
JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 1

Designing Energy-Efficient MPSoC with
Untrustworthy 3PIP Cores

Yidan Sun, Guiyuan Jiang, Siew-Kei Lam, and Fangxin Ning

Abstract—The adoption of large-scale MPSoCs and the global-
ization of the IC design flow give rise to two major concerns: high
power density due to continuous technology scaling and security
due to the untrustworthiness of the third-party intellectual prop-
erty (3PIP) cores. However, little work has been undertaken to
consider these two critical issues jointly during the design stage.
In this paper, we propose a design methodology that minimizes
the energy consumption while simultaneously protecting the
MPSoC against the effects of hardware trojans. The proposed
methodology consists of three main stages: 1) Task scheduling
to introduce core diversity in the MPSoC in order to detect the
presence of malicious modifications in the cores, or mute their
effects at runtime, 2) Vendor assignment to the cores using a
novel heuristic that chooses vendor-specific cores with operating
speed that minimizes the total energy consumption of the MPSoC,
and 3) Explore optimization opportunities for further energy
savings by minimizing idle periods on the cores, which are caused
by the inter-task data dependencies. Experimental results show
that our solutions consume only 1/3 energy of existing solutions
without increasing schedule length while satisfying the security
constraints.

Index Terms—3PIP cores, untrustworthy, energy efficient,
scheduling, vendor assignment, speed optimization.

I. INTRODUCTION

EMBEDDED computing systems will continue to de-
mand shorter development cycles without compromising

power efficiency, performance, programmability, and cost. The
widening gap between the power demands and the limited
power source of mobile devices can be mitigated by exploiting
heterogeneous Multiprocessor System-on-Chip (MPSoC). As
such, there is an increasing trend to integrate third-party intel-
lectual property (3PIP) cores to build heterogeneous MPSoC,
which allows designers to quickly respond to the increasing
demands in energy consumption, functionality as well as
programmability without sacrificing design productivity [1].

At the same time, increasing number of real-time appli-
cations in finance, military, transportation and medical sys-
tems (such as the signaling control in transportation systems,
medical electronics systems) necessitates that the systems are
secure to assure integrity of information and confidentiality.
However, the integration of 3PIP cores and the outsourcing
of fabrication and testing have led to major security concerns
such as functionality change, performance degradation, and
denial of service, as the 3PIPs are not 100% trustworthy
[2]. Heterogeneous MPSoCs designed using 3PIP cores are

Y. Sun, G. Jiang, S.K. Lam and F. Ning are with the School of Computer
Science and Engineering, Nanyang Technological University, 639798 Sin-
gapore. e-mail: (ysun014@e.ntu.edu.sg, {gyjiang,fangxin_ning}@ntu.edu.sg,
siewkei_lam@pmail.ntu.edu.sg).

Manuscript received April 19, 2005; revised August 26, 2015.

vulnerable to malicious modifications, also known as hardware
trojans, which can cause system failures or create backdoors
to leak confidential information back to the attacker [3].
Rogue foundries could insert disguised malicious modifica-
tions during the fabrication process, and the situation becomes
more complicated when the 3PIP cores from the same vendor
collude with each other. That is, spiteful vendors distribute
trojans on different 3PIP cores and activate them through
secret communication between these cores.

Detecting and mitigating the trojans in 3PIPs is extremely
challenging due to the limited gate level visibility inside a 3PIP
core since most 3PIP cores are commonly delivered as “black
boxes” in order to protect the intellectual property of the third
parties [4]. Moreover, the effects of trojans may be neglected
because a healthy core could also generate similar performance
fluctuation due to process variations and non-deterministic
architectural events. Therefore, it is time-consuming and costly
to thoroughly analyze or test a system for the presence of
trojans using traditional methods such as functional testing
[5], side-channel analysis [6], etc.

The work in [3] investigated security-driven MPSoC task
scheduling to account for the untrustworthiness of the 3PIP
cores. Since it is impossible to guarantee trustworthiness (i.e.,
100% trojan freeness) of 3PIP cores, the authors propose
approaches to enable the detection of trojans or mute their
effects during runtime. Contrary to existing trojan detection
and prevention techniques [7], [8], the authors incorporate
vendor diversity into MPSoC task schedules to reduce false
negatives in the detection stage. This is achieved by duplicat-
ing each task and mapping them on 3PIP cores of different
vendors to detect trojans that maliciously alter task outputs. In
addition, vendor diversity also mutes potential trojan effects by
preventing collusion between malicious 3PIP cores from the
same vendor that send triggers through communication paths.
However, [3] focuses on incorporating security constraints
into MPSoC design without concerning energy consumption.
Also, it imposes a restriction that each vendor can provide
only single processor operating speed, while a more practical
scenario is that a task can be executed at different speeds
through clock frequency scaling. The provision for each core
to operate at different speeds presents new opportunities to
improve the energy efficiency.

The above mentioned works mainly worked on security
policy enforcement in modern MPSoC designs [9]. On the
other hand, there have been considerable research efforts
devoted to minimizing the energy consumption of hetero-
geneous MPSoC systems at different levels, i.e. algorithm,
system, architecture, and circuit levels [10], [11]. These works

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 2

mainly address the problem of task allocation and scheduling
of energy-efficient MPSoCs with dynamic voltage frequency
scaling (DVFS). However, there is very little work that jointly
considers energy consumption and security for MPSoC design
despite the importance of these two critical issues in modern
embedded computing systems, especially for heterogeneous
MPSoCs built from 3PIP cores which are untrustworthy.

In this paper, we propose a design methodology that aims
to minimize energy consumption of heterogeneous MPSoCs
under two security-driven diversity constraints as well as
schedule length constraint. The joint consideration of task
scheduling, DVFS and security constraints lead to a complex
and heterogeneous structure of the design space, making the
existing methods inefficient for searching optimal solutions.
The contributions of this paper are summarized as follows:

1) To the best of our knowledge, this is the first framework
that jointly considers energy consumption and security
constraints in MPSoC design. We mathematically for-
mulate security constraints by defining suitable binary
decision variables, and we formulate the optimization
problem using a mixed integer programming (MIP)
model with the objective of minimizing the overall en-
ergy consumption under constraints of both security con-
straints and maximum delay constraint (i.e. the schedule
length must not exceed). The proposed formulation can
be solved using optimization tools (e.g. CPLEX), which
enable us to evaluate our proposed method by comparing
with the optimal solutions.

2) We propose a design methodology that solves the prob-
lem in three-stages, i.e., 1) security-driven scheduling
of tasks to processor cores, 2) vendors to cores assign-
ment based on the supply-demand speed deviation to
minimize energy consumption, and 3) execution speed
optimization for further reducing energy consumption
while guaranteeing that the schedule length constraint
is met. In Stage 1, we propose an efficient algorithm
to schedule tasks onto a given number of cores under
two security-driven diversity constraints. The schedul-
ing algorithm relies on two efficient techniques, i.e.
a task priority queue and a candidate core selection
mechanism, to minimize the total schedule length while
balancing the required number of vendors under security
constraints. A Core Conflict Graph (CCG) is constructed
and colored using the minimum number of colors during
scheduling to capture the conflicting relationship among
cores under the security constraints. In Stage 2, to assign
suitable vendors to cores with the task schedules, we
theoretically estimate the optimal speeds required by the
tasks on each core, and develop an efficient heuristic to
assign vendors to cores with the objective of minimizing
the deviation between required speeds of the tasks and
the available speeds provided by vendors. In Stage 3,
after vendor assignment, we propose a novel optimiza-
tion algorithm to further reduce energy consumption by
exploiting the idle periods on cores due to the inter-task
data dependency.

3) We demonstrate the effectiveness of our proposed ap-

proach by comparing them with the optimal solution
obtained by CPLEX [46] and two existing methods.
Extensive simulations have been conducted on both
synthetic and real application task sets. Experimental
results show that the proposed methodology leads to
only 1/3 of the energy required by existing solutions,
without an increase in schedule length while satisfying
the security constraints. We show that CPLEX becomes
intractable for solving large-scale problems. For problem
instances with relatively small scales, our approach can
be computed an order of magnitude faster than CPLEX,
and provide solutions that are much closer to the optimal
solutions than the baseline methods.

The remainder of the paper is organized as follows. Related
works are discussed in Section II. Section III introduces
important definitions and the problem formulation. Section
IV discusses the proposed method consisting of three stages,
i.e. 1) security-driven tasks scheduling, 2) vendors to cores
assignment, and 3) execution speed refinement to improve
energy consumption. We evaluate the performance of the
proposed method in Section V, and Section VI concludes the
paper.

II. RELATED WORKS

The existing works that are closely related to the problem
considered in this paper can be classified into the following
two categories, i.e. trojans detection in 3PIPs and security-
aware MPSoC design.

A. Trojans Detection in 3PIPs

Existing methods in this category can be generally grouped
into three approaches, i.e. code/structural analysis, security
property verification techniques, and vendor diversity-based
approach [13]. For code/structural analysis, code coverage
analysis on Register Transfer Level (RTL) codes have been
undertaken to identify suspicious signals due to the presence
of a trojan [14], [15] since 3PIPs are typically delivered as
RTL VHDL/Verilog codes. However, even with 100 percent
coverage of the RTL code, it still cannot guarantee a fault-free
code [16]. Usually, semi-manual approach is utilized, which
first marks suspicious signals using tools (e.g. FANCI [17]
marks gates with low activation probability as suspicious while
VeriTrust [18] marks gates that are not driven by functional
inputs as suspicious), and then manually analyzes the small
number of suspicious gates to determine if they are part of
a trojan. Rajendran et al. [12] focused on automated 3PIP
trojans detection that compromise registers which store critical
data, e.g. a stack pointer of a cores, or a secret key of a
cryptographic design. The drawbacks of the code/structural
analysis techniques are that they cannot guarantee trojan
detection [19], burden the designer with manual analysis and
can only analyze combinational parts of the entire design [12].

On the other hand, some approaches have been reported
to detect data leakage [21] and malicious modifications to
registers [22] using security property verification techniques.
That is, 3PIP vendors and MPSoC integrators agreed on a pre-
defined set of security properties that the IP should satisfy,

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 3

and then MPSoC integrators will check whether a design
honors these properties by converting the target design into
a proof-checking format (for example, Coq) for verification
using existing models [20]. One of the drawbacks is that it
is hard (or impossible) to include all kinds of vulnerabilities
as pre-defined properties [22]. In addition, even if a Coq
representation of a design is considered trustworthy, it does
not necessarily mean that the corresponding VHDL/Verilog
representation is trustworthy [12]. Functional testing [23] is a
common approach to detect manufacturing faults by compar-
ing the outputs of the genuine and the Trojan circuits using the
same inputs. The work in [24] presents a method that detects
the presence of Trojans in third party IP cores of MPSoCs. It
focuses on streaming applications and takes advantage of the
specific MPSoC architecture to not only detect and identify
hardware Trojans but also recover pipelined MPSoCs from
such infections. In addition, side-channel analyses [25], [26],
[27], [28], [29] are also widely used to analyze the signals
generated by electrical activity, based on which the state of
the device and the data it processes can be obtained. These
signals enable the detection of trojans. Formal verification
techniques only work efficiently on small-scale instances, as
it does not directly detect trojans but attempts to evaluate the
trustworthiness of IP cores with a much larger search space.

The vendor diversity-based approach detects trojans using
several IP cores from different vendors, based on the assump-
tion that vendors do not collude meaning that trojans that
may be inserted into these IP cores are different. There is a
high probability that the outputs of IP cores from different
vendors will be different when the trojans are activated.
The work in [30] proposed to discover suspicious IP cores
using a majority voting circuit. Farag et al. [31] compared
the outputs of an operating core with a reference core at
runtime, which has the obvious drawback that a golden
reference is required. Rajendran et al. [32] works at RTL
level to build trustworthy systems during high-level synthesis
on a given configuration of untrusted and potentially Trojan-
infected 3PIPs. The authors achieve this by identifying design
constraints for Trojan detection to achieve detection, collusion
prevention, and isolation of Trojan-infected 3PIP. The focus
of our work differs from [32], as we investigate design-for-
trust techniques to determine the configuration of the MPSoC
system that meets the performance requirements and reduce
energy. To reduce the runtime cost, Reece et al. proposed a
technique for identifying hardware trojans with logic-based
payloads at design time [33]. However, it cannot be applied
to large circuits due to the limited software capacity [13].
In summary, the above mentioned works typically focus on
detecting the attack patterns and the effects of a trojan, without
attempting to eliminate false negatives. Moreover, these works
did not attempt to improve the system performance (such as
hardware resources, energy consumption, task execution time
etc.) when the security measures are deployed.

B. Security-aware MPSoC Design

The work in [34] investigated the problem of scheduling
periodic tasks of sensitive applications in embedded systems

subject to security and timing constraints. It designed a
necessary and sufficient feasibility check, based on which a
scheduling algorithm was proposed to distribute slack times
among a variety of security services for a set of periodic
tasks, with the objective of optimizing security for embedded
systems without sacrificing schedulability. The work in [35]
investigated a traditional real-time scheduling algorithm with
consideration of a wide variety of security requirements,
where different computation tasks have different security
services/types. A security-aware algorithm based on earliest
deadline first strategy is developed to integrate the group-based
security model, to optimize the combined security value of the
selected services while guaranteeing the schedulability of the
real-time tasks.

For protecting MPSoC, the work in [36] proposed an online
trojan detection and prevention scheme for protecting homo-
geneous systems against malicious modifications. It exploits
redundancy by executing computation tasks on three or more
cores simultaneously, and the results are verified through
voting before being written to memory. By partitioning an
application into computation tasks that are executed on dif-
ferent sets of cores, this technique limits the data access
capability of each cores thus improving the security level.
However, the redundancy-based strategy obviously incurs an
extra delay, energy consumption and hardware cost. Liu et al.
[3] used a vendor diversity-based approach to solve a similar
problem which requires less redundancy, by imposing security-
driven diversity constraints into task scheduling process of the
MPSoC design. The diversity-based security constraints can
either detect the existence of malicious modifications or even
mute their effects during application execution. The authors
also developed algorithms to satisfy the proposed security
constraints without compromising much on performance and
hardware. The work in [37] proposed a high-level synthesis
(HLS) methodology for secure scheduling of loop-based con-
trol data flow graphs, with the objective of reducing hardware
cost. In particular, the work in [38] investigated the problem
of resource-constrained task scheduling where the security
threats are taken into consideration. The objective is to jointly
minimize the number of security constraint violations and
minimize the schedule length (or the number of required cores
to satisfy certain schedule length) for a given application.
In contrast to [38], our works takes security constraints as
hard constraints such that no violation is allowed. In addition,
we aim to jointly minimize the overall energy consumption
while meeting the security constraints and schedule length
requirements. In addition, to the best of our knowledge, neither
of them has tried to optimize the overall energy consumption
in the presence of security measures.

Many existing works have investigated the problem of op-
timizing energy consumption for MPSoCs based on Dynamic
Voltage Frequency Scaling (DVFS). For example, the work
in [39] presents a general concept for a power management
controller for per-core DVFS in heterogeneous MPSoC, which
allows switching between several on-chip supply voltage lev-
els. It does not pay attention to the schedule of computation
tasks. The work in [40] studies the problem of jointly opti-
mizing DVFS and Dynamic Power Management (DPM) with

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 4

scheduling to minimize the overall energy consumption. Due
to the joint consideration of DPM, their optimization model is
significantly different from ours, thus their method cannot be
simply adapted to the problem considered in this paer. In this
paper, we optimize the DVFS for reducing energy consump-
tion while jointly taking into account security constraints. It
is worth mentioning that the work in [40] is complementary
to our work and thus incorporating the techniques proposed
in [40] can potentially further improve the performance of our
method.

III. PRELIMINARIES

Let P = {p1, p2, · · · , p |P |} be the set of available processor
cores, where |P | is the upper bound on available cores. The
|P | cores are provided by |VE | (|VE | ≤ |P |) vendors, and
the set of available vendors is denoted as VE = { ve1, ve2,
· · · , ve |VE |}, where VE is an input set determined by user or
designer. We assume that a vendor provides multiple cores of
the same type, and each of the core can run at multiple speeds.
In other words, cores of the same vendor have the same list
of operating speeds. Let SPk = {sk ,1, sk ,2, · · · , sk ,nk } be the
set of speeds provided by vendor vek , where nk is the number
of speeds vek can provide and speeds are sorted in increasing
order. We assume that each vendor provides one type of core.
This can be easily accommodated to cases where a single
vendor provides different types of cores, by considering the
speeds of different cores separately and dynamically selecting
the most suitable type of core for the vendor during vendor
assignment process.

We denote the input application task graph as a di-
rected acyclic graph (DAG), G = (V,E), where V =
{v1, v2, v3, · · · , vn} is the set of tasks, n = |V |, E = {e(i, j)} is
the set of edges in task graph that captures data dependencies
among tasks, and m = |E |. There exists an edge e(i, j) from
task vi to vj if task vj depends on task vi in terms of data
dependency. Let STi and FTi be the start time and end time
of task vi , then FTi = STi + ti , where ti is the execution time
of task vi . The data dependency e(i, j) between tasks vi and
vj requires that STj ≥ FTi . Therefore, the schedule length of
the given application can be represented as maxvi ∈V {FTi}.

Notation xi, j = 1 indicates that task vi is scheduled to core
pj , and xi, j = 0 otherwise. Similarly, yj ,k = 1 indicates that
core pj is provided by the vendor vek , while notation zi,u = 1
indicates that the task vi is executed at the u-th speed provided
by its associated core.

A. Threat Model and Security Constraints

We adopt the same threat model in [3], wihch mainly
focuses on detecting (or muting) malicious modifications.
Specifically, an attacker in a third party house may insert a
hardware trojan into the 3PIP core to modify function, or
create a backdoor to leak confidential information, etc. The
trojan may cause the task running on the malicious 3PIP to
either produce incorrect output or generate additional output
to trigger trojans in another 3PIP core from the same vendor.
As a result, the following two cases can occur at runtime:
1) Due to the insertion of the malicious logic into a 3PIP

core, the outputs of the infected cores will be altered at
some undetectable points in the cores, 2) Trojans distributed
on multiple cores (in order to reduce the chance of being
detected) can also form malicious communication paths where
a malicious logic in one core triggers the trojans in another
core using a secret communication channel (e.g., when some
illegal values are written to certain memory space).

In this work, we target embedded platforms which executes
application-specific tasks with tight performance and energy
constraints. Such platforms are widely-used in automotive,
safety-critical systems, or real-time edge computing platforms
(e.g. smart sensors). In such systems, the designer has the
prior knowledge of the application and its runtime constraints,
which allows him/her to perform security-aware customiza-
tions to meet performance requirements and reduce energy
consumption. Thus, we assume that the defender is in the
design house, has knowledge of the task graph, and the ability
to bind tasks to cores, choose cores from different vendors,
set the operating speeds to the cores, and design glue logic to
improve security.

Similar to [3], we introduce vendor diversity as security
constraints in the MPSoC design stage to address the above-
mentioned two types of Trojans, i.e. to enable the detection of
trojans or mute their effects during runtime. The first con-
straint is called duplication-with-diversity, which duplicates
each computation task on two cores from different vendors and
compare the outputs of the two cores at runtime. The presence
of malicious logic is detected when there is a mismatch in the
outputs. The rationality lies in the fact that different vendors
do not tend to collude, and thus their cores will not contain
the same hardware trojan. As such, the cores will not produce
the same incorrect output under the same input if malicious
logic is present. Once mismatch of outputs is observed, a
security flag will be raised and all the subsequent tasks are
terminated. Thus after duplication of graph G = (V,E), V
= {v1, v2, v3, · · · , v2n} and E are also duplicated based on G.
Formally, the security constraint duplication-with-diversity can
be formulated as follows.

(xi, j · yj ,k) · (xi+n,h · yh,k) = 0, pj, ph ∈ P, vek ∈ VE,1 ≤ i ≤ n (1)

where vi, vi+n ∈ V and task vi+n is the duplicated copy of vi ,
and xi, j · yj ,k = 1 indicates that task vi is scheduled to core
pj whose vendor is vek . Thus, formula (1) restricts that tasks
vi and vi+n cannot be scheduled to cores of the same vendor.

Isolation-with-diversity addresses trojans that are split into
several segments which are distributed in multiple 3PIP cores
in order to reduce the chance of being detected. The trojans are
distributed across different cores and are triggered by illegal
communication between these cores. Isolation-with-diversity
mutes the effects of the Trojan segments collusions by pre-
venting communication of IP cores from the same vendors
since malicious cores from different vendors cannot collude
with each other. We adopt the same online verification scheme
as in [3], wherein if two cores from the same vendor access
the same data object through a secret communication channel,
a security flag will be raised indicating an invalid communica-
tion path. For example, such checks can be achieved using an
ownership vector for shared memory MPSoCs as discussed in

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 5

[3]. To mute malicious communication paths, the constraint is
incorporated into the task scheduling in the following way: for
a given task graph, any task pairs which have data dependency
cannot be scheduled to two cores from the same vendor. In
this way, the isolation-with-diversity constraint can mute the
effect of Trojans distributed in multiple cores. Formally, the
constraint can be formulated as:

(xi,h · yh,k) · (xj ,u · yu,k) = 0, e(i, j) ∈ E,u , h (2)

It is worth mentioning that the second constraint allows two
tasks with data dependency to be scheduled on the same core,
as this will not result in collusion of multiple cores since there
are no inter-core communication.

B. Energy Model and Speed Model
The dynamic power of CMOS circuits is characterized by

p = aCν2 f where a is an activity factor, C is the loading
capacitance, ν is the supply voltage, and f is the clock
frequency [41]. The core speed s is linearly proportional to
the clock frequency f (s ∝ f), and the supply voltage ν is
related to f in the following manner: f ∝ νγ (0 < γ ≤ 1),
which implies that ν ∝ f 1/γ [42]. As such, we know that the
power consumption p satisfies that p ∝ f α and p ∝ sα, where
α = 1 + 2/γ ≥ 3. For the ease of discussion, we assume
ν = b f 1/γ and s = c f , where b and c are constants.

Let ri (1 ≤ i ≤ n) be the computation requirement (e.g., the
number of CPU cycles or the number of instructions) of task
vi . If vi is executed at speed si , then the execution time ti is
calculated as ti = ri/si , and the energy consumption is εi =
piti = ri(aCν2

i fi/si) = (aC/c)ri(b f 1/γ
i)

2 = (ab2C/cα)risα−1
i .

Since constants a, b, c, and C only contribute to the effect of
scaling [44], we can simply assume that

εi = ri · sα−1
i = ri · s2

i (3)

Similar to existing work [44], [45], we set α = 3 during
simulation. Generally, processor cores have two types of
speed models: 1) continuous model, where the cores can
have arbitrary speeds which can be any value in the interval
[smin, smax], 2) discrete model, where cores have a finite
number of speeds in the set {s1, s2, s3, · · · , sd}. In this paper,
discrete speed model is used so that each vendor only provide
a few discrete speeds for user to choose.

Problem Description: Given the upper bound on the number
of cores, a set of vendor-specific cores with multiple discrete
operating speeds, an upper bound of the schedule length DL,
and the application task graph G(V,E), where each task vi
has computation requirement ri and E represents the data
dependency among tasks, determine: 1) the optimal schedule
of all tasks for the cores, 2) the vendor of each core and 3) the
execution speed of each task, with the objective of minimiz-
ing the total energy consumption under the schedule length
constraint DL as well as the two security-driven diversity
constraints. In other words, the problem needs to determine the
values of xi, j , yj ,k and zi,u for any i, j,u with respect to vi ∈ V ,
pj ∈ P and veu ∈ VE . Formally, the considered problems can
be formulated as the following optimization problems.

Min
∑
vi ∈V

εi (4)

s.t.
(1)
(2)

max
vi ∈V

FTi < DL (5)

STj ≥ FTi, vi, vj ∈ V, e(i, j) ∈ E (6)

STi +
∑

p j ∈P,vek ∈VE ,si ,u ∈SPk

ri · (xi, j · yj ,k · zi,u)
sk ,u

≤ FTi, vi ∈ V

(7)

xi, j · xi′, j · (Fi − Si′)(Fi′ − Si) ≤ 0, vi, vi′ ∈ V, i , i′, pj ∈ P (8)∑
p j ∈P

xi, j = 1, vi ∈ V (9)∑
vek ∈VE

yj ,k = 1, pj ∈ P (10)∑
su ∈Sk

xi, j · yj ,k · zi,u = 1, vi ∈ V (11)

Constraints (1) and (2) are the the previously defined secu-
rity constraints, formula (5) is schedule length constraint and
(6) captures the dependency constraints among consecutive
tasks. Constraint (7) imposes that the finish time FTi of task
vi must be no less than the task start time STi plus the
execution time

∑
p j ∈P,vek ∈VE ,sk ,u ∈SPk

ri ·(xi , j ·yj ,k ·zi ,u)

sk ,u
, where

(xi, j · yj ,k · zi,u) = 1 indicates that the task vi is executed by
core pj at the u-th speed of vendor vek . The constraint (8)
ensures that any two tasks scheduled to the same core cannot
be executed in parallel. The constraint (9) requires that each
task is scheduled to single core, and constraint (10) ensures
that each core is provided by a single vendor. The constraint
(11) indicates that if task vi is scheduled to a core whose
vendor is vek (xi, j · yj ,k), the speed for running task vi can
only be one value from the set Sk , i.e. the speed options that
vendor vek provides.

IV. METHODOLOGY

The proposed approach, which consists of three stages, is
illustrated in Fig. 1. In the first stage, two security constraints
are embedded into task scheduling and Core-Conflict-Graph
(CCG) coloring to protect task execution from trojan attacks.
That is, all tasks (including duplicated ones) are scheduled
to a given number of cores such that 1) original task and
its duplicate are not scheduled on cores of the same color
(security constraint 1), 2) inter-core communication only hap-
pens among cores of different colors (security constraint 2).
In the second stage, we determine the vendor of each core
by considering the computation requirement of tasks on each
core, the distribution of available speeds of each vendor, as
well as the dependency among tasks. In the last stage, we
assign discrete speed to each task based on the available speeds
provided by the corresponding vendor, with the objective of
minimizing energy consumption without violating schedule
length constraint.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 6

A. Stage 1: Security-Constrained Task Scheduling

In this section, we present our proposed approach for task
scheduling with the two security constraints. The security con-
straints will be guaranteed by employing vendor diversity dur-
ing scheduling, i.e., tasks are scheduled on cores from different
vendors. Specifically, the security diversity DUPLICATION-
WITH-DIVERSITY is achieved by duplicating each com-
putation task and placing tasks of original copy and the
duplicated copy on cores from different vendors. The secu-
rity diversity ISOLATION-WITH-DIVERSITY that prevents
illegal communication is achieved by allowing communication
only between cores from different vendors to prevent collusion
of trojans in different cores. Note that if two dependent tasks
are located on the same core, it can be regarded that there
is no communication among the two tasks. In contrast to the
work in [1], we aim at minimizing the total energy cost while
guaranteeing security constraints and schedule length.

In the proposed scheduling algorithm, denoted as SCSA, the
tasks are processed in a particular order, which is maintained
using a priority queue. As shown in Algorithm 1, the proposed
scheduling algorithm iteratively selects the task with highest
priority and identify the best candidate core to host the task
using a dynamic priority mechanism. The process repeats until
the priority queue becomes empty.

In the algorithm SCSA, the security constraints are imposed
at the stage of selecting a candidate core for hosting a task. The
first security constraint, DUPLICATION-WITH-DIVERSITY,
requires that the task v and its duplicated task v′ cannot be
hosted by cores from the same vendor. The second security
constraint, ISOLATION-WITH-DIVERSITY, requires that, if
two tasks vi and vj with dependency relationship are hosted by
two cores pi and pj respectively, then pi and pj cannot be from
the same vendor. A Core-Conflict-Graph CCG is constructed
to capture the conflicting relationship among different cores. If
two cores have an edge in CCG, this indicates that one of the
cores hosts a task, say v, and the other core hosts the duplicated
task v′, or there exists communication between the two cores.
In CCG, any adjacent node pair (conflicted cores) cannot be of
the same vendor in order to meet the security constraints. If we
color adjacent nodes in CCG with different colors, then the
minimum number of required colors indicates the minimum
number of required vendors. CCG is initialized as a set of
isolated cores without any links. During the scheduling of a
task, conflicting links may be created between pair of cores,
e.g., pi and pj , if pi is assigned a task that conflicts with a task
on pj . An Upper Bound of Maximum Clique Size (UB) checks
whether the solution violates the vendor number constraint [3],
i.e. there will be insufficient vendors if the UB of the graph
CCG exceeds the vendor upper bound |VE |. After CCG is
obtained, we use the standard coloring algorithm [43] to color
the CCG, where each color represents a vendor, and cores of
the same color are from the same vendor.

1) Determining Priority of Tasks to Schedule: For a given
non-trivial task graph, the scheduling order of tasks are deter-
mined based on four metrics, i.e., task layer, task criticality,
number of its successors, and the number of its critical
successors. The layer of task v is defined as the number of

1

3 3’

8

9

11

8’

9’

11’

2 2’
4 4’ 5

6

6’

5’7

7’10

10’

p1 p2 p3 p4 p5

P1 P2

P3 P4

P5

(d) CCG

(a) Task graph (b) Duplication

1’
(c) Schedule result

1

2 3

54

67

8

10

9

11

3
4 5

5 6 7

8 7 9

4 5

1’

2’ 3’

5’4’

6’7’

8’

10’

9’

11’

3

4 5

5 6 7

7

4 5

8 9

Fig. 1. Example of security constrained scheduling, (a) original graph,
(b) duplicated graph, (c) the schedule results and (d) CCG which is
colored with three colors. The priority queue is: 1, 1’, 3, 3’, 2, 2’, 8,
8’, 4, 4’, 5, 5’, 9, 9’, 6, 6’, 7, 7’, 11, 11’, 10, 10’.

hops on the longest path from the start node to v, where the
start node is v’s predecessor that has no parent node. A task
is a critical task if it is on a critical path of the graph. Based
on above metrics, the following rules are utilized to calculate
the priority of a task: (1) A task in the i-th layer has higher
priority than any task in the (i + 1)-th layer. In fact, by taking
layer as a priority indicator, the data dependencies between
the tasks can be guaranteed. (2) A critical task has higher
priority than the less critical tasks in the same layer, as critical
tasks affect the schedule length. (3) If rules (1) and (2) cannot
differentiate the priority of two tasks, the task v that has more
critical successors is given higher priority, because executing
v earlier will enable more critical task to be executed sooner.
(4) If all the above rules cannot differentiate the priority of
two tasks, the task that has more successors is given higher
priority.

2) Candidate Core Selection: Now we introduce how to
select a core for hosting a given task v from core candidate set
(Pcs). For each task to be scheduled, its Pcs is calculated based
on the two security constraints: if no security constraint is
violated by placing task vi on core pj , then pj will be put into
vi’s Pcs . Let Svi = {vi1, vi2, · · · , vi|Svi |} be the set of vi’s parent
nodes, which are hosted on core pj1, pj2, · · · , pj|Svi |

(can have
repeated cores) respectively. Let Pv = {pj1, pj2, · · · , pj|Svi |

},
tpjk be the earliest available time for running new task on core
pjk , and Tready be the latest end time of vi’s parent tasks, i.e.
Tready = maxvi ∈Svi

{FTi}.
The proposed method to select a core for hosting a given

task v from candidate set (Pcs) is based on the following three
steps.

(1) Calculate P′cs as a subset of Pcs such that, for each
p ∈ P′cs , placing v to p won’t increase maximum clique size
MCS of CCG. If MCS ≥ UB, we reduce set Pcs to P′cs ,

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 7

meaning that we consider cores in P′cs with higher priority in
order to guarantee the constraint on the number of available
vendors while minimizing the scheduling length.

(2) If Te = minpi ∈Pv∩Pcs {tpi} ≤ Tready , which in-
dicates that at least one core in Pv can process task v

at time Tready , then task v will be allocated to the core
pi = arg maxpi ∈Pv∩Pcs ,tpi ≤Tready

{tpi} with start time STv =
Tready . That is, among all cores pi that can allow task v to
start at time Tready (i.e., tpi ≤ Tready), we select the core
with latest available time so as to minimize the idle time.
Also, cores with earlier available time can serve other tasks
without incurring idle time in order to minimize the overall
schedule length.

(3) If Te = minpi ∈Pv∩Pcs {tpi} > Tready , we select the core
with the earliest available time Te as the core to host task v, so
that task v can start at time Te. We consider cores that are not
within the set Pv only when there is no core Pv that allows
task v to start earlier than Tready , i.e., Te > Tready . This is
undertaken to increase the chance of placing neighboring tasks
on the same core with the aim of reducing the communication
overhead as well as reduce the overall schedule length.

The above procedure first considers Pv ∩ Pcs to select a
candidate core as in step 1), and then search the entire Pcs if
step 1) cannot find a valid core that can execute current task
v with start time no later than Tready . Both Tready and Pv

are dynamically updated whenever a task is mapped to a core.
Fig.1 shows an example of security constrained scheduling.
Calculating priority queue before scheduling runs in O(n2),
then, selecting the candidate core for each task runs in O(n),
thus it needs O(n2) to select cores for all tasks. Therefore,
time complexity of Algorithm 1 is O(n2), where n indicates
the number of computation tasks in a given application.

After task scheduling, CCG is constructed to represent the
conflicting relationship among cores. If two cores have an
edge in CCG, this indicates one of the core hosts a task, say
v, and the other core hosts the duplicated task v′, or there
exists communication between the two cores. Two conflicted
cores must come from different vendors in order to meet
the security constraints. After CCG is obtained, we use the
standard coloring algorithm [5] to color the CCG, where each
color represents a vendor, and cores of the same color are from
the same vendor.

B. Stage 2: Vendor Assignment

The previous stage partitions all cores into several groups
such that cores of the same group are of the same color
(i.e. cores of the same group are from the same vendor).
In this stage, the vendor for each core group (color) will
be determined, i.e. which color corresponds to which vendor.
Due to the heterogeneous computing capability of cores from
different vendors, and unbalanced computation requirement of
different cores, the vendor assignment problem which assigns
vendors to core groups/colors should be carefully designed so
as to maximize the energy efficiency. Intuitively, a core with
large volume of computation requirement should be from a
vendor that can provide stronger computing capability. We
first analyze the optimal speeds that can minimize the total

Algorithm 1: SCSA (Security Constrained
Scheduling Algorithm)

Input: Task graph G (original and duplicated), number of cores
|P |, number of vendors K .

Output: Schedule of tasks to cores xi , j , and core conflict graph
CCG.

begin
Step 1: Determine priority queue Q for task scheduling
Step 2: Scheduling
Initialize CCG as isolated cores;
while Q , ∅ do

v ← task of highest priority in Q;
Compute set Pcs for task v;
P′cs ← ∅;
for each p in Pcs do

if placing v to p won’t increase UB of CCG then
P′cs ← P′cs ∪ {p};

If P′cs , ∅ then Pcs ← P′cs ;
P← best candidate from Pcs based on core selection

rules;
Schedule task v to core p;
Update CCG;

end

energy consumption for processing the tasks using continuous
speed model. Next, an efficient heuristic is developed to assign
vendors to cores with the objective of minimizing the deviation
between the required speeds of the tasks and the available
operating speeds provided by vendor-specific cores.

1) Estimating the Required Speed for Tasks: The work in
[44] investigated the power (speed) assignment to minimize the
overall energy consumption under schedule length constraint
for processing a set of dependent tasks on multicores. It
analyzed the optimal speed assignment for level by level
scheduling algorithm LL-A. The input task graph is partitioned
into h layers, where the tasks in set VSl (consists of tasks
in the l-th layer) cannot start until all tasks in VSl−1 have
finished. The algorithm further partitions VSl (1 ≤ l ≤ h)
into p disjoint sub-sets to run on the p cores, i.e., VSl =
{VSl,1,VSl,2, · · · ,VSl,i, · · · ,VSl,p} where VSl,i indicates the
sub-set that has been scheduled to core pi . Note that VSl,i
could be empty, i.e. no tasks of layer VSl has been assigned
to core pi .

In algorithm LL-A, each layer VSl is assigned with an
unknown time period Tl (1 ≤ l ≤ h and

∑h
l=1 Tl = DL), thus

the total energy consumption can be represented as

ε =

h∑
l=1
(
Rα
l,1 + Rα

l,2 + · · · + Rα
l,p

Tα−1
l

) (12)

where α = 3, Rl,i represents the total computation requirement
of tasks in set VSl,i , which is known in advance. Then we can
obtain the assignment T1, T2, · · · , Th (

∑h
l=1 Tl = DL) which

minimizes ε

Tl = (
A1/α
l

A1/α
1 + A1/α

2 + · · · + A1/α
h

) · DL (13)

where Al = Rα
l,1 + Rα

l,2 + · · · + Rα
l,p

, for 1 ≤ l ≤ h, and DL is
known as a constraint, so the minimized energy consumption

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 8

is

ε =
(A1/α

1 + A1/α
2 + · · · + A1/α

h
)α

DLα−1 (14)

by using the above time assignment for each level. The
performance ratio is

β ≤ (1 +
p · h · r∗

VS
)α (15)

where the input task graph is partitioned into h layers, r∗ =
max(r1,r2, · · · ,rn) is the maximum task execution requirement,
VS is the total computing requirement of all tasks. For a fixed
p, the performance ratio β can be arbitrarily close to 1 as
VS/(hr∗) → ∞.

Based on the obtained T1,T2, · · · ,Th we can easily calculate
the required speed of each task. Specifically, a task in VSl,i
should be executed at speed Rl,i/Tl .

2) Vendor Assignment via Minimizing Speed Deviation: At
this stage, each core contains a set of tasks, and all cores are
partitioned into many groups such that each group is associated
with a color. We use a color to represent a group of cores
instead of considering each core separately. For the ease of
presentation, we define the required speeds of a color (a group
of cores) as the required speeds of tasks that are associated
with the color. In this section, we propose an approach to
determine which color corresponds to which vendor, based on
the required speeds of each color and the provided operating
speeds of each vendor-specific core.

Note the required speeds of each color, obtained through the
theoretical analysis method presented in the previous section,
is under continuous speed model meaning that any speed can
be available when required, and the vendors’ available speeds
are under discrete speed model indicating that only several
discrete speeds are available. Vendor assignment maps the
available vendors to each group (color) of cores and find a
speed for each task from the provided speeds of the assigned
vendor with the objective of minimizing the overall deviation
D of the assigned speeds from the available speeds. Formally,
the vendor assignment tries to minimize

D =
∑

vi ∈V ,veu ∈VE

((s′i − bsi,u)2 · xi, j · yj ,u ·
ri
r
) (16)

where s′i is the required speed of task vi obtained using the
approach in the previous section, xi, j yj ,u = 1 if vi is associated
with vendor veu , bsi,u is the best speed for task vi from
veu’s available operating speeds, r is the average computation
requirement of all tasks and is used for normalization. Clearly,
small D leads to better performance.

Suppose task vi is assigned to vendor veu , then bsi,u is
calculated as the minimum speed that is larger than s′i from
vendor veu’s speed set. If none of veu’s speeds is larger than
s′i , veu’s maximum speed will be selected. Thus, after the
vendor assignment, all the variables xi, j , yj ,u , bsi,u as well as
D can be determined. The assignment that minimizes D is the
best solution.

An example of vendor assignment is given in Table I-III,
where Table I shows the vendors’ provided operating speeds,
and Table II shows the required speeds by different core groups
(colors), i.e., the required speeds of all tasks associated with

each color, obtained based on theoretical analysis. Table III
illustrates two assignment (assignment 1: color1← ve1, color2
← ve2, color3 ← ve3; assignment 2: color1 ← ve1, color2
← ve3, color3 ← ve2). Assignment 1 is a better solution due
to lower D, assuming all tasks are of the same computation
requirement.

TABLE I
Vendors and their provided speeds

vendors speed level s1 s2 s3 s4
ve1 3 4 5 6
ve2 5 7 9 11
ve3 4 6 8 12

TABLE II
Colors and their required speeds

color required speeds

color 1 2.31, 3.45, 4.37, 4.38, 6.59

color 2 4.27, 4.45, 5.66, 5.69, 6.01, 6.03, 8.11, 9.12

color 3 5.77, 5.98, 6.10, 8.79, 8.91, 10.02, 11.99

Due to the NP-hardness of the vendor assignment, we
develop a heuristic, denoted as Algorithm 2, to generate
approximate solutions. To reduce computation redundancies,
we define Da,b as the deviation of colora’s required speeds
from vendor veb’s available speeds.

Da,b =
1
|Va |

∑
vi ∈Va

(s′i − bsi,b)2 ·
ri
r

(17)

where Va is the set of tasks of colora, s′i is the required speed
by task vi , r is the average computation requirement of tasks
and is used for normalization, bsi,b is the best candidate speed
for vi from veb’s speeds.

Algorithm 2: Vendor Assignment
Input: Number of vendors K , vendor set VE , color colorj for

j = 1, 2, ..., K , speed set SPk of vendor vek .
Output: yi ,k and zi ,u for vi ∈ V , vek ∈ VE , sku ∈ SPk

begin
Calculate Da,b for 1 ≤ a, b ≤ |K |;
Rank all the colors (rows) according to their criticality;
while array Da,b is not empty do

colorj ← the most critical row in Da,b ;
k ← arg min1≤b≤K{Dj ,b};
Assign vendor vek to color colorj ;
Set yi,k = 1 for all cores that are colored with colorj ,

set zi,u based on the above mentioned methods;
Remove the j−th row and k-th column from array Dj ,b ;

end

In our second algorithm, denoted as Algorithm 2, we first
calculate Da,b for 1 ≤ a, b ≤ K where K is the number of
vendors/colors. Then we rank all the colors according to their
criticality. Next, we iteratively find the most critical color (that
has most computation overhead), colorj , and determine the
minimum Dj ,k from the j-th row of array {Da,b |1 ≤ a, b ≤
K}. Vendor vek is assigned to color colorj , so that yi,k is set
to 1 for all cores that are colored with color colorj , and the

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 9

TABLE III
Comparison of two assignments in terms of deviation between colors’ required speeds and vendors’ provided speeds.

Color
assignment 1: deviation D = 39.9 assignment 2: deviation D = 44.1

Vendor Assigned speeds Vendor Assigned speeds

Color1 ve1 3, 4, 5, 5, 6 ve1 3, 4, 5, 5, 6

Color2 ve2 5, 5, 7, 7, 7, 7, 9, 11 ve3 6, 6, 6, 6, 8, 8, 12, 12

Color3 ve3 6, 6, 8, 12, 12, 12, 12 ve2 7, 7, 7, 9, 9, 11, 11

speeds for running corresponding tasks on these cores, i.e.,
zi,u , are determined based on the above mentioned methods.
Then we remove the j-th row as well as the k-th column from
array {Da,b} and repeat the process until all rows and columns
are removed.

After vendor assignment, it is possible (with very low
probability) that a task vi’s required speed (through analysis
using previously mentioned approach) is larger than the max-
imum speed that its core can provide. This can potentially
increase the total schedule length if vi is on the critical path,
and thus leads to violation of schedule length constraint. To
address this problem, we refine the initial speeds to meet
schedule length by accelerating tasks on critical path, i.e.,
assign higher speeds to these tasks. Specifically, if schedule
length is violated, we iteratively accelerate a task until the
schedule length constraint is met. Assume that task vi can
be accelerated to speed s′ from s, we calculate the benefit
as b f (vi) as the ratio of reduction in schedule length over
the increase in energy consumption, caused by accelerating
task vi . In each iteration, the task with maximum benefit
will be selected for acceleration. The process repeats until the
schedule length constraint is met. Note we only consider cases
where the schedule length constraint can be met if all tasks
run at the highest speed on the corresponding cores.

In algorithm 2, calculating D runs in O(n · K) and vendor
assignment by row/column deletion runs in O(K2), where n is
the number of tasks, K is the vendor number and n > K . In
addition, in case of violating schedule length, the algorithm
needs to iteratively accelerate critical tasks, and a loose upper
bound on the number of iterations is n · δ, where δ is the
maximum number of core operating speeds.

C. Stage 3: Speed Refinement to Improve Energy Efficiency

Due to the data dependency among tasks, there exist idle
periods on cores as a task has to wait for all its parent tasks
to complete before commencing execution, especially when
task operating speeds are not properly assigned. This provide
opportunities to further reduce the total energy consumption
by slowing down the execution speeds of some uncritical tasks,
which are usually followed by idle periods. In this section, we
propose methods to refine the speeds in order to guarantee the
schedule length as well as further reducing the total energy
consumption.

In order to fully exploit the optimization opportunities, we
iteratively decelerate the most profitable task by assigning
lower speed to it, as long as the schedule length constraint
is satisfied. All the tasks are maintained in two groups, where

Algorithm 3: SR(Speed Refinement)
Input: Application graph G, variables xi , j , yj ,h , and zi ,u , bound

DL on schedule length.
Output: refined zi ,u for all tasks.
begin
Calculate current SL based on dependency constraint;
while (SL ≤ DL) do

for each task vi do
for each candidate speed su do

Calculate ∆E and ∆SL for accelerating vi ;
if decelerating ∆SL = 0 then

Put < vi, su > into List A;
else if SL + ∆SL ≤ DL then

Put < vi, su > into ListB;

if List A , φ then
Decelerate the task in List A with maxvi ∈List A{∆E};
else Decelerate the task in ListB with
maxvi ∈ListB{

∆E
∆SL };

Update SL;
end

List A contain all tasks whose deceleration will not increase
the overall schedule length, while the ListB contains the
remaining tasks. Both groups are dynamically updated in each
iteration. If List A is not empty, the task with maximum energy
saving ∆E will be selected from List A, otherwise, the task
with maximum ∆E/∆SL will be selected from ListB, where
∆E is the energy saved by decelerating the task, and ∆SL is the
increase in the schedule length. This process repeats until no
more task can be decelerated without violating the constraint
of overall schedule length. The running time of Algorithm 3
depends on whether energy savings can be achieved. Better
results can be obtained if more iterations are executed in the
algorithm.

V. EXPERIMENTAL RESULTS AND ANALYSIS

The two approaches reported in [3], i.e. the straightforward
scheduling approach (denoted as B1) and the cluster-based
with clique constraint (denoted as B2), are used as the
baseline. The differences between the two algorithms are as
follows. Algorithm B1 (straightforward scheduling) aims to
meet the security constraints at the finest granularity, where the
duplication-with-diversity constraint is added to each node in
the task graph and isolation-with-diversity constraint is added
to each edge in the task graph. As a result, secured com-
munications (edges) are enforced between the 3PIP cores of
different vendors. Algorithm B2 (cluster-based schedule with
clique constraint) allows the scheduler to assign dependent

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 10

tasks on the same core to reduce the number of inter-core
communications while satisfying the security constraints. This
is achieved by grouping dependent tasks on critical paths into
a cluster and scheduling the entire cluster to a single core,
thus dependent tasks are scheduled either to the same core
(for the intra-cluster cases) or across different vendor cores
(for the inter-cluster cases). Please refer to [3] for details on
the two algorithms. Let SLB1 and SLB2 be the schedule length
obtained by B1 and B2. In order to make a fair comparison
with the baseline algorithms, we set min{SLB1,SLB2} as the
schedule length bound for our method and evaluate the energy
consumption of each algorithm. In addition, we solved the
Mixed-Integer Linear Programming (MILP) formulation of
security-constrained scheduling problem using CPLEX [46]
to obtain the optimal solutions, on small-scale instances of 25
tasks using 8 processing cores provided by at most 4 vendors.
CPLEX is a widely-used optimization software package which
forms complex optimization problems as mathematical models
and uses advanced optimization algorithms to find solutions.
CPLEX is well known for its high performance in solving
large, real-world optimization problems. We compare the
optimal solution computed by CPLEX with the results of the
proposed algorithms. The time limit was set to 24 hours per
run using 20 cores on a workstation. CPLEX 12.5 with default
settings was used to solve the problems.

The test set is composed of both realistic application task
graphs and synthetic task sets generated using TGFF-3.5.
The three real applications include sparse matrix solver (98
nodes), robot control (90 nodes) and a part of fppp (336
nodes) in the SPEC benchmarks [47]. TGFF is used to
generate non-trivial instances of task sets that are commonly
used, where the number of tasks are set to 50, 100, 150,
200, 250, 300 respectively. For each graph size, graphs with
indegree/outdegree of 3/3, 4/4, 5/5, 6/6, 7/7 are generated. We
set the maximum speed of all vendors as sm1 > sm2 , · · · , s

m
K with

smj = (1−(j −1)δ)sm1 , where we set δ = 10% when K ≤ 6 and
δ = 7.5% when 7 ≤ K ≤ 10. We set the vendor vek’s speeds
sk ,1 > sk ,2 > · · · > sk ,nk with sk , j = (1 − (j − 1)σ)sk ,1, where
sk ,1 = sm

k
, σ = 10%, nk = 5 for 1 ≤ k ≤ K . We assumed that

the underlying MPSoC platform can accommodate up to 12
cores.

Table IV compares the three methods, i.e. B1, B2 and our
method, on three real application graphs. The CPLEX method
failed to produce the result within 24 hours for each of the
three real applications. In order to obtain the results, we first
run the two baseline algorithms, i.e. B1, B2 and then set the
minimum schedule length of the two algorithms as the bound
of our algorithm. The vendor count upper bound is set to 4.

It can be observed from the table, even with the same (or
shorter) schedule length, our algorithm significantly outper-
forms the baseline approaches in terms of energy consumption.
For example, in the case of ‘fppp’, our schedule length is
the same as the algorithm B1 and shorter than B2, while we
achieve an improvement in energy consumption of 60% and
38.9% over B1 and B2 respectively. Even algorithm B1 often
produce shorter schedule length than B2, it leads to more
energy consumption and fails to produce feasible solutions
for ‘robot’, as it runs into a situation where no core can

be selected to host the current task being scheduled. For a
few cases, such as ‘sparse’, our algorithm obtained longer
SL than B1. This is because B1 uses only 3 vendors and
it chooses the 3 vendors of highest speeds to minimize SL,
while our algorithm uses 8 vendors, which enables it to choose
slower-speed cores that leads to longer SL but with lower
energy consumption. In terms of algorithm runtime, all the
algorithms can produce solution within several second for the
cases of ‘sparse’ and ‘robot’. Our method requires nearly 3
mins to output the solution for the case ‘fppp’ which has 336
tasks. This is because our method performs more complicated
techniques with the aim of achieveing better performances.

0 20 40 60 80 100 120 140 160 180

Schedule Length

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

E
ne

rg
y

co
ns

um
pt

io
n

105

by B1
by B2
by our method

Fig. 2. Comparison on synthetic graphs. The results of B1, B2 and our
algorithm are illustrated as circles, pluses and triangles, respectively. Results
of the same color are collected on graphs of the same size, where the colors
black, red, blue, green, light blue and pink correspond to graph size of 50,
100, 150, 200, 250, and 300 respectively.

Since CPLEX cannot produce feasible solutions for large-
scale instances in 24 hours, we first evaluate our approach on
small-scale instances (i.e. with 25 tasks) by comparing with
baselines B1, B2, and the CPLEX method. In this experiment,
8 cores are utilized and at most 4 vendors are allowed. The
upper bound on schedule length of our algorithm and the
CPLEX approach is set to the minimum schedule length of the
B1 and B2. The heuristic baselines, CPLEX and our algorithm
do not obtain exactly the same schedule length (even when
using the same bound), because discrete speed model is used
(each processor only operates at a few discrete speeds). In
general, the obtained schedule lengths of our approach as
well as the CPLEX are shorter than both the B1 and B2 as
shown in Table V. On the other hand, the schedule length of
CPLEX is closer to the schedule bound than our algorithm
(our/CPLEX < 1), as it can obtain optimal schedule and
DVFS configurations. From the table, it can be observed that
methods B1 and B2 produce solutions that lead to energy
consumptions that are 2-4 times of the optimal solutions.
In contrast, our method achieved performance that are much
closer to the optimal energy consumption. Also from the table,
we observe that the CPLEX method needs several hours to

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 11

TABLE IV
Results on three real application graphs.

Application #.vendor
schedule length energy consumption (105) number of vendors average runtime (s)

B1 B2 Our B1 B2 Our B1 B2 Our B1 B2 Our
fppp

4
509.1 426.1 425.9 11.1 9.85 5.31 4 4 4 2.34 2.65 162.2

sparse 125.8 94.3 93.9 2.9 2.6 1.2 3 4 4 2.32 2.3 3.38
robot INF 154 153.9 INF 3.4 1.5 INF 4 4 2.32 2.30 3.39

#.vendor: the upper bound on the number of vendors;
INF: failed to produce feasible solution;

TABLE V
Comparison with optimal solutions on small-scale instances.

taskNo-In/Out average Schedule Length (SL) average Energy Consumption (EC) average running time (s)
B1/CPLEX B2/CPLEX our/CPLEX B1/CPLEX B2/CPLEX our/CPLEX B1 B2 our CPLEX

25-2/2 1.019 1.003 0.998 4.570 4.003 1.071 2.56 2.30 2.70 26325
25-3/3 1.201 1.010 0.994 2.808 2.544 1.069 1.14 0.91 0.13 27379
25-4/4 1.519 1.007 0.997 2.142 1.942 1.106 1.33 0.52 0.15 35509
25-5/5 1.541 1.016 0.997 2.158 2.124 1.081 1.50 0.33 2.23 63873

1 B1/CPLEX (or B2/CPLEX, our/CPLEX) indicate the ratio between the algorithm B1 (or B2, our) and the CPLEX method;
2 taskNo-In/Out: taskNo indicates the number of tasks in the application graph, In/Out indicate the maximum in-degree and out-degree

of the graph.

compute the solutions while the other three approaches can
output the solutions in very short time. Our method is slightly
slower than the baselines B1 and B2 because our algorithm
employs more complicated techniques which lead to much
better performances.

TABLE VI
Results on synthesized graph with varying In/Out

In/Out Schedule Length (SL) Energy Consumption (EC)
Our/B1 Our/B2 Our/B1 Our/B2

3/3 0.967 0.993 0.198 0.262
4/4 0.848 0.994 0.215 0.297
5/5 0.543 0.992 0.386 0.355
6/6 0.741 0.999 0.334 0.408
7/7 0.564 0.989 0.341 0.412

Fig. 2 compares the three algorithms in terms of schedule
length and energy consumption on synthetic graphs with
size ranging from 50 to 300. For each size, graphs with
Indegree/Outdegree of 3/3, · · · , 7/7 are generated. In this
experiment, there exists a certain number of instances that
require 5 vendors for both algorithm B2 and our algorithm.
This is required to accommodate the large number of com-
putation tasks and large In/Out-degree of some computation
tasks. Thus, we set the vendor bound to 5 for these instances
and 4 for all other instances. For each instance, the three
algorithms are tested under the same upper bound of vendors.
The CPLEX method cannot produce feasible solutions for
most cases within 24 hours, thus no result is shown for
CPLEX method. The results show that even when our method
restricts its schedule length to be smaller than both B1 and
B2, it still significantly outperforms the two baseline algo-
rithms in terms of energy consumption EC. In addition, B1
cannot always produce feasible solutions (about 51% instances
failed). Similar improvements of our approach over B1 and
B2 are observed in Table VI, which shows the comparison on
graphs with varying Indegree/Outdegree. The results reveal
that our approach significantly improves energy consumption
EC, with average improvement of 71% over B1 and 65% over

B2, while simultaneously achieving shorter schedule length
SL. In addition, smaller Indegree/Outdegree tends to achieve
better energy improvement of the proposed algorithm over the
baselines.

VI. CONCLUSION

We presented a novel MPSoC design methodology to
minimize the energy consumption while jointly considering
security constraints when using untrusted 3PIP cores. The
security constraints are embedded in task scheduling and
a core conflict graph is utilized to model conflicting cores
which are assigned to different vendors. We theoretically
estimated the optimal required speeds for minimizing the total
energy consumption. The optimal speed estimates are utilized
in an efficient heuristic for vendor to core assignment. We
further reduced the energy consumption via operating speed
optimization by exploiting idle periods on cores.

REFERENCES

[1] W. Wolf, “The future of multiprocessor systems-on-chips," in Proc. 41st
Design Autom. Conf. (DAC), pp. 681-685, 2004.

[2] R. Karri, J. Rajendran, K. Rosenfeld, M. Tehranipoor, “Trustworthy
hardware: identifying and classifying hardware Trojans," Computer, vol.
43, no. 10, pp. 39-46, 2010.

[3] Liu, C., Rajendran, J., Yang, C., Karri, R., “Shielding heterogeneous MP-
SoCs from untrustworthy 3PIPs through security-driven task scheduling,"
IEEE Trans. Emerg. Top. Comput., vol. 2, no. 4, pp. 461-472, 2014.

[4] A. Al-Anwar, Y. Alkabani, M.W. El-Kharashi, H. Bedour, “Hardware
Trojan protection for third party IPs,” in Proc. Euromicro Conf. Digit.
Syst. Design (DSD), pp. 662-665, 2013.

[5] M. Banga, M. S. Hsiao, “A novel sustained vector technique for the
detection of hardware Trojans,” in Proc. 22nd Int. Conf. VLSI Design,
pp. 327-332, 2009.

[6] F. Koushanfar, A. Mirhoseini, “A unified framework for multimodal
submodular integrated circuits Trojan detection," IEEE Trans. Inf. Foren.
Sec., vol. 6, no. 1, pp. 162-174, 2011.

[7] M. Beaumont, B. Hopkins, and T. Newby, “SAFER PATH: Security
architecture using fragmented execution and replication for protection
against Trojaned hardware,” in Proc. Design Autom. Test Eur. (DATE),
pp. 1000-1005, 2012.

[8] A. Waksman and S. Sethumadhavan, “Silencing hardware backdoors,” in
Proc. 32nd Int. Symp. Security Privacy (SP), pp. 49-63, 2011.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 12

[9] Ray, S., Jin, Y., “Security policy enforcement in modern SoC designs,” in
Proc. IEEE/ACM Int. Conf. Comput. Aid. Design (ICCAD), pp. 345-350,
2015.

[10] Kim, H., Hong, H., Kim, H.S., Ahn, J.H., Kang, S., “Total energy
minimization of real-time tasks in an on-chip multiprocessor using
dynamic voltage scaling efficiency metric," IEEE Trans. Comput. Aid.
Design, vol. 27, no. 11, pp. 2088-2092, 2008.

[11] Melani, A., Mancuso, R., Cullina, D., Caccamo, M. and Thiele, L.,
“Speed optimization for tasks with two resources,” in Proc. Design
Autom. Test Eur. (DATE), pp. 1072-1077, 2016.

[12] J. Rajendran, V. Vedula, R. Karri, “Detecting malicious modifica-
tions of data in third-party intellectual property cores,” in Proc. 52nd
ACM/EDAC/IEEE Design Autom. Conf. (DAC), pp. 1-6, 2015.

[13] Chen, X., Liu, Q., Yao, S., Wang, J., Xu, Q., Wang, Y., Liu Y., Yang,
H., “Hardware Trojan detection in third-party digital intellectual property
cores by multi-level feature analysis," IEEE Trans. Comput. Aid. Design,
2017, DOI: 10.1109/TCAD.2017.2748021.

[14] X. Zhang, M. Tehranipoor, “Case study: Detecting hardware Trojans
in third-party digital IP cores,” in Proc. Int. Symp. Hardware Oriented
Security Trust (HOST), pp. 67-70, 2011.

[15] M. Banga and M. Hsiao, “Trusted RTL: Trojan detection methodology
in pre-silicon designs,” in Proc. Int. Symp. Hardware Oriented Security
Trust (HOST), pp. 56-59, 2010.

[16] J. Jou, C. J. Liu, “Coverage analysis techniques for HDL design
validation,” in Proc. Asia Pac. Chip Design Lang., pp. 48-55, 1999.

[17] A. Waksman, M. Suozzo, S. Sethumadhavan, “FANCI: Identification of
stealthy malicious logic using boolean functional analysis,” in Proc. ACM
SIGSAC Conf. Comput. Commun. Security, pp. 697-708, 2013.

[18] J. Zhang, F. Yuan, L. Wei, Z. Sun, Q. Xu, “VeriTrust: Verification for
hardware trust,” IEEE Trans. Comput. Aid. Design, vol. 34, no. 7, pp.
1148-1161, 2015.

[19] J. Zhang, F. Yuan, Q. Xu, “DeTrust: Defeating hardware trust verifica-
tion with stealthy implicitly-triggered hardware Trojans,” in Proc. ACM
SIGSAC Conf. Comput. Commun. Security, pp. 153-166, 2014.

[20] E. Love, Y. Jin, Y. Makris, “Proof-carrying hardware intellectual prop-
erty: a pathway to trusted module acquisition," IEEE Trans. Inf. Forensics
Security, vol. 7, no. 1, pp. 25-40, 2012.

[21] Y. Jin, Y. Makris, “Proof carrying-based information flow tracking for
data secrecy protection and hardware trust,” in Proc. IEEE VLSI Test
Symp., pp. 252-257, 2012.

[22] Jin, Y., Makris, Y., “A proof-carrying based framework for trusted
microprocessor IP,” in Proc. IEEE/ACM Int. Conf. Comput. Aid. Design
(ICCAD), pp. 824-829, Nov. 2013.

[23] M. Banga, M. S. Hsiao, “A novel sustained vector technique for the
detection of hardware trojans,” in Proc. Int. Conf. VLSI Design, pp. 327-
332, Jan. 2009.

[24] Malekpour, A., Ragel, R., Ignjatovic, A., Parameswaran, S. “Trojan-
guard: Simple and effective hardware trojan mitigation techniques for
pipelined mpsocs,” in Proc. 54th ACM/EDAC/IEEE Design Autom. Conf.
(DAC), pp. 1-6, Jun. 2017.

[25] Narasimhan, S., Du, D., Chakraborty, R. S., Paul, S., Wolff, F. G.,
Papachristou, C. A., K. Roy, Bhunia, S., “Hardware Trojan detection by
multiple-parameter side-channel analysis," IEEE Trans. Comput., vol. 62,
no. 11, pp. 2183-2195, 2013.

[26] Narasimhan, S., Wang, X., Du, D., Chakraborty, R. S., Bhunia, S.,
“TeSR: A robust temporal self-referencing approach for hardware Trojan
detection,” in Proc. IEEE Int. Symp. Hardware Oriented Security Trust
(HOST), pp. 71-74, Jun. 2011.

[27] Vincent, H., Wells, L., Tarazaga, P., Camelio, J., “Trojan detection and
side-channel analyses for cyber-security in cyber-physical manufacturing
systems," Procedia Manuf., vol. 1, pp. 77-85, 2015.

[28] JS, R., Ancajas, D. M., Chakraborty, K., Roy, S., “Runtime detection
of a bandwidth denial attack from a rogue network-on-chip,” in Proc. 9th
Int. Symp. Networks-on-Chip (NOCS), Article No. 8, Sep. 2015.

[29] Kulkarni, A., Pino, Y., Mohsenin, T., “SVM-based real-time hardware
Trojan detection for many-core platform,” in Proc. 17th Int. Symp. In
Qual. Electron. Design (ISQED), pp. 362-367, Mar. 2016.

[30] A. Al-Anwar, Y. Alkabani, M. W. El-Kharashi, H. Bedour, “Hardware
Trojan detection methodology for FPGA,” in Proc. IEEE Pac. Rim Conf.
Comput. Signal Process. (PACRIM), pp. 177-182, Aug. 2013.

[31] M. M. Farag, M. A. Ewais, “Smart employment of circuit redundancy to
effectively counter trojans (SECRET) in third-party IP cores,” in Proc. Int.
Conf. ReConFigurable Comput. FPGAs (ReConFig), pp. 1-6, Dec. 2014.

[32] J. Rajendran, O. Sinanoglu, R. Karri, “Building trustworthy systems
using untrusted components: a high-level synthesis approach," IEEE
Trans. Very Large Scale Integ. Syst., vol. 24, no. 9, pp. 2946-2959, 2016.

[33] T. Reece, W. H. Robinson, “Detection of hardware trojans in third-party
intellectual property using untrusted modules," IEEE Trans. Comput. Aid.
Des., vol. 35, no. 3, pp. 357-366, 2016.

[34] Xie, T., Qin, X., “Improving security for periodic tasks in embedded
systems through scheduling,” ACM Trans. Embed. Comput. Syst., vol. 6,
no. 3, Article No. 20, 2007

[35] Lin, M., Xu, L., Yang, L.T., Qin, X., Zheng, N., Wu, Z., Qiu, M., “Static
security optimization for real-time systems,” IEEE Trans. Ind. Informat.,
vol. 5, no. 1, pp.22-37, 2009

[36] M. Beaumont, B. Hopkins, T. Newby, “SAFER PATH: Security archi-
tecture using fragmented execution and replication for protection against
Trojaned hardware,” in Proc. Design Autom. Test Eur. (DATE), pp. 1000-
1005, Mar. 2012.

[37] Sengupta, A., Bhadauria, S. and Mohanty, S.P., “TL-HLS: Methodology
for low cost hardware Trojan security aware scheduling with optimal loop
unrolling factor during high level synthesis,” IEEE Trans. Comput. Aid.
Design, vol. 36, no. 4, pp.655-668, 2017.

[38] Wang, N., Chen, S., Ni, J., Ling, X., Zhu, Y., “Security-aware task
scheduling using untrusted components in high-level synthesis,” IEEE
Access, vol. 6, pp. 15663-15678, 2018.

[39] Höppner, S., Shao, C., Eisenreich, H., Ellguth, G., Ander, M., Schüffny,
R., “A power management architecture for fast per-core DVFS in hetero-
geneous MPSoCs," in Proc. IEEE Int. Symp. Circuit. Syst. (ISCAS), pp.
261-264, 2012.

[40] Chen, G., Huang, K., Knoll, A., “Energy optimization for real-time mul-
tiprocessor system-on-chip with optimal DVFS and DPM combination,”
ACM Trans. Embed. Comput. Syst., vol. 13, no. 3s, Article No. 111, pp.
15663-15678, 2014.

[41] A.P. Chandrakasan, S. Sheng, R.W. Brodersen, “ Low-power CMOS
digital design,” IEEE J. Solid-State Circuits, vol. 27, no. 4, pp. 473-484,
1992

[42] B. Zhai, D. Blaauw, D. Sylvester, K. Flautner, “Theoretical and practical
limits of dynamic voltage scaling," in Proc. Design Autom. Test Eur.
(DATE), pp. 868-873, 2004.

[43] Brélaz, D., “New methods to color the vertices of a graph," Commun.
ACM, vol. 22, no. 4, pp. 251-256, 1979.

[44] K. Li, “Scheduling precedence constrained tasks with reduced processor
energy on multiprocessor computers," IEEE Trans. Comput., vol. 61, no.
12, pp. 1668-1681, 2012.

[45] K. Li, “Scheduling parallel tasks with energy and time constraints on
multiple manycore processors in a cloud computing environment," Future
Gener. Comput. Syst., vol. 82, pp. 591-605, 2018.

[46] CPLEX package, https://www.ibm.com/products/ilog-cplex-
optimization-studio, 2018.

[47] Standard Task Graph Set, http://www.kasahara.elec.waseda.ac.jp/schedule.

Yidan Sun received the B.Eng. degree from the
School of Computer Science and Technology, Tian-
jin University, China. She is currently pursuing the
Ph.D. degree with the School of Computer Science
and Engineering, Nanyang Technological University,
Singapore. Her research interests include energy
efficient MPSoC design, big data analytics in trans-
portation, and urban computing.

Guiyuan Jiang received the B.S. degree from
Northwest University for Nationalities, China, the
M.Eng. degree from Tianjin Polytechnic University,
China, and the doctoral degree from Tianjin Uni-
versity (TJU), all in Computer Science and Tech-
nology. Currently, he works as a research fellow
at School of Computer Science and Engineering,
Nanyang Technological University, Singapore. His
research interests include data analytics for citywide
transportation modeling and optimization, design
methodologies for reconfigurable computing sys-

tems, resource optimization for datacenter and sensor networks.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 13

Lam Siew Kei received his BASc, MEng and PhD
from School of Computer Science and Engineering
(SCSE), NTU. He was a Visiting Research Fellow in
the Imperial College of London, University of War-
wick, and RWTH Aachen, Germany. He is currently
an Assistant Professor in SCSE and his research
focuses on devising custom computing solutions to
meet the challenging demands of energy-efficiency,
reliability and security in embedded systems. His
current projects include architecture-aware algo-
rithms for vision-enabled sensing, design method-

ologies for secure and reliable embedded systems, and transportation analytics.

Fangxin Ning received the B.S. degree in Naviga-
tion Technology, and M.Eng. degree in Transporta-
tion Information Engineering and Control, both from
Wuhan University of Technology, China. Currently,
he works as a research associate at School of Com-
puter Science and Engineering, Nanyang Techno-
logical University, Singapore. His research interests
include design algorithms for citywide transportation
modeling and optimization, design methodologies
for intelligent transportation system.

