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ABSTRACT

Online information diffusion generates huge volumes of so-
cial activities (e.g., tweets, retweets posts, comments, likes)
among individuals. Existing information diffusion modeling
techniques are oblivious to conformity of individuals during
the diffusion process, a fundamental human trait according
to social psychology theories. Intuitively, conformity cap-
tures the extent to which an individual complies with social
norms or expectations. In this paper, we present a novel
framework called chassis to characterize online information
diffusion by bridging classical information diffusion model
with conformity from social psychology. To this end, we first
extend “Hawkes Process”, a well-known statistical technique
utilized to model information diffusion, to quantitatively cap-
ture two flavors of conformity, informational conformity and
normative conformity, hidden in activity sequences. Next, we
present a novel semi-parametric inference approach to learn
the proposed model. Experimental study with real-world
datasets demonstrates the superiority of chassis to state-of-
the-art conformity-unaware information diffusion models.

1 INTRODUCTION

Information diffusion is a process by which information and
ideas spread over a network, creating a cascade. In particular,
information diffusion in social networks continuously gen-
erates large-scale activities (e.g., share, post, tweet, retweet,
like, comment). Generally, these activities are generated in
an asynchronous fashion since any individual can generate
an activity at any time and there may not be any coordina-
tion or synchronization between two activities. Hence, such
activities can be represented by asynchronous time-stamped
sequences wherein each individual gives rise to a sequence of
activities over time. In such sequences, there exist abundant
triggering relations between activities that describe “which
activity triggers which activity” [60, 61]. These relations are
typically modeled as diffusion trees [33, 46]. For example,

consider the social network in Figure 1(a) depicting follower-
followee relationships. Figure 1(b) depicts a sequence of ac-
tivities over time, involving some of the users, represented
as a diffusion tree. Observe that an activity (e.g., the post
of U4 at time t41) may trigger a succeeding activity (e.g., the
comment ofU5 at time t52) represented by a unidirectional
link between them. Such unidirectional links between activ-
ities lead to diffusion trees. Hence, diffusion trees describe
the information cascade (a.k.a informational cascade) gener-
ated by the information diffusion process. It is paramount
to model this information diffusion process accurately as it
underpins a variety of downstream applications such as in-
fluence maximization [4, 31], viral marketing [7, 44], rumour
detection [41], user behaviour prediction [14].
Several studies have linked conformity [3, 5, 6], a funda-

mental and well-studied concept in social psychology, to the
pivotal role it plays in the generation of information cas-
cade [2, 9]. Intuitively, conformity refers to the inclination
to align our attitudes and behaviors with those around us.
There are two flavors of conformity, namely informational
conformity and normative conformity [19]. The former occurs
when people conform to peer views in an attempt to reach
appropriate behaviors and attitudes due to lack of relevant
knowledge. The latter occurs because of the desire to be
accepted or that keep us from being isolated or rejected by
others. For example, reconsider Figure 1. It is indeed possible
that althoughU3 is unaware of the movie “Mission Impossi-
ble Fallout”, her response“It’s great” is same as others because
she chose to trust her friend U5 (i.e., informational confor-
mity). On the other hand, suppose U3 responds positively
because she wants to please her friends even if she dislikes
the movie. Then, this is an example of normative conformity.

Since conformity plays a fundamental role in how online
users respond to social activities, it naturally influences the
information diffusion process. Consequently, it is paramount
for information diffusion models to incorporate it.
Example 1.1. Influence maximization (im) aims to maxi-

mize the spread of information (or influence) in a network
through activation of an initial set of k seed nodes [31]. The
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Figure 1. Information diffusion.

dynamics of spread of information in a network is steered by
an information diffusion model. The Independent Cascade (ic)
is one of the most well-studied information diffusion models
in this context [4]. In this model, in the first step a seed node
is activated and subsequently at any time-step i , each newly
activated nodeUi gets one independent attempt to activate
each of its outgoing neighbors Uj with a probability pi, j ,
which is often set to 1

In(j) where In(j) refers to the in-degree
ofUj [4]. Observe that the ic model is conformity-unaware
as the computation of pi, j disregards conformity of users.

Reconsider Figure 1(a). Based on the icmodel,p5,3 = 1
3 and

p5,2 = 1. Thus, U2 is more likely to be activated by U5 than
U3. However, if we consider their responses in Figure 1(b),
U3 may exhibit higher degree of conformity to U5 than U2.
Consequently, when conformity of individuals are taken
into account, U3 is more likely to be activated instead of
U2. Hence, a conformity-aware information diffusion model
may potentially provide more accurate guidance to the im
problem. As several existing information diffusion models
(e.g., ic) are based only on the network structure, they fail to
exploit information related to conformity of individuals.

Despite the crucial role of conformity in online informa-
tion diffusion, research in this arena is scarce [50, 59]. It is
challenging to detect and quantify the two flavors of con-
formity from social activities. First, the private beliefs of
individuals may not be exposed explicitly in the activities.
For instance,U3 may not explicitly mention in her post that
she wants to please her friends or have not watched the
movie. Hence, it may not be possible to determine whether
an individual is conforming to another by simply search-
ing for one’s beliefs in the posts. Second, conformity of an
individual may vary with the context. One may show high
degree of conformity for one topic of discussion (e.g.,movies)
but not another (e.g., politics). Hence, any conformity com-
putation technique needs to be context-sensitive. Third, the
knowledge of topology of a social network is insufficient to

address this problem as connectivities between individuals
do not necessarily indicate manifestation of social activities
among them. For instance, some followers may rarely or
never interact with some of their followees, and some indi-
viduals may respond to some other unconnected individuals
in online discussions. For example, in Figure 1, U5 may re-
spond to a comment byU1 although they are not connected.
In this paper, we present a novel framework for infor-

mation diffusion called Conformity-aware HAwkes proceSS-
based Information DiffuSion (chassis) to characterize the
underlying dynamics of diffusion in the presence of confor-
mity. Specifically, we investigate how the aforementioned
two flavors of conformity can be captured in individuals’
interactions by exploiting diffusion trees constructed from
the observed activity sequences.

Since social activities represent asynchronous time-stamped
sequences, we deploy a well-known statistical technique
called “Hawkes process” [27, 28], which is a type of point
process∗ [54] that has been utilized recently to model infor-
mation diffusion [56, 60]. Specifically, we extend classical
Hawkes processes for information diffusion to capture time-
varying conformity of individuals in our model (Section 4).
We design a practical semi-parametric approach to learn the
model components from observed data (Section 7) as well as
infer the diffusion trees (Section 6) in an alternating fashion
(i.e., an instance of the Expectation-maximization method).
To this end, as detailed in Section 3, we represent the dif-
fusion trees by utilizing the branching structure, an equiv-
alent representation of Hawkes processes, which isolates
the events (e.g., activities) in a Hawkes process into immi-
grants (i.e., events that arrive independently) and offsprings
(i.e., events triggered by existing events). Then we utilize the
parent-child pairs of events (e.g., activities) in the branch-
ing structure (i.e., diffusion trees), to quantify the two types
∗Point processes are stochastic processes that are used to model events that occur at
random intervals relative to the time or space axis, and provide the statistical language
to describe the timing and properties of events.
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of conformity in Section 5 and use them in our model. Ex-
tensive experiments with real-world datasets show superior
performance of chassis in modeling information diffusion
compared to several state-of-the-art conformity-oblivious
techniques. We also show that chassis can be utilized to
predict individuals’ future behavior with considerable con-
fidence, illustrating the powerful effects of an individual’s
inclination to align one’s attitudes and behaviours with oth-
ers during information diffusion.
In summary, this paper makes the following key contri-

butions: (a) We propose a novel conformity-aware Hawkes
process-based framework called chassis to characterize on-
line information diffusion. Our work bridges the classical
online information diffusion problem in data analytics with
conformity from the domain of social psychology. (b) We quan-
titatively capture two flavors of conformity, informational
conformity and normative conformity, hidden in activity
sequences by utilizing diffusion trees (i.e., branching struc-
ture) constructed from the activity sequences. In this context,
we propose a novel diffusion tree inference technique when
explicit information about links between activities are un-
available to a downstream application. (c) We present a novel
and efficient semi-parametric inference approach that lever-
ages on the diffusion trees to learn the conformity-aware
information diffusionmodel competently from observed data.
(d) We conduct an experimental study with real social media
datasets to demonstrate the superiority and effectiveness of
chassis and its ability to predict future behavior of individu-
als involved in information diffusion.

2 RELATEDWORK

Conformity in online social networks. A rich line of
work in social psychology [3, 5, 6, 10] has demonstrated
the existence and importance of conformity in social inter-
actions. However, there is scant research on investigating
conformity in online social networks. The seminal work of Li
et al. [35] studied the interplay between influence and confor-
mity of each individual in online social networks by utilizing
the positive and negative relationships between individuals.
Subsequently, they modeled conformity in the context of
im problem [36]. Recently, [38] adopted group profiling in
conformity-aware im problem. Tang et al. [50] proposed a
probabilistic factor graph model that predicts user behavior
by exploiting the effect of conformity. The work in [59] as-
signs hidden roles to users and then learns the correlation
between roles and conformity. None of these work model
the interplay of informational and normative conformity,
which is a more realistic way to capture the role conformity
plays in social networks. Importantly, we focus on inferring
the conformity-aware information diffusion model from the
data, which is orthogonal to these efforts.

Opinion dynamic models [1, 8, 17] capture individuals’
willingness to conform with the opinions of neighbors on a
certain topic in social networks. These efforts fail to capture
the information diffusion process.

Diffusion models. Information diffusion models study
the hidden mechanism on how information spreads in a tar-
get social network. According to a previous study [26], they
can be categorized into predictive and explanatory models.
Predictive models aim to uncover and predict how a spe-

cific diffusion process would unfold in a given network.
These works consider the diffusion as a discrete random
process happened among network nodes and can be further
classified into non-progressive and progressive models. In the
former model, a node affected by a piece of information can-
not switch to unaffected status subsequently. This includes
the independent cascade (ic) [44, 51] and linear threshold
(lt) [21] models. They have been widely adopted to esti-
mate and maximize the influence propagation within social
networks [4]. ic/lt model has also been augmented with
topic [13, 37], economic theory [7], and spatial-temporal fea-
tures [34] in estimating the diffusion spread. In comparison,
the progressive model (e.g., sir and sis [29, 43] for virus prop-
agation) allows an affected node to be unaffected again. All
these predictive models are used for estimating the diffu-
sion scope. They simplify the diffusion process to happen at
discrete steps instead of continuous time.
Explanatory models are used to infer the underlying dif-

fusion path in order to retrace and understand how a piece
of information is propagated, and can benefit a series of ap-
plications including fake news detection [55], user behavior
prediction [14], etc. For instance, [23] models the diffusion
process as a spatially discrete network of continuous, condi-
tionally independent temporal processes occurring at differ-
ent rates. They presented netrate algorithm to infer pair-
wise transmission rates and the graph of diffusion. Recently,
Hawkes process has been employed in modeling the informa-
tion diffusion process. adm4 [60] uses the mutually-exciting
linear Hawkes model to capture the temporal patterns of user
behaviors, and infer the social influence. mmel [61] captures
the temporal dynamics of the observed activities by utiliz-
ing multi-dimensional linear Hawkes processes, and learns
the triggering kernels nonparametrically. Although these
models are able to uncover the diffusion as a continuous
temporal process, they fail to take into account conformity
of individuals.
Lastly, there are also several efforts in the literature to

predict the information cascade [14, 25, 57]. However, all
these efforts are conformity-unaware.
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Table 1. Key notations.

Notation Definition

aik the k th activity by individual Ui
Ni (t ) the number of activities by Ui up to time t
tik the occurrence time the activity aik
t−ik time up to tik but not including t−ik
Cik the content of activity aik
Zik parent activity of activity aik
(ajl , aik ) one parent-child pair of activities
Ni j (t ) collection of parent-child activity pairs by Ui , Uj
βi j the decay rate of previous interactions
γ Ii j (t ) time-varying informational coefficient
α Ii j (t ) time-varying informational influence
γ Ni j (t ) time-varying normative coefficient
αNi j (t ) time-varying normative influence
Ni (t ) number of offspring activities by Ui
LCA(ajl , aik ) the lowest common ancestor of ajl and aik
pik the polarity of activity aik
pLCA(tjl ,tik )

the polarity of activity LCA(ajl , aik )
Xi (t ) the collection of activities by Ui up to time t
Xt the collection of activities up to time t
Ht the collection of activities before time t

3 BACKGROUND

In this section, we provide the necessary background knowl-
edge to understand the paper. Key notations used in this
paper are described in Table 1.

3.1 Hawkes Processes

Many applicationsmay need to deal with timestamped events
in continuous time. Point process is a principled framework
to model such event data. Specifically, a point process on
a time line is a random process for realization of the event
times t1, t2, . . . falling along the line where ti is the time of
occurrence of the ith event (e.g., a tweet, like). Point pro-
cess can be equivalently represented as a counting process
N = {N (t)|t ∈ [0,T ]} over the time interval [0,T ] where
N (t) records the number of events up to time t . LetHt be
the history of events before time t . Then dynamics of the
point process could be characterized by a conditional inten-
sity function λ(t) as follows:

λ(t) = lim
∆t→0

E[N (t + ∆t) − N (t)|Ht ]

∆t
(3.1)

where two events coincide with probability 0, i.e., N (t +
∆t) − N (t) ∈ {0, 1}. Intuitively, the larger the intensity λ(t),
the greater the likelihood of observing an event in the time
window [t , t + ∆t].

In some applications, the arrival of an event increases the
likelihood of observing events in the near future. To model
these applications, there exists a class of point processes
in which the event arrival rate explicitly depends on past
events. These processes are referred to as self-exciting pro-
cesses. Hawkes processes [27] is the most well-known self

N1(t)

N4(t)
t11 t12

t41

λ1(t)

λ5(t)

λ4(t)

(a) Time-stamped events

(b) Counting processes

(c) Hawkes processes
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Figure 2. 3-dimensional Hawkes processes: (a) Five so-

cial activities during a time interval. (b) Counting pro-

cess over time for each individual. N (t) increases by

one when an activity happens. (c) Intensity functions.

exciting process and have been extensively used in many
domains (e.g., finance, seismology, social media).

In this paper, we focus on multi-dimensional Hawkes pro-
cess [60], which is defined by anM-dimensional point pro-
cess where M Hawkes processes are integrated with each
other. That is, it is anM-dimensional counting process where
an arrival in one dimension can affect the arrival rates of
all dimensions. In information diffusion, each dimension i
represents an individual Ui in a social network and an event
represents a social activity. Hence, each Hawkes process cor-
responds to an individualUi and the influence between them
is modeled by utilizing the mutually-exciting property of
theM-dimensional Hawkes process. Formally, the intensity
function of the ith dimension takes the following form [60]:

λi (t) = Fi

(
µi +

∑
j ∈[M ]

∑
tjl <t

αi jϕi j (t − tjl )

)
(3.2)

Wherein the constant µi > 0 is the base intensity of the ith
Hawkes process, describing the arrival of events (e.g., social
activities) triggered by external sources. It is also referred
to as exogenous intensity, and their arrivals are independent
of the previous events. The strength of influence between
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41 ,a

11 )
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Figure 3. (a) The branching structure of the 3-

dimensionalHawkes processes in Figure 2. (b) The cor-

responding diffusion trees.

dimensions (i.e., individuals) is parameterized by a sparse ex-
citation matrix A = [αi j ]i, j ∈[M ]. In particular, the coefficient
αi j ≥ 0 captures the mutually-exciting property between
the ith and jth processes. Larger value of αi j indicates that
events (activities) in the ith dimension are more likely to
trigger an event in the jth dimension in the future. The trig-
gering kernel ϕi j (t − tjl ) quantifies the change in the rate
of occurrence caused by the historical realization tjl . The
second item

∑
j ∈[M ]

∑
tjl <t αi jϕi j (t − tjl ) is referred to as en-

dogenous intensity and captures the mutually-exciting nature
of the point processes. In our context, it captures the interac-
tions between individuals in a social network – each event
occurred to an individualUj may increase (i.e., mutual exci-
tation) or decrease (i.e., mutual inhibition) the arrival rate
of occurrence in Ui by a certain amount which itself decays
over time. Figure 2 depicts a 3-dimensional Hawkes pro-
cesses involving U1, U4, and U5 in Figure 1(a). Specifically,
Figure 2(a) shows activity sequences at times t41, t52, and t11
in Figure 1(b) along with two additional activities by users
U5 andU1 at times t51 and t12, respectively. Figure 2(b) shows
the corresponding counting process of each dimension. Fig-
ure 2(c) illustrates λi (t) of the three individuals, provoking
different changes due to these activities (i.e., events). Observe
that each occurred activity causes a jump (up or down) in the
intensity function. Each jump is followed by a rapid decay
guided by the kernel function.

Essentially, various combinations of kernel functions could
recognize various temporal characteristics. When Fi (x) = x ,
such processes are referred to as linear Hawkes processes
[27] where the intensity is a linear accumulation of a series of
kernel functions. Unfortunately, such linearity may not cap-
ture several real-world applications including information
diffusion [42]. For example, a user may initially be extremely
active on a particular topic in Twitter. However, her enthu-
siasm on that topic may subside eventually as she move on
to a new topic. In another scenario, an individual’s interest
on a topic may be dampened (i.e., inhibited) by posts from
other users. Consequently, nonlinear Hawkes processes [11]
are proposed to address this limitation. In this paper, we
integrate conformity with linear or nonlinearM-dimensional
Hawkes processes for modeling information diffusion.

3.2 Branching Structure

An equivalent view of the Hawkes process refers to the Pois-
son cluster process interpretation [28], which isolates the
events in a Hawkes process into two categories: immigrants
and offsprings. The offspring events are triggered by exist-
ing events in the process whereas the immigrants arrive
independently and hence do not have an existing parent
event. That is, we call an event an immigrant if it is gener-
ated due to the exogenous intensity µ = (µ1, µ2, . . . , µM )T

spontaneously, otherwise, it is an offspring. The offsprings
are structured into clusters, associated with each immigrant
event. This is referred to as the branching structure [27, 28].
It provides a way to capture the parent-child triggering rela-
tions between events as follows: (a) an immigrant event starts
generating offsprings; (b) each offspring starts generating
other offsprings immediately after birth.
To facilitate exposition in the context of social activity

sequences, we denote a collection of activities (i.e., events) as
{aik = (tik ,Cik )}

Ni (T )
k=1 in the time window [0,T ], where tik

denotes the occurrence time of the k th activity of an individ-
ualUi , and Cik records the activity’s content. We introduce
a set of auxiliary variables†, denoted as {{Zik }Ni (t )

k=1 }
M
i=1, to

represent the branching structure as following:
• Zik = aik if activity aik is an immigrant; and
• Zik = ajl if the parent of activity aik is activity ajl .

If activity ajl triggers aik , (ajl ,aik ) is referred to as a parent-
child pair of activities (i.e., event aik is an offspring of event
ajl ). Given one offspring activity aik , we denote its parent
activity as Zik accordingly, and the corresponding parent-
child pair of activities as (Zik ,aik ).

Figure 3(a) depicts the branching structure representation
of the Hawkes processes in Figure 2. Each circle represents
an event (i.e., activity) and a directed link represents the
parent-child relationship between two events. For instance,
Z51 = a51 indicates that the activity a51 is an immigrant, and
Z12 = a51 denotes that the activity a51 generates a12. Hence,
(a51,a12) expresses a parent-child pair of events. Observe
that each connected component in the branching structure
represents a tree structure.

3.3 Diffusion Tree

A popular approach to represent a sequence of user activi-
ties over a time period is by using a collection of diffusion
trees [33, 46], denoted by D. A diffusion tree, Dt = (V ,E),
consists of a set of user activities as its nodes V , and a set
of unidirectional edges E = {(aik ,ajl )} denoting that the
activity aik triggers the activity ajl w.r.t the temporal prece-
dence tik < tjl . For example, in Twitter, the root node of Dt
is an original tweet. If the original tweet triggers a series of
†W.l.o.g, we assume that an arbitrary event (activity) can be triggered by at most one
event (activity). It is ubiquitous in practice (e.g., Facebook, Twitter).
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response, it generates a series of child activities (e.g., retweet,
comment, like), referred to as first generation descendants.
Following this, first generation descendants subsequently
generate their own child activities (i.e., second generation
descendants), and so on. Figure 1(b) depicts a diffusion tree.
Observe the an original activity and its descendants in

a diffusion tree represent an immigrant and its offsprings,
respectively, in the branching structure. Hence, there is a
direct correspondence between a set of diffusion trees and
the branching structure of Hawkes processes. Each diffusion
tree Dt is a connected component in the branching structure
where a node and an edge in Dt are an event and a parent-
child pair of events (e.g., activities) in the latter, respectively.
For example, the two diffusion trees in Figure 3(b) represent
the branching structure in Figure 3(a). In the sequel, we shall
use these two concepts interchangeably.

4 CONFORMITY-AWARE INFORMATION

DIFFUSION MODEL

Equation 3.2 is used to model information diffusion by recent
works [60, 61]. Specifically, its components are estimated
from the observed social activities. Then, we can simulate
the diffusion process beyond timeT and predict various prop-
erties of the cascade. Observe that the strength of influence
from an individualUj to an individualUi in Equation 3.2 (i.e.,
αi j ) solely determines their degree of interaction in these
classical Hawkes-based models. Intuitively, the stronger the
influence αi j , the more likelyUi responds toUj during infor-
mation diffusion. However, as remarked earlier, interactions
between individuals are also likely to be impacted by confor-
mity of users. That is, interactions between individuals not
only depend on the strength of influence, but also on con-
formity of individuals. Hence, we need to augment classical
information diffusion models to capture this phenomenon
by incorporating informational conformity and normative
conformity [19].
Although in some scenarios conformity may be purely

informational or purely normative, in most cases these two
occur concurrently [30]. The distinction between informa-
tional and normative conformity is at the functional level.
The former is associated with accuracy and the search for
information about reality whereas the latter is about so-
cial interactions [15]. Hence, one might conform for both
normative and informational reasons at the same time [30].
Furthermore, contributions of these two types of conformity
are likely to vary between different instances of conformity
and between individuals [15]. Consequently, we decompose
the time-varying influence strength αi j (t) into two additive
parts, informational influence α I

i j (t) and normative influence
αN
ij (t), to quantify the presence of informational conformity

and normative conformity, respectively. That is,
αi j (t) = γ

I
i j (t)α

I
i j (t) + γ

N
ij (t)α

N
ij (t) (4.1)

In the above equation, the time-dependent informational
coefficient γ Ii j (t) and normative coefficient γ Nij (t) are parame-
terized to weigh informational conformity against normative
conformity at time t . Observe that ifαi j (t) > 0, thenwe know
that conformity plays a role whenUj is influencingUi . Substi-
tuting it into Eq. 3.2 gives us the model for conformity-aware
Hawkes process-based information diffusion:

λi (t) = Fi

(
µi +

∑
j ∈[M ]

∑
tjl <t
(γ Ii j (t)α

I
i j (t) + γ

N
ij (t)α

N
ij (t))ϕi j (t − tjl )

)
(4.2)

We elaborate on how to quantify α I
i j (t) and αN

ij (t) in the next
section. In Section 7, we describe the inference of remaining
components.

5 COMPUTATION OF CONFORMITY

In this section, we delineate how to quantify the two types
of conformity using diffusion trees (i.e., branching structure).

5.1 Informational Conformity

We often look to people around us who are better informed
and more knowledgeable, and then use their opinions as a
guide to our own behaviour and response. Such phenome-
non (i.e., the desire to be correct) not only occurs between
friends but also individuals who have never known one an-
other. This is known as informational conformity [12, 19].
Intuitively, informational conformity in social networks is
not symmetrical. That is, informational conformity from an
individualUi to an individualUj (i.e.,Ui conforms toUj ) may
differ from that of Uj toUi . According to social psychology
theories [16, 47], the higher the influence of Ui , the higher
the informational conformity ofUj toUi . Following this, if
Uj interacts withUi frequently, then we should boost their
informational influence. At the same time, during such in-
teractions, if Ui almost always agrees with Uj , we can say
that Ui is likely to conform to Uj . Consequently, we utilize
the notions of influence degree (i.e., measure of interaction
frequency) and context stance (i.e., opinion polarity w.r.t a
topic) to quantify the pairwise informational conformity. In-
tuitively, the product of these two items describes how likely
Ui ’s attitudes and behaviors are infected by another individ-
ualUj in the presence of informational conformity. That is,
informational influence from Uj to Ui (denoted as α I

i j (t)) is
computed as follows:

α Ii j (t) = Φi j (t) × Ψi j (t) (5.1)

wherein the first item Φi j (t) is referred to as influence de-
gree, and the second item Ψi j (t) aims to compute the context
stance. Evidently, both of them are derived from the histori-
cal interactions between individuals. Put simply, the higher
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the α I
i j (t), the higher is the informational conformity and

vice versa. We now elaborate on how these two factors are
computed.

Influence Degree. Frequent interactions between indi-
viduals demonstrate their closeness, and lead to high pair-
wise influence degree [58]. Furthermore, such influence de-
gree of one individual to another evolves over time. How-
ever, the effect of previous interactions may decrease with
time, namely the time decaying effects [40]. For simplicity,
we assume each response (i.e., one offspring activity in the
branching structure) provokes one interaction, followed by
an exponential decay [49]. Hence, we measure the influence
degree from individualUj to individualUi as:

Φi j (t) =

∑Ni (t )
k=1 INi j (t )(Zik , tik ) exp{−βi j (t − tik )}

Ni (t)
(5.2)

Wherein Ni j (t) records the collection of parent-child activity
pairs ‡, {(tjl , tik )}, up to time t . INi j (t )(Zik , tik ) is an indicator
function, which equals to one when (Zik , tik ) ∈ Ni j (t) and
zero otherwise. We use β = {βi j } to capture the decay rate
of previous interactions between individuals. Different from
Ni (t), Ni (t) denotes the total number of offspring activities
occurring to individual Ui until time t (i.e., Ni (t) ≤ Ni (t)),
which could be calculated by leveraging the diffusion trees of
the activity collection Xt . Obviously, the domain of influence
degree from individual Uj to individual Ui is [0, 1]. Observe
that Φi j (t) does not assume any connection between Ui and
Uj (i.e.,Ui andUj may or may not be friends/followers).

Context Stance.We glean insights on respondents’ opin-
ion polarity with respect to a topic in social interactions and
apply stance detection [20] to obtain the dissemination of
individuals’ beliefs. Generally, such opinion polarity is often
expressed in the form of discrete class labels, e.g., positive or
favor, negative or against, and neutral or none [20], either
explicitly or implicitly. Explicit stances are direct expressions
of opinion toward target concepts, such as “like” or “angry”
given to a particular post and the corresponding polarity is
1 or 0, respectively. Implicit stances can be extracted from
social media posts using NLTK (www.nltk.org), which is a
popular sentiment analysis package§.
Given each parent-child pair of activities (tjl , tik ) consid-

ered in Ni j (t), we calculate the polarity pjl ,pik of activity tjl
and tik , and then append them into two vectors: −→p I

j (t) =
(pjl )ajl ∈Xt and

−→p I
i (t) = (pik )aik ∈Xt , respectively. Next, we

evaluate the Pearson correlation coefficient (Pcc) of the vec-
tors, denoted as Ψi j (t) = Pcc(−→p I

j (t),
−→p I

i (t)) ∈ [−1, 1], to
quantify the context stance over time. Intuitively, the higher
the value of context stance, the higher is the informational

‡In the sequel, for simplicity, we sometimes use the occurrence time to denote one
activity, e.g., tjl represents ajl .
§The choice of sentiment analysis technique is orthogonal to our framework.

conformity from individual Ui to individual Uj . The formal
algorithm to compute informational conformity is given in
Algorithm 1.

Consider the diffusion tree in Figure 1(b). We extract the
opinion polarity of a11 and its response a71 (i.e., (a11,a71) is
a parent-child pair of activities). Suppose p11 = 0.8,p71 = 0.9.
We append them into the vectors −→p I

1 (t) = [0.3,−0.7, 0.9]T
and −→p I

7 (t) = [−0.2, 0.5, 0.7]T , respectively, and then recali-
brate the context stance by updatingΨ71(t) = Pcc(−→p I

1 (t),
−→p I

7 (t)).
Then we continue to scan the parent-child pairs of activities
until time t , to capture the context stance.

Algorithm 1: InformationalConform Algorithm.
Input :Xt = {{aik = (tik ,Cik )}

Ni (t )
k=1 }

M
i=1

Output : informational influence α I (t)
1 {Dt } ← DiffusionTreeConstruct(Xt );
/* Section 6 */

2 for i, j ∈ {1, . . . ,M} do
3 Update Ni (t),Ni j (t);

/* according to {Dt } */

4 for each pair (tjl , tik ) ∈ Ni j (t) do
5 Update Φi j (t);

/* according to Eq. 5.2 */

6

−→p N
j (t).append (pjl );

7

−→p N
i (t).append (pik );

8 Update Ψi j (t) = Pcc
(−→p N

j (t),−→p N
i (t)

)
;

9 Update α Ii j (t);
/* according to Eq. 5.1 */

10 end

11 end

12 return α I (t) = {α Ii j (t)}i, j ∈{1, ...,M }

Lemma 5.1. The time complexity to compute informational
complexity is O(M2Nmax ), where Nmax is the maximum num-
ber of parent-child activity pairs in {Ni j }i, j ∈[M ] andM is the
number of dimensions ( i.e., individuals).

5.2 Normative Conformity

Without loss of generality, a new post (e.g., tweet) may lead
to a chain of interactions (e.g., retweet, comment, reply, like)
in a social network. In practice, such an immigrant activity
(e.g., a tweet) generates its offspring activities (e.g., a series of
retweets, comments, replies, likes) possibly involving multi-
ple individuals (i.e., dimensions). In the sequel, we refer to an
immigrant activity together with all its offspring activities
as one informational cascade. Hence, based on Section 3.3, a
diffusion tree Dt represents one informational cascade. For
example, all activities in Figure 1(b) construct one informa-
tional cascade. Figure 4 depicts another example.
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Figure 4. Diffusion tree of one informational cascade:

“+” and “-” denote the opinion polarity (i.e., adoption
and rejection, respectively) of one activityw.r.t a topic.

An informational cascade occurs when it is optimal for
an individual, having observed the actions of individuals
ahead of him, to follow their behavior without regard to his
own information [9]. In other words, a cascade can occur
when people observe and follow “the crowd”, even when the
group consensus conflicts with their own private information
[2]. Such phenomenon of following the crowd is known as
normative conformity [12, 19].

Once one informational cascade starts around a particular
topic, a few early individuals commit their actions (i.e., adopt
or reject) through a sequence of activities (e.g., retweet, com-
ment, reply, like), and then subsequent individuals may refer
to them. Hence, triggering links between the preceding and
following activities give us the opportunity to extract nor-
mative conformity by analysing the context stance hidden
in the diffusion trees.

Specifically, the normative conformity ofUi toUj depends
on the aggregated adoptions ofUi to behaviors and attitudes
of Uj . In reality, in one cascade, even though Uj ’s activity
does not immediately precedeUi ’s,Uj ’s decision may convey
information to Ui , and then Ui may act according to the
information conveyed by the actions of preceding individuals
(including Uj ) [9]. Hence, in order to quantify the normative
influence αN

ij (t), we need to ensure the followings in the
diffusion trees: (a) both individuals Ui and Uj are involved
within one cascade; and (b) the corresponding activity ajl
happens before aik .
Furthermore, informational cascades can be fragile, with

abrupt shifts or reversals in direction [9, 22]. Specifically,
either small shocks (i.e., when new information becomes
available) can easily shift the behavior of many individuals,
or higher-precision individuals can shift a cascade because
they are more inclined to use their own information than
those that precede them. For example, consider the activities
of individuals highlighted in blue (also known as fashion

leader [9]) in Figure 4. Observe that there is a shift in opinion
polarity at this point, which is adopted by subsequent actions
from individuals. Hence, the normative conformity ofUi to
Uj may vary due to such sudden shifts.

We formulate the normative influence αN
ij (t) as follows to

capture how likely individual Ui ’s attitudes and behaviors
are infected by another individualUj :

αNij (t) = Pcc
(−→p N

j (t),−→p N
i (t)

) (5.3)
In order to compute the context stance for this type of con-
formity (right side of the above equation), we consider the
following two scenarios.

Scenario 1: Given an informational cascade, the two ac-
tivities ajl and aik lie on the same path of the diffusion tree
in chronological order. No matter ajl immediately precedes
aik or not, Uj ’s action ajl impactsUi ’s response aik to some
extent. In this case, we could directly capture their normative
influence from the two activities in two steps: (a) append
the polarity scores pjl ,pik into vectors −→p N

j (t),−→p N
i (t), re-

spectively; (b) recalibrate Pcc(−→p N
j (t),−→p N

i (t)). For example,
consider the yellow panel of Figure 4. Observe thatUj gives a
positive response ajl to the original post, and thenUд replied
Uj with an opposiing view (i.e., “-” denotes Uд ’s negative
opinion polarity) due to some reason. Afterwards, Ui agrees
withUд . Obviously,Uд has a greater normative influence on
Ui thanUj .

Scenario 2: Consider the two activities ajl and aik located
in the green panel of Figure 4. Even though they are trig-
gered by different parent activities and are located in dif-
ferent paths of the diffusion tree, they are both impacted
by the highlighted activity in blue (i.e., the lowest common
ancestor of ajl and aik , denoting as LCA(ajl ,aik )). Further-
more, if LCA(ajl ,aik ) happens to be a fashion leader (i.e.,
Uh gives positive response to the original post, afterwards,
LCA(ajl ,aik ) suddenly shifts his opinion), it definitely would
have some effect on subsequent activities. Consequently, in
such scenario, we quantify the normative conformity ofUi
to Uj as follows. We first append the polarity pair pjl (resp.
pik ) and pLCA(tjl ,tik )

into vectors −→q N
j (t) (resp. −→q N

i (t)) and
−→q N

LCAi j
(t), and then recalculate their Pearson correlations co-

efficient Pcc(−→q N
j (t),−→q N

LCAi j
(t)) (resp. Pcc(−→q N

i (t),−→q N
LCAi j

(t)))
before appending to −→p N

j (t) (resp. −→p N
i (t)).

Scanning all information cascades satisfying the afore-
mentioned conditions up to time t , we calculate the Pearson
correlation coefficient of the vectors (Pcc

(−→p N
j (t),−→p N

i (t)
)
)

to quantify αN
ij (t) between individuals in the presence of

normative conformity. The formal algorithm to compute
normative conformity is given in Algorithm 2.
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Algorithm 2: NormativeConform Algorithm.
Input :Xt = {{aik = (tik ,Cik )}

Ni (t )
k=1 }

M
i=1

Output :normative influence αN (t)
1 {Dt } ← DiffusionTreeConstruct(Xt );
/* Section 6 */

2 for i, j ∈ {1, . . . ,M} do
3 Filter the collection of cascades Ci j satisfying the two

conditions;
/* according to {Dt } */

4 for each cascade c ∈ Ci j do
5 if ajl and aik lay on one path then

6

−→p N
j (t).append (pjl );

7

−→p N
i (t).append (pik );

8 Update αNij (t) = Pcc
(−→p N

j (t),−→p N
i (t)

)
;

9 else

10

−→q N
j (t).append(pjl );

11

−→q N
i (t).append(pik );

12

−→q N
LCAi j

(t).append(pLCA(tjl ,tik )
);

13

−→p N
j (t).append

(
Pcc(−→q N

j (t),−→q N
LCAi j

(t))
)
;

14

−→p N
i (t).append

(
Pcc(−→q N

i (t),−→q N
LCAi j

(t))
)
;

15 Update αNij (t) = Pcc
(−→p N

j (t),−→p N
i (t)

)
;

16 end

17 end

18 end

19 return αN (t) = {αNij (t)}i, j ∈{1, ...,M }

Note the difference in the computation of context stance
for normative conformity compared to informational confor-
mity. For the latter, an individual may refer to surrounding
people who are better informed and more knowledgeable,
and then use their opinion as a guide for his/her own be-
haviours. Hence, computation of the context stance for in-
formational conformity focuses on the parent-child activity
pairs (i.e., Uj precedes Ui immediately). For the former, an
individual follows the behaviour of the preceding individu-
als during an informational cascade. Consequently, context
stance of Ui and Uj is computed by considering the aggre-
gated activities ofUi to the activities ofUj even thoughUj ’s
activity may not immediately precedeUi ’s activity (i.e., they
are not parent-child activity pairs).

Lemma 5.2. The normative conformity computation requires
O(M2m2n) time, where n is the number of informational cas-
cades,m = max |Ci j | ≪ M is the maximum number of activi-
ties in a single cascade andM is the number of individuals.

6 CONSTRUCTION OF DIFFUSION TREES

In the preceding section, the informational and normative
influence (i.e., α I

i j (t), αN
ij (t)) are computed by utilizing the

diffusion trees. In this section, we elaborate on how the
diffusion trees are construction.

Connectivity-aware construction. If an online social
network explicitly exposes connectivity information (i.e.,
parent-child link) of activity sequences to an application
then it is straightforward to construct the diffusion trees.
That is, if a collection of social activities explicitly contain
information of which activity responds to which activity
(e.g., reply_id), we could establish the parent-child pairs of
activities and construct the diffusion trees (i.e., branching
structure) accordingly. Activities with no parents form the
immigrants and those with parents form the offsprings.

Diffusion tree inference. The construction of diffusion
trees becomes challenging when parent-child link informa-
tion is unavailable from social activities exposed to an ap-
plication (e.g., links in Figure 3 are missing). For example,
the Twitter api returns the following fields: tweet_id, cre-
ated_time, text, and user_id¶. That is, it does not provide con-
nectivity information (e.g., reply_id) of the activities. Hence,
we need to infer the latent diffusion trees (i.e., the branching
structure).

Branching structure or diffusion tree inference for informa-
tion diffusion has been addressed in several prior work [60,
61]. Unfortunately, these existing methods are only suitable
for linear Hawkes processes. As remarked earlier, in our
problem setting Hawkes processes can be linear or nonlinear.
In particular, the nonlinear combinations of exogenous and
endogenous intensities (i.e., various forms of Fi in Eq. 3.2)
make such decomposition untenable in this scenario. Hence,
it is desirable to devise an inference strategy that can handle
both types of Hawkes processes by relaxing the requirement
of linearity.
Furthermore, observe that this problem is orthogonal to

the classical network inference problem [24, 39], which focuses
on predicting links (connections) between individuals (e.g.,
Figure 1(a)). In contrast, as illustrated in Figures 1(b) and 3,
our goal is to infer the links between social activities to
reveal the information cascade during information diffusion.
Hence, techniques designed for network inference cannot
be adopted to address this problem.
We propose an expectation-maximization (EM) iterative

learning scheme to infer the diffusion trees. To initialize
the EM procedure, we firstly sample the auxiliary variables
{{Zik }

Ni (t )
k=1 }

M
i=1. Afterwards, we update the probability of

branching structure (i.e., infer the diffusion trees) in the E-
step given the chassis model learned from the previous
iteration. Thus, the inference procedure of chassis can be
embedded into the M-step naturally. In this section, we elab-
orate on the inference of diffusion trees. We defer the details
of the inference procedure of chassis in Section 7.

¶http://socialmedia-class.org/twittertutorial.html
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The intuition behind our inference strategy is as follow.
The greater the influence of the preceding activity to the
following activity, the more likely there is a triggering link
between them (i.e., they are a parent-child pair of activities).
From this perspective, we first deduce the Papangelous condi-
tional intensity [53] of Hawkes processes to weigh the extent
to which removing one activity will affect the subsequent
activities in chronological order. Then, we utilize it to reflect
the probability that a preceding activity aik triggers on a suc-
ceeding activity ajl . After that, we obtain the parent-child
pairs of activities probabilistically. Observe that our strategy
of exploiting Papangelous conditional intensity to calculate
the influence weight between activities is novel, as existing
strategies compute conditional intensity conditioned only
on historical activities not including subsequent ones. We
now elaborate on these steps.

Firstly, following [53], we deduce the Papangelous condi-
tional intensity of Hawkes processes, denoted as λp , which
describes the probability of finding one point (i.e., one time-
stamped activity) at one particular time conditional on the
remainder of the process [53]. Equivalently, Papangelous
conditional intensity could cover the impact from both ante-
rior and posterior activities. Hence,

λp (tjl |{{tik }
Ni (t )
k=1 }

M
i=1) =

f ({{tik }
Ni (t )
k=1 }

M
i=1)

f ({{tik }
Ni (t )
k=1 }

M
i=1 \ tjl )

(6.1)

characterizes the density of particular sequences of activities.
{{tik }

Ni (t )
k=1 }

M
i=1 \ tjl } indicates the remaining activities after

removing tjl from the collection {{tik }Ni (t )
k=1 }

M
i=1. Note that

the numerator on the right side is constant once given the
collection of activities, and the value of the denominator
quantifies how much of an effect removing activity tjl will
have on the reminder of the processes. Consequently, by
removing each activity before tik respectively, we can mea-
sure the corresponding influence to activity aik . The higher
the reciprocal of such Papangelous conditional intensity, de-
noted as 1

λp (tjl | ({t }t :t≤tik \tjl )
, the more likely that ajl triggers

aik . Accordingly, we weigh the following probability:

P(Zik = ajl ) =
1

λp (tjl | ({t}t :t ≤tik \ tjl )
(6.2)

P(Zik = aik ) =
1

λp (tik | ({t}t :t ≤tik \ tik )
(6.3)

wherein {t}t :t ≤tik is the collection of chronologically ordered
activities from M individuals up to time tik including tik
and tjl < tik . Observe that the above posterior for an arbi-
trary activity aik follows the Multinomial posterior distri-
bution. Given the activity aik , we calculate the probability
of each preceding activity (including aik itself), denoted as
ajl , as its parent activity Zik , and then apply soft-update-
rule to determine its parent activity if any. For instance, if

max{P(Zik = ajl )} = P(Zik = ahm), we conclude that activ-
ity ahm triggers activity aik , and (ahm ,aik ) is a parent-child
pair. In particular, if max{P(Zik = ajl )} = P(Zik = aik ), we
represent that activity aik as an immigrant.

Reconsider Figure 1(b). In order to exploit which activity
triggers a71, we calculate P(Z71 = ai j ) according to Eq. 6.2
wherein ai j equals to each activity happened up to time
t71 (including t71). Finally, while obtaining max{P(Z71 =
ai j )} = P(Z71 = a11), we draw one link from a11 to a71,
and conclude that the parent activity of a71 is a11. Given
an arbitrary activity aik , we explore its parent activity Zik
if any, then splice them together. Consequently, the set of
auxiliary variables {Zik } represents the branching structure
(collection of diffusion trees).

In order to calculate the right side of Eq. 6.1, we set f ∗(t) =
f (t |Ht ) to be the conditional density function of the occur-
rence time of the next activity given the history [54]. Hence,
the distribution of all activities up to time t could be derived
by the joint density,

f ({{tik }
Ni (t )
k=1 }

M
i=1) =

M∏
i=1

Ni (t )∏
k=1

f (tik |H
−
tik ) =

M∏
i=1

Ni (t )∏
k=1

f ∗(tik )

(6.4)
Analogically, the denominator equals:

f ({{tik }
Ni (t )
k=1 }

M
i=1 \ tjl ) =

1
f ∗(tjl )

M∏
i=1

Ni (t )∏
k=1

f ∗(tik ) (6.5)

Supposing tin < t < ti(n+1), we could write the conditional
intensity function of the i-th dimensional Hawkes process
in terms of the conditional density function f ∗(t) and its
corresponding cumulative distribution function F ∗(t) [54] as
follows:

λi (t)dt = P
(
ti(n+1) ∈ [t , t + dt]|Ht−

)
(6.6)

= P
(
ti(n+1) ∈ [t , t + dt]|ti(n+1) < [tin , t],Htin

)
=
P
(
ti(n+1) ∈ [t , t + dt], ti(n+1) < [tin , t]|Htin

)
P
(
ti(n+1) < [tin , t]|Htin

)
=
P
(
ti(n+1) ∈ [t , t + dt]|Htin

)
P
(
ti(n+1) < [tin , t]|Htin

)
=

f (t |Htin )dt

1 − F (t |Htin )
=

f (t |Ht )dt

1 − F (t |Ht )
=

f ∗(t)

1 − F ∗(t)
Consider an infinitesimal interval dt around t . Then f ∗(t)dt
corresponds to the probability that there is an activity in dt ,
and 1− F ∗(t) corresponds to the probability of no new activi-
ties before time t . Hence, according to Eq. 6.6, the conditional
density function becomes [52],

f ∗(t) = e−
∫ t
0 λi (s)ds ·

∏Ni (t )

k=1
λi (tik ) (6.7)

By substituting Eq. 4.2 into Eq. 6.7, 6.4, 6 and Eq. 6.1, we
obtain the Papangelous conditional intensity of our proposed
conformity-aware Hawkes processes.
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Algorithm 3: DiffusionTreeConstruct.
Input :Xt = {{aik = (tik ,Cik )}

Ni (t )
k=1 }

M
i=1

Output : {{Zik }
Ni (t )
k=1 }

M
i=1

1 while not converged do

2 Update the intensity in Eq. 4.2; /* Section 7 */

3 for each activity aik ∈ X do

4 Calculate P(Zik = tik ); /* Eq. 6.3 */

5 Pik = P(Zik = aik );
6 for each proceding activity ajl before tik do

7 Calculate P(Zik = tjl ); /* Eq. 6.2 */

8 Update Pik = max{P(Zik = ajl ), Pik }

9 end

10 Update Zik according to Pik ;
11 end

12 end

13 return {{Zik }
Ni (t )
k=1 }

M
i=1

The overall approach for inferring the diffusion trees is
as follows. After each iteration for inferencing chassis in
M-step (Section 7), we update the intensity {λi (t)}i ∈[M ] by
substituting the estimated parameters and triggering ker-
nels. Given an activity, we evaluate the effect from removing
each activity before it by deducing the corresponding Pa-
pangelous conditional intensity from the updated intensity.
Subsequently, we find the parent activity for each activity
(one activity has at most one parent activity) using the afore-
mentioned approach to construct the diffusion trees. The
formal algorithm is given in Algorithm 3.

Lemma 6.1. The time complexity to infer the diffusion trees
is O(Nitern

2), where n is the total number of activities.

7 INFERENCING CHASSIS MODEL

Once the diffusion trees are updated, we optimize the chassis
model to best explain the information diffusion process. Con-
sequently, in this sectionwe propose a novel semi-parametric
inference algorithm regardless of whether Hawkes processes
are linear or nonlinear, wherein exogenous intensity {µi }i ∈[M ],
decay rate of previous interactions {βi j }i, j ∈[M ], informa-
tional and normative coefficients {(γ Ii j (t),γ Nij (t))}i, j ∈[M ] are
learned from the observed activity sequences, while the trig-
gering kernel functions {ϕi j (t)}i, j ∈[M ] are estimated non-
parametrically via Fourier transform without prior domain
knowledge.

7.1 Parametric Inference

We denote the set of parameters {µi ,γ Ii j (t), βi j ,γ Nij (t)}i, j ∈[M ]
as Θ. We can estimate them by maximizing the likelihood

over the observed data (i.e., maximize the likelihood func-
tion). Given the social activity collection Xt over the time in-
terval (0, t], the log-likelihood∥ of conformity-aware Hawkes
processes associated with the conditional intensity in Eq. 4.2
is in fact the summation of that over all dimensions, each
of which can be interpreted as follows: the sum of the log-
intensities of activities that happened, minus an integral of
the total intensities over the observation interval (0, t] [60],

lnLi (Θ|Xt ) =
∑Ni (t )

k=1
ln λi (tik ) −

∫ t

0
λi (s)ds (7.1)

However,
∫ t
0 λi (s)ds is not always directly computable w.r.t

various intensity functions Fi (·). We propose a modified
flexible-size Euler integrationmethod∗∗ to calculate

∫ t
0 λi (s)ds

in an iterative manner.
Theorem 7.1. Let Λi (t) =

∫ t
0 λi (s)ds . Given an accuracy

bound ξ , within the time interval (0, t], taking Im steps with
the Euler method using step size hm = t

Im
, themth iteration

yields the following approximation
Λm
i (t) = hm

(
µi + λi (t1) + . . . + λi (tIm )

)
(7.2)

and the estimation error is upper bounded by

|Λi (t) − Λ
(m)
i (t)| ≤ O(△t )e

Li t/Li

where λi (t) is Lipschitz continuous with

|(Λ(m)i )
′(t) − Λ′i (t)| ≤ Li |Λ

(m)
i (t) − Λi (t)|

and O(△t) denotes the first-order truncation error.
Using this numerical integration, it is straightforward to

see that the log-likelihood in Eq. 7.1 can be approximately
calculated regardless of the forms of intensity function Fi (·).
Next, we learn the parameters Θ by maximum likelihood
estimation (mle) using the gradient ascent method. Notably,
we do not need to predefine the shape of the kernel functions.
Thus the log-likelihood in Eq. 7.1 is concave, such that the
global maximum and the convergence of inference can be
guaranteed [52]. Additionally, Θ can be estimated in parallel
over all dimensions.

Lemma 7.2. The per iteration computation cost of the para-
metric procedure is O(M +max{Im} ×m).

7.2 Nonparametric Inference

Once the parameters Θ are estimated, we are left to estimate
the kernel functions. The time shift in the kernel function
ϕi j (t − tjl ) in time domain corresponds to a multiplication
by an exponential function in frequency domain as follows:

ϕi j (t − tjl ) =⇒ e−jωtjl Φi j (ω) (7.3)
∥It is conventional to maximize the log of the likelihood function in order to handle
underflow problem.
∗∗We compare it with two other popular integrationmethods in terms of accuracy and
convergence speed (see details in the Appendix). All these methods exhibit similar
accuracy. As our modified Euler integration method shows the best efficiency under
abundant activities, we shall adopt it by default in the performance study (Section 8).
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It provides a way to simplify the time-shifted kernel func-
tions, throughwhich the intensity function λi (t) can be trans-
formed to the frequency domain, referred to as Λi(ω).
If λi (t) is a linear combination of a series of time-shifted

kernel functions, it is straightforward to obtain Λi(ω) as:

Λi(ω) =

∫ ∞

−∞

λi (t)e
−jωtdt

=

∫ ∞

−∞

(
µi +

∑
j ∈[M ]

∑
tjl <t

αi j (t)ϕi j (t − tjl )

)
e−jωtdt

= 2πµiδ (ω) +
∑
j ∈[M ]

αi j (t)
∑
tjl <t

e−jωtjl Φi j (ω) (7.4)

Note that the nonlinear functions Fi (·) prevent us from ap-
plying such Fourier transform directly. To circumvent this
issue, we apply Taylor approximation to relax the linearity
limitation, and derive the frequency domain counterpart of
λi (t) as following:

Λi(ω) =

∫ ∞

−∞

λi (t)e
−jωtdt (7.5)

≈

∫ ∞

−∞

(
Fi (µi ) + F

′
i (µi )

∑
j ∈[M ]

∑
tjl <t

αi jϕi j (t − tjl )

)
e−jωtdt

= 2πFi (µi )δ (ω) + F ′i (µi )
∑
j ∈[M ]

αi j (t)
∑
tjl <t

e−jωtjl Φi j (ω)

where δ (ω) is the Dirac delta function††.
According to Eq. 3.1, we could obtain that the expectation

of an increment of the counting process Ni (t + dt) − Ni (t)
is essentially equivalent to λi (t)dt . Consequently, if we sep-
arate the period (0, t] into N equal-length time slots (i.e.,
NT = t ) and denote the corresponding number of activities
within each slot as Ni [0],Ni [1], . . . ,Ni [N − 1], respectively,
Λi(ω) can then be interpreted in terms of Ni [k] as:

Λi(ω) =
∑N−1

k=0
Ni [k]e

−jωkT

Since ω is a continuous variable, there are an infinite num-
ber of possible values of ω from 0 to 2π . Hence, Λi(ω) could
only be calculated at a finite set of frequencies. Therefore,
we divide the unit circle into N equally area (i.e., 1

NT Hz,
2π
NT rad/sec), and denote them as ωn =

2π
NT × n, then:

Λi[n] =
∑N−1

k=0 Ni [k]e
−jωnk (n = 0 : N − 1) (7.6)

wherein Λi[n] contains information about the amplitude and
phase of the sinusoid wave of frequency ωn . Intuitively, the
triggering kernel function ϕi j (t) should be proportional to
the decay rate of previous interactions βi j (estimated in Sec-
tion 7.1). As a result, given ωn , we could obtain :

Φi j [ωn ] =
βi jΛi[n]

F ′i (µi )
∑
j ∈[M ] αi j (t)βi j

∑Nj (t )
l=1 e−jωn tjl

(7.7)

††δ (ω) is zero everywhere except at ω = 0, and its total integral is 1.

In particular,

Φi j [ω0] =
Λi [0] − 2πFi (µi )

F ′i (µi )
∑
j ∈[M ] αi j (t)Nj (t)

(7.8)

Thenwe could deduce the time domain counterpart ofΦi j [ω]
by inversing DFT (IDFT):

ϕi j (t) =
1
N

∑N−1
n=0 Φi j [ωn ]e

jωn t (7.9)

The above estimation for kernel functions is completely data-
driven, and

∫ +∞
0 t |ϕi j (t)|dt < +∞. Then we could guarantee

that Eq. 4.2 is stable in variation with respect to the initial
condition lims→+∞

∫ +∞
s dt

∫
R−
|ϕi j (t −u)|Nj (du) = 0 accord-

ing to Theorem 8 of [11].
We run the parametric and nonparametric inference pro-

cedures alternatively until convergence. For each iteration,
DFT requires O(N log2(N )) operations. Since Φi j [ωn] varies
along the number of activities in Nj (t), updating the kernel
functions costs O(max{Nj } ×M) operations.
The semi-parametric inference procedure of chassis is

outlined in Algorithm 4. As mentioned earlier, it is identical
to the M-step. It first initializes the parameters (Line 1), and
then utilizes the diffusion trees in previous E-step to compute
the two types of conformity-aware influence (Lines 2-4).
Subsequently, it repeats the parametric estimation (Lines
6-13) and nonparametric estimation (Lines 14-20) till the
loglikelihood reaches the predefined convergence tolerance.

7.3 Prediction of User Behaviors

By leveraging the estimated chassis in the previous subsec-
tions, we design a procedure to predict the user behaviours.

Next activity prediction. We denote the timestamp of
the most recent activity up to time t (including t ) as tn
(tn ≤ t ), and the first activity after time t as tn+1. Given
the collection of activities Xt (i.e., the historical activities
Htn+1 = Xt until time t ), the conditional density function of
the occurrence time of the next activity tn+1 is:
Pn+1(t) = P(tn+1 = t |Htn+1 ) (7.10)

=
∑

i ∈[M ]
λi (t)

∏
i ∈[M ]

exp
(
−

∫ t

tn
λi (s)ds

)
Hence, we could predict the timestamp of the next activity
according to the following expectation:

tn+1 = E
[
tn+1 |Htn+1

]
=

∫ ∞
tn

tPn+1(t)dt (7.11)

In the following, we can predict which individual most likely
generates that activity tn+1 via argmaxi ∈[M ]

λi (t )∑
i∈[M ] λi (t )

. Sup-
pose thatUi issues the activity tn+1. We update the intensity
{λi (tn+1)}i ∈[M ] with the informational influence and norma-
tive influence at time t (since we cannot predict the content
of the activity tn+1, we use the values α I

i j (t),α
N
ij (t) for all
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Algorithm 4: Semi-parametric Estimation for chas-
sis.
Input :Xt = {{aik = (tik ,Cik )}

Ni (t )
k=1 }

M
i=1

Output : {µi ,γ
I
i j (t), βi j ,γ

N
ij (t),ϕi j (t)}i, j ∈[M ]

1 Initialize {µi ,γ Ii j (t), βi j ,γ
N
ij (t)}i, j ∈[M ];

2 {Dt } ← DiffusionTreeConstruct(Xt );
/* Update the diffusion tress in the previous

E-step */

3 α I (t)← InformationalConform(Xt );
4 αN (t)← NormativeConform(Xt );
5 while {lnLi (Θ|Xt )}i ∈[M ] not converged do

6 for i ∈ {1, . . . ,M} do

7 µ
(r+1)
i ← max

{
µ
(r )
i + ηr+1∇µi lnLi (Θ

(r ) |Xt ), 0
}
;

8 for j ∈ {1, . . . ,M} do
9 β

(r+1)
i j ← β

(r )
i j + ηr+1∇βi j lnLi (Θ

(r ) |Xt ) ;
10

(
γ Ii j (t)

)(r+1)
←(

γ Ii j (t)
)(r )
+ ηr+1∇γ Ii j (t )

lnLi (Θ(r ) |Xt );

11

(
γNij (t)

)(r+1)
←(

γNij (t)
)(r )
+ ηr+1∇γ Ni j (t )

lnLi (Θ(r ) |Xt );
12 end

13 end

14 for i ∈ {1, . . . ,M} do
15 {(ωn ,Λi [n])}n∈{0, ...,N−1} ← DFT(λi (t));
16 for j ∈ {1, . . . ,M} do
17 Calculate {Φi j [ωn ]}n∈{0, ...,N−1} ;
18 ϕi j (t) ← IDFT({Φi j [ωn ]}n∈{0, ...,N−1});
19 end

20 end

21 end

22 return {µi ,γ
I
i j (t), βi j ,γ

N
ij (t),ϕi j (t)}i, j ∈[M ]

i, j ∈ [M]) accordingly. Then, we can check whether the ac-
tivity tn+1 is an immigrant or an offspring via reconstructing
the diffusion trees of the new collection of activities (i.e., Xt
plus tn+1).
Future number of activities prediction. Predicting the

future number of activities has broad applications, such as
identifying potentially viral messages before they become
popular, and forecasting the effect of external interventions.
Given the observationsXt up to time t , prediction of the num-
ber of activities from t to a future time point t > t can be
carried out as follows. We simulate the processes {Ni }i ∈[M ]
associated with the intensity functions in Eq. 4.2 over the in-
terval (t , t] conditional on Xt , and then calculate the average
of the simulated activities. Intuitively, it is computationally
expensive to generate a larger number of activities for such
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Figure 5. Model fitness (LogLike).

simulation. Hence, we estimate the expected number of ac-
tivities with the expectation of the intensity conditional on
Xt as follows:

E
[ ∑
i ∈[M ]

(Ni (t) − Ni (t)|Ht
]
= E

[ ∑
i ∈[M ]

∫ t−t

0
λi (s)ds |Ht

]
=

∑
i ∈[M ]

∫ t−t

0
E[λi (s)|Ht ]ds =

∑
i ∈[M ]

∫ t−t

0
λi (s)ds (7.12)

Theorem 7.3. Suppose λi (s) is the mean intensity condi-
tional on Xt over [0, t − t]. Then under the Taylor approxima-
tion λi (t) ≈ Fi (µi ) + F

′
i (µi )

∑
j ∈[M ]

∑
tjl <t αi j (t)ϕi j (t − tjl ),

λi (s) satisfies the following Volterra integral equation:

λi (s) = Fi (µi ) + F
′
i (µi )

∑
j ∈[M ]

αi j (t)

∫ s

0
ϕi j (s − τ )λj (τ )dτ

We solve the Volterra integral equation in Theorem 7.3
numerically via the trapezoidal rule [48]. Then we can obtain
the conditional expectation of the future number of activities
according to Eq. 7.12, which is more efficient than the costly
simulation of a large number of activities.

8 PERFORMANCE STUDY

In the section, we demonstrate the performance of chassis.
We have implemented the framework in Python. All exper-
iments are performed on a 64-bit Windows desktop with
Intel(R) Core(TM) E5-1620V2 CPU@3.70 and 16GB RAM.

Strategies. We compare the following information diffu-
sion models that are most germane to our work:
• NetRate [23]: A popular information diffusion model-
ing technique in social networks. Note that we only
utilize the first activity of each individual because it
cannot model the recurrent activities.
• ADM4 [60]: It utilizes the mutually-exciting linear
Hawkes model to capture temporal patterns of user
behaviors, and infers the social influence by impos-
ing both low-rank and sparse regularization on the
influence matrix.
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• MMEL [61]: It captures the temporal dynamics of
observed activities by linear Hawkes processes, and
learns the triggering kernels nonparametrically.
• CHASSIS-L: Our proposed chassismodel. Here, we set
Fi (x) = x (i.e., linear Hawkes processes). Initially, the
base intensity µ is sampled from a uniform distribution
over [0, 0.01] for each dimension, and the coefficients
{γ Ii j (t), βi j ,γ

N
ij (t)}i, j ∈[M ] are generated from a uniform

distribution on [0, 0.1].
• CHASSIS-E: Similar to CHASSIS-L, the only difference
is Fi (x) = ex (i.e., exponential Hawkes processes).

Remark. (a) NetRate is an information diffusion model
in continuous time domain (i.e., not based on Hawkes pro-
cesses); (b) Two Hawkes-based information diffusion models,
one with parametric inference method (ADM4) and the other
with semi-parametric inference method (MMEL). Both the
inference procedures involve the branching structure.

8.1 Model Fitness and Prediction

Datasets. We use the following datasets: (a) Facebook: We
collect the data via Facebook Graph API (https://developers.
facebook.com/docs/graph-api), comprising nearly 44 million
public activities posted by 109, 211 individuals, from March
2018 to May 2018; (b) Twitter : We gather the data via Twitter
Streaming API (https://developer.twitter.com/en/docs), con-
taining nearly 52 million public activities posted by 123, 972
individuals, from March 2018 to May 2018. Additionally, we
obtain the relationships among such individuals (i.e., who
follows whom) in each dataset, which could be converted
into an excitation matrix A = [αi j ]i, j ∈[M ] (αi j = 1 if Uj fol-
lows Ui , otherwise αi j = 0) as the ground truth. Utilizing
such relationships, we grab the offspring activities of each
immigrant activity of each individual via a depth first search
algorithm. We evaluate the scalability of chassis using these
two datasets and extract two subsets of the datasets: 590,671
activities posted by 100,000 individuals in Facebook (denoted
as SF ) and the other with 671,810 activities posted by 110,000
individuals in Twitter (denoted as ST ), for other experiments.
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Figure 7. Future number of activities prediction.

Model Fitness.We study how well chassis can explain the
real-world data by comparing it with other strategies. We
use two evaluation metrics, namely LogLike and RankCorr.
Specifically, LogLike is the log-likelihood of the estimated
model on one test dataset and computed as lnL(Xtest |Θtraining)

=
∑

i ∈[M ]
( ∑Ni (ttest)

k=1 ln λi (tik ) −
∫ ttest
0 λi (s)ds

)
[60]. RankCorr

calculates the average Kendall’s rank correlation coefficient
between each row of influence matrix A and estimated Â, to
measure whether the relative order of the estimated social
influences is correctly recovered [60]. We order all activities
in a dataset chronologically, and use the first 30%, 50%, 60%,
70%, 80% samples for training, respectively.

Figure 5 shows the performance using LogLike on the
testing activities. Note that we exclude NetRate as it could
not model the recurrent activities in our data. Observe that
LogLike increases as the number of activities for training
increases, indicating that more training data lead to better ac-
curacy for all approaches. Clearly, CHASSIS-L and CHASSIS-
E perform significantly better than ADM4 andMMEL, which
indicates that chassis can capture the information diffusion
better than the conformity-unaware strategies.
We are also interested in clarifying whether the superi-

ority of chassis is due to conformity-awareness or merely
more flexible semi-parametric inference method. To this end,
we design two baselines, L-HP and E-HP, referring to our
semi-parametric inference algorithm under linear and expo-
nential Hawkes, respectively, with the intensities in Eq. 3.2.
Notably, both methods are conformity-unaware. As shown
in Figure 5, both are inferior to CHASSIS-L and CHASSIS-E.
Hence, model fitness accuracy can be improved significantly
when conformity is taken into account. On the other hand,
both baselines exhibit better performance than ADM4 and
MMEL. It implies that the proposed semi-parametric infer-
ence scheme also improves model fitness performance.
Additionally, we investigate the importance of model-

ing both informational and normative conformity in chas-
sis by disabling one of them in Eq. 4.2. Specifically, we re-
move

∑
i, j ∈[M ] γ

N
ij (t)α

N
ij (t) (resp.

∑
i, j ∈[M ] γ

I
i j (t)α

I
i j (t) ), and

only quantify
∑

i, j ∈[M ] γ
I
i j (t)α

I
i j (t) (resp.

∑
i, j ∈[M ] γ

N
ij (t)α

N
ij (t))

in CHASSIS-LI (resp. CHASSIS-LN) and CHASSIS-EI (resp.
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CHASSIS-EN). As shown in Figure 5,CHASSIS-L (resp.CHASSIS-
E) outperformsCHASSIS-LI (resp.CHASSIS-EI) andCHASSIS-
LN (resp.CHASSIS-EN), endorsing the necessity of modeling
both informational conformity and normative conformity.
All these approaches also outperform L-HP and E-HP. Fur-
thermore, CHASSIS-E (resp. CHASSIS-EI, CHASSIS-EN and
E-HP) always has higher LogLike than CHASSIS-L (resp.
CHASSIS-LI, CHASSIS-LN and L-HP), indicating that non-
linear Hawkes processes are more suitable for capturing the
triggering patterns hidden in social activities.
The results using RankCorr (Figure 6) are qualitatively

similar to LogLike. The nonparametric estimation in MMEL
embeds the influence matrix into the triggering kernels, thus,
RankCorr cannot be calculated for it.
In summary, chassis fits the real-world data better com-

pared to conformity-unaware information diffusion models.
Prediction of Activities. We compare the performance in
predicting the future number of activities w.r.t the window
size △t = t−t . Note that sinceNetRate fail to model recurrent
activities, it cannot predict the future number of activities.
The mean intensity λi (s) is evaluated by solving the equation
in Theorem 7.3 for all Hawkes-based strategies. Accordingly,
the number of future activities during each future time win-
dow is calculated from N k

i =
∑

i ∈[M ]

∫ t+k△t
t+(k−1)△t

λi (s)ds . The
mean absolute error (MAE) is defined as

ζ =
1
M

∑
i ∈[M ]

1
tmax − t

∑
k ∈[ tmax−t

△t
]
|N̂ k

i − N
k
i |

whereM is the total number of individuals, N k
i and N̂ k

i are
the actual and predicted number of activities in the k th time
window, and tmax is the end time of the prediction period.

Figure 7 shows that error decreases with the increase in
training data. In particular, it decreases quickly for ADM4
and MMEL. This confirms the superiority of Hawkes pro-
cesses in modeling information diffusion. More importantly,
both CHASSIS-E and CHASSIS-L provide the best predic-
tion performance for all cases, indicating that conformity
awareness significantly improves the prediction accuracy.

Figure 8(a) shows in log-log scale the time costw.r.t the pre-
diction period. Comparatively, our equation-based approach
in Theorem 7.3 is more efficient than the simulation-based
approach (please refer to [45] for simulation details).
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Figure 9. Convergence study (LogLike).

Convergence. We demonstrate the convergence rate of
chassis on Facebook and Twitter datasets. Figure 9 reports
the results using LogLike. Clearly, the LogLike of CHASSIS-L
and CHASSIS-E increase as the number of iterations grows
and converge after 80 iterations on Facebook data. The per-
formance on Twitter data is qualitatively similar.
Scalability. We compare the scalability of chassis with
other models using the training time (i.e., model inference
time) on Facebook and Twitter datasets. Figure 8(b) plots the
training time in log-log scale. Clearly, the computation cost of
CHASSIS-L and CHASSIS-E scales almost linearly with the
number of activities. Except for NetRate, chassis performs
the best. Since NetRate only deals with the first activity of
each individual, its training time is naturally faster.

8.2 Diffusion Tree Inference

We now report the diffusion tree inference quality in chassis
using the datasets from pheme (https://doi.org/10.6084/m9.
figshare.6392078.v1) [32]. It contains Twitter conversation
threads (i.e., information cascades) associated with different
newsworthy topics including the Ferguson unrest, the shoot-
ing at Charlie Hebdo, the shooting in Ottawa, the hostage
situation in Sydney and the crash of a Germanwings plane.
Table 2 shows the statistics. Each conversation consists of
a source tweet conveying a rumour or a non-rumour and
a tree of responses, expressing their opinions toward the
claim contained in the source tweet. Since the diffusion trees
in each conversation are given, we use them as the ground
truth for evaluating the inferred diffusion trees.

Table 2. Statistics of the pheme dataset.

Topic #Cascades #Activities

Charlie Hebdo 2,079 38,268
Sydney siege 1,221 23,996
Ferguson 1,143 24,175

Ottawa shooting 890 12,284
Germanwings-crash 469 4,489
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Table 3. Branching structure inference performance

Dataset Strategy
ADM4 MMEL CHASSIS-L CHASSIS-E

Charlie Hebdo 0.6547 0.7031 0.7966 0.8422
Sydney siege 0.6301 0.6908 0.7804 0.8380
Ferguson 0.6122 0.6743 0.7765 0.8201

Ottawa shooting 0.6003 0.6578 0.7523 0.8130
Germanwings-crash 0.5634 0.6020 0.7342 0.8002

Inferring the Diffusion Trees. ADM4 and MMEL could
infer the branching structure by utilizing the linear accu-
mulation of triggering kernels [60, 61]. We run the four
Hawkes-based strategies on each dataset, and construct the
diffusion trees accordingly. We store the diffusion trees in a
binary matrix wherein the index of the rows and the columns
are the chronologically ordered activities. Comparing the
inferred branching structure with the ground truth, we eval-
uate the effectiveness of all the aforementioned strategies in
terms of F1-Score. Table 3 reports the results. Observe that
more activities (i.e., larger dataset) naturally improve the
inference accuracy. More importantly, both CHASSIS-E and
CHASSIS-L outperform the conformity-unaware strategies
on all datasets, reemphasizing the importance of conformity
in information diffusion. Again, CHASSIS-E outperforms
CHASSIS-L significantly, indicating that nonlinear Hawkes
processes are more appropriate than the linear ones.
Next Activity Prediction. We use the first 90% of each
dataset for training and keep the last 10% for testing. Given
the estimated Hawkes-based models (excluding NetRate),
we predict the timestamp of the next activity, as well as
the individual who will issue it according to Section 7.3.
Notably, whenever we have predicted a next activity a, it
is evaluated against the ground truth one. Afterwards, we
append this ground truth activity to the training set in or-
der to update the corresponding intensity functions (in-
cluding the ground-truth parent-child relationship if it is
an immigrant in chassis), and then use the updated inten-
sity functions to predict another new activity. We perform
this process iteratively over all tested samples. Finally, we
compute the MAE of the timestamp of the next activity ac-
cording to ϵ = 1

N (ttest)
∑

i ∈[N (ttest)] |t̂i − ti |, where N (ttest) is
the number of tested samples in each dataset, t̂i and ti are
the predicted and actual timestamp of the next activity. Ad-
ditionally, we calculate the average precision of predicted
individual who will generate the next activity according to∑

k∈[N (ttest)] I(ak ∈Xi (ttest)∧âk ∈Xi (ttest))
N (ttest)

, where the indicator func-
tion I(·) is to decide whether the prediction of the individual
generating the predicted activity âk is correct or not.
Figure 10(a) plots the MAE for predicting the timestamp

of the next activity. Clearly, CHASSIS-L and CHASSIS-E out-
perform the baselines. Figure 10(b) shows the precision for
predicting which individual will generate the next activity.
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Figure 10. Prediction performance of the next activity.

CHASSIS-E is again the best predictor. The intensity update
of ADM4 does not involve the information of branching
structure, hence, it has the worst performance in both predic-
tion scenarios. MMEL utilizes the branching structure while
updating the triggering kernels nonparametrically.

9 CONCLUSIONS

A significant omission in existing online information diffu-
sion models is the role played by conformity, a fundamental
human trait according to social psychology theories. We
propose a novel framework called chassis to address this
limitation by integrating informational conformity and nor-
mative conformity into Hawkes process-based information
diffusion model. Specifically, we detect and quantify confor-
mity by analyzing the triggering relations among the activi-
ties represented as diffusion trees. We propose an efficient
semi-parametric inference algorithm, wherein the paramet-
ric evaluation procedure assists in identifying conformity of
individuals, and the nonparametric procedure learns the trig-
gering kernel functions flexibly in a data-driven way without
the need of prior domain knowledge. Our experimental study
not only demonstrates superiority of chassis compared to
conformity-unaware models but also emphasizes the pivotal
role conformity plays in information diffusion.
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Appendices

9.1 Proofs

Proof of Lemma 5.1 (Sketch). The Line 5 and Line 9 of Al-
gorithm 1 compute the influence degree and context stance
for each parent-child pair of activities in Ni j (t), respectively.
Suppose the maximum number of parent-child activity pairs
in {Ni j }i, j ∈[M ] is Nmax . Hence, the computation cost of Algo-
rithm 1 isO(M2Nmax ), whereM is the number of dimensions
(i.e., individuals).
Proof of Lemma 5.2 (Sketch). We denote the number of
activities in one cascade c (c ∈ Ci j ) as |c |. At most c has
|c |(|c | − 1) pairs of activities that satisfy ajl happens before
aik . So the worse-case time complexity of Algorithm 2 is
O(M2m2n), where n the number of informational cascades
in Ci j ,m = max |Ci j | ≪ M is the maximum number of activ-
ities in a single cascade andM is the number of dimensions
(i.e., individuals).
Proof of Lemma 6.1 (Sketch). After each iteration of semi-
parametric inference of chassis, we need to update the in-
tensity shown in Eq. 4.2 (Line 2 of Algorithm 3). Given one
activity aik , we need to invert the corresponding Papan-
gelous conditional intensity (Line 4 and 7) to update the
parent-child activity pairs. Then the worst-case time com-
plexity is to infer the parent activity of the last activity in Xt .
Hence, Algorithm 3 leads to a O(Nitern

2) computation, where
Niter is the number of iterations required by the inference of
chassis and n is the total number of activities in Xt .
Proof of Theorem 7.1 (Sketch). We discretize the obser-
vation window (0, t] into I intervals of equal length h = t

I .
Let tk = kh for k = 0, 1, . . . , I . Then we define the following
recursive sequence:

Λi (tk+1) = Λi (tk ) + hΛ
′
i (tk ) (9.1)
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wherein Λi (tk ) =
∫ tk
0 λi (s)ds . According to Taylor’s Theo-

rem, each recursion generates a first-order truncation error
as follows:

e = O(τ ) =
h2

2 Λ′′i (τ ) =
h2

2 λ′i (τ ) (9.2)

wherein λ′i (τ )
2 is assumed to be constant. As a consequence,

given the interval length h, the accumulated truncation error
after all recursions equals to:

E =
I∑

k=1
e = I ·

h2

2 λ′i (τ ) =
t

h
·
h2

2 λ′i (τ ) =
tλ′i (τ )

2 h (9.3)

Next, we iterate the above approximation calculation in
Eq. 9.1 with more intervals (i.e., lager I , smaller h):

Λ(m)i (tk+1) = Λ(m)i (tk ) + hmλi (tk ) (9.4)
until reaching a prescribed error tolerance ξ . That is to say,
we devise a sequence hm (m = 1, 2, . . .) until |Λ(m+1)i (tIm+1 ) −

Λ(m)i (tIm )| becomes small enough. We deduce the interval
length hm+1 of next iteration according to the accumulated
truncation error Em = thm

2 λ′i (τ ) and Em−1 =
thm−1

2 λ′i (τ ) as
following:

Λ(m)i (tIm ) − Λ
(m−1)
i (tIm−1 ) =

tλ′i (τ )

2 (hm − hm−1) (9.5)

Accordingly, the next iteration will produce an truncation
error within ξ if

ξ ≥ |
tλ′i (τ )

2 hm+1 | = |
Λ(m)i (tIm ) − Λ

(m−1)
i (tIm−1 )

(hm − hm−1)
hm+1 |

So, the next interval length hm+1 is determined by

hm+1 ≤
ξ (hm−1 − hm)

|Λ(m)i (tIm ) − Λ
(m−1)
i (tIm−1 )|

Concretely, we yield the adaptive interval length iteratively

hm+1 =
ρξ (hm−1 − hm)

|Λ(m)i (tIm ) − Λ
m−1
i (tIm−1 )|

(9.6)

for some coefficient ρ < 1 to reduce the total number of
iterations. Obviously, Λ(m+1)i (0) = hm+1µi . According to the
recursive sequence in Eq. 9.1, the (m + 1)th iteration yields
an approximation of

∫ t
0 λi (s)ds as follows:

Λ(m+1)i (t) = hm+1

(
µi + λi (t1) + . . . + λi (tIm+1 )

)
(9.7)

Below,we characterize the accuracy of the above Eulermethod.
At time tk in themth iteration, we obtain the real truncation
error:

e(m) =
Λ(m)i (tk+1) − Λ

(m)
i (tk )

hm
− (Λ(m))′(tk ) (9.8)

Rearrange the above equation:
Λ(m)i (tk+1) = Λ(m)i (tk ) + hm(Λ

(m))′(tk ) + hme
(m) (9.9)

Refer to our definition in Eq.9.1:
Λi (tk+1) = Λi (tk ) + hmΛ

′
i (tk ) (9.10)

λi (t) is Lipschitz continuous, hence,

|
(Λ(m)i )

′(t) − Λ′i (t)

Λ(m)i (t) − Λi (t)
| ≤ Li (9.11)

Subtract Eq.9.9 from Eq.9.10, and then substitute Eq.9.11,
|Λ(m)i (tk+1) − Λi (tk+1)| (9.12)

=|Λ(m)i (tk ) − Λi (tk ) + hm(Λ
(m)
i )

′(tk ) − hmΛ
′
i (tk ) + hme

(m) |

≤|Λ(m)i (tk ) − Λi (tk )| + hm |(Λ
(m)
i )

′(tk ) − Λ
′
i (tk )| + hm |e

(m) |

≤|Λ(m)i (tk ) − Λi (tk )| + hmLi |Λ
(m)
i (tk ) − Λi (tk )| + hm |e

(m) |

≤(1 + hmLi )|Λ(m)i (tk ) − Λi (tk )| + hm |e
(m) |

Wedenote the estimation error at time tk+1 asWk+1 = Λ(m)i (tk+1)−
Λi (tk+1), accordingly,
Wk+1 ≤(1 + hmLi )Wk + hm |e

(m) |

≤
(
Wk−1(1 + hmLi ) + hm |e(m) |

)
(1 + hmLi ) + hm |e(m) |

...

≤W0(1 + hmLi )k+1

+ hm |e
(m) |

(
1 + (1 + hmLi ) + · · · + (1 + hmLi )i

)
≤W0(1 + hmLi )k+1 + hm |e(m) |

(1 + hmLi )k+1 − 1
1 + hmLi − 1

≤W0(1 + hmLi )k+1 +
|e(m) |

Li

(
(1 + hmLi )k+1 − 1

)
≤W0(1 + hmLi )k+1 +

|e(m) |

Li
(1 + hmLi )k+1

≤(1 + hmLi )k+1
(
W0 +

|e(m) |

Li

)
≤ehmLi (k+1) (W0 +

|e(m) |

Li

)
That is,Wk ≤ ehmLik

(
W0 +

|e (m) |
Li

)
. Substituting hmIm = t

andW0 = 0 into the above equation, we obtain the upper
bound of the estimation error in themth iteration:

WIm ≤ eLi t
|e(m) |

Li
=
O(τ )

Li
eLi t

That is,
|Λi (t) − Λ

(m)
i (t)| ≤

O(△t)

Li
eLi t

wherein O(△t) denotes the first-order truncation error.
Proof of Lemma 7.2 (Sketch). During each iteration of
inferring chassis, we first run the parametric procedure.
Evaluating the log-likelihood (updating the intensity func-
tion and its integral) requires O(max{Im} ×m) operations
according to Eq. 9.7, and updating the parameters Θ costs
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O(M) operations according to the 14th ∼ 18th lines of Al-
gorithm 4. Therefore, per iteration computation cost of the
parametric procedure is O(M +max{Im} ×m).

Proof of Theorem 7.3 (Sketch). We use λi (s) to indicate
the mean intensity conditioned on Xt over the time duration
[0, t − t]. Substituting the following Taylor approximation:
λi (t) ≈ Fi (µi ) + F

′
i (µi )

∑
j ∈[M ]

∑
tjl <t

αi j (t)ϕi j (t − tjl ) (9.13)

into λi (s), we obtain the following Volterra integral equation:
λi (s) = E[λi (s)|Ht ] (9.14)

= E

[
Fi (µi ) + F

′
i (µi )

∑
j ∈[M ]

∑
tjl <s

αi j (t)ϕi j (s − tjl )|Ht

]
= E

[
Fi (µi ) + F

′
i (µi )

∑
j ∈[M ]

αi j (t)

∫ s

0
ϕi j (s − τ )dNj (τ )|Ht

]
= E

[
Fi (µi ) + F

′
i (µi )

∑
j ∈[M ]

αi j (t)

∫ s

0
ϕi j (s − τ )λj (τ )dτ |Ht

]
= Fi (µi ) + F

′
i (µi )

∑
j ∈[M ]

αi j (t)

∫ s

0
ϕi j (s − τ )E

[
λj (τ )|Ht

]
dτ

= Fi (µi ) + F
′
i (µi )

∑
j ∈[M ]

αi j (t)

∫ s

0
ϕi j (s − τ )λj (τ )dτ

The above equation could be solved numerically via the
trapezoidal rule [48].

9.2 Additional Experiments

Comparison with other integration methods. We set
two types of Hawkes processes referring to our semi-parametric
inference approach (Section 7) as follows:
• L-HP: the linear Hawkes processes associated with the
intensity in Eq.3.2 under our modified Euler integra-
tion method (denoted as LE-HP), Trapezoidal rule [18]
(denoted as LT-HP), and Fourth Order Runge-Kutta
method (denoted as LF-HP) respectively.
• E-HP: the exponential Hawkes processes associated
with the intensity in Eq.3.2 under ourmodified Euler in-
tegration method (denoted as EE-HP), Trapezoidal rule
(denoted as ET-HP), and Fourth Order Runge-Kutta
method (denoted as EF-HP) respectively.

Initially, the base intensity µ is sampled from a uniform
distribution over [0, 0.01] for each dimension, and the coeffi-
cients {αi j }i, j ∈[M ] are generated from a uniform distribution
on [0, 0.1]. We compare the performance of these three inte-
gration methods in terms of accuracy (LogLike) and conver-
gence speed (computation time) on SF and ST datasets (see
details in Section 8). For each dataset, we order all activities
chronologically, and use the first 30%, 50%, 60%, 70%, 80%
samples for training, respectively.
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Figure 11. Accuracy of integration methods.
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Figure 12. Convergence of integration methods.

Figure 11 shows the performance of different integration
methods manifested through LogLike. Clearly, under the
same Hawkes process (i.e., the same form of intensity func-
tion in Eq.3.2), the three integration methods exhibit similar
accuracy on abundant activities (i.e., the time interval is long
enough).
Figure 12 demonstrates the computation time under dif-

ferent integration methods. Under the same Hawkes process
(i.e., the same form of intensity function in Eq. 3.2), our mod-
ified Euler integration method shows superior convergence
speed than the Trapezoidal rule and the Fourth Order Runge-
Kutta method. That is, LE-HP (resp. EE-HP) is superior to
LT-HP (resp. ET-HP) and LF-HP (resp. EF-HP). Accordingly,
our modified Euler integration method shows the best effi-
ciency. Note that in the numerical scheme, the Trapezoidal
rule requires evaluating λi (t) twice at each timestep and the
Fourth Order Runge-Kutta method requires evaluating λi (t)
four times at each timestep. In contrast, the Euler integration
only calculates λi (t) once at each timestep.
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