), modify(Q3, C-C),
modify(Q3, C-O), add(Q4, CH3), add(Q4, C-P), add(Q4,
C-H), run(Q4)]. Observe that the add and modify actions
precede a run action and are used to construct a query graph.
We refer to this sequence of add and modify actions preceding
a run action or between a pair of run actions as query
formulation sequence (QFS). Hence, A can be expressed as
follows: [QFS(Q1), run(Q1), QFS(Q2), run(Q2), QFS(Q3),
run(Q3), QFS(Q4), run(Q4)].
Remark. We remark that we do not model low-level op-
erations (e.g., mouse click, mouse hover, drag-and-drop) as
different GUIs may follow different sequence of low-level
operations to realize the aforementioned three GUI actions.
Consequently, this enables us to design a visual exploratory
subgraph search framework that underpins any GUI. For ex-
ample, in one GUI addition of a node may be simply realized
by right clicking on an empty space of the Query Panel
followed by addition of a label, whereas in another interface
this action may require selection of a node label from the
Attribute Panel and dragging-and-dropping it on the Query
Panel (e.g., Appendix A). Hence, we model GUI actions at a
higher level of abstraction.

D. PICASSO

PICASSO [13] leverages the visual subgraph query process-
ing framework of [18] to realize VESS. It first generates action-
aware frequent (A2F) index and action-aware infrequent (A2I)
index from the underlying graph database D offline to index
frequent subgraphs and DIFs, respectively. The A2F index is a
graph-structured index that enables efficient retrieval of FSG

identifiers of a given frequent fragment. The A2I-index is an
array of DIFs and associated information. It facilitates pruning
of the candidate space for infrequent queries.

When a user adds a new edge or a template pattern p to
the current query fragment q (initially empty), the edges of p
are first ordered such that q will remain a connected subgraph
when it is augmented with each edge in the specified order
iteratively. Next, these edges are added to q and a dynamic on-
the-fly index called SPIG set [18] is constructed. For each new
edge, PICASSO retrieves identifiers of data graphs containing
q (denoted by Rq) by exploiting the indexes. If q is a frequent
fragment or a DIF, then it retrieves fsgIds(q) by probing A2F-
index or A2I-index, respectively. If q is a NIF, it leverages the
SPIG set and the action-aware indexes to generate Rq . This is
possible as a NIF must contain at least one DIF.

If Rq is non-empty at a specific step, then q has exact
matches in D. On the other hand, if Rq becomes empty, then
q has evolved into a similarity search query and candidates
that approximately match q (based on maximum connected
common subgraph (MCCS) [32]) are retrieved using the SPIG
set by identifying relevant subgraphs of q that need to be
matched for retrieving candidates. In the case of deletion of
an edge or a query fragment during query reformulation, the
SPIG set is updated by removing information related to it.
Then, depending on the status of the modified query fragment
(i.e., frequent, DIF, or NIF), Rq is updated.

Whenever the Run button is clicked, the current query
fragment q is processed to retrieve result matches R by
leveraging Rq . If q is a frequent fragment or a DIF, then R
is directly computed from Rq without performing subgraph
isomorphism test. If it is a NIF, then the exact results are
computed by filtering the false candidates using VF2 [5].
Otherwise, if q has evolved to a subgraph similarity query
then it generates R from the candidates by extending VF2 to
handle MCCS-based similarity verification [18]. Since in an
exploratory search a query may be executed several times, for
each run the (q,R) pair is stored to generate a search stream.
PICASSO utilizes these search streams to generate a multi-
stream results exploration wall where results of initial and
reformulated query graphs are juxtaposed in form of parallel
(q,R) pairs to facilitate its exploration. This iterative process
continues until the exploratory search is terminated.

III. A UNIFIED FRAMEWORK FOR VESS

We now formally introduce the visual exploratory subgraph
search (VESS) problem and then present a unified framework
called FERRARI to address it.

A. The VESS Problem

Intuitively, in a VESS environment, a user typically under-
takes EAS involving multiple runs. After each run(q) a user
may browse and explore the results of q before modifying
it again. A core challenge in realizing such VESS framework
is to devise efficient and scalable techniques for evaluating
run(q) to facilitate real-time exploration of results of q. In this
paper, we focus on devising indexing schemes to efficiently
support this iterative run(q) action.

5

At each run(q), it is imperative for our framework to support
fast subgraph containment or subgraph similarity search of q.
In particular, similar to [13], [18], [32], we adopt maximum
connected common subgraphs (MCCS)-based subgraph sim-
ilarity distance to measure similarity between a data graph
and a query graph. Given two graphs G1 and G2, the MCCS
of G1 and G2 is the largest connected subgraph of G1 that is
subgraph isomorphic to G2, denoted as mccs(G1, G2). We de-
fine the subgraph similarity distance between a query graph Q
and a data graph G as dist(G,Q) = |Q|− |mccs(Q,G)| [13],
[32]. Observe that smaller the dist(G,Q), more similar are Q
and G.

Definition 1: Let A be an EAS undertaken by a user
on a visual query interface for exploring a graph database
D = {g1, g2, . . . , gn}. Then the goal of visual exploratory
subgraph search (VESS) problem is to retrieve all the graphs
gi ∈ D with dist(gi, q) ≤ δ for each run(q) ∈ A where δ is
the subgraph similarity distance threshold.

B. The FERRARI Framework

Algorithm 1 outlines the FERRARI framework for each
action in an EAS. It utilizes the direct manipulation-based
visual interface of PICASSO for query formulation and results
exploration (Appendix A). Similar to PICASSO, FERRARI
interleaves (i.e., blends) the formulation and processing of a
query fragment so that it does not need to evaluate each run(q)
action from scratch. To this end, we assume that an offline
index IO has been constructed from D prior to formulation
of any query. Let q be a visual query fragment formulated by
a user during exploratory search. Let simFlag be a Boolean
variable to indicate if q is a subgraph similarity query or a
containment query (true or false, respectively). The framework
monitors four actions, namely NewEdgeSet for adding a
set of edges to q (i.e., add(q,g)), SimQuery for invoking
subgraph similarity search, Modify for removing an existing
edge in q (i.e., modify(q,g)), and Run for executing the current
query fragment (i.e., run(q)).

When a user adds a new edge set eStr to q, the algorithm
constructs and maintains an adaptive online index IL for the
edge set (Line 5). If q has exact subgraph matches (i.e.,
simFlag is false), then it retrieves the candidates of q (stored
in Rq) by leveraging the offline and online indexes (Line 7).
If Rq is empty, then it means that there is no exact match
for q after the addition of e. Consequently, the user can
either modify q or retrieve similar matches to q (Lines 8–
9). If the latter is chosen, then q is regarded as a subgraph
similarity query and corresponding candidate matches are
retrieved (Lines 12–14) by leveraging the indexes. On the
other hand, if the former is chosen, then a user-selected
edge is removed and IL is updated (Lines 15–16)5. If the
user clicks the Run button, then the constructed query q
is processed to retrieve result matches (Lines 17–18). If q
is a subgraph containment query, the exact results Results
will be returned after conducting candidates verification (i.e.,
subgraph isomorphism test), if necessary, on Rq . Otherwise, if

5We can easily extend it to handle deletion of a set of edges (e.g., template pattern)
by iteratively updating IL.

Algorithm 1: The FERRARI Framework
Input: GUI action ∈ A, a boolean variable simFlag, a

query fragment q, a candidate set Rq , a subgraph
distance threshold δ, an offline index IO , a graph
database D.

Output: Query results Results, q, Rq , simFlag, an online
index IL.

1 Initialize eStr ← ∅
2 if action is NewEdgeSet eStr then
3 for edge e ∈ eStr do
4 q ← q + e
5 IL ← CONSTRUCTONLINEINDEX(IO , IL , q, e)
6 if simFlag = false then
7 Rq ← EXACTCANDIDATES(IO , IL , q)
8 if Rq = ∅ then
9 action← Modify q or invoke similarity

search

10 else
11 Rq ← SIMILARCANDIDATES(IO , IL , q, δ)

12 else if action is SimQuery then
13 simFlag ← true
14 Rq ← SIMILARCANDIDATES(IO , IL , q, δ)

15 else if action is Modify with edge e then
16 Update IL
17 else if action is Run then
18 Results← RETRIEVERESULTS(IO , IL , q, δ)

19 return q, Results, Rq , simFlag, IL

it is already a subgraph similarity query (i.e., simFlag is true),
then data graphs that match q approximately are returned.
Note that although FERRARI utilizes the multi-stream results
exploration wall of PICASSO to visualize and explore query-
results pairs, the indexing framework is not tightly coupled to
any specific results exploration framework. Hence, this work is
orthogonal to the results exploration problem and any superior
exploration interface can be used on top of FERRARI.

Observe that the expensive candidate verification step is
performed only after the Run button is clicked and not during
visual construction of query fragments. Furthermore, FERRARI
allows a user to execute a query fragment any time during
query formulation facilitating exploratory search. In particular,
every run(q) action exploits IL from the preceding step to
evaluate q instead of evaluating it from scratch (Line 18).

Generality of the framework. The VESS framework is
general and can be instantiated into different algorithms as
follows. In PICASSO, the offline index IO comprises of A2F
and A2I indexes, whereas in this work we use an index
called VACCINE (Section V). Line 5 can adopt different online
indexing schemes. Particularly, in PICASSO, IL is instantiated
to a SPIG index for each new edge. Instead, we instantiate it
with an efficient and concise index called ADVISE (Section VI)
that can handle a set of edges efficiently. The generation of
exact and similar candidates in Lines 7, 11, and 14 can also
leverage different strategies. In PICASSO, the offline and online
indexes are exploited to compute them. In this work, we also
use similar strategies but utilize VACCINE and ADVISE instead.
Line 16 can adopt different modification policies. In PICASSO,
a set of online indexes (i.e., SPIGs) is modified whereas in

6

this work the ADVISE index is updated. Line 18 also can be
implemented using different subgraph verification techniques.
Lastly, we assume MCCS-based similarity measure for comput-
ing similarity between data graphs and query fragments (e.g.,
Lines 11, 18). These procedures as well as IL can also be
redesigned for different similarity measures.

IV. THE IMPACT OF TEMPLATE PATTERNS

In this section, we justify the need to design novel index
structures in FERRARI in order to handle template patterns
efficiently in a VESS environment. We first quantify the GUI
latency available for processing template patterns. Then, we
present the limitations of PICASSO in efficiently processing
them within the GUI latency.

A pattern-based visual interface (PI) exposes a set of
template patterns to enable query formulation. Let a pattern
p is added to a query fragment (denoted as qi) at ith step
during visual query formulation. Then qi is processed (i.e.,
construction and maintenance of online indexes) by utilizing
the GUI latency available due to the successor action (Lines 2-
14 and 15-16 in Algorithm 1). How much is this latency? The
successor action (i.e., add action in the (i+1)th step) can be a
construction of a single edge (either between an existing pair
of nodes in qi or with a new node) or a pattern. In particular,
addition of a pattern (resp. edge with a new node) in FERRARI
and PICASSO involves the following steps that contribute to the
GUI latency (Appendix A).

1) Move the mouse cursor to the Pattern Panel (resp.
Attribute Panel).

2) Scan and select a pattern (resp. label).
3) Drag the selected pattern (resp. label) to the Query Panel

and drop it.
4) Construct edges (if necessary) between relevant nodes

by clicking on them.
Let us refer to the times taken to complete Steps 1, 2, 3, and 4
as movement time (denoted by Tm), selection time (Ts), drag
time (Td), and edge construction time (Te), respectively.

A template pattern p is added to a query fragment in two
possible ways. First, p is dropped on an edge of the existing
query fragment q, which transforms the modified query to
a connected graph. In this case, the latency available is as
follows:

T`p1 = Tm + Ts + Td (1)

Second, p is dropped on the Query Panel as a separate
component from q, and subsequently, an edge is added to
connect it with q (a query is processed only when it is a
connected graph). Notably, this same principle is used for
creating an edge with a new node. In this case,

T`p2 = Tm + Ts + Td + Te (2)

Note that any edits to p only increase the latency. Hence,
the minimum latency available to process qi with pattern p
is T`min

= min(T`p1 , T`p2 , Te) where Te is the time to create
an edge between existing nodes in qi.

Limitations of indexing schemes in PICASSO. Observe that
we need to process n edges of a pattern within T`min

time.

f3

0 2

C C

1

C

d1

0

C

1

C

2 C

f1

0 1

C CI

f4

0 2

C CI

1

C

02

C

1

C CI

(a) (b)

Fig. 2. Examples of node and edge transformers.

Hence, PICASSO needs to construct n SPIGs in T`min
time.

That is, it has on average T`min
/n time to construct a SPIG,

which is significantly lower than T`min especially when n in-
creases. Unfortunately, as reported in Section VIII, it becomes
impractical to construct and maintain the SPIG set within the
available GUI latency during exploratory search. This justifies
the need for more efficient indexing schemes in order to
effectively handle the impact of formulation of larger queries
using template patterns in the VESS environment. Ideally, we
should construct and maintain only one online index (instead
of |q| SPIGs for query q) within T`min

regardless of the number
of edges added by an add action. In the subsequent sections,
we shall introduce our indexing schemes to realize this goal.

V. VACCINE INDEX

In this section, we describe our offline index called VAC-
CINE (Visual ACtion-Conscious INtegrated fEature index).
We begin by introducing two primitive transformers that we
shall be using for constructing the VACCINE index. Next, we
describe the structure of the index. Finally, we elaborate on
the algorithm to construct VACCINE from the underlying data
graphs.

A. Primitive Transformers

A primitive transformer (transformer for brevity) transforms
a frequent fragment or a DIF g to another fragment g′ by
adding a new node or an edge such that |g′| − |g| = 1.
Specifically, we use two types of transformer, namely node
and edge transformers. Given a fragment g = (V,E), the node
transformer, denoted as Ψg(i, `), transforms g to a new graph
g′ = (V ′, E′) by adding a frequent edge from vi ∈ V to a new
node vnew /∈ V with label `(vnew). That is, (v, vnew) ∈ E′.
On the other hand, the edge transformer, denoted as Φg(i, j),
transforms g to g′ by adding an edge between two non-
adjacent nodes vi ∈ V and vj ∈ V . That is, (vi, vj) /∈ E
but (vi, vj) ∈ E′.

Example 2: Consider the graphs f1 and f4 in Figure 2(a).
Assume that these fragments are frequent or DIF. The number
above a node in these two graphs is the identifier of the
node. Then f4 is generated from f1 by utilizing Ψf1(0,C).
Specifically, we add a new frequent edge (v0, v2) (shown in
bold) in f1 to transform it to f4. Now consider the fragments
f3 and d1 in Figure 2(b). In this case, d1 is generated from
f3 by utilizing the edge transformer Φf3(1, 2), which adds an
edge between two non-adjacent nodes v1 and v2 in f3 (shown
in bold).

7

Fig. 3. VACCINE index. For clarity, we do not show the CAM code
and Lg associated with each vertex.

Remark. Observe that these transformations can be used
to simulate the way a new edge in a query graph can be
constructed during visual query formulation. Specifically, the
node transformer simulates construction of a new node and
associated edge, whereas the edge transformer represents con-
struction of an edge between existing nodes in a query graph.
For example, suppose a user has first constructed f1 in Figure 2
during visual exploratory search. Next, she augments her query
by adding a node C to the existing C atom (f4). Observe that
this add action is simulated by the node transformer Ψf1(0,C).
In the next step, suppose she adds an edge between the non-
adjacent Cl and C nodes (nodes 1 and 2 in f4). This action
is represented by the edge transformer Φf4(1, 2). In summary,
these transformers capture the add(q,g) action taken by a user
in a QFS where g is an edge.

B. Structure of VACCINE

Given a graph database D and a minimum support threshold
α, the VACCINE index is a directed acyclic graph GI =
(VI , EI). Each vertex n ∈ VI represents a frequent fragment
or a DIF g in D (i.e., g ∈ F or g ∈ Id). We refer to the
fragment represented by n as n.g (n when the context is
clear). Each n ∈ VI is a 4-tuple v = (id, c, cam(g),Lg),
where id is its unique identifier, c is its category (i.e., frequent
or DIF), cam(g) is the CAM code6 [12] of g, and Lg is
a set of identifiers of the data graphs which are subgraph
isomorphic to g (i.e., ∀g′i ∈ Lg, g ⊆ g′i). Note that as the
number of infrequent fragments (both DIFs and NIFs) can be
prohibitively large and a NIF must contain at least one DIF
(recall from Section II-B), VACCINE only stores the frequent
and DIF fragments.

6Let a graph g is represented by an adjacency matrix M . Every diagonal entry of
M is filled with the label of the corresponding node and every off diagonal entry is
filled with 1 or 0 if there is no edge. The CAM code is formed by concatenating lower
triangular entries of M , including the entries on the diagonal. The order is from top to
bottom and from the leftmost entry to the rightmost entry. We choose the maximal code
among all possible codes of a graph by lexicographic order as this graph’s canonical
code.

The edges between vertices, EI , model the relationships
between fragments represented by these vertices using the
primitive transformers. Specifically, an edge (n1, n2) ∈ EI

is labeled with a set of 2-tuple (τ, C) elements, denoted by
T1,2 = {(τ1, C1), (τ2, C2) . . . (τk, Ck)} (T when the context
is clear), where τ ∈ {Ψ,Φ} represents the node or edge
transformer to transform the fragment n1.g to n2.g and C
is the canonical labeling7 of n2.g, which is computed using
Nauty [26] by utilizing n1.g and primitive transformers. Note
that all graphs that are isomorphic to each other share same
CAM code and canonical labeling. Consider the two 3-nodes
graphs in Figure 2(a). The canonical labeling from the middle
graph to f4 is (0,2,1) (i.e., 0, 1, and 2 in the middle graph
are mapped to nodes 0, 2, and 1 in f4, respectively). Observe
that there can be more than one way to transform n1.g to n2.g
by utilizing the transformers. Hence, for each edge (n1, n2), T
captures all transformations that can generate n2.g from n1.g.
Furthermore, |n2.g| − |n1.g| = 1 and n1.g ⊂ n2.g. We refer
to n1 (resp. n2) as the parent (resp. child) of n2 (resp. n1).
Also, we refer to a vertex n ∈ VI as a root (resp. leaf) if it
has no incoming (resp. outgoing) edges.

Example 3: Reconsider the fragments f1 and f4 in Fig-
ure 2(a). We index them in the VACCINE index with two
vertices, n1 (representing f1) and n2 (representing f4),
and an edge (n1, n2). In this case, T1,2 = {(Ψf1(0,C),
(0,2,1))}, where Ψf1(·) is the node transformer for
transforming f1 to f4 and (0,2,1) is the canonical la-
beling. Similarly, for the frequent fragment f3 and DIF
d1 in Figure 2(b), two vertices, n3 and n4, are created
for them, respectively. In this case, T3,4 = {(Φf3(1, 2),
(0,1,2))}, where Φ(·) is the edge transformer and
(0,1,2) is the canonical labeling. An instance of the VAC-
CINE index is shown in Figure 3. Observe that an edge can
be labeled with more than one (τ, C) pairs.

How can VACCINE facilitate visual exploratory search?
Recall that (Section II-B) an edge in D is either a frequent
edge or a DIF. Hence, these edges are indexed in VACCINE.
Since edges are iteratively added to a visual query (either
manually by a user or automatically when a template pattern is
added to a query fragment), we always begin with a frequent
edge or an infrequent edge (i.e., DIF). Progressively, the query
fragment may remain frequent or DIF or morph to a NIF due to
sequence of add actions during the query formulation process.
The edges of VACCINE efficiently capture this sequence of
add actions, thereby capturing possible users’ actions during
exploratory search. For example, consider the first three query
fragments in Figure 4 (top row) during an exploratory search.
Here, the EAS A is: [add(Q1, C-C), add(Q2, C-Cl), add(Q3,
C-C)]. Observe that the first fragment Q1 is a root (id 2) in
Figure 3. The second fragment Q2 is a child of this vertex (id
5). The next fragment generated by the third add action is a
child of vertex 5 (i.e., n.id = 10). Note that in the case a user
took the action add(Q2, C-C) instead of add(Q2, C-Cl), then
it would match the vertex 3. Hence, the edges of VACCINE
capture all possible add actions taken by a user during query

7Intuitively, canonical labeling is a process in which a graph is relabeled in such a
way that isomorphic graphs are identical after relabeling. Hence, isomorphism testing on
two graphs can be performed by simply comparing their canonical labeling.

8

formulation that result in frequent or DIF fragments. Observe
that the modify action (i.e., deletion of a fragment) is also
captured by VACCINE as the resultant query fragment due to
this action is essentially a fragment due to a previous add
action. Since each vertex in the index is associated with the
FSG identifiers of data graphs containing the corresponding
fragment, we can find data graphs matching a current query
fragment easily during VESS for any visual action taken by a
user. This facilitates evaluation of the run action at any point
during exploration.

C. Index Construction

Given D and α, our idea is to first fetch all frequent edges
from D into the VACCINE index GI and then index other fre-
quent fragments and DIFs by transforming the frequent edges
using the primitive transformers. Lastly, edges between these
fragments are created in VACCINE based on their formulation
relationships using the transformers.

Algorithm 2 outlines the procedure for constructing the
VACCINE index. First, it fetches all frequent fragments F in the
graph database D (Line 1). Each fragment f ∈ F is associated
with its fsgIds(f). Next, we obtain all frequent edges (i.e.,
frequent fragments with only one edge) from F and store
them in a matrix fe (Lines 4-8). These edges are considered
as seeds for building the VACCINE index. Each element of the
matrix is a Boolean value to represent whether the edge is
frequent or not. For example, if fe[C][C] is true, then (C,C)
is a frequent edge. All infrequent edges are recorded as DIFs
in the VACCINE index (Line 10).

Next, the algorithm iterates through all f ∈ F (i.e., all
frequent fragments) and creates a vertex nf in the index GI

corresponding to f where Lf = fsgIds(f). It builds the index
further by applying the primitive transformers on each frequent
fragment f (Lines 13-14). These transformation operations add
a frequent edge to f at all possible locations and check whether
the transformed graph f ′ is a frequent fragment or a DIF.
If it is, then it creates an edge from nf to nf ′ to capture
the relationship between them based on the corresponding
primitive transformers. Observe that |f ′| − |f | = 1. We now
elaborate on the procedures to realize these transformers.

NODETRANSFORMER(): Similar to the subgraph extension
process in several frequent subgraph mining techniques [8],
[38], given a frequent fragment f = (V,E) in GI , it goes
through each vertex vf ∈ V and adds all possible frequent
edges to it. The fe matrix is utilized to find relevant frequent
edges for adding to v. Addition of a frequent edge to f results
in a new fragment f ′, and this transformation operation is
recorded.

EDGETRANSFORMER(): This procedure creates all frag-
ments generated by the edge transformer and records the
information in VACCINE. Specifically, it traverses through
every pair of nodes (vi, vj) in the frequent fragment f and
checks if an edge exists between them. If an edge does not
exist, then it adds a new frequent edge between these two
nodes using the edge transformer Φg(i, j) to create a new
fragment f ′. This edge transformation operation is recorded.

After this, the newly created fragment f ′ is processed by
the PROCESSNEWGRAPH procedure as follows. Note that

Algorithm 2: VACCINECONSTRUCT()
Input: A dataset of graphs D, a minimum support threshold

α.
Output: GI , the VACCINE index of D.

1 F ← frequent fragments of D with α
2 E ← All edges in D
3 GI ← ∅
4 fe[label][label]← ∅
5 for edge e ∈ E do
6 if e ∈ F then
7 fe[e.srcLabel][e.trgLabel]← true
8 fe[e.trgLabel][e.srcLabel]← true

9 else
10 record e as a DIF edge into GI

11 for f ∈ F do
12 Assign f into GI as vertex nf

13 NODETRANSFORMER(f,GI , fe)
14 EDGETRANSFORMER(f,GI , fe)

15 for n ∈ VI , n ∈ Id, n.Lg = ∅ do
16 C ← ∩

p∈n.parent
p.Lg

17 n.Lg ← C

this procedure is invoked by the NODETRANSFORMER and
EDGETRANSFORMER procedures.

PROCESSNEWGRAPH(): Algorithm 3 describes this pro-
cedure. It adds a new graph f ′ generated from f into the
current VACCINE index if f ′ is a frequent fragment (Line 1)
or a DIF (Line 6). Also, it adds a directed edge (nf , nf ′)
and computes the canonical labeling of (f, f ′). Lastly, it
annotates the edge with T (Lines 4-5 and 9-10) to capture
the transformation relationships between f and f ′. To check
whether a transformed fragment is frequent, we only need to
compare it with all frequent fragments in F . That is, to find all
s (Algorithm 3), we iterate through all subgraphs containing
the new edge added by the primitive transformers to check
whether they are frequent fragments.

Algorithm 3: PROCESSNEWGRAPH()
Input: Frequent fragment f , the VACCINE index GI , a

transformer τ ∈ {Φ,Ψ}.
1 if f ′ ∈ F then
2 Add f ′ into GI as a vertex nf ′

3 Add a new edge (nf , nf ′) in GI

4 C ← canonical labeling of (f, f ′)
5 T.add((τ, C))

6 else if ∀s ⊂ f ′, s ∈ F then
7 Add f ′ into GI as a DIF vertex nf ′

8 Add a new edge (nf , nf ′) in GI

9 C ← canonical labeling of (f, f ′)
10 T.add((τ, C))

Observe that after traversing through all f ∈ F using the
aforementioned steps, GI consists of frequent fragment frag-
ments and DIFs. Particularly, all leaf vertices of the VACCINE
index represent DIFs or frequent fragments. At this point, data
graphs associated with a DIF vertex have not been recorded
yet because such information is not contained in F . Hence, in
the final step the algorithm adds this information as follows

9

(Lines 15–17, Algorithm 2). For a given vertex and its parent
in the VACCCINE index, the union of the data graph identifiers
associated with the vertex and its parent is the same as those
of the parent. Thus, to complete the index, the algorithm
computes the intersection of the data graph identifier sets of
all parent vertices of a given vertex n of a DIF (Id) to generate
its data graph identifier set Lg . Recall that subgraphs of a DIF
are frequent fragments.

Example 4: Suppose there are two frequent edges, (C,Cl)
(denoted as f1) and (C,C) (denoted as f2), in D. Figure 3
depicts a portion of the VACCINE index rooted at f1 and f2.
We illustrate how it is constructed by Algorithm 2. First, for
each node in f2, it adds relevant frequent edges to it. The new
fragment f3 is generated when the frequent edge (C,C) is
added to node 0 in f2. Since f3 is a frequent fragment, we add
it to the index, connect it to its parent vertex f2, and record
the transformer and canonical labeling information. Similarly,
another frequent edge f1 is added to generate the fragment f4.
Note that after the edge (C,C) is connected to node 1 in f2,
the new fragment is isomorphic to f3. Hence, the algorithm
only adds the transformation information in T. Subsequently,
d1 is inserted to the index after it is generated using edge
transformer on f3. Since d1 is a DIF, it is not necessary to
generate successive infrequent fragments from d1 by adding
frequent edges. Lastly, the fsgIds of d1 is computed from its
parent f3.

Lemma 1: Suppose N is the number of frequent frag-
ments and DIFs, Nfe is the number of frequent edges
in D, and Nfmax is the maximum number of nodes
in a frequent fragment. Then a VACCINE index has
O(N(C2

Nfmax
+ NfmaxNfe)) edges, where C2

Nfmax
denotes

the total number of different combinations of selecting two
different nodes from a frequent fragment.

Theorem 1: Given a dataset D, suppose Nf is the number
of frequent fragments. Let Ndif is the number of DIFs, E is
the set of all edges in D, and L is the set of all labels in
D. Let the maximum number of nodes in a frequent fragment
is denoted as Nfmax and the maximum number of edges in
a DIF is denoted as Ndmax. Assume the time complexity of
mining the frequent fragments from D is Cff . Similarly, let
the time complexity of canonical labeling process is Ccl. Then
the time complexity for building VACCINE index is O(Cff +
|E|+NfCcl(Nfmax|L|+N2

fmax) +NdifNdmax).
Remark. The candidate subgraph generation step in fre-
quent subgraph mining [8], [38] also extends subgraphs
with frequent edges. Specifically, in frequent subgraph min-
ing, the goal of subgraph extension is to check whether a
subgraph is frequent by computing its frequency. In con-
trast, during our index construction process, we generate
both frequent and DIF fragments and determine the trans-
formation relationships between these fragments. Note that
we deliberately resist to tightly integrate frequent subgraph
mining technique and VACCINE construction steps in FER-
RARI. That is, building of transformation relationships be-
tween different graph patterns is not injected into the mining
process. This design choice ensures the generality of our
framework as VACCINE can be seamlessly integrated on top
of any state-of-the-art frequent subgraph mining technique

(e.g., [8], [38]). Similarly, we can use any subgraph isomor-
phism testing algorithm in our framework.

Lastly, observe that we resist to build any index on the
template patterns and as a result resort to process edges of a
pattern one by one (Algorithm 1). Given a dataset D, different
GUIs may have different patterns. In some GUIs, the patterns
are unlabeled graphs (e.g., PubChem), and in others, they
may be labeled ones. Importantly, the number of template
patterns and their sizes are typically small in practice (i.e.,
users typically will not browse through a long list of patterns
to formulate queries). Many of these patterns may also be
frequent fragments or DIFs, which are already indexed by
VACCINE. Furthermore, a user may modify these patterns
on the Query Panel to formulate queries. By processing the
edges one by one we can seamlessly handle these issues
without building additional data structures for these patterns.
This enables FERRARI to handle any GUI containing template
patterns without building GUI-specific data structures that need
to be updated every time the type and content of patterns in
a GUI evolve.

D. Comparison with PICASSO

As reported in [18], [19], existing indexing schemes for tra-
ditional subgraph querying techniques [27], [39], [40] are not
suitable for efficient query evaluation in this visual querying
paradigm. Specifically, they do not store visual formulation
relationships between different frequent and infrequent frag-
ments to capture users’ actions during VESS. This information
is critical toward efficient support of the run action in VESS.

Most germane to the VACCINE index is the indexing
scheme in PICASSO [13]. The former differs from the latter
in the following ways. PICASSO utilizes the A2F and A2I
indexes [18], [19] for exploratory subgraph search (recall
from Section II-D). The A2F index is a graph-structured index
having a memory-resident and a disk-resident components
called the MF-index and the DF-index, respectively. In contrast,
VACCINE consolidates both frequent fragments and DIFs into
a single memory-resident index. More importantly, action-
aware indexes do not record the primitive transformers to
connect these fragments. Specifically, the A2F index records
edges between two frequent subgraphs f1 and f2 if f1 is
a subgraph of f2 and |f2| − |f1| = 1. The A2I index is
simply an array of DIFs arranged in ascending order of their
sizes. Hence, VACCINE captures richer information related to
how visual actions (add(q,g)) modify a query fragment (by
storing transformer information). Besides, VACCINE does not
have any A2I index or its variant. DIFs are integrated with
frequent fragments and are not simply stored in a sorted array.
Consequently, the algorithm to construct VACCINE also differs
from [13].

VI. ADVISE INDEX

In this section, we introduce a novel data structure called
ADVISE (ADaptive VIsual Subgraph Exploration) index,
which is progressively constructed and maintained on-the-fly
during add and modify actions in an EAS by utilizing the
VACCINE index.

10

C

C
C

C

1

1

0 C

C1

0

Cl

2

2

C C1
10

Cl2
2

C

3

3

C C1
10

Cl2
2

C

3

3

4

C C1
10

Cl2
2

C

3

3

4

C C

C
5

10
9

8
7

6

4

56

8

7

1

2[1] 2[1] 1 [2]

5[1,2]

(a) query formulation process

2
[1]

1 [2]

5[1,2]

[3]

3

[1,3]

10[1,2,3]

2[1] 1 [2]

5
[1,2]

[3]

3
[1,3]

10
[1,2,3]

8 [1,3,4]
[2,3,4]

[2,4] [1,4]
[3,4]

[4]
2

[1]

1 [2]

5
[1,2]

[3]

3 [1,3]

10
[1,2,3]

8
[1,3,4]

[2,3,4]

[2,4] [1,4]

[4]

9 [3,4,6]
[3,4,5]

[3,5,6]
[4,5,6]

[3,5]
[3,6]
[4,5]

[4,6]
[5,6]
[6,7]

[7,8]
[8,9]
[9,10]

[5,10]
[3,4]

[5]
[6]
[7]

[8]
[9]
[10]

(b) corresponding ADVISE construction

Fig. 4. Example of ADVISE index construction for add action. The
bottom row shows the ADVISE index for a set of add actions (top row).
The node id is shown in rectangular box and its Eq is shown in square
brackets. The vertices representing DIFs are colored in gray.

A. Definition

The goal of ADVISE index is to progressively keep track of
the candidate data graphs of an evolving visual query fragment
q efficiently by concisely storing information related to all
frequent fragments and DIFs contained in q at any point of time
during exploration. As we shall see in Sections VII and VIII,
this facilitates efficient execution of the run action anytime
during exploratory search.

Intuitively, an ADVISE index is a directed graph where each
vertex m represents a frequent or a DIF fragment in the current
query q and each edge (m′,m) represents the containment
relationship between the fragments m and m′ (i.e., f(m′) ⊂
f(m) and |f(m)| = |f(m′)| + 1 where f(m): m → fg s.t.
fg ⊆ q.). Each vertex m is associated with the identifier of
the vertex n (i.e., matching vertex) in VACCINE containing the
fragment that matches f(m) and a set of edge id sets in q that
matches the edges in f(m). Formally, it is defined as follows.

Definition 2: Let q = (Vq, Eq) be a visual graph query
fragment during exploratory search on a graph database D
and contains ` edges with ids 1, 2, . . . `. Let GI = (VI , EI)
be the VACCINE index on D. Then, the ADVISE index of q is
a directed graph GA = (VA, EA) that satisfies the following
conditions.
• For each m ∈ VA, ∃ an injective function, f(m): m→ fg

s.t. fg ⊆ q and ∃n ∈ VI , n.g = fg . We refer to n as the
matching vertex and denote its identifier as id(nm) =
n.id.

• By slightly abusing the notations of trees, each
(m′,m) ∈ EA represents the parent-child relationship
between two vertices m′ and m where m is the child of
m′ iff f(m′) ⊂ f(m) and |f(m)| = |f(m′)|+ 1.

• Each m ∈ VA is a 2-tuple m = (id(nm),Eq) where Eq

is a set of edge id sets in q that matches the edges in
f(m).

Observe that unlike VACCINE, each vertex m in ADVISE
does not store identifiers of data graphs in D that contain
the fragment represented by m (i.e., f(m)). Instead, it simply
stores the identifier of the matching vertex of m in VACCINE.
We can easily retrieve the identifiers of these data graphs on
demand from this matching vertex. Furthermore, during visual
exploratory search, we create only one instance of ADVISE.
It is worth noting that such a query-dependent index is not
constructed by any traditional subgraph querying techniques

during query formulation. In this conventional paradigm, the
complete query is first specified before it is processed. These
approaches exploit knowledge of the complete query graph to
compute and utilize auxiliary data structures. In contrast, the
construction of ADVISE is intertwined with the formulation of
a visual subgraph query that is revealed progressively.

B. ADVISE Construction For Add Action

We now describe the procedure to construct the ADVISE
index on the fly for each add action. In the next subsection, we
shall elaborate on how it is maintained for each modify action.
We first introduce the ADVISE construction process using an
example. Then, we describe the algorithm formally. Observe
that the construction process entails creation of vertices and
edges (Definition 2) and their associated annotations for a
visual query fragment.

Recall that a user may either create an edge or drag-and-
drop a template pattern during an add action. We consider a
template pattern as an edge stream (a collection of edges).
Consequently, a single new edge (referred to as seed) is
processed iteratively to construct an ADVISE index.

Example 5: Consider the query formulation process in
Figure 4(a). The ADVISE index construction process for this
query is depicted in Figure 4(b). Suppose we use the VACCINE
index in Figure 3 for the construction. The user first adds
the edge C-C (id 1), which is the seed. Then the ADVISE
construction process first searches the VACCINE index based on
the CAM code of the edge. Since it matches the f2 fragment in
vertex 2 (i.e., n2 is the matching vertex) of the VACCINE index,
a new vertex is added in the ADVISE index corresponding to
n2 as shown in the bottom row. Hence, the id of this vertex
is set to 2 and Eq(m2) = {{1}}.

Next, the user adds the edge C-Cl (id 2), which is the
new seed. Now the algorithm retrieves the identifier (i.e., 1)
of the vertex in VACCINE that matches the new edge (i.e.,
f1). Consequently, another vertex is created in ADVISE whose
id is 1 and Eq(m1) = {{2}}. Next, it utilizes the primitive
transformer information T encoded in the outbound edges of
the vertex n1 in VACCINE to find other vertices representing
fragments that can be constructed using these two edges in the
query (e.g., C-C-Cl). Hence, the frequent fragment C-C-Cl
(id 5) is retrieved (using Ψf2(0,Cl)) and is added as a vertex
in ADVISE with id = 5 and Eq(m5) = {{1, 2}}. Since f2
and f1 are parents of f5 in VACCINE, the vertices 2 and 1
should link to 5 in ADVISE. Hence, edges (2, 5) and (1, 5) are
constructed in ADVISE to indicate that they are subgraphs of
the fragment in vertex 5.

The user once again adds an edge C-C (id 3) as a seed to
the query graph. Similar to the above step, it is first matched
to the vertex with id = 2 in VACCINE. Observe that the
vertex to represent this edge has already been created in
ADVISE earlier. Hence the set of edge sets of this vertex is
updated to {{1}, {3}} (i.e., Eq(m2) = {{1}, {3}}). Next, the
remaining labels in the query graph (i.e., C, Cl) are added
to this seed and searched in the VACCINE index by utilizing
the primitive transformers associated with the edges of n2 in
this index. For instance, the label C is added to C-C resulting
in the fragment C-C-C, which is processed by leveraging the

11

Algorithm 4: The ADVISE construction algorithm.
Input: The VACCINE index GI , an instance of the ADVISE

index GA, query fragment q = (Vq, Eq), a single
new edge seed.

Output: an updated GA.
1 S ← ∅, n← GETVERTEX(GI , seed.camcode)
2 if n is Not Null then
3 if ∃ns ∈ GA for representing n then
4 UPDATEVERTEX(GA, seed, n)

5 else
6 ADDVERTEX(GA, (n.id, {seed}))
7 S.ENQUEUE((seed, n))
8 while S 6= ∅ do
9 (s, n)← S.DEQUEUE()

10 for fq ∈ q, s ⊂ fq and |fq| − |s| = 1 do
11 m← MATCHINGINVACCINE(fq, GI , n, τ)
12 if ∃nm ∈ GA for representing m then
13 UPDATEVERTEX(GA, fq, nm).

14 else
15 ADDVERTEX(GA, (m.id,Efq))

16 ADDEDGE(GA, nm.parents, nm)
17 S.ENQUEUE((fq, nm))

transformer Ψf2(0,C) in VACCINE. Finally, the whole query
fragment (i.e., C-C-C-Cl) is processed. Since it is a DIF, it is
stored in VACCINE (vertex n10). Hence, a vertex with id 10 is
added to ADVISE. Following this, edges (5, 10) and (3, 10) are
created in ADVISE to indicate that the fragments represented
by vertices 3 and 5 are subgraphs of the fragment in 10.

Next, an edge (id 4) is added to connect nodes 1 and
3. Consequently, we update ADVISE by following the above
strategy. Note that fragments represented by vertices 8 and 10
are DIFs. Hence, we do not add any children to these vertices
as it will create a NIF, which is not indexed in VACCINE.

Lastly, the benzene ring pattern is added. Each edge in
this pattern is added sequentially into the query automatically
and is processed by following the aforementioned strategy.
Observe that the query is now a NIF.
Remark. In the above example, the first edge C-C (id 1) is a
frequent edge. How do we construct ADVISE when a user first
constructs an infrequent edge? Recall that an infrequent edge is
a DIF. Hence, it is already indexed in VACCINE. Consequently,
the construction process of ADVISE is similar to the above
example. ‘

Algorithm: Algorithm 4 outlines the formal procedure for
constructing an ADVISE index. We first list the following
functions to facilitate the exposition.

• GETVERTEX(GI , camcode): Find a vertex in the VAC-
CINE index GI that matches the CAM code camcode.

• ADDVERTEX(GA, (n.id, {e})): Add a new vertex in the
ADVISE index GA that represents n in VACCINE whose
id is n.id and (n.id, {e}) represents the 2-tuple of the
new vertex.

• UPDATEVERTEX(GA, e, n): Update the vertex n in GA

by adding e in n.Eq .
• MATCHINGINVACCINE(fq, GI , n, τ): Match the frag-

ment fq according to the outbound edges and τ of vertex

Algorithm 5: REMOVEEDGE()
Input: ADVISE index GA, an edge e of the query q
Output: Updated ADVISE index.

1 for m ∈ GA do
2 for edgeSet ∈ Em do
3 if e ∈ edgeSet then
4 Em ← Em − edgeSet

5 if Em = ∅ then
6 GA.DELETE(m)

7 return GA

n in GI and return the corresponding vertex, representing
the fragment fq , in GI .

• ADDEDGE(GA, n.parents, n): Add edges from parent
vertices of n to the vertex n in GA.

Given a query graph q and a seed seed, Algorithm 4 first
finds the matching vertex n in the VACCINE index GI having
the same CAM code as that of the seed (Line 1). If n can
be found in GI , it indexes it in GA as ns (Lines 2-6). If
ns has already been created in GA earlier, it is updated by
invoking UPDATEVERTEX(GA, seed, n) (for adding seed in
n.Eq). Otherwise, it creates a new vertex in GA to represent
seed. Next, it iteratively finds all frequent fragments and DIFs
in q that contain seed and index them in GA. Specifically, it
first inserts seed and its corresponding matching vertex n to
a queue S (Line 7). Note that each element (s, n) ∈ S is a
2-tuple where the former is a fragment of q and the latter is
its matching vertex n in VI . For each (s, n) ∈ S and fragment
fq satisfying the condition in Line 10, the algorithm indexes
these frequent fragments and DIFs of q in GA (Lines 11-
17). Specifically, for each fq it searches VACCINE by utilizing
the primitive transformers associated with the edges of n in
this index. Then it indexes the matching vertex nm in GA

by either invoking ADDVERTEX for a new vertex (Line 15)
or invoking UPDATEVERTEX for an existing vertex in GA

(Line 13). Besides, the relationships between nm and its parent
nodes nm.parents are added as edges (Line 16). After storing
nm in GA, fq and nm are enqueued to S (Line 17) for finding
larger frequent fragments and DIFs of q and indexing them in
GA in subsequent iteration. The algorithm terminates when S
is empty. Observe that it does not index NIFs.

Theorem 2: Given a VACCINE index GI = (VI , EI) and
a query q = (Vq, Eq), the time and space complexities
of building ADVISE index for q is O(|Eq| ∗ (|VI |CCAM +
min(|VI |, xfq)(|Vq| + |Eq|))) and O(m ∗ min(|VI |, 2|Eq| −
1)),respectively, where xfq is the maximum number of frequent
fragments and DIFs of q in GI for all query edges, m is the
space complexity of a vertex in the ADVISE index, and CCAM

is the time complexity of comparing the CAM codes of a pair
of graphs.
Remark. Observe that in principle the content of ADVISE
index can also be constructed directly from D instead of uti-
lizing the VACCINE index. However, this will be prohibitively
expensive, rendering the construction of ADVISE within the
GUI latency impractical.

12

(a) (b) (c)

0

1

2

3 C

C

C

CI

2
!1"

1 !!"

5!#$!"

!3"

3
!#$%"

10
!#$!$%"

!4"

!!$&"
!#$&"

!%$&"

8
!!$%$&"

!#$%$&"

2
!1"

1

5

!3"

3
!#$%"

10

!4"

!#$&"

!%$&"

8 !#$%$&"

2
!1"

!3"

3
!#$%"

!4"

!#$&"

!%$&"

8 !#$%$&"

% #

&

'

0

1

2

3 C

C

C

CI

% #

&

'

0

13 C

C

C

% #

&

Fig. 5. Example of query modification.

C. Handling Modify Action

In exploratory search, a user may modify the current query
fragment at any point of time (e.g., after browsing result
matches returned by a run action) by deleting8 a set of edges
(i.e., modify action). Upon deletion of an edge, we firstly
iterate through Em of each vertex in the ADVISE index GA.
If the deleted edge belongs to an edge set in Em of a vertex
m, then it modifies Em of m by removing the edge set that
contains the deleted edge. Subsequently, after removal of the
edge sets from Em, we remove all vertices from GA whose
Em are empty after the update. Observe that the complexity
of removing an edge from a query is O(NA) where NA is the
number of vertices in GA. These steps are repeated for every
deleted edge. The formal algorithm is given in Algorithm 5.

Example 6: Consider Figure 5. The top row shows the
modification to the query fragment, and the bottom row
illustrates the ADVISE index update. Suppose the user removes
the edge C-Cl (id 2) from the query fragment in Figure 5(a).
First, it searches ADVISE to identify vertices whose Em

contains the edge C-Cl (vertices 1, 5, and 10). Next, all edge
sets containing this edge are deleted (shown in Figure 5(b)).
Finally, all vertices whose Em = ∅ (i.e., 1, 5, and 10) are
removed from the index. The updated ADVISE index is shown
in Figure 5(c).

D. Comparison with PICASSO

In PICASSO [13], for each new edge e`, a SPIG is created.
A SPIG [18] is a directed graph S` = (V`, E`) where each
vertex v ∈ V` represents a subgraph g of the query fragment
containing e`. There is a directed edge from v′ to v if g′ ⊂ g
and |g| = |g′|+ 1. Each vertex v is associated with the CAM
code of the corresponding g, a list of identifier of edges of
g, and a Fragment List of g. The Fragment List contains the
following four attributes. If g is a frequent fragment or a DIF,
then the corresponding identifier of the matching vertex in the
offline index for storing frequent fragments or DIFs is stored in
frequent id or DIF id attribute, respectively. However, if g is a
NIF, then the frequent subgraph id set stores the frequent ids of
all largest proper subgraphs of g that are frequent. Lastly, the

8Update of an edge can be considered as deletion followed by addition of a new edge
(i.e., modify and add actions).

DIF subgraph id set of g contains the DIF ids of all subgraphs
of g that are DIFs.

The ADVISE index differs from SPIGs in the following ways.
First, each vertex in ADVISE is lightweight as it only stores
an identifier and an edge list. In contrast, each vertex in a
SPIG stores a larger collection of attributes. Particularly, the
computation of frequent subgraph id set and DIF subgraph
id set for each vertex in a SPIG can be expensive. Second,
PICASSO generates a set of SPIGs, one for each edge in the
query graph. In contrast, we only create a single ADVISE
index regardless of the number of edges added to the query.
Consequently, the construction cost of ADVISE is not only
cheaper than SPIGs, but the former is also more space efficient.
Specifically, ADVISE takes only O(min(|VI |, xfq)(|Vq| +
|Eq|)) (Theorem 2) to index all frequent fragments
and DIFs that contain e`. In contrast, PICASSO takes
O(min(|VI |, xfq)(|VI |CCAM)) because its indexes do not
preserve the formulation relationships between different frag-
ment fragments and DIFs. Consequently, it needs to find
corresponding vertices for frequent and DIF subgraph id sets
by CAM code comparison.

VII. PROCESSING OF RUN ACTION

We have now all the machinery in place to present the
algorithms for blending visual query formulation with query
processing. An EAS of exploratory subgraph search may
contain multiple run actions. In this section, we show how
the VACCINE and ADVISE indexes are utilized to efficiently
support processing of run(q) during exploratory search. Since
q for each run action can be either subgraph containment
or subgraph similarity search, we discuss how these two
categories of search can be realized. Specifically, we describe
how the procedures in Lines 7, 11, 14, and 18 of Algorithm 1
are implemented when the action-aware indexes and SPIGs
of PICASSO are replaced with VACCINE and ADVISE, respec-
tively. Note that our goal here is not to design yet another
subgraph search technique but rather on how the PICASSO
framework for the run action can be adopted to suit our
proposed indexing schemes.

Subgraph Containment Search. Recall from Section II-D,
in PICASSO if a query graph is a frequent fragment or a DIF,
then its matches can be directly retrieved from the action-
aware indexes without any verification. On the other hand,
if the query graph is a NIF, then additional verification is
performed on the candidate data graphs by utilizing the VF2
algorithm [5]. Hence, we follow the same strategy but replace
the inefficient indexing schemes of PICASSO with VACCINE
and ADVISE. Let us illustrate it with an example.

Reconsider Figure 4. Suppose during exploratory search a
user clicks on Run after constructing the third and fourth
edges. In the case of the third edge, observe that there is a
vertex in ADVISE representing this query fragment (vertex 10).
Thus, we retrieve the matching vertex of 10 in VACCINE and
return all data graph identifiers associated with it without any
further verification. However, when the Run button is clicked
again after adding the fourth edge, there does not exist a vertex
in ADVISE that represent the query fragment. Hence, the query
is a NIF and we retrieve all leaves of ADVISE (vertices 8 and

13

10). Observe that these leaves must be subgraphs of the query.
Next, we intersect the candidate data graph identifiers retrieved
from the corresponding matching vertices in VACCINE for
these leaves. Finally, we verify these candidates and generate
the exact matches of the query.

Subgraph Similarity Search. Given δ, the key intuition
followed by PICASSO for subgraph similarity search is to
iteratively modify the formulated query graph by removing
edges according to δ and then invoke the subgraph con-
tainment search procedure for all modified queries whose
distance from the query fragment is less than δ [13], [18].
Consequently, we exploit this framework, but instead of SPIGs
we utilize our more efficient ADVISE index. Specifically, we
iterate through a queue containing pairs of modified query
graph qi and corresponding ADVISE index GAi

for different δ
and compute all valid subgraph similarity queries (w.r.t δ) and
their corresponding matches. After traversing through all the
edges of qi for all legal values of δ, a list of similar candidate
data graphs is returned. The similarity verification of these
candidates is performed by utilizing the VF2-based technique
used in [13].

It is worth noting that despite exhaustive enumeration of
modified query graphs satisfying δ constraint, this approach
is efficient in practice in exploratory search environment (see
Section VIII) for the following reasons. First, δ is typically
small in practice as its large value will make the result
matches topologically very different from a user’s search
intent. Second, during exploration when a search query grows
large, it indicates that the user has more precise knowledge
of the topology of her search intent. Consequently, the chance
of δ to be large also diminishes significantly. Last but not the
least, the efficient representation of the ADVISE index enables
us to efficiently compute all candidate matches.
Remark. The formulation sequences of a query q do not
affect the candidate set because it only depends on q, and
the VACCINE and ADVISE indexes. Hence, different query
formulation sequences of a query graph (i.e., different ordering
of edges) in our framework do not have significant impact on
the query processing cost.

VIII. PERFORMANCE STUDY

In this section, we investigate the performance of FERRARI
and report the key results. All experiments are performed on
a machine with 64 bits Intel dual Core i7 3.7 Ghz CPU and
16 GB RAM, running on Windows 7.

A. Experimental Setup

Datasets. We use the following three real-world datasets
(Table I) for our experimental study.
• AIDS: This antiviral database contains topological struc-

tures of around 40K chemical compounds. We ran-
domly select graphs to create four subsets with sizes
10K (4.4MB), 20K (9.4MB), 30K (14.4MB), and 40K
(19.4MB).

• eMolecules: This dataset contains 1300K chemical struc-
ture graphs. We randomly select graphs to create four
subsets with sizes 320K (91.4MB), 640K (183.5MB),
960K (278.8MB), and 1300K (367.7MB).

TABLE I
Datasets (K = ’000).

Database # of
graphs

Avg.
Nodes

Avg.
Edges

Max. #
of Nodes

Max.#
of Edges

AIDS 40K 25 27 222 251
eMolecules 1300K 17 17 459 472
PubChem 800K 41 42 801 838

• PubChem: This dataset contains chemical compound
graphs [21]. We randomly select graphs to create four
subsets with sizes 100K (80MB), 200K (140MB), 400K
(283MB), and 800K (559MB).

Algorithms. We compare FERRARI with PICASSO [13], which
is the state-of-the-art VESS framework. Both are developed
in Java. We set the minimum support threshold α = 0.1
for FERRARI and PICASSO unless specified otherwise. For
PICASSO, we set the fragment size threshold β = 8 as
recommended in [18]. We use gSpan [38] for computing the
frequent fragments.

Query set: Recall that during exploratory search, the size of
a query graph may evolve from small to large (Example 1).
That is, a user typically formulates and executes query graphs
of different sizes. Hence, we select a set of queries of different
sizes. Since these queries need to be formulated visually by
users, it is not possible to evaluate a large number of them.
Our experience suggests that having to formulate many queries
with different query formulation sequences (QFSs) strongly
deters users from participating in a user study. Hence, we
select 11, 7, and 6 queries for the AIDS, eMolecules and
PubChem datasets, respectively. These queries are selected
based on several features such as size (6-43), topology (path,
tree, graph, and cycle), and label variety. Figures 6, 7 and 8
depict these queries. Specifically, in AIDS (resp. eMolecules)
Q1 to Q9 (resp. Q1 to Q5) do not have any exact matches but
Q10 and Q11 (resp. Q6 and Q7) do. Similarly, in PubChem
Q4 to Q6 do not have exact matches but Q1 to Q3 do. Labels
on edges of a query represent the default sequence of steps for
visual query formulation in FERRARI and PICASSO by taking
an edge-at-a-time approach. Unless mentioned otherwise, we
shall be using the default sequence for formulating a particular
query. The template patterns used in our experimental study
are encompassed by dotted red lines in these queries. We use
the GUI of PICASSO for query formulation in FERRARI (see
Appendix A).

Participants profile. Twelve unpaid volunteers (ages from 21
to 27) participated in the experiments in accordance with HCI
research that recommends at least 10 users [23], [24]. None
of them are authors of this paper. They were first trained to
use the GUI. To describe the queries to them, we provided
printed visual subgraph queries. A participant then draws the
given query using a mouse in our GUI. For every query, the
participants were given some time to determine the steps that
are needed to formulate it so that the effect of “thinking” time
is minimized. Note that the faster one formulates a query, the
lesser time available for ADVISE and SPIGs construction. Each
query was formulated 5-10 times by different participants (in
edge-at-a-time or pattern-at-a-time modes) following different
QFSs. Hence, more than 160 queries are executed.

14

C

O
1

C

C

C

C

6

3

5

2 C4

(a) Q1(20s)

CC 1

O

7

C

C C

2

4 5

O3

6

(b) Q2(18s)

C

C
1

C

O

3

2

C

O

4

5

O

C

C

O6 7

8

(c) Q3(30s)

C

O
1

O

C

C O6

3

5

2 C4

C O

7 9

8

(d) Q4(40s)

C

O

1

C

O C

4

2 53

7

C6

(e) Q5(15s)

C

O
1

C
2

C

O

6

7

O

O8

3 4

5

(f) Q6(28s)

Fig. 6. Queries for PubChem dataset. The query formulation time is shown in parenthesis.

C

C

4

O5

O C C C

Cu

1

2 3 7

8

6

(a) Q1(23s)

CO 4 C3 CCC

CC

109

8

1

2

CN 7 C6

5

CuCC 1312

11

(b) Q2(30s)

C

C

1

N
N

C

C

C

C

10

9

8

C

N

6

C

4

C

N

C

13

12

2

3

5

C

7

11

C

14

O

15

16

17

(c) Q3(90s)

C

C

1 N

N

O

C

C

C

13C

C

N

4

C N

C

16

15

2

3

5

14

N

17

7

6

C

N

C C

8

10
11

12

18

p1

9

p2

p3

(d) Q4(100s)

C

C

1
C

N

C

C

C

N

9

8

C

C

6

C

C

C

12

11

3

5

7

10

N

13

N

2

4

C

22

14

C

C

15

C

N

16

18

23

C

C

19

20

N

C

21

17

p1

p2

p3

(e) Q5(120s)

C

C

1

N

N

3

2

6

CO

4

5

(f) Q6(20s)

C

C

1

N

N

3

2

C

O

4

5

C

C

6

N

N

8

7

C

O

9

1012

11

(g) Q7(60s)

C

C

1
C

C

O

C

N

18

C

C

6

3

5

7

N

2

4

17

C

8

C

N

9

11

C

C

12

13

N

C

14

10

15

16

p1

p2

p3

(h) Q8(110s)

C

C

1
N C

C

C

C

7

3

5

C

2

4

C

8

C

N

9

11

C

C

12

16

N

C

13

10

22

24

C

6

C

C

C

14

15

23

N

C

C

N

C

17

18

19

20

21

p1
p2

p3

(i) Q9(150s)

C

C

1

C2

O C C

O

6

5 4

8

3

O

7

(j) Q10(37s)

C

C

1

N

C C

C

N

6

C

4

C

C

C

11

10

2

3

5

C

7

9

C

12

C

14

8

C

13

(k) Q11(50s)

Fig. 7. Queries for AIDS dataset. The query formulation time is shown in parenthesis.

Performance measures: Recall that an EAS comprises of a
sequence of add, modify, and run actions. Hence, we measure
their performances. The add and modify actions result in cre-
ation and maintenance of the ADVISE and SPIGs in FERRARI
and PICASSO, respectively. Consequently, we measure the
construction and update cost of these indexes. The run action
executes a subgraph query of a specific size and type (subgraph
containment or subgraph similarity). It is not impacted by
previous formulation steps or ADVISE construction. Hence, we
measure the system response time (SRT), which refers to the
duration between the time a user presses the Run icon to the
time when she gets the query results. Observe that any VESS
framework that efficiently supports these actions naturally can
support exploratory subgraph search efficiently as such search
process comprises of a sequence of these three actions.

B. Experimental Results

Exp 1: Performance of the run action. In this set of ex-
periments, each query is formulated by a sequence of add
actions (i.e., modify action is excluded) and executed using the
run action. We first investigate the performance of subgraph
containment queries of different sizes. Specifically, we use
Q10 − Q11 on AIDS dataset, Q6 − Q7 on eMolecules, and
Q1 − Q2 on PubChem. Figures 9(a)-(c) plot the SRTs. Note
that PICASSO suffers from out-of-memory issue for Q11, for
eMolecules, and for Q2 of PubChem. Observe that FERRARI
outperforms PICASSO by up to 4 orders of magnitude (Q10).
When larger query graphs are formulated, the size of SPIGs
generated by PICASSO increases significantly. Consequently,
the construction time and memory usage of SPIGs increase
significantly. This issue is largely alleviated in FERRARI due
to the usage of efficient ADVISE index.

15

C

C

1

CC

C

C

C

N

9

8

10
7

6

4

2 3

5

(a) Q1(20s)

C O13

C C

CC

510

C O14

C

2

C

C O15

N

C

C

C

1

8 17

16

9

3
12

4 7

6

11

(b) Q2(60s)

C

C

11 C

C

C

C
O

C

2
1

23

C

C

16C

14

C

C

C

9

7

12

13

15

N

17

4

22
24

C C

C

18

C

19

20

21

C

3

C

5

C

6

C

N

10

8

p1

p2

p3

(c) Q3(130s)

C

C

1
N

C

C
C

C

10

3

9

C

22

C

C

N

C

23

26

27

CC

C

1211

C

C

C

19

17

14

C

13

C

15

C

16

C

N

20

18

C

2

C

4

6

C

C

C

5

7

8

31

C

21

24

C

2532

C

28

C

29

C

30

p1

p2

p3

(d) Q4(220s)

C

C

1
C

C

N

C

C

7

C

3

6

8

C

17

C

2

4

C

18

C

C

11

C

C

12

13

N

C

14

15

C

5

C

C

10

9

16
C

C

20

19

41
C

C

31

N

CC

C

33

C

32

C

34

36

C

C

C

35

37

38

C

C

23

C

C

N

C

24

27

28

C

21

25

C

29

C 30

C

22

C

26

42
43

39

40

p1

p2

p3

p4

(e) Q5(500s)

C

C

1
C

C

N

C

C

7

3

6

8

C

2

4

C

5

C

C

10

9

(f) Q6(60s)

C

C

3

C

C

C

C

4

7

8

C

1

5

C

9

C 10

C

2

C

6

C 11

O

12

(g) Q7(70s)

Fig. 8. Queries for eMolecules dataset. The query formulation time is shown in parenthesis.

Next, we study the performance of subgraph similarity
queries for different δ. We report the performances of top-
3 largest queries on eMolecules and PubChem datasets, i.e.,
(Q3 −Q5) on eMolecules (320K) and Q4 −Q6 on PubChem
(400K). Note that PICASSO failed to handle these queries for
aforementioned reasons. Figures 9(d) and 9(e) plot the SRTs.
We can observe that the SRT increases as δ increases. This is
expected as the verification workload increases as δ increases.
Recall that, in practice δ is set to a small value.

We also test the scalability of FERRARI by utilizing a subset
of queries. We set δ = 2. Figure 9(f) reports the results of
the study. Unlike PICASSO, the run action of FERRARI can
efficiently process larger exploratory query graphs on dataset
containing more than one million data graphs.

Next, we study the impact of template pattern-based query
formulation. We use Q4−Q5 and Q8−Q9 of AIDS, Q3−Q5 of
eMolecules, and Q3−Q4 of PubChem. The number of patterns
used to formulate each query is at most 4. After dragging
these patterns from the Pattern Panel to the Query Panel, we
connect them to the query fragment by adding relevant edges.
In addition to the default QFS (denoted by s1), we use three
different QFS for these queries (denoted by s2, s3, and s4).
Table II shows the average SRT. PICASSO failed to process
them as it failed to handle the template patterns within the
GUI latency. In contrast, the performance of the run action in
FERRARI is efficient and not adversely impacted by this mode
of query formulation. Note that Q4 (PubChem) has larger SRT
as it is a similarity search query on a data source that contains
data graphs much larger than those in eMolecules or AIDS.
Furthermore, the choice of QFS does not significantly impact
on the query performance. Consequently, FERRARI does not
need to employ any selectivity-based strategy for ordering the
edges in a template pattern.

Finally, we evaluate the impact of minimum support thresh-
old α on the run action. We set different values of α from 0.1
to 0.3 in AIDS (40K), from 0.05 to 0.2 in eMolecules (960K),
and from 0.05 to 0.2 in PubChem (400K). Note that α affects

TABLE II
Impact of template patterns on the run action (avg. SRT (msec)).

Query Dataset s1 s2 s3 s4
Q4 AIDS (40K) 14 10 11 7
Q5 AIDS (40K) 48 28 35 30
Q8 AIDS (40K) 13 21 18 25
Q9 AIDS (40K) 40 23 30 34
Q3 eMolecules (960K) 50 70 65 55
Q4 eMolecules (960K) 80 90 100 90
Q5 eMolecules (960K) 300 180 200 190
Q3 PubChem (400K) 12 15 14 15
Q4 PubChem (400K) 2100 2000 2150 2210

TABLE III
Performance of the add action for different QFS (in msec).

Method Query Dataset s1 s2 s3 s4
FERRARI Q1 AIDS (40K) 12 10 14 6
PICASSO 1800 1900 1800 1600
FERRARI Q6 AIDS (40K) 19 13 21 16
PICASSO 160 400 300 200
FERRARI Q3 eMolecules

(960K)
810 550 740 550

FERRARI Q5 eMolecules
(960K)

380 350 360 230

FERRARI Q3 PubChem
(400K)

17 15 13 16

FERRARI Q5 PubChem
(400K)

380 390 410 350

the number of frequent fragments and DIFs in the VACCINE
index. Figure 10 reports the SRTs for different values of α
for four representative queries. Importantly, the SRT fluctuates
in a small range with the variation of α. Note that the SRT
depends not only on α but also on the query structure. If a
query contains several NIFs, the possibility of finding matching
fragments in the VACCINE index may be reduced. In this case,
we need more time for verification during query execution. On
the other hand, if a query contains several frequent fragments,
the pruning power of VACCINE is enhanced as α increases.
Consequently, the SRT will be reduced significantly.

Exp 2: Performance of the add action. An add action in an
EAS triggers the construction of ADVISE index. Hence, we

16

10

10
2

10
3

10
4

10
5

10
6

10K 20K 30K 40K

S
R

T
(m

s)

AIDS Datasetâ��

FERRARI(Q10)
FERRARI(Q11)

PICASSO(Q10)

(a) Run action (AIDS)

0.1

1

10

10
2

10
3

320K 640K 960K 1300K

S
R

T
(s

)

eMolecules Datasetâ��

FERRARI(Q6)
FERRARI(Q7)

(b) Run action (eMolecules)

10

10
2

10
3

10
4

100K 200K 400K 800K

S
R

T
(m

s)

PubChem Datasetâ��

FERRARI(Q1)
FERRARI(Q2)
PICASSO(Q1)
PICASSO(Q2)

(c) Run action (PubChem)

0.1

1

10

10
2

10
3

1 2 3 4

S
R

T
(s

)

Distance

FERRARI(Q3)
FERRARI(Q4)
FERRARI(Q5)

(d) Run action (eMolecules)

0.1

1

10

10
2

10
3

1 2 3 4

S
R

T
(s

)

Distance

FERRARI(Q4)
FERRARI(Q5)
FERRARI(Q6)

(e) Run action (PubChem)

0.1

1

10

10
2

320K 640K 960K 1300K

S
R

T
(s

)

eMolecules Datasetâ��

FERRARI(Q1)
FERRARI(Q2)

FERRARI(Q3)
FERRARI(Q4)

(f) Scalability (in sec)

10

100

300

600

900

320K 640K 960K 1300K

M
ax

im
al

 R
es

p
o

n
se

 T
im

e(
m

s)

eMolecules Datasetâ��

Q1
Q2

Q3
Q4

(g) MCC (eMolecules)

30
100

300

500

700

1000

Q1 Q2 Q4 Q6

M
em

o
ry

 C
o

n
su

m
p

ti
o

n
(M

B
)

Query

FERRARI PICASSO

(h) Memory cost (AIDS)

2

5

10

15

10K 20K 30K 40K

M
ax

im
al

 R
es

p
o

n
se

 T
im

e(
m

s)

AIDS Dataset

Q1
Q3

Q6
Q7

(i) Modify action (AIDS)

1

5

10

15

20

25

30

320K 640K 960K 1300K

M
ax

im
al

 R
es

p
o

n
se

 T
im

e(
m

s)

eMolecules Datasetâ��

Q1
Q2

Q3
Q4

(j) Modify action (eMolecules)

1

10

20

30

60

100K 200K 400K 800K

M
ax

im
al

 R
es

p
o

n
se

 T
im

e(
m

s)

PubChem Datasetâ��

Q1
Q2

Q4
Q5

(k) Modify action (PubChem)

Fig. 9. Experimental results of run, add, and modify actions.

report the construction cost of ADVISE in order to investigate
the performance of the add action. Specifically, in this ex-
periment each query graph is formulated using a sequence
of add actions (i.e., QFS) without any modify action. We
record the maximum construction cost (MCC), which is the
maximum time taken to construct the ADVISE index among all
the add actions for a given QFS. Note that this time reflects
the worst-case scenario of ADVISE index construction cost for
a given QFS. Also, interleaving multiple run actions in the
QFS do not impact MCC as it is only influenced by the query
construction steps and not query execution. We set α = 0.1,
δ = 2 and follow the default sequence of query formulation.

Figure 9(g) reports the MCC in FERRARI for representative
queries on eMolecules. Observe that ADVISE construction can
finish within a second (typically less than the available GUI
latency).

Next we investigate the impact of different QFS on MCC.
Specifically, we compare the MCC consumed by FERRARI
and PICASSO for constructing ADVISE and SPIGs, respectively.
Table III reports the average MCC (all participants) for four
different QFS. We do not report MCC of PICASSO if it fails
to handle a query/dataset. Observe that ADVISE index con-
struction in FERRARI is very efficient and is not significantly
impacted by different QFS. Particularly, it can be more than

17

100
300

600

1000

2000

0.1 0.2 0.3

S
R

T
(m

s)

alpha

Q1
Q3

Q6
Q7

(a) AIDS (40K)

1

10

20

40

60

80

0.05 0.1 0.2

S
R

T
(s

)

alpha

Q1
Q2

Q3
Q4

(b) eMolecules (960K)

1

100

500

2000
4000

0.05 0.1 0.2

S
R

T
(m

s)

alpha

Q3 Q4

(c) PubChem (400K)

Fig. 10. Effect of α on the run action.

10

10
2

10
3

10
4

10
5

1 5 10 15 20 25 30 35 40 45 50

S
R

T
(m

s)

Query index

FERRARI PICASSO

(a) Frequent fragment queries

10

10
2

10
3

10
4

10
5

1 5 10 15 20 25 30 35 40 45 50

S
R

T
(m

s)

Query index

FERRARI PICASSO

(b) NIF queries

Fig. 11. Performance of run action (AIDS) using a visual subgraph
query simulator [2].

200X faster than the SPIG set construction in PICASSO. Note
that for Q1, the MCC for PICASSO is high because the SPIG set
construction in the last step is 10X slower than the previous
steps.

Lastly, we record the difference of memory consumption
of ADVISE and SPIGs before and after the query formulation.
Figure 9(h) shows the memory cost for a subset of queries in
the AIDS dataset. Q2 and Q4 lead to out-of-memory problem
in PICASSO, so the memory consumption reported here is the
last step before it crashed. Clearly, the memory consumption
of ADVISE is significantly smaller than SPIGs.

Exp 3: Performance of the modify action. Recall that the
modify action leads to update of the ADVISE index. Hence,
we measure the update cost of this index. Specifically, in this
experiment we always delete the first constructed edge (i.e.,
modify action) after the last add action of a QFS to simulate
the worst-case scenario. That is, each QFS is a sequence of add
actions followed by a modify action. Each query is formulated
by five different participants and we report the maximum
modification time (Figures 9(i)-(k)) for four representative
queries. Observe that the modification time is cognitively
negligible. That is, the cost of updating the ADVISE index is
negligible. Furthermore, given that it takes less than 50 msec to
update the ADVISE index, deletion of a set of edges at one go
(e.g., template pattern) on the GUI by a user can be efficiently
realized by processing them sequentially.

Exp 4: Automated performance comparison. We use a re-
cently proposed visual subgraph query simulator called VI-

10

10
2

10
3

10
4

10
5

5 6 7 8

m
se

c

query size

FERRARI
PICASSO

(a) Frequent fragment queries

10

10
2

10
3

10
4

10
5

5 6 7 8

m
se

c

query size

FERRARI
PICASSO

(b) NIF queries

Fig. 12. Performance of add action (AIDS) using a visual subgraph
query simulator [2].

SUAL [2] to automatically select a larger collection of small-
sized subgraph queries and simulate their formulation. Since
the current implementation of VISUAL simulates small-sized
subgraph query formulation (size up to 9) using edge-at-a-
time formulation mode, we cannot use this tool to evaluate
larger size visual queries or template pattern-based query
formulation. We integrated VISUAL on top of FERRARI and
PICASSO and randomly generated 100 queries (50 frequent
and 50 NIFs) of 5 − 8 edges, with different topologies (path,
tree, graph, and cycle), and simulated their formulation for
all possible QFS. Since VISUAL does not support the modify
action, we are confined to study add and run actions. We use
the AIDS 40K dataset (α = 0.1) since PICASSO suffers from
out-of-memory issue for eMolecules and PubChem datasets.

Figure 11 shows the avg. SRT (performance of run action)
for all possible QFS. Observe that even for small-size query
graphs FERRARI consistently outperforms PICASSO. Figure 12
plots the average processing time of each edge in 5-edge
to 8-edge query graph sets. Note that this time is used
to construct ADVISE and SPIGs in FERRARI and PICASSO,
respectively (performance of add action). Observe that the
construction cost of ADVISE is consistently lower than SPIG
set construction. That is, FERRARI is superior to PICASSO even
when the size of subgraph queries is small during exploration.

Exp 5: Run action with traditional graph querying schemes.
Here we compare the performance of run action in FERRARI
with the following traditional techniques: (a) SIGMA [27]
and (b) GRAFIL [40], which are traditional subgraph
search techniques; (c) SING [7], (d) GRAPHGREPSX
(GREPSX for brevity) [4], and (e) VCGGSX [35], which
are exact subgraph matching techniques. Particularly, a
recent study [20] demonstrated that GREPSX has superior
performance compared to several existing exact subgraph

18

10

10
2

10
3

10
4

10
5

10K 20K 30K 40K

S
R

T
(m

s)

AIDS Datasetâ��

FERRARI(Q10)
GREPSX(Q10)

SING(Q10)
FERRARI(Q11)

GREPSX(Q11)
SING(Q11)

vcGGSX(Q10)
vcGGSX(Q11)

(a) Subgraph containment (AIDS)

0.1

1

10

10
2

10
3

320K 640K 960K 1300K

S
R

T
(s

)

eMolecules Dataset

FERRARI(Q6)
FERRARI(Q7)
GREPSX(Q6)

SING(Q6)

vcGGSX(Q6)
GREPSX(Q7)

SING(Q7)
vcGGSX(Q7)

(b) Subgraph containment (eMolecules)

10

10
2

10
3

10
4

10
5

100K 200K 400K 800K

S
R

T
(m

s)

PubChem Datasetâ��

FERRARI(Q1)
GREPSX(Q1)

SING(Q1)
FERRARI(Q2)

GREPSX(Q2)
SING(Q2)

vcGGSX(Q1)
vcGGSX(Q2)

(c) Subgraph containment (PubChem)

10

10
2

10
3

10
4

10
5

1 2 3 4

S
R

T
(m

s)

Distance

FERRARI(Q3)
SIGMA(Q3)

GRAFIL(Q3)
FERRARI(Q4)

SIGMA(Q4)

GRAFIL(Q4)
FERRARI(Q5)

SIGMA(Q5)
GRAFIL(Q5)

(d) Subgraph similarity (AIDS (40K))

0.1

1

10

10
2

10
3

1 2 3 4

S
R

T
(s

)

Distance

FERRARI(Q3)
FERRARI(Q4)
FERRARI(Q5)

SIGMA(Q3)
GRAFIL(Q3)

SIGMA(Q4)
GRAFIL(Q4)
SIGMA(Q5)

GRAFIL(Q5)

(e) Subgraph similarity (eMolecules (320K))

0.1

1

10

10
2

10
3

1 2 3 4

S
R

T
(s

)

Distance

FERRARI(Q4)
FERRARI(Q5)
FERRARI(Q6)

SIGMA(Q4)
GRAFIL(Q4)

SIGMA(Q5)
GRAFIL(Q5)
SIGMA(Q6)

GRAFIL(Q6)

(f) Subgraph similarity (PubChem (200K))

Fig. 13. Comparison of the run action of FERRARI with traditional subgraph querying techniques.

C

C

1

C

C

4

5

2 3

(a) A dense query (6s)

50

100

300

500

1000

2000

10K 20K 30K 40K

S
R

T
(m

s)

AIDS Datasetâ��

FERRARI
PICASSO
GREPSX

SING
vcGGSX

(b) AIDS

1

10

500
1000

320K 640K 960K 1300K

S
R

T
(s

)

eMolecules Datasetâ��

FERRARI(DQ)

(c) eMolecules

5

50

500

1000

2000

10K 20K 30K 40K

M
C

C
(m

s)

AIDS Datasetâ��

FERRARI PICASSO

(d) MCC

Fig. 14. Performance comparison with a dense query.

matching techniques. We obtain the executable software of
these algorithms from their authors. We shall use the default
settings of these techniques as suggested in [4], [7], [27],
[35], [40].

Figures 13(a)-(c) plot the SRTs of FERRARI, SING,
GREPSX, and VCGGSX using the subgraph containment
queries Q10 − Q11 on AIDS, Q6 − Q7 on eMolecules, and
Q1 − Q2 on PubChem. For SING, GREPSX, and VCGGSX,
SRT represents the query execution time. FERRARI is up to 3
orders of magnitude faster than these approaches. Note that
SING, GRAFIL, GREPSX, VCGGSX, and SIGMA confronted
the out-of-memory issue on eMolecules containing more than
320K data graphs and on PubChem with more than 400K
data graphs. Figures 13(d)-(f) plot the results for subgraph
similarity queries. We use the same query set and setup
discussed earlier. We can observe that FERRARI can be up
to 3 orders of magnitude faster than these approaches or have
comparable performance for higher δ.

Lastly, we compare FERRARI with state-of-art techniques
for processing a dense query graph. We extract one of

the densest subgraphs (Figure 14(a)) from AIDS (40K) and
eMolecules datasets. Note that due to chemical properties
of compounds we cannot find any cliques with more than
three nodes in all datasets. Figures 14(b) and (c) report the
performances. Observe that FERRARI is consistently superior
to other algorithms. Despite the superiority of VCGGSX in the
verification and filtering step compared to SING and GREPSX,
the interactive nature of FERRARI coupled with efficient in-
dexes makes it more suitable for the VESS framework. We
also record the difference of memory consumption before
and after the query formulation. The maximum difference
of FERRARI is nearly 500MB (AIDS), whereas it is nearly
1.1GB for PICASSO. Hence ADVISE is more space efficient
than SPIGs. Figure 14(d) reports the MCC of FERRARI and
PICASSO, which once again supports our claim that ADVISE
is more efficient than SPIGs. In summary, FERRARI is more
suitable than traditional subgraph search techniques for VESS.

Exp 6: Impact of query formulation sequence (QFS) on SRT.
Next, we investigate the impact of QFS on the SRT. In addition
to the default QFS (denoted by s1), we use four different

19

TABLE IV
Average SRT (sec) for different QFS.

Method Query Dataset s1 s2 s3 s4
FERRARI Q1 AIDS (40K) 0.23 0.336 0.356 0.42
PICASSO 223.4 213.5 239.8 220.9
FERRARI Q3 AIDS (40K) 0.17 0.15 0.16 0.17
FERRARI Q6 AIDS (40K) 1.52 1.6 1.63 1.26
PICASSO 5.36 5.79 6.12 6.61
FERRARI Q1 eMolecules

(960K)
38 37 41 40

FERRARI Q3 eMolecules
(960K)

0.43 0.46 0.49 0.46

FERRARI Q5 eMolecules
(960K)

3.56 3.2 2.1 4.3

FERRARI DQ AIDS (40K) 0.3 0.35 0.31 0.41
PICASSO 0.53.4 0.76 0.61 0.58
FERRARI DQ eMolecules

(320K)
1.4 1.6 1.3 1.5

FERRARI Q3 PubChem
(400K)

0.014 0.015 0.016 0.017

FERRARI Q5 PubChem
(400K)

7.3 6.8 7.9 8.1

10

100

10
3

10
4

320K 640K 960K 1300K

In
d
ex

 S
to

ra
g
e

(M
B

)

eMolecules Dataset

FERRARI
PICASSO

SIGMA/GRAFIL

GREPSX
SING

609

1170
2010

2670

188

420

780
1203

83
167

253
366

120

245
372

538

148

300

Fig. 15. Size of VACCINE.

QFS for representative queries (denoted by s2, s3, and s4).
Table IV shows the average SRT for different QFS. Note that
DQ refers to the dense query in Figure 14(a). Observe that
SRTs vary slightly for different QFS. In summary, QFS has
cognitively negligible impact on the SRT.

Exp 7: Performance of VACCINE. Figure 15 shows the
index sizes of different techniques for the eMolecules. Note
that SIGMA and GRAFIL have the same index structure. All in-
dexing strategies are independent of δ. SING suffers from out-
of-memory problem for datasets containing more than 640K
graphs. Observe that GREPSX consumes the smallest storage
space as it only indexes paths up to a specific length. On the
other hand, FERRARI’s index size is larger than other systems
because it needs to store all frequent fragments and DIFs
along with their transformation information. Importantly, the
gap between the index size of FERRARI and other techniques
reduces significantly. Specifically, it utilizes 2.2X and 5X more
space than PICASSO and GREPSX, respectively, for the largest
dataset. Nevertheless, VACCINE index consumes less than 3GB
for the largest dataset, which can easily fit in the main memory
of modern machines.

Figure 16 plots the index building time and index size for
different values of α. The building time constitutes the time
to generate the frequent fragments using gSpan and indexing

their primitive transformer-based relationships in the VACCINE
index. Naturally, as α increases, the number of frequent
fragments decreases leading to shorter index construction time
as well as index size. Importantly, the index can easily fit in
the main memory of modern machines for different α values
and datasets.

In summary, although VACCINE consumes more space, we
emphasize that its construction is a one-time cost. In view of
the performance improvement brought to exploratory search
queries, such a trade-off is appropriate.

C. Summary

In summary, the key results are as follows.
• The run action on our framework can be up to 4 orders

of magnitude faster than PICASSO on large datasets.
Even for small-sized queries, FERRARI consistently out-
performs PICASSO due to superior indexing framework.
Furthermore, it is not significantly impacted by a specific
mode of query formulation (i.e., template pattern-based
or edge-based) or the choice of QFS.

• We investigated the construction cost of ADVISE index
as it influences the performance of the add action. It is
significantly faster than PICASSO and can finish within a
second (i.e., typically less than the available GUI latency).
Particularly, it can be more than 200X faster than the SPIG
set construction. It is also not significantly impacted by
different QFS. Furthermore, the memory consumption of
ADVISE is significantly smaller than SPIGs (up to 8X).

• The cost of updating the ADVISE index (i.e., modify
action) is cognitively negligible.

• FERRARI can be up to 3 orders of magnitude faster than
VESS frameworks hinged on traditional subgraph search
techniques.

• Although the size of VACCINE is up to 2.2X than the
offline index in PICASSO, it consumes less than 3GB for
the largest dataset, which can easily fit in the main mem-
ory of modern machines. Importantly, the gap between
the size of VACCINE and existing indexes reduces with
increasing dataset size.

IX. RELATED WORK

Yahya et al. [37] report exploratory querying framework on
knowledge graphs. It focuses on automatic query relaxation,
query suggestions, and explanation of answers. Recently,
[28] focused on large graph exploration using keywords. In
contrast, we focus on efficient evaluation visual exploratory
subgraph queries on a large collection of data graphs. Hence,
FERRARI is complementary to these efforts. As mentioned
earlier, the techniques in PICASSO [13] are designed for an
exploratory search environment where the subgraph queries re-
main small and hence cannot efficiently handle scenarios when
the query grows large. Furthermore, PICASSO does not support
efficient processing of multiple edges (i.e., template patterns)
at each step during visual query formulation. Hence, FERRARI
is a much more generic and scalable VESS framework. Under
the hood, as detailed in Sections V-D and VI-D, the VACCINE
and ADVISE indexes are different from their counterparts [18],
[19] in PICASSO.

20

10

10
2

10
3

10
4

10K 20K 30K 40K

In
d

ex
 T

im
e(

s)

AIDS Dataset

alpha=0.1
alpha=0.2

alpha=0.3

(a) AIDS

10

10
2

10
3

10
4

320K 640K 960K 1300K

In
d

ex
 T

im
e(

s)

eMolecules Dataset

alpha=0.05
alpha=0.1

alpha=0.2

(b) eMolecules

10

10
2

10
3

10
4

100K 200K 400K 800K

In
d

ex
 T

im
e(

s)

PubChem Dataset

alpha=0.05
alpha=0.1

alpha=0.2

(c) PubChem

10

50
100
200
300
500

10K 20K 30K 40K

In
d

ex
 s

iz
e(

M
B

)

AIDS Dataset

alpha=0.1
alpha=0.2
alpha=0.3

(d) AIDS

10

10
2

10
3

10
4

320K 640K 960K 1300K

In
d

ex
 S

iz
e(

M
B

)

eMolecules Dataset

alpha=0.05
alpha=0.1
alpha=0.2

(e) eMolecules

10

10
2

10
3

10
4

100K 200K 400K 800K

In
d

ex
 S

iz
e(

M
B

)

PubChem Dataset

alpha=0.05
alpha=0.1
alpha=0.2

(f) PubChem

Fig. 16. Impact of α on VACCINE construction time and size.

The paradigm of blending visual graph formulation and
processing [14], [18], [19], [34] has been explored in the
context of lookup queries (executed only once). QUBLE [14]
and BOOMER [34] realize this on a large network for subgraph
search and p-homomorphism queries, respectively. In contrast,
our work focuses on exploratory search on a large collection
of small- or medium-sized data graphs. The efforts in [18],
[19] are designed for a large set of small- or medium-sized
graphs. In fact, as mentioned earlier, PICASSO [13] utilizes
the indexing frameworks of [18], [19] for exploratory search.
Hence, they suffer from the aforementioned limitations.

The majority of incremental algorithms for graphs [6], [9],
[10] focus on incrementally updating the query results in
response to the changes in the underlying graph. In contrast,
given a data graph collection we focus on updating partial
results as the query fragment evolves during exploration. More
importantly, these algorithms are not designed to exploit visual
interaction behaviors of users and GUI latency.

Recently, there are efforts to develop techniques that aid
visual graph query construction [16], [29], [41]. They focus
on facilitating visual query formulation by providing sugges-
tions [16], [41] and refinement strategies [29]. They do not
focus on processing exploratory subgraph search queries.

X. CONCLUSIONS

In this paper, we present two novel index structures to
efficiently support a visual exploratory subgraph search frame-
work called FERRARI. Specifically, in contrast to the previous
effort in [13], FERRARI is efficient and scalable with respect
to the size of the query graph as well as the number of data
graphs. Experimental studies on real data graphs validated the
merit and superiority of our proposed technique compared to
state-of-the-art exploratory subgraph search techniques. As for
future work, we intend to explore how the VESS paradigm can
be realized on large networks.

Acknowledgments. The first three authors are supported by
AcRF MOE2015-T2-1-040 and AcRF Tier-1 Grant RG24/12.
Shuigeng Zhou is supported by National NSF of China (Grant
No. U1636205).

REFERENCES

[1] J. Ahn, P. Brusilovsky. Adaptive Visualization for Exploratory Informa-
tion Retrieval. Info. Proc. & Man. 49, 5, 2013.

[2] S.S. Bhowmick, H.-E. Chua, B. Choi, C. Dyreson. VISUAL: Simulation
of Visual Subgraph Query Formulation To Enable Automated Perfor-
mance Benchmarking. In TKDE, 29(8), 2017.

[3] A. Bonifati, W. Martens, T. Timm. An Analytical Study of Large
SPARQL Query Logs. In PVLDB, 11(2), 2017.

[4] V. Bonnici, A. Ferro, et al. Enhancing graph database indexing by suffix
tree structure. In Pattern Recognition in Bioinformatics, 2010.

[5] L. Cordella, P. Foggia, C. Sansone, and M. Vento. A (sub)graph
isomorphism algorithm for matching large graphs. IEEE Trans. on
PAMI, 26(10), 2004.

[6] C. Demetrescu, D. Eppstein, Z. Galil, G. F. Italiano. Dynamic Graph Al-
gorithms. In Algorithms and theory of computation handbook. Chapman
& Hall/CRC, 2010.

[7] R. Di Natale, A. Ferro, et al. Sing: Subgraph search in non-homogeneous
graphs. BMC Bioinformatics, 11(1), 2010.

[8] M. Elseidy, E. Abdelhamid, et al. GRAMI: Frequent Subgraph and
Pattern Mining in a Single Large Graph. PVLDB 7(7), 2014.

[9] W. Fan, C. Hu, C. Tian. Incremental Graph Computations: Doable and
Undoable. In SIGMOD, 2017.

[10] W. Fan, X. Wang, Y. Wu. Incremental Graph Pattern Matching. TODS,
38(3), 2013.

[11] A. Galakatos, A. Crotty, et al. Revisiting Reuse for Approximate Query
Processing. PVLDB, 10(10), 2017.

[12] J.P. Huan, W. Wang, J. Prins. Efficient Mining of Frequent Subgraph in
the Presence of Isomorphism. In ICDM, 2003.

[13] K. Huang, S. S. Bhowmick, S. Zhou, B. Choi. PICASSO: Exploratory
Search of Connected Subgraph Substructures in Graph Databases.
PVLDB, 10(12), 2017.

[14] H. H. Hung, S. S. Bhowmick, B. Q. Truong, B. Choi, S. Zhou. QUBLE:
Towards Blending Interactive Visual Subgraph Search Queries on Large
Networks. VLDB J. 23(3), 2014.

[15] S. Idreos, O. Papaemmanouil, S. Chaudhuri. Overview of Data Explo-
ration Techniques. In SIGMOD, 2015.

[16] N. Jayaram, S. Goyal, C. Li. VIIQ: Auto-Suggestion Enabled Visual
Interface for Interactive Graph Query Formulation. In PVLDB, 8(12),
2015.

21

[17] P. Jayachandran, K. Tunga, N. Kamat, A. Nandi. Combining User
Interaction, Speculative Query Execution and Sampling in the DICE
System. In PVLDB, 7, 2014.

[18] C. Jin, S. S. Bhowmick, B. Choi, and S. Zhou. PRAGUE: A practical
framework for blending visual subgraph query formulation and query
processing. In In ICDE, 2012.

[19] C. Jin, S. S. Bhowmick, X. Xiao, J. Cheng, and B. Choi. Gblender:
towards blending visual query formulation and query processing in graph
databases. In ACM SIGMOD, 2010.

[20] F. Katsarou, N. Ntarmos, and P. Triantafillou. Performance and scala-
bility of indexed subgraph query processing methods. In PVLDB, 8(12),
2015.

[21] S. Kim, et al. PubChem Substance and Compound Databases. Nucleic
acids research, 44(D1), Oxford University Press, 2015.

[22] G. Koutrika, et al. Exploratory Search in Databases and the Web. EDBT
Workshop, 2014.

[23] L. Laura Faulkner. Beyond the five-user assumption: Benefits of in-
creased sample sizes in usability testing. Behavior Research Methods,
Instruments, & Computers, 35(3), 2003.

[24] J. Lazar, J. H. Feng, H. Hochheiser. Research Methods in Human-
Computer Interaction. John Wiley & Sons, 2010.

[25] G. Marchionini. Exploratory Search: from Finding to Understanding.
Commun. ACM, 49(4), 2006.

[26] B. D. McKay, A. Piperno. Practical graph isomorphism, {II}. Journal
of Symbolic Computation, 60, 2014.

[27] M. Mongiova, R. D. Natale, R. Giugno, A. Pulvirenti, and A. Ferro.
Sigma: A set-cover-based inexact graph matching algorithm, In J. of
Bioinformatics and Comp. Biology, 2010.

[28] M. H. Namaki, Y. Wu, X. Zhang. GExp: Cost-aware Graph Exploration
with Keywords. In SIGMOD, 2018.

[29] R. Pienta, F. Hohman, et al. Visual Graph Query Construction and
Refinement. In SIGMOD, 2017.

[30] B. Sarrafzadeh, E. Lank. Improving Exploratory Search Experience
through Hierarchical Knowledge Graphs. In SIGIR, 2017.

[31] B. Shneiderman, C. Plaisant, M. Cohen, S. Jacobs. Designing the
User Interface: Strategies for Effective Human-Computer Interaction.
Pearson, 5th Edition, 2009.

[32] H. Shang, et al. Connected Substructure Similarity Search. In SIGMOD,
2010.

[33] T. Siddiqui, et al. Effortless Data Exploration with Zenvisage: An
Expressive and Interactive Visual Analytics System. In PVLDB, 10(4),
2016.

[34] Y. Song, H. E. Chua, S. S. Bhowmick, B. Choi, S. Zhou. BOOMER:
Blending Visual Formulation and Processing of p-Homomorphic Queries
on Large Networks. In SIGMOD, 2018.

[35] S. Sun, Q. Luo. Scaling Up Subgraph Query Processing with Efficient
Subgraph Matching. In ICDE, 2019.

[36] R. W. White, R. A. Roth. Exploratory Search: Beyond the Query-
response Paradigm. Synth. Lec. on Inf. Conc., Retr., and Serv. 1, 1,
2009.

[37] M. Yahya, K. Berberich, et al. Exploratory Querying of Extended
Knowledge Graphs. In PVLDB, 9(13), 2016.

[38] X. Yan and J. Han. gspan: graph-based substructure pattern mining. In
ICDM, 2002.

[39] X. Yan, P. S. Yu, J. Han. Graph Indexing: A Frequent Structure-Based
Approach. In SIGMOD, 2004.

[40] X. Yan, P. S. Yu, and J. Han. Substructure similarity search in graph
databases. In In ACM SIGMOD, 2005.

[41] P. Yi, B. Choi, et al. AutoG: A Visual Query Autocompletion Framework
for Graph Databases. The VLDB Journal, 26(3), 2017.

APPENDIX

Proof of Lemma 1 (Sketch). Algorithm 2 builds a VACCINE
index by adding all frequent fragments one by one and
connecting them together by their transformation relationships
via two types of primitive transformers. So the number of
vertices in a VACCINE index is the total number of frequent
fragments and DIFs (i.e., N). For a frequent fragment f ,
there are at most Nfmax nodes. Hence, we can add C2

Nfmax

new edges for connecting current nodes in f . In addition,
there are at most Nfe different ways to add a new frequent
edge of a new labeled node to a current node in f . So

it can create at most NfmaxNfe edges. Thus, there are
O(N(C2

Nfmax
+ NfmaxNfe)) edges at most in a VACCINE

index.

Proof of Theorem 1 (Sketch). In Algorithm 2, the process for
creating VACCINE index can be divided into three major steps.
The first step (Line 1) is to mine all frequent fragment from
D, whose time complexity is denoted as Cff . The second step
(Line 5−10) is to fetch all frequent edges in D and store them
in a matrix. Its time complexity is O(|E|). The third step (Line
11− 14) is to iterate through all frequent fragments to create
the index by utilizing the node and edge transformers. Assume
the time complexity of the canonical labeling process is Ccl.
Then the time complexities of node and edge transformers
are O(Nfmax|L|Ccl) and N2

fmaxCcl), respectively. Hence the
overall complexity is NfCcl(Nfmax|L| + N2

fmax). The final
step (Line 15 − 17) is to compute data graph identifier set
of DIFs. Its complexity is O(NdifNdmax). Thus, the time
complexity for building VACCINE index is O(Cff + |E| +
NfCcl(Nfmax|L|+N2

fmax) +NdifNdmax).

Proof of Theorem 2 (Sketch). First, we prove the following
lemma, which we shall be using subsequently.

Lemma 2: Given a VACCINE index GI = (VI , EI), the time
complexity of processing a new edge e` to the current query
fragment q = (Vq, Eq) is O(|VI |CCAM +min(|VI |, xf)(|Vq|+
|Eq|)), where xf is the number of frequent fragments and DIFs
of q in GI that contains e` and CCAM is the time complexity
of comparing the CAM codes of a pair of graphs.

Proof of Lemma 2. When a new edge e` is added to the
current query fragment q, Algorithm 4 first compares the CAM
code of e` with all fragments in GI to check whether the
new edge is a frequent fragment or a DIF. If it is, then we
can get the corresponding matching vertex for e` (Line 1).
The time complexity for this task is O(|VI |CCAM). Next, the
algorithm finds and indexes all frequent fragments and DIFs
that contain e` gradually by utilizing the primitive transformers
associated with the edges of the matching vertex. For each
fragment, it performs three tasks: (a) compare the transformer
information with all children of the matching vertex for finding
the next one via MATCHINGINVACCINE function (Line 11),
(b) update/add vertex for matched fragments (Lines 12–15)
and its parental relationships (Lines 16), and (c) push itself
to the queue (Line 17). The time complexities of these three
tasks are O(1) (using a suitable hash function), O(|Vq|+ |Eq|)
(there are at most |Eq| − 1 parent-child relationships in GI

for a fragment) and O(1), respectively. The upper bound of
the number of frequent fragments and DIFs is the minimum
value of |VI | and xf . Thus, the complexity of processing
each new edge during query formulation is O(|VI |CCAM +
min(|VI |, xf)(|Vq|+ |Eq|)).

Proof of Theorem 2. From Lemma 2, we know that the time
complexity for building ADVISE index by adding an edge e`
to the current query graph qc = (Vqc , Eqc) is O(|VI |CCAM +
min(|VI |, xf)(|Vqc | + |Eqc |)) where xf is the number of
frequent fragments and DIFs of qc in GI that contains e`.
The whole query q is formulated gradually, thus |Eqc | ≤ |Eq|
and |Vqc | ≤ |Vq|. So the worst-case cost for adding a query
edge is O(|VI |CCAM +min(|VI |, xfq)(|Vq|+ |Eq|)). Because

22

1

Panel 4Panel 2
Panel 3

Panel 5

Panel 1

Fig. 17. GUI of FERRARI and PICASSO.

there are at most Eq different edges with distinct labels to be
added during the formulation of q, the total time complexity
is O(|Eq| ∗ (|VI |CCAM +min(|VI |, xfq)(|Vq|+ |Eq|))).

The upper bound of the number of vertices in GA is the
minimum value of (|VI | and 2|Eq| − 1). Thus, the space
complexity of ADVISE index is m ∗min(|VI |, 2|Eq| − 1).

Figure 17 depicts the direct-manipulation interface of PI-
CASSO and FERRARI. It consists of the following panels.
• An Attribute Panel (Panel 2) to display a set of labels or

attributes of nodes or edges of the underlying data.
• A Pattern Panel (Panel 3) to display a set of template

patterns that can aid query formulation.
• A Query Panel (Panel 4) for constructing a graph query

graphically by leveraging the Attribute and Pattern Pan-
els.

• A Results Exploration Panel (Panel 5) that displays the
query results during exploration.

A typical query would be constructed using the interface by
performing the following sequence of steps.

1) Move the mouse cursor to the Attribute or Pattern Panel.
2) Scan and select a label or pattern (e.g., label C, benzene

ring pattern).
3) Drag the selected item to the Query Panel and drop it.

Each such action represents formulation of a single node
or a query fragment in the query graph.

4) Repeat, if necessary, Steps 1–3 for constructing another
node or a query fragment.

5) Construct edges (if necessary) between relevant nodes
in the constructed subgraphs by clicking on them.

6) Repeat Steps 4 and 5 until the query graph is executed
by clicking on the Run icon.

