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This paper investigates the techniques to construct high-quality target processor array (fault-

free logical subarray) from a physical array with faulty processing elements (PEs), where a ¯xed
number of spare PEs are pre-integrated that can be used to replace the faulty ones when

necessary. A recon¯guration algorithm is successfully developed based on our proposed novel

shifting operations that can e±ciently select proper spare PEs to replace the faulty ones. Then,

the initial target array is further re¯ned by a carefully designed tabu search algorithm. We also
consider the problem of constructing a fault-free subarray with given size, instead of the original

size, which is often required in energy-e±cient MPSoC design. We propose two e±cient heu-

ristic algorithms to construct target arrays of given sizes leveraging a sliding window on the
physical array. Simulation results show that the improvements of the proposed algorithms over

the state of the art are 19% and 16%, in terms of congestion factor and distance factor,

respectively, for the case that all faulty PEs can be replaced using the spare ones. For the case of

¯nding 64� 64 target array on 128� 128 host array, the proposed heuristic algorithm saves the
running time up to 99% while the solution quality keeps nearly unchanged, in comparison with

the baseline algorithms.
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1. Introduction

Network on chip (NoC) is a communication subsystem on an integrated circuit,

which applies networking theory and methods to on-chip communication and brings

notable improvements over conventional bus and crossbar interconnections. NoC is

generally regarded as one of the most promising interconnect solutions for giga-scale

integrated circuits, such as many-core processors,1,2 in which the topology deter-

mines the ideal performance of NoC whereas the routing algorithm and the °ow

control mechanism determine how much of this potential is realized. In recent years,

many useful network topologies, such as the combined Gaussian network topology,3

are proposed to improve the ideal performance of NoC. Mesh-connected multipro-

cessor array is readily employed for high-speed implementation of most signal and

image processing algorithms, which is one of the most common networks for NoC due

to its simplicity, scalability, structural regularity and ease of implementation.4

With the advance in very large-scale integration (VLSI) techniques, a single chip

can be integrated with tens to hundreds of processing elements (PEs) to process

massive amounts of information in parallel.5 However, as the density of VLSI arrays

increases, the probability of occurrence of the faults in the arrays during fabrication

also increases. In addition, some PEs are temporally unavailable for the current

application caused by their \soft faults," i.e., overheating, overload or being employed

by other applications.4 Thus, it is hard to guarantee all PEs in the NoC to be fault-free

throughout their working lifetime. Moreover, without considering fault tolerance

during the architecture design, the yield of many-core system may decrease to as low

as 10–20%.6 Therefore, circuit reliability becomes one of the major challenges, and

also fault tolerance becomes an essential inherent characteristic of every chip design.

Generally, two types of fault tolerance architectures, namely router-based ar-

chitecture7–9 and switch-based architecture,10–12 are extensively investigated for

mesh-connected multiprocessor arrays. Compared with switch-based architecture,

router-based architecture is superior in the design of recon¯guration algorithm and

utilization of fault-free PEs, but it has disadvantages in hardware cost and power

consumption. In addition, it is veri¯ed that providing defect tolerance capabilities

on-chip via redundant PEs is more e±cient than incorporating redundant circuits at

microarchitecture level.13–15 Therefore, this paper focuses on developing e±cient

recon¯guration algorithms for router-based architecture with redundant PEs to

reduce the overall energy consumption of system.

In router-based architecture, the fault-tolerant recon¯guration algorithm for NoC-

based multiprocessor arrays reorganizes the fault-free PEs to form a logical array,

instead of really changing the physical interconnection among PEs. In recent years,

two di®erent dimensions, i.e., 2D16,17 and 3D,18,19 for mesh-connected NoC are widely

investigated. For example, for the NoC-based 3D mesh, a low-overhead fault-tolerant

routing scheme is presented.18 And for the NoC-based 2D mesh, a novel topology

recon¯guration algorithm is proposed in Ref. 16 which aims at higher recon¯guration
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rate. In this paper, we investigate the recon¯guration algorithm for the 2D mesh-

connected NoC. As we know, e®ective fault-tolerant techniques are essential to

improve the yield of complex integrated circuits. Therefore, researchers have pro-

posed many di®erent optimization schemes for NoC-based fault-tolerant issues. The

work in Ref. 13 presents an e®ective fault tolerance scheme on mesh-based NoC to

solve the problems caused by faulty routers or broken links. An algorithm20 is pre-

sented based on maximum °ow for the recon¯guration problem, which optimizes the

use of spare PEs with minimal impact on area, throughput and delay, and thus it

signi¯cantly improves the repair rate of faulty PEs. And an enhanced approach using

a minimum-cost maximum-°ow algorithm is further presented in Ref. 20 by consid-

ering various PEs in practical applications. It is noteworthy that a customized sim-

ulated annealing algorithm (denoted as RSSA) is presented in the work21 to solve the

topology recon¯guration problem for NoC-based multiprocessor arrays with redun-

dant PEs. The algorithm re¯nes the initial topology generated by row rippling column

stealing scheme (denoted as RS). However, a considerable number of long intercon-

nection paths are generated due to column stealing technique utilized in the algo-

rithm, which leads to an increase of overall energy consumption.

As mentioned above, we can conclude the faults into two types, i.e., \hard faults"

and \soft faults." For \hard faults," caused by the physical damage or limited op-

erational lifetime, an e±cient recon¯guration algorithm must be employed to re-

construct the original-sized logical array for keeping the normal work. For \soft

faults," caused by overheating, overload or being employed by other applications,

minimizing the energy dissipation of logical arrays is very important. Moreover, it

has been shown that running applications on large arrays with low speed does not

certainly consume less energy than on smaller array with relatively higher speed, in

which it should be better for some cores to be switched to sleep mode.22–24 It means

that an online application prefers a subarray with customized size instead of the same

size of the original array. Thus, for the \soft faults," the logical arrays with suitable

size of online application should be quickly reconstructed for the coming applications

with di®erent sizes. In conclusion, fast and e±cient recon¯guration algorithms are

crucial for NoC to produce high-quality available logical array which can potentially

mitigate communication congestion and reduce the overall energy consumption

during the operation of the system. It is also true not only for processor arrays with

spare PEs,25–28 but also for the degradable processor arrays.25,29–31 This is because

fault tolerance is essential to the reliability of the system, no matter how many PEs

are faults and how often the faults occur. Therefore, these motivate us to investigate

the e±cient recon¯guration algorithm to generate the high-quality fault-free logical

arrays with original size and the given size in this paper. The main contributions of

this paper are as follows.

(i) For the high-quality target array with original size, based on our previous

work,32 we present an e±cient heuristic algorithm by employing column shifting
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and row bishifting operations to generate a feasible logical array with small

number of long interconnection paths in recon¯guration. The logical array is

further re¯ned by a customized tabu search (TS).

(ii) For the high-quality target array with given size, instead of the original size, we

de¯ne a sliding window to locate an initial logical array on the physical array.

Then, we contribute two heuristic algorithms based on the sliding window to

generate the high-quality target array with given size. One is directly to focus on

minimizing uni¯ed metric of the target array, which can obtain a good solution

quality. And the other works on ¯nding a target array with the minimum

number of faulty PEs and minimum penalty, which keeps the solution quality

and saves plenty of running time.

The rest of the paper is organized as below. In Sec. 2, the de¯nitions and the

description of the problems, together with the related works, are presented. In Sec. 3,

we ¯rst describe our novel algorithm to derive a maximum fault-free array with high

quality from the original one. Then we introduce two algorithms for recon¯guring the

topology to get a fault-free subarray with given size. In Sec. 4, we show the experi-

mental results and the analysis on the two situations, respectively. Finally, Sec. 5

concludes the current work and provides directions for future work.

2. Preliminaries

In this section, we describe the recon¯guration architecture, related notations and

de¯nitions, followed by the recon¯guration problems to be investigated in this paper.

2.1. Fault-tolerant architecture

LetH denote the physical array on which some of the PEs are defective. Assume that

N is the number of PEs in an m� n physical array, i.e., N ¼ m � n. Assume that the

fault density of the physical array is �, then there are ð1� �Þ �N fault-free PEs in an

m� n physical array. The rows and columns in the physical array are called physical

rows and columns, respectively. T indicates the target array (logical array) which

contains no faulty PEs. Assume that N 0 is the number of PEs in target array.

A logical array is a degraded isomorphic of the physical array, and is obtained by

replacing faulty PEs with redundant ones. Since the PEs in T correspond to the

nodes in H, we have jT j � jHj, where jT jðjHjÞ indicates the fault-free PEs in the

target array (host array). We are interested in the mapping of PEs in the physical

array to nodes in the logical array. The rows and columns in logical array are called

logical rows and logical columns, respectively. Throughout this paper, Hi;j ðTi;jÞ
indicates the PE located at the position of ði; jÞ of the physical (logical) array, where
i is its row index and j is its column index.

Figure 1(a) shows an example of the fault-tolerant architecture of a 4� ð4þ 1Þ
physical array. In the array, each PE is self-autonomous and is capable of
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communicating with any other PEs through the NoC infrastructure. Each square

box in the host array represents a PE, whereas each circle represents a router. The

black shaded boxes represent faulty PEs while unshaded ones represent the fault-free

PEs. In addition, there are four redundant PEs located at the right-hand side of the

physical array. Figure 1(b) illustrates a logical array obtained by replacing the faulty

PEs with four redundant ones.

2.2. Performance evaluation metrics

To evaluate the performance of a logical topology, two evaluation metrics, i.e.,

distance factor (denoted as d) and congestion factor (denoted as c), are de¯ned in

Ref. 21. d is used to evaluate the communication delay between PEs, and it is de¯ned

as follows:

d ¼ 1

N 0
XN 0

i¼1

1

nk

Xnk

i¼1
Hk;i ; ð1Þ

where nk is the number of logical neighbors of PE k andHk;i is the number of physical

hops between PE k and its neighbor PE i, thus 1=nk

Pnk

i¼1 Hk;i denotes the average

hops between PE i and its neighbors. N 0 is the number of PEs in target array. Thus,

d indicates the average physical hops between any two logical neighboring PEs. It is

evident that smaller d leads to better communication performance. On a physical

array without faulty PEs, the best target array is identical to the physical array with

the limit of size, in which the minimum value of d is 1. However, due to the existence

of the faulty PEs, d is always larger than 1.

Unlike distance factor d, the congestion factor c re°ects the potential unbalance of

communication tra±c °ow among di®erent physical links. Let l be a physical link, for

any two logically neighboring PEs, say PE u and PE v, if l belongs to the routing

path between u and v according to the NoC's routing mechanism (e.g., the

XY routing mechanism), we add cl by 1. In other words, cl indicates how many times

(a) (b)

Fig. 1. Fault-tolerant architecture.
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the link l is utilized by routing paths on the target array. c is de¯ned as the standard

deviation of cl of all links:

c ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XL
l¼1

cl � cl

L� 1

vuuuut
; ð2Þ

where L is the total number of physical links and cl is the average cl for 0 < l � L.

Evidently, small c value implies balanced communication loads, and the increase of c

will possibly lead to unbalanced communication tra±c °ow.

The d and c might be con°icted with each other during optimization, hence the

uni¯ed metric (denoted as u in this paper) is de¯ned as

u ¼ !c � cþ !d � d ; ð3Þ
where !d and !c are two weight factors for optimization, and !c þ !d ¼ 1;

0 < !c < 1; 0 < !d < 1.

2.3. Problems and latest works

The problems investigated in this paper are as follows.

Problem R. On router-based architecture, given an m� ðnþ kÞ mesh-

connected homogeneous processor array H, which contains r faulty PEs and m � k
redundant PEs (r � m � k), ¯nd an m� n target array which contains no faulty PEs

and the uni¯ed metric u of the target array is minimized.

With the development of techniques in NoC, a large number of PEs can be

integrated on a single chip. But the target array required by the application generally

is much smaller than the provided host array. This leads us to investigate the fol-

lowing problem, instead of recon¯guring an m� n target array for the application

which only requires a smaller target array.

Problem Rc. On router-based architecture, given an m� ðnþ kÞ mesh-

connected homogeneous processor array H, which contains r faulty PEs and m � k
redundant PEs (r � m � k), ¯nd a p� q (p � m and q � n) target array which

contains no faulty PEs and the uni¯ed metric u of the target array is minimized.

The problem R has been proved to be NP-hard problem.24 Noting that the

solution of problem R is a particular solution of the problem Rc, we conclude that

the problem Rc is also NP-hard.

Recently, a heuristic algorithm is presented in Ref. 21 to solve the problem R.
A row rippling column stealing algorithm is utilized to reorganize the fault-free PEs

into a logical regular topology. Therefore, RS algorithm tries to maintain the

physical regularity of the virtual topologies in row unit and in column unit. To

simplify the problem, without loss of generality, Ref. 21 assumes that one column of

spare PEs is considered in the mesh or torus topology. If a row contains only one
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faulty PE, the faulty PE is replaced by its right neighbor, meaning that the faulty PE

moves to the right position and then it is replaced by the next neighbor, and so on,

this process continues until the faulty one is transferred to the end of the row. When

a row contains more than one faulty PEs, i.e., faulty PEs are more than the spare

ones in this row, the rightmost faulty PE is replaced using the spare one, which is

named as column stealing. The other faulty PEs within the row are replaced with the

PEs immediately beneath them, from the next row. Similarly, the next row will steal

fault-free PEs from its next row. The process repeats until a row, say row Ri, cannot

¯nd enough fault-free PEs from its next row to steal, then it steals fault-free PEs

from the redundancy row, which locates above the row where column stealing

started. Usually, the redundancy row is far from the current row Ri, we call this type

of stealing as backward stealing. Backward stealing leads to great loss in commu-

nication performance in terms of c and d of the resultant topology. In Ref. 21, the

topology produced by row rippling column stealing algorithm is further re¯ned by a

customized simulated annealing algorithm. For more details, see Ref. 21.

3. Recon¯guration Algorithms

This section presents algorithms for solving the problems R and Rc.

3.1. Algorithms for problem R
For problem R, we present a novel recon¯guration algorithm consisting of two

sub-algorithms. The ¯rst one is a heuristic algorithm to generate a logical array S by

performing column shifting and row bishifting operations. The second one is to

optimize the initial target array S by a customized tabu search approach.

3.1.1. Heuristic algorithm

Before introducing the proposed algorithm, we ¯rst de¯ne two types of operations,

column shifting and row bishifting. Column shifting is essentially a cyclic shifting on

a column segment. Formally, let Si;k denote the PE located at the position ði; kÞ of
array S, where i is the row index and k is the column index. Then, the sequence

hSi;k;Siþ1;k; . . . ;Sj�1;k;Sj;ki is a column segment lying between row Si and row Sj of

target array S. The column shifting operation from Sj;k to Si;k is performed as

follows:

Si;k  Siþ1;k;Siþ1;k  Siþ2;k; . . . ;Sj�1;k  Sj;k;Sj;k  Si;k ;

where Si;k  Siþ1;k indicates that PE Si;k is replaced by PE Siþ1;k. The row bishifting

operation on row Si performs in a way that all PEs in row Si move toward two

directions, i.e., fault-free PEs move to left-hand side and faulty PEs move to right-

hand side. In other words, it splits Si into two parts such that the left part contains

only fault-free PEs and the right part consists of faulty PEs. Note that the procedure
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of row bishifting is stable, which means that the order among faulty PEs or the order

among fault-free PEs is kept unchanged.

The proposed heuristic algorithm based on column shifting and row bishifting,

denoted as CRS, works in the following way to solve problem R.

Step 1: Target array S is initialized as host array H. Then, CRS performs row

bishifting operation on row Si for 0 � i < m, and row Si will be marked as a

redundancy row if jSij > n.

Step 2: For each row, say Si ð0 � i < nÞ, whose fault-free elements are less than n,

i.e., jSij < n, CRS locates the ¯rst faulty PE, say Si;j, in row Si and ¯nds the

nearest redundancy row, say Sr, to row Si. Then algorithm CRS performs

column shifting from Sr;j to Si;j on sequence hSi;j; . . . ;Sr;ji, and then employs

row bishifting operation on row Sr to make the faulty PE shifted from row Si

to the right-hand side of row Sr. After the two operations, the redundancy

mark will be removed from row Sr if jSrj � n. By far, one iteration of step 2 is

done. If jSij < n, CRS continues to perform another iteration on Si until

jSij ¼ n is satis¯ed, otherwise, the algorithm proceeds to check row Siþ1.
Step 2 repeats until all rows in S satisfy the above condition, i.e., jSij � n for

0 � i < m.

The pseudocode of CRS is shown in Algorithm 1.

Step 1 of the CRS runs in OðnÞ for each row to move all faulty PEs to the right-

hand side of the row. Thus, the algorithm CRS takes Oðm � nÞ time for processing the

entire array. In step 2, CRS performs one operation of column shifting and one

operation of row bishifting for each faulty PE in the array, where column shifting

operation runs in OðmÞ time and the row bishifting operation runs in OðnÞ time.

Therefore, step 2 runs in Oðk � ðmþ nÞÞ, where k is the number of faulty PEs in the

m� n physical array. As a result, the CRS runs in Oðk � ðmþ nÞÞ þOðm � nÞ, i.e.,
Oðk�þN 0Þ, where � ¼ maxfm;ng.

3.1.2. Optimization by tabu search

TS is one of the traditional heuristic-based algorithms to search for the global op-

timal solution for NP-hard problems.33,34 It is possible to ¯nd a global optimum by

using tabu search, although the global optimum is not guaranteed by this method. In

this sub-subsection, we customize a TS algorithm, denoted as CRS-TS, to re¯ne the

heuristic solution generated by CRS.

Generally, TS works in an iterative way with ¯ve primary parameters: initial

solution, neighborhoods structure, evaluation metric, tabu list and termination cri-

teria. It starts from an initial solution, and iteratively moves from one potential

solution s to an improved solution s 0 in the neighborhood of s, until the termination

criterion is satis¯ed. In each iteration, a number of neighbor solutions are generated

from the current solution. All the neighbors are then examined according to the
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evaluation metric and the best neighbor is selected. Then the algorithm proceeds by

transiting from current solution to the best neighbor, which is called a move. Note

that a move may decrease the quality of the current solution. In order to avoid

possible cycling and go beyond local optimum, tabu search introduces the notion of

tabu list to forbid the recently visited solutions.33 In other words, performing a move

which is already in tabu list is not allowed. For more details on tabu search, see

Ref. 34.

Initial solution. In this algorithm, CRS-TS starts with heuristic solution gen-

erated by CRS. Initial solution is in the format of array, where each element in the

array stands for a PE.

Neighborhood structure. A neighbor solution is generated by exchanging any

two nonfaulty nodes in the current feasible solution. All possible neighbor solutions

will be built for searching the best one.

Algorithm 1. CRS
Input: An m × (n + k) physical array H .
Output: An m × n target array T .
1: S := H ;

/*Let Si be the set of PEs located in ith row in S, and let |Si| be the number
of fault-free PEs in Si*/

2: for i := 0 to m − 1 do
3: Move all faulty PEs in row in Si to the right-hand side of the row;
4: if |Si| > n then
5: Mark row Si as a redundancy row;
6: end if
7: end for
8: for i := 0 to m − 1 do
9: if |Si| < n then

10: while |Si| < n do
11: Find the first faulty PE in row Si, say Si,j ;
12: Find a redundancy row, say Sr, which is the nearest to row Si;
13: Perform column shifting operation from PE Sr,j to PE Si,j ;
14: Perform row bishifting operation on row Sr;
15: if Sr = n then
16: Remove the redundancy row mark for Sr;
17: end if
18: end while
19: end if
20: end for
21: T := S;
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Evaluation. All neighbors are evaluated according to uni¯ed metric u de¯ned in

Sec. 2. Then the algorithm moves to the best neighbor that is not in tabu list and

with minimum u. !c and !d are set to 0:1 and 0:9, respectively, which is the same as

in Ref. 21.

Tabu list. The tabu list is used to prevent the search from cycling between solu-

tions by storing the recently performed moves. In this paper, our tabu list has a ¯xed

size. When the list is full, the oldest element of the list is replaced by the new element.

Also, an aspiration criteria is utilized so that, if a tabumove generates a better solution

than all the feasible solutions obtained so far, its tabu status is neglected.

Termination criteria. Stopping rules may be a ¯xed number of iterations or a

¯xed number of CPU time or a ¯xed number of consecutive iterations without an

improvement in the best objective function value, etc. In this paper, the stopping rule

is to ¯x the number of iterations, and it is set to 2mn�m� n for an m� n host

array.

The pseudocode of CRS-TS is shown in Algorithm 2.

Algorithm 2. CRS-TS
Input: An initial solution Sinit generated by CRS.
Output: Refined solution Tbest.
1: Scur := Sinit; /*current local solution */
2: Sbest := Sinit; /*the best-so-far solution*/
3: for i := 1 to M do
4: Generate neighbor set Q for solution Scur;
5: Evaluate all neighbors in set Q by the unified metric u;

/*select the best neighbor for the next move of the algorithm*/
6: while 1 do
7: Select a neighbor solution, say S , of the minimum u from set Q;
8: if Sneib /∈ TabuList or u(Sneib

neib

) < u(Sbest) then
9: Put Sneib in TabuList;

10: Scur := Sneib;
11: if u(Sneib) < u(Sbest) then
12: Sbest := Sneib;
13: end if
14: break;
15: else
16: Remove Sneib out of set Q, find a neighbor solution of the minimum u

from set Q;
17: end if
18: end while
19: end for
20: Tbest := Sbest;
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3.2. Algorithms for problem Rc

This subsection presents two algorithms for topology recon¯guration. In other

words, given an m� n physical array with r faulty PEs, we try to ¯nd a p� q

nonfaulty subarray, such that the subarray is an approximate tightly-coupled one

which has the lowest uni¯ed metric u.

De¯nition 1. A sliding window is a rectangular subarray, which contains a ¯xed

number of PEs. The boundary of the sliding window consists of all horizontally

adjacent PEs and vertically adjacent PEs to the window.

Figure 2 shows a sliding window on a host array. Each square represents a PE,

and black ones represent faulty PEs. The area bounded by the dashed line is the

sliding window, and the PEs shown by shaded block form the boundary of the sliding

window.

3.2.1. Uni¯ed metric-based algorithm

In this sub-subsection, we propose an algorithm for problem Rc. The algorithm

utilizes a sliding window to check each feasible position and then to select a window

with minimum uni¯ed metric u. The algorithm, denoted as UMA in this paper, works

with the following steps.

Step 1: Create an initial p� q sliding window that is located in the upper left corner

of the host array. For example, Fig. 3(a) shows the initial position of the

sliding window.

Step 2: Find all faulty PEs in the sliding window, and then replace each faulty PE

with its nearest nonfaulty one that lies out of the window. To implement the

PE replacement, the operation of row/column shifting presented in algo-

rithm CRS is employed to shift the nonfaulty PE to the boundary of the

sliding window. After shifting operation, the algorithm replaces the faulty

Fig. 2. The boundary of the sliding window.
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PE with the nonfaulty PE. For the advantage of the shifting operation, see

Fig. 4. If the value of u is smaller than the current value, the best window

and the currently minimum u will be updated.

Step 3: Move the sliding window from top to bottom, and then from left to right in

the host array, each move passes one row or one column. Figure 3 shows an

example of moving sliding window on 4� 4 host array, the sequence of steps

for the movement is a! b! c! d. The sliding window moves repeatedly

(step 2) until all positions have been checked in the host array. Finally, the

target array with minimum u is found.

Step 4: If the window is a rectangle, i.e., p 6¼ q, the algorithm rotates the window

and then runs for one more time, in order to check whether there exists a

better solution on the rotated window. After that, the algorithm will choose

a better one from the two solutions, which are derived from original window

and the rotated one respectively, as the ¯nal solution.

It is worthwhile to point out that the algorithm can terminate if there exists a fault-

free subarray which is equal to or larger than the target array. Then the fault-free

subarray will be the ¯nal solution. For the PE replacement, if the algorithm directly

uses shifting operation to replace faulty PE with target fault-free PE, it is possible for

the fault-free PEs within the window to be shifted out of the window. Thus, the

(a) (b)

(d) (c)

Fig. 3. The movement of sliding window.
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algorithm initially moves the fault-free PE to the boundary of the window, and then

exchanges the faulty PE with the fault-free one, in order to keep the fault-free PEs

still in the window.

In Fig. 4, directly using the fault-free PE numbered 13 to replace the faulty PE in

the window results in the layout as shown in Fig. 4(a), with relatively high distance

factor d and congestion factor c, in comparison to the layout shown by Fig. 4(b)

which is derived from column shifting operation on the PEs numbered 5, 9 and 13.

That is why we employ the shifting operation, rather than directly using PE

replacement.

The presented algorithm UMA could generate an acceptable solution for the

problem Rc. The target is to minimize the uni¯ed metric u. The sliding window

enumerates all possible positions in the worst case, to select the best window with the

minimum u as the ¯nal solution, although the computing time may increase for large

problems. The pseudocode of UMA is shown in Algorithm 3.

The sliding window moves 2 � ðn� q þ 1Þðm� pþ 1Þ, i.e., OðNÞ times in algo-

rithm UMA, where m � n is the size of the original array and p � q is the size of

the sliding window. Finding the locations of faulty PEs in a sliding window takes

Oðpþ qÞ time, because a new window only increases a new row/column in com-

parison with the previous windows. For each faulty PE within the sliding window,

UMA performs only one shifting operation and only one exchanging operation. The

shifting operation runs in Oðmþ nÞ time and the exchanging operation runs in Oð1Þ
for each faulty PE in the sliding window. Thus, UMA runs in Oððpþ qÞ � ðmþ nÞÞ

(a)

(b)

Fig. 4. Impact of shifting operations on the congestion factor c and distance factor d.
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time for each sliding window. Therefore, the time complexity of UMA is Oð� � � �NÞ,
where � ¼ maxfm;ng and � ¼ maxfq; pg.

3.2.2. Minimum fault-based algorithm

We now present a fast greedy algorithm, named FGA, to deal with the problem Rc.

FGA also utilizes sliding window to ¯nd a best subarray with the minimum number

of faulty PEs and the minimum penalty (see the following De¯nition 2). Note that

Algorithm 3. UMA
Input: m × n physical array.
Output: p × q target array Tbest.

1: Procedure Sub-UMA(H, p, q, T p×q
best )

2: for i := 0 to n − 1 do
3: for j := 0 to m − p do
4: H := H ;
5: for each faulty PE within F do
6: Find the corresponding nonfaulty PE Pnearest which is nearest and out

of F for the faulty PE;
7: Replace the faulty PE with the corresponding Pnearest by shifting and

exchange operations;
8: end for
9: if u(F ) < u(T p×q

best ) then
10: T p×q

best := F ;
11: end if
12: Move F down by one row;
13: end for
14: Move F up to the top side of H ;
15: Move F right by one column;
16: end for
17: end procedure

18: Generate a p × q sliding window F that is located in the upper left corner of
H ;

19: Tbest := F ;
20: Sub-UMA(H, p, q, T p×q

best );
21: Tbest := T p×q

best ;
22: if p = q then
23: Sub-UMA(H, q, p, T q×p

best );
24: The better one from the current Tbest and T q×p

best is set to the final Tbest;
25: end if
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the subarray with the small number of faulty PEs can be simply recon¯gured. This

motivates us to design a greedy algorithm, initially ¯nding the subarray with the

minimum number of faulty PEs, then recon¯guring it to get an approximate tightly-

coupled target array.

De¯nition 2. The shortest distance between the faulty PE i and the boundary of

sliding window is de¯ned as the penalty of PE i, denoted as Pi. Let Ptotal indicate the

penalty of the sliding window. Ptotal is de¯ned as Ptotal ¼
Px

i¼1 Pi, where x represents

the number of faulty PEs in the sliding window.

Algorithm 4. FGA
Input: m × n physical array.
Output: p × q target array Tbest.

1: Procedure Sub-FGA(H, p, q, F p×q
best )

2: for i := 0 to n − q do
3: for j := 0 to m − p do
4: H := H ;
5: Calculate the number of faulty PEs x(F ) and the penalty Ptotal(F );
6: if x(F ) < x(T p×q

best ) then
7: F p×q

best := F ;
8: end if
9: Move F down by one row;

10: end for
11: Move F up to the top side of H ;
12: Move F right by one column;
13: end for
14: F p×q

best := the sliding window with minimum Ptotal;
15: end procedure

16: Generate a p × q sliding window F that is located in the upper left corner of
H ;

17: Fbest := F ;
18: Sub-FGA(H, p, q, F p×q

best );
19: Fbest := F p×q

best ;
20: if p = q then
21: Sub-FGA(H, q, p, F q×p

best );
22: The better one from the current Fbest and F q×p

best bestis set to the final F ;
23: end if
24: Tbest := the resultant array based on Fbest;
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The greedy algorithm FGA is similar to the algorithm UMA in outline. It also

utilizes the sliding window to accomplish the recon¯guration of a subarray. Unlike

UMA, the greedy algorithm focuses on minimizing the penalty and the number of

faulty PEs. The main steps are as follows.

Step 1: Create an initial p� q sliding window that is located in the upper left corner

of the host array.

Step 2: Check each PE in the sliding window to ¯nd the faulty PEs, then compute

and save the number of faulty PEs and the penalty of the sliding window.

Step 3: Move the sliding window from top to bottom, and then from left to right in

the host array, each move passes one row or one column. The sliding window

moves repeatedly (step 2), until all positions have been checked in the host

array. In the end, the sliding window with minimum number of faulty PEs,

together with the minimum penalty, will be chosen as the target array.

Step 4: If the window is a rectangle, i.e., p 6¼ q, the algorithm rotates the window

and then runs one more time, in order to check if there exists a better

solution on the rotated window. After that the algorithm will choose a better

one from the two solutions, which are derived from the original window and

the rotated one, respectively, as the ¯nal solution.

The pseudocode of FGA is shown in Algorithm 4.

The sliding window moves 2 � ðn� q þ 1Þðm� pþ 1Þ, i.e., OðmnÞ times in

algorithm UMA, wherem � n is the size of the original array and p � q is the size of the
sliding window. For each sliding window, FGA calculates the number of faulty

PEs and the penalty of the window, which runs in Oðp � qÞ time. Thus, the time

complexity of FGA is Oðm � n � p � qÞ, i.e., Oðp � q �NÞ.

4. Simulation Results

We keep the same assumptions and model of the array as in Refs. 21 and 32 in our

simulations. The faulty PEs are randomly distributed in the host array, and the

faults are only associated with PEs. The communication infrastructure is assumed to

be fault-free. Simulations have been conducted on a large number of randomly

generated instances with fault density ranging from 1% to 30%.21,32 All algorithms

are implemented in Cþþ and they run on an Intel Xeon 3.2-GHz computer with

32-GB RAM.

4.1. Results for problem R
In this subsection, the proposed algorithms are compared with the row rippling

column stealing algorithm,21 and the customized simulated annealing algorithm,21 in

terms of distance factor d and congestion factor c. As discussed in Sec. 2, d is used to

evaluate the communication delay between PEs, and c re°ects the potential
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unbalance of communication tra±c °ow among di®erent physical links. The

improvements in d and c of our algorithm CRS over algorithm RS are calculated

based on the following formulas:

impc ð%Þ ¼
cRS � cCRS

cRS
� 100 ; ð4Þ

impd ð%Þ ¼
dRS � dCRS

dRS
� 100 : ð5Þ

For problem R, it needs to ¯nd a maximum fault-free subarray during recon¯g-

uration using redundant PEs. We conduct three sets of experiments. In the ¯rst

experiment we compare algorithm RS and CRS. Figures 5(a) and 5(b) show

the performance comparisons between algorithms RS and CRS, on the size of

(a) Congestion factor c on 10� ð10þ 3Þ arrays. (b) Distance factor d on 10� ð10þ 3Þ arrays.

(c) Congestion factor c on fault density of 20%. (d) Distance factor d on fault density of 20%.

Fig. 5. Performance comparisons between RS (baseline) and CRS (new algorithm) in terms of c and d,
averaged over 20 random instances.
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10� ð10þ 3Þ host arrays, i.e., the host array has three redundancy columns. The

fault density ranges from 5% to 25%.

CRS tends to outperform RS with the increasing fault density. For example, on

host arrays with 5% faulty PEs, the value of c is 0:797 for CRS and is 0:835 for RS.

Then, with the increasing of fault density, c increases much slower for CRS than for

RS. This is due to the fact that algorithm RS performs backward stealing techniques

to replace faulty PEs with fault-free PE in the next row, when a physical row does

not contain enough fault-free PEs. However, algorithm CRS redistributes fault-free

PEs using a shifting operation, such that the neighboring PEs in physical array

can be utilized to form the target array, in order to reduce the values of c and d.

Figures 5(c) and 5(d) illustrate the comparisons between two algorithms, in terms of

c and d, on host arrays with fault density of 20%. The sizes of host arrays are set to

4� ð4þ 1Þ; 8� ð8þ 2Þ; 12� ð12þ 3Þ and 16� ð16þ 4Þ, respectively. Both c and d

of the two algorithms are very close for small arrays, but CRS clearly outperforms

RS with the increasing size of host array. This is because that a physical row Ri

needs to steal fault-free PEs from a redundancy row Rr in backward stealing of

RS, the row Ri may be far from Rr on a large host array.

Table 1 shows comparisons of algorithms CRS-TS and RSSA on host arrays with

size ranging from 4� 4 to 16� 16 and fault density ranging from 10% to 30%. RSSA

¯rst generates an initial topology using RS and then performs a simulated annealing

algorithm to re¯ne the initial topology, while CRS-TS ¯rst generates an initial to-

pology using CRS and then employs TS to re¯ne the initial topology produced by

CRS. Generally, the average improvement of CRS-TS over RSSA is 19% for con-

gestion factor c and is 16% for distance factor d. Both CRS-TS and RSSA achieve

desirable c and d on host arrays with small fault density. However, with the increase

of fault density, algorithm CRS-TS is clearly better than RSSA. For example, for

Table 1. The performance comparisons of algorithms CRS-TS (new algorithm) and RSSA (baseline).

Host arrays Target arrays

Size Spare PEs � (%) cRSSA cCRS�TS impc dRSSA dCRS�TS impd

4� 4 4� 1 10 0.965 0.927 2.888 1.108 1.097 0.829

4� 1 20 1.040 1.013 1.775 1.462 1.438 1.275

4� 2 30 1.262 1.109 10.807 1.160 1.137 1.428

8� 8 8� 1 10 1.087 0.991 7.180 1.420 1.347 4.639

8� 2 20 1.516 1.219 18.602 1.680 1.419 15.205
8� 3 30 1.823 1.397 22.795 2.081 1.555 24.922

12� 12 12� 2 10 1.240 1.122 8.990 1.348 1.278 5.078

12� 3 20 2.091 1.447 29.820 2.043 1.546 23.975

12� 4 30 2.442 1.592 34.333 2.761 1.783 35.258

16� 16 16� 2 10 1.595 1.294 17.835 1.593 1.422 10.103

16� 4 20 2.584 1.567 38.746 2.397 1.627 31.812
16� 5 30 2.921 1.804 37.816 3.219 1.962 38.925
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8� 8 host arrays with fault density increasing from 10% to 30%, distance factor d by

CRS-TS increases slowly from 1.347 to 1.555 while it grows rapidly from 1.420 to

2.081 for RSSA, implying that CRS-TS is more scalable than RSSA. This is because

the improvement of algorithm CRS over RS increases with the increasing fault

density, and TS is superior than simulated annealing algorithm utilized in algorithm

RSSA. In addition, the improvements in terms of c and d are more signi¯cant on

relatively large physical arrays, due to the same reason discussed above. For

example, on physical arrays with fault density of 20%, the improvements in terms

of c are 1.8%, 18.6%, 29.8% and 38.7% for physical arrays with sizes of 4� 4; 8�
8; 12� 12 and 16� 16, respectively.

4.2. Results for problem Rc

For problem Rc, this subsection shows the performance comparisons for the algo-

rithms UMA and FGA on di®erent host arrays with di®erent fault densities. We

collect the execution time, the value of uni¯ed metric u and the number of faulty PEs

to be replaced during the recon¯guration.

In the simulation, a baseline algorithm, named RAM, is employed in this

subsection to evaluate the performance of the proposed algorithms. RAM randomly

chooses the position of the sliding window and chooses the fault-free PEs out of the

window. In detail, for an m� n host array and a p� q target array, the algorithm

randomly chooses a coordinate point ðrx; ryÞ ð0 � rx < m� p; 0 � ry < n� pÞ. This
point is treated as the upper left corner of the p� q sliding window. For the sliding

window, the algorithm randomly chooses fault-free PEs out of the window to replace

the fault PEs in the window. The algorithm iterates for k times, where k depends on

the sizes of the host array and the target array. Finally, the algorithm chooses

the subarray of the lowest u as its output.

Figure 6 shows the comparison of three algorithms in terms of u. As discussed in

previous sections, u is the combination of congestion factor c and distance factor d. It

can re°ect the inner communication distance of recon¯gured logical topology, and

the balance state of tra±c loads. Figure 6 shows the results of u for three algorithms

in di®erent-sized host arrays, the fault density is set to 10% and the size of target

array is ¯xed to 8� 8. The host array is set to 16� 16; 32� 32; 64� 64 and

128� 128. From Fig. 6, it can be concluded that the algorithms FGA and UMA are

able to achieve much smaller u in comparison to the algorithm RAM on di®erent-

sized host arrays. This is because, the number of the faulty PEs to be replaced in the

proposed two algorithms is clearly smaller than that in the algorithm RAM. Noting

that a new communication path needs to be established whenever a faulty PE exists,

we conclude that the more faulty PEs are replaced, the more communication paths

are generated. Therefore, the subarray with less number of faulty PEs will bring a

tightly-coupled logical topology with smaller u. With the increase of the size of host

array, the value of u tends to decrease for all of the three algorithms. This is because,
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with the increase of the size of host array, the ¯xed size of target array becomes

relatively smaller and smaller. Therefore, more and more good positions (with less

faulty PEs) can be provided to the sliding window. The values of u for UMA and

FGA become close to each other. For example, on 16� 16 host array, u is 1:018 for

UMA and is 1:031 for FGA, respectively. This is because, for a ¯xed fault density of

10%, by ¯nding a ¯xed relatively small 8� 8 target array, both algorithms can ¯nd a

better position for the sliding window.

To further investigate the performance of the algorithms, a group of experiments

have been conducted. Figure 7 shows the in°uence of di®erent fault densities. The

comparison of the three algorithms in terms of u is shown in each sub¯gure of Fig. 7.

With the increasing fault density, the value of u increases for all the three algorithms.

For the case of 8� 8 target array, the values of u on 128� 128 host arrays are smaller

than on 16� 16 host arrays. On the other hand, the size of target arrays will also

impact the value of u on the given 128� 128 host array. For example, u is smaller on

8� 8 target arrays than on 64� 64 target arrays. This is because, for larger host

arrays, it is relatively easy to ¯nd a valid sliding window, resulting in feasible

Fig. 6. Performance comparison between three algorithms in terms of uni¯ed metric on di®erent host
arrays with 10% fault density.

Fig. 7. Performance comparison between three algorithms in terms of uni¯ed metric on di®erent fault
densities with di®erent array sizes.
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solutions. On the host array with a given size, it is more and more di±cult to ¯nd a

fault-free subarray with the increasing target array. This is because more faults need

to be replaced by fault-free ones, which leads to the increase of u. Algorithm UMA

obtains smallest u among the three algorithms, as it directly focuses on minimizing

the value of u. In addition, with the increasing fault density, the number of faulty

PEs that need to be replaced increases, leading to higher u for all the three algo-

rithms.

Table 2 shows the running times of the three algorithms. It is clear that FGA runs

much faster than the other two algorithms on arrays with di®erent sizes and fault

densities. This is because FGA utilizes a sliding window to ¯nd the subarray with

minimal faulty PEs and minimum penalty instead of utilizing the row/column

shifting operations. Searching the faulty PEs and calculating the penalty is quicker

than performing the operations of row/column shifting. On the other hand, while

obtaining the highest qualities of solutions among the three algorithms, the UMA

also outperforms the baseline approach in running time for most cases as shown in

the table, with an average improvement of 25.94%. In addition, by comparing the

second group of instances (128� 128! 32� 32) and the third group of instances

(128� 128! 64� 64), it can be observed that the improvement of UMA over RAM

tends to grow with the increase in target array size.

5. Conclusions

Due to the fact that more and more cores are integrated into a single chip along with

the ever-increasing circuit density, PEs are becoming more vulnerable to faults

Table 2. Comparisons in execution time.

Host arrays Target array Execution time (ms)

Size � (%) Size UMA FGA RAM

16� 16 1 8� 8 9.90 0.13 205.18

5 9.18 0.14 208.76

10 8.99 0.15 201.32

15 8.98 0.16 193.84
20 8.01 0.14 180.60

128� 128 1 32� 32 47301.28 37.49 27614.95

5 42842.45 33.26 46020.10

10 40674.65 37.41 45902.28

15 39923.14 35.98 43454.45
20 37182.30 38.15 41833.43

128� 128 1 64� 64 14721.42 43.86 26705.77

5 15462.81 44.28 35350.41

10 16868.78 44.72 33959.96

15 18797.49 45.34 31664.16
20 21725.70 46.39 29297.63
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during chip fabrication as well as the process of running computation-intensive

programs. The existence of faulty PEs has inherently changed the structured

physical topologies into undesired ones, which not only causes communication con-

gestion and delay, but also leads to signi¯cant extra energy consumption. We have

presented algorithms to construct anm� n target array on anm� ðnþ kÞ processor
array with faults. The proposed algorithms are able to e±ciently replace faulty PEs

with the redundant ones, utilizing the novel shifting operations proposed in this

paper. The customized tabu search can signi¯cantly re¯ne the initial target array

generated by the previous algorithm. Moreover, we have also proposed heuristic

algorithms to ¯nd p� q target array for p � m and q � n. Simulation results show

that the algorithm CRS tends to outperform RS, in both distance factor d and

congestion factor c. The average improvement of CRS over RS is 21:8% for c and

23.6% for d on the 10� ð10þ 3Þ host array with fault density of 25%. The

improvements of algorithm CRS-TS over RSSA in terms of c and d are more sig-

ni¯cant on relatively large physical arrays or on the physical array with high fault

density. The average improvement of CRS-TS over RSSA is 19% for c and is 16% for

d. On the other hand, for constructing arrays with given size, the proposed algo-

rithms UMA and FGA perform better than the algorithm RAM in terms of the

uni¯ed metric and the number of faulty PEs for di®erent host arrays. For the case of

16� 16 host array with 10% faulty PEs and 8� 8 target array, the obtained u values

are 1:018, 1:031 and 1:580, for UMA, FGA and RAM, respectively. Our additional

simulation results show that the u generated by UMA and FGA are nearly equal.
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