
Reducing Dynamic Power in Streaming CNN
Hardware Accelerators by Exploiting Computational

Redundancies
Duvindu Piyasena∗, Rukshan Wickramasinghe†, Debdeep Paul‡, Siew-Kei Lam§ and Meiqing Wu¶

∗,†,§, ¶Nanyang Technological University, Singapore
‡Indian Institute of Technology, Patna

Abstract—Convolutional neural networks (CNNs) have
achieved tremendous successes in various application domains
such as computer vision. However, current implementations
are characterized by large memory requirements and accesses,
which pose an impediment towards their deployment on low
cost embedded devices with fast runtime requirements. Recently,
FPGA based streaming CNN hardware accelerators have been
reported for alleviating these memory bottlenecks. However,
these implementations suffer from large number of convolution
operations which incur high power consumption. In this pa-
per, we investigate methods to exploit the redundancies in the
activation layers in order to reduce the dynamic power. We
propose a computationally efficient approximation method to
reduce the overall convolution operations with marginal accuracy
loss. Experimental results of our FPGA implementation based on
image classification datasets show that the proposed method leads
to considerable power savings.

Index Terms—Convolutional neural networks, dynamic power
reduction, FPGA streaming accelerators, approximate computing

I. INTRODUCTION

Deep learning using convolutional neural networks(CNNs)
is finding its way into a wide range of Internet-of-Thing(IoT)
applications. These applications are often characterized by
large-scale data streaming that requires real-time processing
at the IOT device itself while meeting power constraints [1].

Recently, there is a growing interest in realizing custom
hardware accelerators on Field Programmable Gate Arrays
(FPGAs) to alleviate some of the above-mentioned challenges
[2]. It has been shown that the major performance bottleneck
in existing CNN accelerators lies in its dependence on off-
chip memories to store intermediate computations and weights
[3]. Streaming-based hardware accelerators [4]–[16] offer op-
portunities for achieving higher performance by eliminating
external memory accesses. However, they also incur significant
computational resources as all the CNN layers are executed
concurrently. This leads to high dynamic power dissipation
due to the intensive computations.

In this paper, we show that a considerable proportion of
convolution activations are discarded as a result of activation
functions, leading to high computational redundancies. Our
work aims to reduce dynamic power consumption of streaming
CNN hardware accelerators, by removing these redundant
computations.

To achieve this, we present a hardware friendly convolution
approximation scheme which predicts required computations

prior to actual computations. We show that the proposed
method leads to higher computational savings for wider CNN
models/datasets without sacrificing on accuracy compared to
existing approaches [17], [18]. The experimental results based
on streaming FPGA based accelerator indicates by using
proposed method, power savings of over 12% and energy
savings over 11% can be achieved.

II. RELATED WORK
A. Streaming Hardware Architectures

FPGA based CNN accelerators are commonly implemented
in the form of a time-shared uniform accelerator which pro-
cesses layers sequentially [19], [20]. The large intermediate
data produced between layers are stored off-chip. However,
this approach suffers from performance and energy degrada-
tions [21], due to high off-chip memory accesses and resource
underutilization due to heterogeneous CNN layers [22].

Alternatively, streaming CNN accelerators, built upon
dataflow processing paradigm, with reduced/eliminated off-
chip storage and maximized on-chip buffering have been
proposed in [4], [6]–[8], [11]–[16] to address these issues.

Most stream based CNN accelerators are characterized by,
• Inter-layer parallel processing.
• Use of on-chip buffers to stream data between layers.
• Heterogeneous accelerator units, for better utilization.
However, the implementation of stream based accelerators

is a challenging task due to on-chip resource and memory
constraints. In existing work, stream based CNN accelerators
have been realized by various techniques: using bitstream
reconfiguration [4], fusing multiple layers [12], [13], changing
tile granularity [11], quantized CNNs (QNN) [7] and more
recently using FPGA clusters [6], [8]. In addition to the FPGA
based approaches, the work in [16] demonstrated an ASIC
multi-die realization of stream-based acceleration.

One key driving factor that will enable stream-based pro-
cessing of CNNs will be the continuous growth of on-chip
memory and compute resources in FPGAs [23]. Our work
aims to reduce the power consumption of streaming CNN
accelerators by reducing the convolution operations, which
accounts for majority of power dissipation.
B. CNN Hardware Optimization

Optimizing compute efficiency of CNNs is an actively
researched area. Existing work can be classified as follows.

1) Reducing Precision: Bitwidth quantization is an actively
explored area in CNNs to remove overheads associated with
full precision arithmetic. It has been shown that CNNs are
resilient to encoding based quantization schemes [24], fixed
point forms with linear quantization [25], logarthmic quanti-
zation [26] and even extreme forms such as binarization [27].

2) Network Pruning: This is another popular technique to
reduce the redundant operations in CNNs. The objective is
to compress the network, by sparsifying network connectivity
[28], [29] or by structured pruning to eliminate structures such
as filters/channels/layers, altogether [30].

3) Approximate Computing: This is an emerging area to
approximate computations via low-precision forms to gain per-
formance benefits [31], [32]. However using approximations to
replace computations leads to accumulation of errors causing
accuracy degradations in larger networks.

Our work employs lightweight approximations to predict
redundant convolution computations so that they can be elim-
inated. This enabled us to achieve significant computational
savings while maintaining original accuracy without the need
to retrain the network. Similar approach has been taken in [17],
[18] to eliminate convolution redundancies caused by max-
pooling. However, these work have been demonstrated only on
smaller datasets like MNIST and CIFAR10. We have evaluated
our method on larger datasets like Imagenet [33]. Additionally,
we show that compared to these methods, the proposed method
leads to potentially higher computational savings.

III. BACKGROUND AND MOTIVATION

A. CNN Layers

CNNs typically consist of a series of convolution (CONV),
activation (ACT) and pooling (POOL) layers, followed by
several fully connected (FC) layers at the final stages. CONV
layers extract features hierarchically in the form of fea-
ture maps by convolving the input feature maps with two-
dimensional pre-trained filters. Activation functions are used to
introduce non-linearity to CONV feature maps. Most popular
CNN models use ReLU activation function denoted by (1).
The POOL layers are used for representative feature selec-
tion and downsampling feature map representations to reduce
computational complexity.

ReLU : f(x) = max(0, x) (1)

B. Redundancy Analysis

According to (1), ReLU sets all the negative input CONV
activations to zero. Hence, the computational effort incurred
for CONV operations for negative activations become redun-
dant. To evaluate the extent of this redundancy in well-known
CNN models, we used Caffe [34] to measure the percentage
of negative activations in several pre-trained CNN models:
Lenet [35] (MNIST [36]), Cifar10-Quick [37] (CIFAR10 [38]),
AlexNet [39] (Imagenet [33]) and VGG16 [40] (Imagenet
[33]). Fig. 1 shows the percentage of negative CONV activa-
tions in each layer for the above-mentioned networks. It can
be observed that the redundancy in certain layers range from
30%-90%, with the latter layers exhibiting significantly higher

0 1
CONV layer

0

10

20

30

40

50

60

N
eg

at
iv
e
Ac

ti
va

ti
on

 (
%
)

(a) Lenet (MNIST)
0 1 2

CONV layer

0

20

40

60

80

N
eg

at
iv
e
Ac

ti
va

ti
on

 (
%
)

(b) CIFAR10-Quick (CIFAR10)

0 1 2 3 4
CONV layer

0

20

40

60

80

N
eg

at
iv
e
Ac

ti
va

ti
on

 (
%
)

(c) AlexNet (Imagenet)

0 1 2 3 4 5 6 7 8 9 10 11 12
CONV layer

0

20

40

60

80

N
eg

at
iv
e
Ac

ti
va

ti
on

 (
%
)

(d) VGG16 (Imagenet)
Fig. 1. Percentage of negative activations by layer

Lenet Cifar10-Quick AlexNet VGG16
0

20

40

60

Re
du
nd
an
t O

pe
ra
tio

ns
 (%

) MaxPool Redundancy ReLU Redundancy

Fig. 2. Redundant convolutions due to max-pooling and ReLU

redundancy. Thus, eliminating CONV operations that will
result in negative activations provides tremendous opportunity
to achieve computational and power savings.

We also compared the potential savings of our method,
with the previous approach that eliminates redundant CONV
operations due to max-pooling [17], [18]. Fig. 2, shows the
percentage of redundant computations across all networks
mentioned above. It can be observed that the proposed method
results in higher potential computational savings in all the
networks except for Lenet. This is due to the fact that apart
from Lenet, in larger networks max-pooling form only a
fraction of total operations compared to activations.

IV. PROPOSED METHODOLOGY
A. Overview

The proposed method aims to eliminate the computational
redundancies arising from ReLU activation by predicting the
positive/negative CONV activations using a low cost approxi-
mation scheme. The regular CONV operations are performed
only on the predictions yielding positive activations. In partic-
ular, the proposed CNN layer consists of the following stages:

1) ApproxConv : Lightweight approximation is performed
to obtain approximated CONV activations.

2) ReLUpred : Sign of approximated CONV activations is
checked.

3) CONV : Actual CONV operations are performed for
inputs/feature maps associated with positive predictions
and zeros are assigned to activations associated with
negative predictions.

4) ReLU : Finally, ReLU is applied to the CONV activa-
tions to eliminate false-positives.

The proposed method aims to eliminate redundant com-
putations in order to achieve power and energy savings in
hardware. However, this also incurs additional hardware units

ASSKLam
Cross-Out

that are required for the prediction. As such, the ApproxConv
operation must lend itself well towards low-complexity imple-
mentation such that the power consumed by ApproxConv does
not outweigh the power gained from removing the redundant
CONV operations. In the next subsection, we describe our
methodology to determine low-cost ApproxConv units.

B. Model-specific Convolution Approximation

To achieve a low-cost ApproxConv unit, we approximate the
convolution operations using original weights that are quan-
tized to power-of-two values represented by ±1/2n where n ∈
Z≥ 0. The mapping of original CONV weights to ApproxConv
weights is done by performing a static analysis on the trained
model of the original network using the validation data set.
The steps in the proposed methodology are:

1) Initialize number of power-of-two quantization levels
(NL) of all layers to 8.

2) The weights are saturated at the 99th percentile to
remove the adverse effects of outliers on the mapping.
The closest power-of-two value to this saturation point
is chosen as the maximum quantization level. We define
this point as ‘W99’, and the exponent as ‘m’.

3) At the start of each iteration, the quantization levels for
ApproxConv weights are set to 0, ±1/2m, ±1/2m+1,
. . . ., ±1/2m+NL−1.

4) Each weight is assigned to the nearest quantized level
and the modified model is tested in Caffe for accuracy
using the validation image set.

5) Steps 3-4 are repeated by decrementing NL at each
iteration till it reaches 1.

Finally, the weights mapping with the lowest NL whose
accuracy loss is under 1% is chosen and the corresponding
exponents are packed as the ApproxConv weights, which
requires a maximum bitwidth of log2(2 ∗ NL + 1).

Fig. 3a shows the weights distribution in the second CONV
layer in VGG16, where the dotted lines represent the Approx-
Conv quantization levels while the red dotted line represent
‘W99’ at the iteration when NL=3. At this instance, the
ApproxConv quantized weights are mapped to {0, ±0.03125,
±0.0625, ±0.125}, as indicated in Fig. 3b.

V. PROPOSED STREAMING CNN ACCELERATOR

The proposed CNN architecture is based on stream-based
processing where all the layers are computed in parallel
without external memory accesses. The outputs from one layer
is streamed to the next via on-chip buffers. The layers are
executed in parallel, where each layer starts processing once
it receives sufficient pixels for a valid CONV window.
A. Baseline Design

This subsection describes the hardware architecture of the
baseline design that will be used to evaluate the proposed
method. The architecture uses 8-bit integer precision for
activations and weights. The default quantization is based on
the offline approach used in Nvidia TensorRT [41]. The trained
weights are hardcoded to allow synthesis optimizations of

−0.2 −0.1 0.0 0.1 0.2 0.3
Weights Value

0

100

200

300

Co
un

t

W99

(a) Weight distribution

−0.15−0.10−0.05 0.00 0.05 0.10 0.15
Weights Value

0

2500

5000

7500

10000

12500

15000

Co
un

t

(b) ApproxConv weights
Fig. 3. ApproxConv weights quantization in VGG16 2nd layer
multipliers. As the focus of this work is on CONV layers,
FC layers were excluded from the design.

The parameters used to describe the configurations of CNN
layers are, Ni, No, which represent number of input feature
maps and number of output feature maps of a layer respec-
tively. Kc and Kp, represent dimensions of the Convolution and
Pool kernels respectively, while Sp represents pool stride. The
height and width of input feature maps are represented by H
and W, respectively.

1) Line Buffer: This unit caches the incoming pixels and
outputs convolution neighborhoods at every clock cycle. Each
unit contains (Kc-1) × Ni row buffers for buffering convolution
neighborhoods of Ni feature maps. We assume that the pixels
are read in a raster scan manner and hence, the row buffers
are W in length and they are implemented as registers.

2) CONV Unit: A loop-unrolled design consisting of par-
allel multipliers followed by an adder tree. Each CONV unit
takes an input of dimension Kc × Kc × Ni and outputs a
convolved pixel. Each unit contains Kc × Kc × Ni number of
parallel multipliers and adders. A convolution layer contains
No parallel CONV units.

3) Max Pool: The Max-pooling unit is decomposed into
two units performing max-pooling across vertical and hori-
zontal dimensions respectively. The vertical pool unit buffers
inputs from Kp-1 rows and outputs vertical maximums. These
are fed into horizontal pooling unit, which buffers the previous
Kp-1 inputs and outputs horizontal maximums.

4) ReLU: ReLU performs a multiplexing operation on the
pixel stream based on the sign bit of the input pixels.

A single layer of the baseline architecture with the config-
uration CONV-ReLU-MAX is shown in Fig. 4a.

B. Proposed Design

This proposed hardware architecture is shown in Fig. 4b
(only a single layer is shown). The following describes the
additional hardware units that are integrated in the proposed
achitecture to eliminate redundant CONV operations.

1) ApproxConv: The ApproxConv unit is similar in struc-
ture to the CONV unit with several key differences to make
it lightweight. The multipliers are replaced by bit-shift oper-
ations due to the proposed power-of-two quantized weights.
As the weights are hardcoded, the synthesis tool optimizes
the bit-shifters to bit-concatenation operations. The use of the
proposed power-of-two quantized weights also result in the
instantiation of low-cost adders.

2) ReLUPred: An extension of the normal ReLU unit
which provides no-operation commands (NO-OP) to the sub-
sequent CONV operations (required for convolution of feature

Line
Buffer

CONV
MAX
POOL

ReLU

CONV
MAX
POOL

ReLU

CONV
MAX
POOL

ReLU
Data Bus

No

(a) Baseline hardware architecture (Single Layer)

ApproxCONV
ReLU
Pred

ApproxCONV
ReLU
Pred

ApproxCONV
ReLU
Pred

CONV
MAX
POOL

ReLU

CONV
MAX
POOL

ReLU

CONV
MAX
POOL

ReLU

Line
Buffer

Line
Buffer

Pixel Delay Buffer Data Bus cmd Bus

NoNo

(b) Proposed hardware architecture (Single Layer)
Fig. 4. Hardware architectures of a single layer in baseline and proposed designs

TABLE I. Accuracy comparisons

Network Baseline SignConnect [17] Proposed
SignConnect-1 SignConnect-2 Prop-1 Prop-2

Accuracy
(Top-1/Top-5)

Accuracy
(Top-1/Top-5)

Accuracy
(Top-1/Top-5)

Level
count

Weight
Bitwidth

Accuracy
(Top-1/Top-5)

Level
count

Weight
Bitwidth

Accuracy
(Top-1/Top-5)

VGG16 68.15/88.14 39.62/64.34 40.11/65.49 3 3 67.94/87.65 3 3 67.67/87.67
AlexNet 56.57/79.92 27.08/50.75 32.98/58.01 5 4 56.3/79.5 3 3 55.77/79.35

CIFAR10-Quick 72.19/97.69 68.18/97.03 68.95/96.97 3 3 71.74/97.53 2 3 71.88/97.75
Lenet 99.08/100 98.97/100 99.02/100 2 3 99.099/100 1 2 99/100

maps associated with predicted positive activations). The No-
OP signals are used to clock gate CONV circuitry.

3) Pixel Delay Buffer: A synchronization buffer is used
to delay the inputs for the original CONV layer to process
after the ApproxConv and ReLUPred have completed their
operations.

VI. EXPERIMENTAL RESULTS

A. Accuracy Evaluation

The accuracy of the proposed method was evaluated based
on Top-1/5 accuracies using CNN models and datasets men-
tioned in Section II.

Fig. 5 shows the change in Top-1 accuracy for varying num-
ber of power-of-two levels for ApproxConv weights according
to steps in Section III. As expected, error becomes high for
lower number of levels. As it was empirically found out
that using approximations for first layer notably increases the
error at lower number of levels, experiments were performed
applying approximations to all layers (Prop-1) and all layers
except the first layer (Prop-2). The results of Prop-1 and Prop-
2 shown in Fig. 5a and Fig. 5b respectively, indicates that
when approximations are omitted from first layer error at lower
number of levels reduces.

Table I compares the accuracy of our methods Prop-1 and
Prop-2, with other methods. Columns 5, 6 and columns 8, 9
shows the optimized number of levels and the corresponding
bitwidth of the weights for Prop-1 and Prop-2 respectively. In
addition to the Baseline (no approximations are applied), we
also compare our accuracy with [17]. The method in [17] uses
the sign of the weights to perform the approximations and we
denote the method as SignConnect. Similar to our approach,
we evaluated the case where the method in [17] is applied
to all layers (SignConnect-1), and to all layers except the first

2 4 6 8
ApproxConv Weights Power of 2 Levels

−50

−40

−30

−20

−10

0

To
p-
1
Ac
cu
ra
cy
 d
ro
p
(%

)

VGG16
Alexnet
Cifar10-Quick
Lenet

(a) Prop-1

2 4 6 8
ApproxConv Weights Power of 2 Leve s

−15.0

−12.5

−10.0

−7.5

−5.0

−2.5

0.0

To
p-

1
Ac

cu
ra

cy
 d

ro
p

(%
)

VGG16
Alexnet
Cifar10-Quick
Lenet

(b) Prop-2
Fig. 5. Top-1 accuracy change with power-of-two levels

(SignConnect-2). It can be observed that although SignConnect
performs well for Lenet and Cifar10-Quick networks, error
is too high for Alexnet and VGG16. In comparison, our
method results in marginal accuracy drop for all the networks
considered.
B. Hardware Evaluation

The baseline and proposed designs (Prop-1 and Prop-2) for
Lenet [35] were implemented using Verilog HDL. The optimal
configurations shown in Table I were used for the proposed
method. The designs were synthesized at 100Mhz, targeting
Xilinx Virtex Ultrascale+ xcvu9p device, using Vivado 2018.3.
The dynamic power consumption was measured using switch-
ing activity generated from post-synthesis simulations, run on
Modelsim 10.6C. The power consumption was measured for
MNIST samples covering all digits and average power figures
are reported.

The Table II summarizes the power, resource consumption
and the latency for the designs. It can be observed that Prop-
1 and Prop-2 achieve dynamic power gains of 10.79% and
12.17% respectively over Baseline. Since the performance
degradation is minimal, the energy/image gains over Baseline
for Prop-1 and Prop-2 are 10.03% and 11.83% respectively.
However, this benefit comes at the expense of slight increase
in LUTs due to additional ApproxConv units and an increase
in register counts due to additional row buffers.

TABLE II. Hardware evaluation
Baseline Prop1 Prop2

Reduction(%) Reduction(%)

Dynamic
Power

(W)

Total 2.2057 1.9565 10.79% 1.9263 12.17%
Conv 1.2749 0.9357 18.91% 0.9509 19.00%

ApproxConv 0 0.0943 - 0.0779 -
Other 0.9308 0.9265 -0.46% 0.8975 2.76%

Resource
LUT 627269 685650 9.31% 680867 8.54%
FF 297106 394420 32.75% 391079 31.63%

BRAM 28 31 10.71% 30.5 8.92%
Latency (ns) 9130 9210 0.88% 9165 0.38%

Energy/Image(J) 2.00E-4 1.80E-04 10.03% 1.77E-04 11.83%

VII. CONCLUSIONS

This work presents a method to lower dynamic power
of streaming CNN FPGA accelerators by exploiting run-
time redundancies in the convolution layers due to ReLU
activation operations. The proposed method leads to run time
computational and power savings with minimal accuracy and
performance loss. Future work may consider evaluations on
larger networks where savings are expected to be high.

REFERENCES

[1] M. Mohammadi, A. Al-Fuqaha, S. Sorour, and M. Guizani, “Deep
learning for iot big data and streaming analytics: A survey,” IEEE
Communications Surveys Tutorials, vol. 20, no. 4, pp. 2923–2960,
Fourthquarter 2018.

[2] Y. LeCun, “1.1 deep learning hardware: Past, present, and future,” in
2019 IEEE International Solid- State Circuits Conference - (ISSCC),
Feb 2019, pp. 12–19.

[3] M. Peemen, A. A. A. Setio, B. Mesman, and H. Corporaal, “Memory-
centric accelerator design for convolutional neural networks,” in 2013
IEEE 31st International Conference on Computer Design (ICCD), Oct
2013, pp. 13–19.

[4] S. I. Venieris and C. Bouganis, “fpgaconvnet: A framework for mapping
convolutional neural networks on fpgas,” in 2016 IEEE 24th Annual
International Symposium on Field-Programmable Custom Computing
Machines (FCCM), May 2016, pp. 40–47.

[5] W. Jiang, E. H. Sha, Q. Zhuge, L. Yang, X. Chen, and J. Hu, “Hetero-
geneous fpga-based cost-optimal design for timing-constrained cnns,”
IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, vol. 37, no. 11, pp. 2542–2554, Nov 2018.

[6] C. Zhang, D. Wu, J. Sun, G. Sun, G. Luo, and J. Cong, “Energy-efficient
cnn implementation on a deeply pipelined fpga cluster,” in Proceedings
of the 2016 International Symposium on Low Power Electronics and
Design, ser. ISLPED ’16. New York, NY, USA: ACM, 2016, pp. 326–
331. [Online]. Available: http://doi.acm.org/10.1145/2934583.2934644

[7] C. Baskin, N. Liss, E. Zheltonozhskii, A. M. Bronstein, and
A. Mendelson, “Streaming architecture for large-scale quantized
neural networks on an fpga-based dataflow platform,” in 2018
IEEE International Parallel and Distributed Processing Symposium
Workshops, IPDPS Workshops 2018, Vancouver, BC, Canada,
May 21-25, 2018, 2018, pp. 162–169. [Online]. Available:
https://doi.org/10.1109/IPDPSW.2018.00032

[8] E. Chung, J. Fowers, K. Ovtcharov, M. Papamichael, A. Caulfield,
T. Massengill, M. Liu, D. Lo, S. Alkalay, M. Haselman, M. Abeydeera,
L. Adams, H. Angepat, C. Boehn, D. Chiou, O. Firestein, A. Forin,
K. S. Gatlin, M. Ghandi, S. Heil, K. Holohan, A. El Husseini, T. Juhasz,
K. Kagi, R. Kovvuri, S. Lanka, F. van Megen, D. Mukhortov, P. Patel,
B. Perez, A. Rapsang, S. Reinhardt, B. Rouhani, A. Sapek, R. Seera,
S. Shekar, B. Sridharan, G. Weisz, L. Woods, P. Yi Xiao, D. Zhang,
R. Zhao, and D. Burger, “Serving dnns in real time at datacenter scale
with project brainwave,” IEEE Micro, vol. 38, no. 2, pp. 8–20, Mar
2018.

[9] J. Fowers, K. Ovtcharov, M. Papamichael, T. Massengill, M. Liu,
D. Lo, S. Alkalay, M. Haselman, L. Adams, M. Ghandi, S. Heil,
P. Patel, A. Sapek, G. Weisz, L. Woods, S. Lanka, S. K. Reinhardt,
A. M. Caulfield, E. S. Chung, and D. Burger, “A configurable cloud-
scale dnn processor for real-time ai,” in 2018 ACM/IEEE 45th Annual
International Symposium on Computer Architecture (ISCA), June 2018,
pp. 1–14.

[10] T. Geng, T. Wang, A. Sanaullah, C. Yang, R. Patel, and M. Herbordt,
“A framework for acceleration of cnn training on deeply-pipelined fpga
clusters with work and weight load balancing,” in 2018 28th Inter-
national Conference on Field Programmable Logic and Applications
(FPL), Aug 2018, pp. 394–3944.

[11] X. Wei, Y. Liang, X. Li, C. H. Yu, P. Zhang, and J. Cong, “Tgpa:
Tile-grained pipeline architecture for low latency cnn inference,” in
2018 IEEE/ACM International Conference on Computer-Aided Design
(ICCAD), Nov 2018, pp. 1–8.

[12] M. Alwani, H. Chen, M. Ferdman, and P. Milder, “Fused-layer cnn
accelerators,” in 2016 49th Annual IEEE/ACM International Symposium
on Microarchitecture (MICRO), Oct 2016, pp. 1–12.

[13] Q. Xiao, Y. Liang, L. Lu, and S. Y. and, “Exploring heterogeneous
algorithms for accelerating deep convolutional neural networks on
fpgas,” in 2017 54th ACM/EDAC/IEEE Design Automation Conference
(DAC), June 2017, pp. 1–6.

[14] Y. Shen, M. Ferdman, and P. Milder, “Maximizing cnn accelerator
efficiency through resource partitioning,” in 2017 ACM/IEEE 44th
Annual International Symposium on Computer Architecture (ISCA), June
2017, pp. 535–547.

[15] Huimin Li, Xitian Fan, Li Jiao, Wei Cao, Xuegong Zhou, and Lingli
Wang, “A high performance fpga-based accelerator for large-scale
convolutional neural networks,” in 2016 26th International Conference

on Field Programmable Logic and Applications (FPL), Aug 2016, pp.
1–9.

[16] Y. Chen, T. Luo, S. Liu, S. Zhang, L. He, J. Wang, L. Li, T. Chen,
Z. Xu, N. Sun, and O. Temam, “Dadiannao: A machine-learning super-
computer,” in 2014 47th Annual IEEE/ACM International Symposium
on Microarchitecture, Dec 2014, pp. 609–622.

[17] T. Ujiie, M. Hiromoto, and T. Sato, “Approximated prediction strat-
egy for reducing power consumption of convolutional neural network
processor,” in 2016 IEEE Conference on Computer Vision and Pattern
Recognition Workshops (CVPRW), June 2016, pp. 870–876.

[18] M. Ahmadi, S. Vakili, J. M. P. Langlois, and W. Gross, “Power reduction
in cnn pooling layers with a preliminary partial computation strategy,”
in 2018 16th IEEE International New Circuits and Systems Conference
(NEWCAS), June 2018, pp. 125–129.

[19] J. Qiu, J. Wang, S. Yao, K. Guo, B. Li, E. Zhou, J. Yu, T. Tang, N. Xu,
S. Song, Y. Wang, and H. Yang, “Going deeper with embedded fpga
platform for convolutional neural network,” in Proceedings of the 2016
ACM/SIGDA International Symposium on Field-Programmable Gate
Arrays, ser. FPGA ’16. New York, NY, USA: ACM, 2016, pp. 26–35.
[Online]. Available: http://doi.acm.org/10.1145/2847263.2847265

[20] C. Zhang, P. Li, G. Sun, Y. Guan, B. Xiao, and J. Cong, “Optimizing
fpga-based accelerator design for deep convolutional neural networks,”
02 2015, pp. 161–170.

[21] M. Horowitz, “1.1 computing’s energy problem (and what we can do
about it),” in 2014 IEEE International Solid-State Circuits Conference
Digest of Technical Papers (ISSCC), Feb 2014, pp. 10–14.

[22] Y. Shen, M. Ferdman, and P. Milder, “Overcoming resource underutiliza-
tion in spatial cnn accelerators,” in 2016 26th International Conference
on Field Programmable Logic and Applications (FPL), Aug 2016, pp.
1–4.

[23] Ultraram: Breakthrough embedded memory integra-
tion on ultrascale+ devices. [Online]. Available:
https://www.xilinx.com/support/documentation/whitepapers/wp477-
ultraram.pdf

[24] S. Han, H. Mao, and W. J. Dally, “Deep compression: Compressing
deep neural network with pruning, trained quantization and huffman
coding,” CoRR, vol. abs/1510.00149, 2015. [Online]. Available:
http://arxiv.org/abs/1510.00149

[25] P. Gysel, M. Motamedi, and S. Ghiasi, “Hardware-oriented approxi-
mation of convolutional neural networks,” CoRR, vol. abs/1604.03168,
2016. [Online]. Available: http://arxiv.org/abs/1604.03168

[26] E. H. Lee, D. Miyashita, E. Chai, B. Murmann, and S. S. Wong, “Lognet:
Energy-efficient neural networks using logarithmic computation,” in
2017 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), March 2017, pp. 5900–5904.

[27] M. Rastegari, V. Ordonez, J. Redmon, and A. Farhadi, “Xnor-
net: Imagenet classification using binary convolutional neural
networks,” CoRR, vol. abs/1603.05279, 2016. [Online]. Available:
http://arxiv.org/abs/1603.05279

[28] Y. LeCun, J. S. Denker, and S. A. Solla, “Optimal brain damage,” in
Advances in Neural Information Processing Systems 2, D. S. Touretzky,
Ed. Morgan-Kaufmann, 1990, pp. 598–605. [Online]. Available:
http://papers.nips.cc/paper/250-optimal-brain-damage.pdf

[29] S. Han, J. Pool, J. Tran, and W. J. Dally, “Learning both weights and
connections for efficient neural networks,” CoRR, vol. abs/1506.02626,
2015. [Online]. Available: http://arxiv.org/abs/1506.02626

[30] W. Wen, C. Wu, Y. Wang, Y. Chen, and H. Li, “Learning structured
sparsity in deep neural networks,” CoRR, vol. abs/1608.03665, 2016.
[Online]. Available: http://arxiv.org/abs/1608.03665

[31] S. Venkataramani, A. Ranjan, K. Roy, and A. Raghunathan, “Axnn:
Energy-efficient neuromorphic systems using approximate computing,”
in 2014 IEEE/ACM International Symposium on Low Power Electronics
and Design (ISLPED), Aug 2014, pp. 27–32.

[32] Q. Zhang, T. Wang, Y. Tian, F. Yuan, and Q. Xu, “Approxann: An
approximate computing framework for artificial neural network,” in
2015 Design, Automation Test in Europe Conference Exhibition (DATE),
March 2015, pp. 701–706.

[33] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma,
Z. Huang, A. Karpathy, A. Khosla, M. Bernstein, A. C. Berg, and L. Fei-
Fei, “Imagenet large scale visual recognition challenge,” International
Journal of Computer Vision, vol. 115, no. 3, pp. 211–252, Dec 2015.
[Online]. Available: https://doi.org/10.1007/s11263-015-0816-y

[34] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick,
S. Guadarrama, and T. Darrell, “Caffe: Convolutional architecture for
fast feature embedding,” arXiv preprint arXiv:1408.5093, 2014.

[35] Lenet, caffe example. [Online]. Available:
https://github.com/BVLC/caffe/tree/master/examples/mnist

[36] Y. LECUN, “The mnist database of handwritten
digits,” http://yann.lecun.com/exdb/mnist/. [Online]. Available:
https://ci.nii.ac.jp/naid/10027939599/en/

[37] Ciffar10 example networks. [Online]. Available:
https://github.com/BVLC/caffe/tree/master/examples/cifar10

[38] A. Krizhevsky, “Learning multiple layers of features from tiny images,”
University of Toronto, 05 2012.

[39] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet
classification with deep convolutional neural networks,” in
Proceedings of the 25th International Conference on Neural
Information Processing Systems - Volume 1, ser. NIPS’12. USA:
Curran Associates Inc., 2012, pp. 1097–1105. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2999134.2999257

[40] K. Simonyan and A. Zisserman, “Very deep convolutional networks
for large-scale image recognition,” CoRR, vol. abs/1409.1556, 2014.
[Online]. Available: http://arxiv.org/abs/1409.1556

[41] Nvidia tensorrt 8-bit quantization. [Online]. Avail-
able: http://on-demand.gputechconf.com/gtc/2017/presentation/s7310-8-
bit-inference-with-tensorrt.pdf

