
© The British Computer Society 2019. All rights reserved.
For permissions, please e-mail: journals.permissions@oup.com

doi:10.1093/comjnl/bxz027

Collaborative Task Offloading with
Computation Result Reusing for

Mobile Edge Computing

ZIKAI ZHANG
1, JIGANG WU

1*, LONG CHEN
1, GUIYUAN JIANG2

AND SIEW-KEI LAM
2

1School of Computer Science and Technology, Guangdong University of Technology, Guangzhou
510006, China

2School of Computer Science and Engineering, Nanyang Technological University, Singapore 639798
*Corresponding author: asjgwucn@outlook.com

The task offloading problem, which aims to balance the energy consumption and latency for
Mobile Edge Computing (MEC), is still a challenging problem due to the dynamic changing system
environment. To reduce energy while guaranteeing delay constraint for mobile applications, we
propose an access control management architecture for 5G heterogeneous network by making full
use of Base Station’s storage capability and reusing repetitive computational resource for tasks.
For applications that rely on real-time information, we propose two algorithms to offload tasks
with consideration of both energy efficiency and computation time constraint. For the first scen-
ario, i.e. the rarely changing system environment, an optimal static algorithm is proposed based on
dynamic programming technique to get the exact solution. For the second scenario, i.e. the fre-
quently changing system environment, a two-stage online algorithm is proposed to adaptively
obtain the current optimal solution in real time. Simulation results demonstrate that the exact
algorithm in the first scenario runs 4 times faster than the enumeration method. In the second
scenario, the proposed online algorithm can reduce the energy consumption and computation time

violation rate by 16.3% and 25% in comparison with existing methods.

Keywords: 5G; dynamic system environment; mobile edge computing; task offloading; computation
reusing

Received 13 December 2017; revised 29 January 2019; editorial decision 4 March 2019
Handling editor: Gerard Parr

1. INTRODUCTION

Mobile applications are typically user-interactive and
resource-hungry, and it requires quick response and leads to
higher energy consumption. However, the general mobile
devices have limited computation capabilities and battery
power. Mobile Cloud Computing (MCC) [1, 2] is proposed
to tackle this contradiction by migrating computational tasks
from mobile devices to the cloud servers. In recent years,
much attention has been paid to improving the efficiency of
MCC by Mobile Edge Computing (MEC) [3–5] and 5G net-
works [6–8].
MEC is envisioned as a promising approach with low

latency, high bandwidth and computing agility [9]. With the
aid of MEC, mobile devices are able to offload their tasks to

the MEC server on the edge of the network rather than utiliz-
ing the server in the core network.
5G network has become an important topic for the design

and implementation of mobile computing, since the unprece-
dented increases of mobile data traffic begin to stress mobile
operators’ networks, weaken the communication quality and
affect users’ experience. As a kind of heterogeneous network,
HetNet is applied to 5G network for Contents Distribution
[10–12]. In this architecture, caches are used to store contents
from the cloud side as a priori. But, they cannot be directly
applied to cloud computing, in which data are generated in
the mobile device, transmitted to the cloud side and computed
in the cloud. To the best of our knowledge, most researchers
have not paid enough attention to caching computation results

SECTION B: COMPUTER AND COMMUNICATIONS NETWORKS AND SYSTEMS
THE COMPUTER JOURNAL, 2019

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/advance-article-abstract/doi/10.1093/com
jnl/bxz027/5462515 by U

niversity of M
elbourne Library user on 20 April 2019



in the cloud-devices. In most existing 5G architectures for
cloud computing, such as [6, 7, 13], caches are used to cach-
ing contents or users, and servers are used for task computa-
tion. In [9] and [14], a combination of MEC and 5G network
is proposed to provide cloud-computing capabilities and an
IT service environment.
Task offloading policy plays a critical role in MEC, and it

determines the efficiency and achievable computation perform-
ance [15]. For example, joint optimization offloading decision
and resource allocation methods are proposed in [16] to reduce
energy consumption for delay sensitive tasks. Due to the dynamic
environment in the computing system, it is hard for task offload-
ing policy to achieve the optimal performance. System environ-
ment contains many elements, such as the network environment,
the computing environment and so on. Most of the existing works
concentrated on dynamic changing network environment. In the
existing works, the rarely changing network is treated as a stable
environment, thus they typically utilize static algorithms such as
integer linear programming approach [17] and dynamic program-
ming based method [18] to slove problems. In [19], a time-
constrained offloading policy is investigated by using a new algo-
rithm called ‘Dynamic Programming with Randomization’ to get
an approximate solution. For frequently changing network envir-
onment, much attention has been paid to both offline methods
and online methods in recent years. Markov-decision process
approaches [20–22] are used as offline methods. Lyapunov opti-
mization techniques [23–25] and Receding Horizon methods [26]
are used as the online method.
Summarizing these existing works, we obtain the fact that

few works have considered the combination of MEC and 5G
network, the computational reusing resource (the obtained
task results) and base station’s storage capability are not fully
used in these network architectures. Different applications
which consist of collaborative tasks from mobile devices can
cooperate if there exists a duplicate computation result in the
edge server. However, few works have studied the collabora-
tive task topologies, while the dependency between tasks and
the computation result reusing have significant impact to the
data transmission. In addition, few works have developed an
exact approach to solve the time-constrained task offloading
problem, and the existing few works are relatively slow for
rarely changing network environment. On the other hand,
many works have considered the frequently changing net-
work channel, but some dynamic changing elements (such as
the computational reusing resource) in the system are not con-
sidered. Furthermore, offline method cannot get an energy
efficiency solution in comparison to the online method, while
online algorithm often leads to a large time violation rate
(Time-Constraint Violation Rate).
The above weaknesses motivate us to investigate the prob-

lem of Collaborative task offloading with computation result
reusing and time constraint in the dynamic changing environ-
ment of 5G network combined with MEC. As a latest devel-
opment [27], multi-access edge computing is proved to scale

well with the increasing number of computation tasks, as well
as to reduce latency and energy consumption. In this paper,
we first propose an Access Control management architecture
to improve Multi-access Edge Computing presented in [14].
Then, we construct a static algorithm to generate the exact
solution for rarely changing system environment. Moreover,
we contribute a two-stage online algorithm to reduce energy
consumption and time violation rate for frequently changing
system environment.
We also investigate a new type of applications which

requires more real-time information to work. The new type of
applications is to be widely used in real life. For example, the
latest vehicle navigation need real-time weather information
and transportation information to adaptively find the best path
for the current location. But, to the best of our knowledge,
the task offloading in this type of applications has not been
investigated so far, while the existing algorithms cannot be
directly used for the task offloading. In addition, the real-time
information requested by this new kind of applications can
only be generated on the MEC server. These pieces of infor-
mation are not related to previous tasks and bring negative
influence to energy and time consumption. Therefore, we
construct a new computing model to further improve the per-
formance of the new type of applications.
Our contributions are summarized as follows:

• We propose a new graph model to characterize real-
time downlink transmission from the edge server or
the cloud to mobile devices, since real-time downlink
transmission is critical for the designing of offloading
policies.

• Then, the problem of collaborative task offloading
with consideration of reusing computation results is
proposed to minimize the energy consumption under
the time constraint of the new type of applications
which requires real-time information to work.

• For rarely changing system environment, we propose a
Bellman equation with time constraint to develop an
optimal algorithm based on dynamic programming
technique. The proposed static algorithm is four times
faster than the enumeration method in obtaining the
exact solution.

• For the case of frequently changing system environ-
ment, we propose an online algorithm, which can
reduce both energy consumption and time violation
rate. The time violation rate of proposed two-stage
online algorithm can be reduced by 25% compared
with a modified offline algorithm [21], the energy con-
sumption can also be reduced by 16.3% compared
with online algorithm ARHOS [28].

The rest of the paper is organized as follows. Section 2
reviews the related work. Section 3 introduces system models
and problem definitions. Section 4 describes the details of our

2 Z. ZHANG et al.

SECTION B: COMPUTER AND COMMUNICATIONS NETWORKS AND SYSTEMS
THE COMPUTER JOURNAL, 2019

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/advance-article-abstract/doi/10.1093/com
jnl/bxz027/5462515 by U

niversity of M
elbourne Library user on 20 April 2019



proposed algorithms. Experimental results and analysis are
presented in Section 5, and Section 6 concludes this work.

2. SYSTEM MODEL AND PROBLEM DEFINITIONS

In this section, we model the computing system and formulate
the time-constrained collaborative task offloading with com-
putation result reusing problem.

2.1. System architecture

In the cell of 5G heterogeneous network equipped with MEC,
there is a Macro Base Station (MBS) connected with MEC.
Besides the MBS, there are some Small Base Stations (SBSs),
whose service area is overlaid by that of the MBS. To reuse
spectrum efficiently, both the MBS and the SBS operate in the
same frequency band. The spectrum channel and the bandwidth
of each channel are automatically assigned.
Inspired by Multi-access Edge Computing [14], we pro-

pose an Access Control management architecture in this
paper. As shown in Fig. 1, each base station is equipped with
an Access Controller (AC) [29]. ACs are divided into two
levels, named level S and level M, respectively, where level
S connects with SBS and level M connects with MBS. Since
AC has a limited storage capability, we can use it to store and
manage the fingerprints [30] (a kind of ID for tasks) of the
computed tasks’ results. Between a SBS and a MBS, there is
a wired backhaul which relays the transmission from the SBS
to the MBS. AC at level S can manage many ACs at level M
with communication using wired backhaul. We ignore the
time consumption of data transmission through wired back-
haul since it can transmit a small amount of data very
quickly.

Fingerprints are integers generated by a one-way function
[31] applied to a set of bytes. In this paper, we use finger-
prints as pointers into the MEC server to find repeated tasks.
We store representative fingerprints with efficient indexes that
map a fingerprint to the region which describes a cached
packet payload. If the fingerprint is stored on an AC, the cor-
responding computed results of certain tasks will be stored on
MEC server and the results could potential be reused in future
by other tasks. If the corresponding fingerprint is stored on an
AC (i.e. tasks’ results can be reused), we will download the
result directly for further computation. This task’s result reus-
ing process is called as ‘computation result reusing’ in this
paper.
In this paper, we mainly focus on task offloading.

However, how to manage computation result reusing is
one of the significant problems. Since it is out the scope of
this work, we next provide a brief description for the man-
agement of computation result reusing in this paragraph.
Since the fingerprint in AC is mapped to the reusable
task’s result, computation result reusing is controlled by
managing and storing fingerprints. Due to the limited stor-
age capacity of an AC, we need to efficiently manage and
store fingerprints. Therefore, ACs are divided into two
levels to management. AC at level M manages the whole
area of the cell, while AC at level S just manages the local
area in the cell. For fingerprint management, we first rank
the request frequency of tasks on SBS in descending order
and store the fingerprints on AC at level S by the ranking
order. Then, for the rest of tasks that do not store their fin-
gerprints on AC in level S, we rank the request frequency
of them on MBS in descending order, and store the finger-
prints on AC at level M by the ranking order. In this way,
local space storage utility is managed by AC at level S and
the whole space storage utility is managed by AC at level
M. If fingerprints are not managed in these two levels,
the local and the whole utility will be unbalanced. For
example, when information of computing results is just
stored and managed by SBS, some high ranked tasks’
computing result in the whole area (managed by MBS)
cannot be reused if they don’t have high rank in each
locality area managed by SBS.
Since the data size of the fingerprint is very small, the

energy consumption and time overhead for sending requests
to the AC can be ignored [29]. When a mobile device
chooses to compute its task by the MEC server, it sends a
request to AC to check whether the corresponding fingerprint
has been stored. If the result has been stored, the results will
be directly sent to the mobile device instead of being trans-
mitted and computed again. In this way, the time consump-
tion and energy consumption for task transmitting and
recomputing can be saved. At the same time, the transmission
stress of base station can be released. If the result has not
been stored, the computation task will be sent to the MEC
server for execution.

  at 
level S

  at
level  M

 at  level S

 at
level S

FIGURE 1. Access Control management architecture.

3COLLABORATIVE TASK OFFLOADING WITH COMPUTATION RESULT REUSING FOR MOBILE EDGE COMPUTING

SECTION B: COMPUTER AND COMMUNICATIONS NETWORKS AND SYSTEMS
THE COMPUTER JOURNAL, 2019

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/advance-article-abstract/doi/10.1093/com
jnl/bxz027/5462515 by U

niversity of M
elbourne Library user on 20 April 2019



In [32], a cooperative multi-agent sequential decision mod-
el (MA-RDPG) is proposed to share the centralized learning
results with private agents to guarantee the globally optimal
performance of the entire system. This model achieves
remarkable performance with online settings on a large E-
commerce platform with applications such as retrieval, adver-
tising and recommendation. We apply MA-RDPG scheme to
our proposed access control management architecture to
enable knowledge (results) reuse to improve system perform-
ance. For example, we can deploy the access control manage-
ment architecture in the problem of guiding the tourism travel
route in a scenic spot. Tourist with a mobile device is treated
as an agent (actor), and agents collaborate with each other by
sharing a global action-value function on the MEC as the
critic. By centralized learning on the MEC, tourists make
their private visit strategies on their mobile devices. When the
results of global action-value functions (corresponding to spe-
cific visiting demands) can be found on MEC, these results
are reusable to reduce energy consumption and time delay for
each mobile device.
In this paper, we focus on a stochastic network environ-

ment since the dynamic changing transmission rate of data
will significantly impact offloading decisions [33, 34]. We
use the Gilbert–Elliott channel [34, 35] to model the commu-
nication link because it is used to refer to the wide class of
finite-state fading channels. This channel model is a Markov
chain with two states: good (denoted by g) or bad (denoted
by b). If the channel is good, data are transmitted at a high
rate g( )g . Otherwise, it sends data at a low rate g( )b [36]. The
transition between the two channel states occurs in discrete
time instants so that the channel is assumed to stay in a given
state over a single unit of time. Let g = gn , if the channel is
good during the n-th time unit; and g = bn , otherwise. Hence,
the state transition matrix of the channels Pr is given by [34]

g g g g
g g g g

=
é

ë
ê
ê

[ = | = ] [ = | = ]
[ = | = ] [ = | = ]

ù

û
ú
ú

=
é

ë
ê
ê

ù

û
ú
ú ( )

- -

- -
Pr

Pr g g Pr g b

Pr b g Pr b b

Pr Pr

Pr Pr
1

n n n n

n n n n

gg gb

bg bb

1 1

1 1

If applications upload data and download data with differ-
ent channels, previous works are not available. So, in this

paper, we solve problems by separately modeling data
uploading channel and data downloading channel. Let Prup

and Prdown be the state transition matrix of data uploading
and downloading channels, respectively. Let gup and gdown

be the state of data uploading and downloading channels,
respectively.
Unlike the existing work [34] where a VIA-based algo-

rithm is proposed to minimize energy consumption, we pro-
pose a computing model with consideration of computation
result reusing and real-time data in the downlink transmis-
sion. A static algorithm with time constraint is proposed
based on dynamic programming. Moreover, we contribute an
online algorithm to reduce energy consumption and time vio-
lation rate.

2.2. Computing model

A new type of applications that request the real-time informa-
tion to compute is taken into consideration in this paper.
First, applications could be represented by many kinds of top-
ologies (sequential, mesh, tree, general, etc). But, they can be
transferred to the sequential topology by critical path based
methods, such as [37]. For general techniques on other top-
ologies, see [38]. In order to model a relevant task graph,
without loss of generality, this paper concentrate on sequen-
tial topology whose algorithms can be adapted to other top-
ologies. Then, some tasks cannot be offloaded to remote
servers [39], such as sensing tasks. But, in a collaborative
sequential task topology, local execution only tasks could be
treated as initial or terminal tasks. For general research, we
just explore a sequential topology segment. And, only the ini-
tial and terminal tasks are fixed on the mobile device.
Furthermore, the collaborative tasks are executed sequen-
tially, and the output of a task will be taken as input by its
following task. However, in order to ensure the real-time ser-
vices, some tasks need some data obtained from the remote
cloud. Those cloud-side data, such as traffic information and
weather conditions, are dynamically acquired. Since these
pieces of real-time information can only be generated on the
cloud, normal topologies are not suitable to present this new
kind of applications. So, we model a new task graph, as
shown in Fig. 2.
Directed acyclic graph = ( )G V A, is used to represent an

application, where = { ¼ }V v v v, , , n1 2 is the set of tasks and
A is the set of arcs. The number of computation tasks in G is
= | |n V . In addition, two dummy nodes, v0 and +vn 1, are

added into the graph to denote the initialization and termin-
ation of the application. The parametric context of each task
is defined as a tuple w= ( )v y d, ,i i i i , where =y 1i indicates
that the result of vi is stored on the cloud and it can be reused,
=y 0i indicates that the result of vi cannot be reused, wi is

the computation workload of the ith task, and di is the size of
the data, which is transmitted between the cloud-side and taskFIGURE 2. Collaborative task graph.

4 Z. ZHANG et al.

SECTION B: COMPUTER AND COMMUNICATIONS NETWORKS AND SYSTEMS
THE COMPUTER JOURNAL, 2019

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/advance-article-abstract/doi/10.1093/com
jnl/bxz027/5462515 by U

niversity of M
elbourne Library user on 20 April 2019



vi. We use arc ( Î )a a Aij ij to indicate the data dependency
that task vj cannot start before the completion of its parent
task vi. And bij is used to store the output data size from task
vi to task vj.

Computation overhead of a task depends on its executive
decision and whether its result has been computed and stored
on the server. Notation =x 1i indicates that task vi is exe-
cuted on the cloud side, and =x 0i otherwise. We also define

= { ¼ }+X x x x x x, , , , ,n n0 1 2 1 as the offloading policy. As the
initialization and the termination of the application must be
executed on the mobile device, we have =x 00 and

=+x 0n 1 . If =x 0i , task vi is executed on the mobile device
and the time consumption should be determined by mobile
computing capability.
We denote ( )T x y,v i i

comp
i

and ( )E x y,v i i
comp
i

as the computa-
tion time and the energy consumption of task vi with respect
to xi and yi. Formally,

( ) =

ì

í

ïïïïï

î

ïïïïï

=

= =
= =

( )T x y

x

x y

x y

,

if 0 ,

0 if 1 & 1 ,

if 1 & 0 ,

2v i i

w

f
i

i i
w

f
i i

comp
i

i

m

i

c

where fm and fc are the computing ability for one CPU cycle
of the mobile device and the edge server, respectively. And,
energy consumption on the mobile device for the execution
of task i is given by

( ) =

ì

í

ïïïïï

î

ïïïïï

=

= =

= =

( )E x y

x

x y

x y

,

if 0,

0 if 1 & 1 ,

if 1 & 0 ,

3v i i

w p

f
i

i i
w p

f
i i

comp
i

i m

m

i idle

c

where pm and pidle are the energy consumption power of the
mobile device in computation and the idle state, respectively.
Communication cost between tasks depends on where tasks

are hosted, data transmission rate as well as whether tasks
have been computed and stored on the cloud.
Let ( )T x x y, ,v v i j j,

comm
i j

be the required communication time
between task vi and task vj. Formally, when Îa Aij , the com-
munication time between task vi and task vj can be calculated
as

b

b
( ) =

ì

í

ïïïïïïïïï

î

ïïïïïïïïï

= = =

+
= =

= =

( )

T x x y

r
x x y

d

r
x x

d

r
x x

, ,

if 0 & 1 & 0 ,

if 1 & 0,

if 0 & 0,

0 otherwise ,

4

v v i j j

ij
i j j

ij j
i j

j
i j

,
comm
i j

where r is the data transmission rate.

Then, we denote ( )E x x y, ,v v i j j,
comm
i j

as the communication
energy on the mobile device for data transmission between
task vi and task vj, which is given by

( )

=

ì

í

ïïïïïïï

î

ïïïïïïï

= = =

= =

= =

( )

b

b +

E x x y

p x x y

p x x

p x x

, ,

if 0 & 1 & 0 ,

if 1 & 0,

if 0 & 0,

0 otherwise ,

5

v v i j j

r up i j j

d

r i j

d

r i j

,
comm

down

down

i j

ij

ij j

j

where pup and pdown are the power rate of the mobile device
for sending and receiving data, respectively.

2.3. Problem formulation

Based on the above-discussed models, the overall energy con-
sumption on mobile device, denoted as ( )E X , is calculated as
the sum of energy consumption on task execution as well as
data transmission

å å( ) = ( ) + ( ) ( )
Î ( )Î

E X E x y E x x y, , , 6
v V

v i i
v v A

v v i j j
comp

,
,

comm

i

i

i j

i j

Let ( )T X be the time consumption of the application. it
can be formally calculated as

å å( ) = ( ) + ( ) ( )
Î ( )Î

T X T x y T x x y, , , 7
v V

v i i
v v A

v v i j j
comp

,
,

comm

i

i

i j

i j

Based on the above discussion, the offloading problem can
be formulated as follows:

( )

( ) ( ) £

( ) Î { }
( ) Î { } Î { ¼ + }

+

Obj MinE X

S t
C T X t

C X

C y i n

.
. .

:

: 0,1

: 0,1 , 0,1, , 1

d

n

i

1

2
1

3

The objective is to minimize the value of energy consumption.
C1 is the constraint indicating that the running time of application
should be no more than time deadline td , where td is a priori
knowledge that presents the maximum time which users could
endure for the given application. C2 is the binary constraint for
the offloading policy, where = { ¼ }+X x x x x x, , , , ,n n0 1 2 1 and
any task in the application can only be implemented on either
the mobile device or MEC server. C3 is the constraint indicating
that whether tasks in the application could reuse their results
which have been computed and stored on MEC server.
It is worthwhile to point out that the problem discussed in

this subsection is NP-hard. This is because, the problem is
identical to 0-1 knapsack problem if the time constraint and

5COLLABORATIVE TASK OFFLOADING WITH COMPUTATION RESULT REUSING FOR MOBILE EDGE COMPUTING

SECTION B: COMPUTER AND COMMUNICATIONS NETWORKS AND SYSTEMS
THE COMPUTER JOURNAL, 2019

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/advance-article-abstract/doi/10.1093/com
jnl/bxz027/5462515 by U

niversity of M
elbourne Library user on 20 April 2019



computation result reusing are omitted. Noting that 0-1 knap-
sack problem is NP-hard [40], we conclude that the problem
in this subsection is also NP-hard.

3. PROPOSED ALGORITHM

In this section, we tend to solve offloading problems under
two different kinds of system environment: rarely changing
system environment and frequently changing system environ-
ment. For rarely changing system environment, a static algo-
rithm is developed to get the exact optimal solution. For
frequently changing system environment, static algorithms
are not able to get good performance. So, we design a fast
two-stage online algorithm to adapt to the evolving environ-
ment elements (such as the communication channel) and con-
tinuously updated computation results for reusing.

3.1. Optimal static algorithm

In this subsection, we aim to provide an exact optimal method
that suitable to the rarely changing system environment. So,
dynamic programming method is considered to provide good
performance. In order to solve the problem optimally, we
build a new dynamic programming algorithm STA with time
constraint rather than executing enumeration method to get
exact solution.
Firstly, let

-
tx x

i
,i i1

be the sum of execution time of task vi

and data transmission time between -vi 1 and vi. If both task vi

and task -vi 1 run on cloud or both of them run on the mobile
device,

-
tx x

i
,i i1

is the computing time of task vi; otherwise, the
data transmission time between task vi and task -vi 1 should be
considered. The expression of

-
tx x

i
,i i1

is

=

ì

í

ïïïï

î
ïïïï

( ) =

( )

+ ( )

( )
-

-

-

-

t

T x y x x

T x y

T x x y

, if ,

,

, , otherwise.

8x x
i

v i i i i

v i i

v v i i i

,

comp
1

comp

,
comm

1

i i

i

i

i i

1

1

Then, let
-

Qx x
i

,i i1
be the value of execution cost of task vi

and communication cost between -vi 1 and vi

=

ì

í

ïïïï

î
ïïïï

( ) =

( ( )

+ ( )

( )
-

-

-

-

Q

E x y x x

E x y

E x x y

, if ,

,

, , otherwise.

9x x
i

v i i i i

v i i

v v i i i

,

comp
1

comp

,
comm

1

i i

i

i

i i

1

1

Next, let ( )OPT i x t, ,i be the optimal value of the tradeoff
function for the first +i 1 tasks with time consumption t. xi

indicates offloading decision of task vi. ( )OPT i x t, ,i recur-
sively depends on ( - - )- -

OPT i x t t1, ,i x x
i

1 ,i i1
.

In this paper, we propose an STA Bellman’s equation with
time constraint, which is an extension of the well-known

shortest path algorithm of Ford and Bellman [41]. The STA

Bellman’s equation can be formulated as follows:

ì

í

ïïïïïïïïï

î

ïïïïïïïïï

( ) = ( ) = ¥ = < <

( ) = { ( - - / )

+ } < < + < <

( + ) = { ( - / )

+ } = +

( )

Î
-

Î

+

+

-
-

-

+

+

OPT t OPT t i t t

OPT i x t min OPT i x t t t

Q i n t t

OPT n t min OPT n x t t t

Q i n

0,0,   0, 0,1, for 0, 0 ,

, , 1, ,

for 0 1, 0 ,

1,0, , ,

for 1.

10

a

i
x

i x x
i

s

x x
i

a

a
x

n a x x
n

s

x x
n

0,1
1 ,

,

0,1
,

1

,
1

i
i i

i i

n
n n

n n

1
1

1

1

1

As td is the QoE factor and given by user’s demand, we
can know the accuracy of time consumption deadline and the
smallest time unit ts (for example, if td is 1.20 s, ts is set as
0.01 s.). Then, using ts, we can get possible decision epoch
number = /t t ta d s, and use it to build time-related relations.
As shown in Algorithm 1, we first initialize tasks to compute.
Second, ( )OPT i x t, ,i is calculated by the nested for-loops
using (10) and ( )trace i x t, ,i is calculated for the backtrack-
ing. Then, the optimal value is calculated with backtracking.
Finally, we obtain the offloading policy X.
Given n tasks and possible decision epoch number ta, the

nested for-loops runs in ( )O nta time, which dominates the
computing time of algorithm STA.

Algorithm 1 STA /* static algorithm */

Input: R R,up down; p p,up down; G; = { ¼ }Y y y y, , , n1 2
Output: X /* initialize the first task*/
1: for t = 0 to ta do
2: ( ) =OPT t0,0,   0, ( ) = ¥OPT t0,1, .
3: end for /* calculate other tasks */
4: for i = 1 to n do
5: for t = 0 to ta do
6: Set

- -
t Q,x x

i
x x
i

, ,i i i i1 1
according to Eq. (8) and (9).

7: Set ( )OPT i x t, ,i according to Eq. (10).
8: Set ( ) = { ( - --trace i x t OPT i x, , arg min 1, ,i x i 1i 1

- ) + }
- -

t t Qx x
i

x x
i

, ,i i i i1 1

9: end for
10: end for /* calculate the virtual terminal task */
11: Set = =+ +t Q:  0, :  0x

n
x
n

,0
1

,0
1

n n
.

12: Set ( + )OPT n t1,0, a according to Eq. (10).
13: Set ( + ) = { ( )}+trace n x t OPT n x t1, , arg min , ,n a x n a1 n

/* backtracking along the trace */
14: for i = n + 1 down to 2 do
15: [ - ] = ( )X i trace i x t1 : , ,i a

16: = -
-

t t t:a a x x
i

,i i1

17: end for
18: Return X.

6 Z. ZHANG et al.

SECTION B: COMPUTER AND COMMUNICATIONS NETWORKS AND SYSTEMS
THE COMPUTER JOURNAL, 2019

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/advance-article-abstract/doi/10.1093/com
jnl/bxz027/5462515 by U

niversity of M
elbourne Library user on 20 April 2019



3.2. Online algorithm

In this subsection, we aim to provide an online algorithm to
adapt to the frequently changing system environment. Then, a
two-stage online algorithm is designed to minimize energy
consumption under the time constraint. In the offline stage,
using Markov-decision process, we get the expected optimal
cost from the current time to the end of the application. In the
online stage, with the current network situation, the current
computation reusing situation and the current time consump-
tion, we can get a real-time task offloading policy which
minimizes not only the energy consumption but also the delay
constraint violation probability. In this paper, we ignore the
related overheads which are generated by monitoring the sys-
tem state information, as previous work [28] did.

3.2.1. Offline stage
In the offline stage, we build a Markov Decision Model for the
above offloading problem. But, our offline stage algorithm is dif-
ferent from other Markov-Decision-based algorithms, such as
[20–22]. First, with our new network architecture, we should take
repetition probability of task results (i.e. dynamic changing cach-
ing results) into consideration. Then, since data uploading and
downloading have huge different transmission rates and use dif-
ferent channels in the cellular network (5G), the channel state is
subdivided as upload channel state and download channel state.
Third, previous algorithms [20–22] always get a static offloading
policy. Here, instead of static policy, we record the expected opti-
mal decision tables for every state and use it for an online policy
in the next stage (online stage).
We consider a finite horizon discrete time problem, where

decisions are made at the beginning of a stage. Each stage is
formed based on the number of tasks in the application. The
decision epoch represents a point of time for the decision at
the beginning of a stage. We represent the decision epoch as
= ¼ +T n n0,1,2, , , 1, where decision epoch Ît T indicates

that task vt has already been executed.
The decision maker (i.e. offline algorithm) chooses an action

based on the system state information, denoted by S. Each state
Îs S is characterized by the combination of the channel states

and the execution location of a task. The system state at decision
epoch t is defined as g g= ( )s t x, , ,t i t t

up down , where gt
up and

gt
down denote the upload and download channel states for the next

epoch between the mobile and offloading sites (i.e. either g or b).
Because the initial channel state is assumed to be good and the
executions start and end at the mobile device, the initial and final
system states are given as g g= ( = = )s g g0, 0, ,0 0

up
0
down and

g g= ( + )+ + +s n 1, 0, ,n n n1 1
up

1
down , respectively.

Given the current state, the decision maker can choose two
major actions, offloading task to cloud side or continuing execu-
tion on mobile device. Based on the chosen action at in state st

at decision epoch t, the state transition probability function for
the next state +st 1 is given by [ | ]+Pr s s a,t t t1 . The system state
transition probability between two decision epochs is given by

( | ) =
ì
í
ïï
îïï

Ä =
( )+

+Pr s s a
Pr Pr a x x

,
if ,

0 otherwise,
11t t t

t t t
1

up down 1

where the exclusive or operation Äa xt t is to determine if
task vt in xt can transmit data to next task in +xt 1 with action
at

å

å

å

å

å

å

ì

í

ïïïïïïïïïïïïïïïïïïïïï

î

ïïïïïïïïïïïïïïïïïïïïï

( ) = ( | )

é

ë

ê
ê
ê

( )

+ ( )
ù

û

ú
ú
ú

( ) = ( | )

é

ë

ê
ê
ê

( )

+ ( )
ù

û

ú
ú
ú

( )

+

Î{ }

Î{ }
+ + +

+

Î{ }

Î{ }
+ + +

+

+

+

+

+

+

C s a Pr s s a

E x y p

E x x y p

C s a Pr s s a

T x y p

T x x y p

, ,

,

, ,

, ,

,

, ,

12

E t t
s

t t t

y
v t t t

y
v v t t t t

T t t
s

t t t

y
v t t t

y
v v t t t t

1

0,1

comp

0,1
,

comm
1 1 1

1

0,1

comp

0,1
,

comm
1 1 1

t

t

t

t

t t

t

t

t

t

t t

1

1

1

1

1

1

Dynamic caching computation result is considered in this
subsection. According to [10], let = { ¼ }+ p p p p, , , ,n n0 1 1
be repetition probability of task’s result (resource reusing pos-
sibility), where pi is the probability that the result of task i
can be reused. If we assume the transition of a state occurs
from st to +st 1, then the expected cost function C is calculated
as in Eq. (12), where CE denotes the expected energy cost
function and CT denotes the expected time cost function.
In the established MDP model, Bellman’s equation expresses

the optimality condition. Function ( )Q s a,t t t is the expected
optimal cost from decision epoch t with state st and action at to
the terminal decision epoch. Function ( )V st t is the expected opti-
mal cost from decision epoch t with state st to the terminal deci-
sion epoch. The Bellman equation within our context takes the
form as (13) and (14):

ì
í
ïïï

î
ïïï

( ) = ( )

( ) =
( )Î

+ +

V s Q s a

V s

min ,

0
13

t t
a a

t t

n n1 1

t

å( ) = ( | )( ( ) + ( )) ( )+ + +

+

Q s a Pr s s a C s a V s, , , 14t t t
s

t t t t t t t1 1 1

t 1

Function ( )Q s a,t t and ( )V st t are separated into two kinds.
If time consumption is calculated, C, ( )Q s a,t t and ( )V st t are
denoted as CT , ( )Q s a,t

T
t t , ( )V st

T
t . If energy consumption is

calculated, C, ( )Q s a,t t and ( )V st t are denoted as CE,
( )Q s a,t

E
t t , ( )V st

E
t , respectively.

Using (13) and (14) iteratively, we can get the set of
expected optimal cost tables (denote as ) from any state to

7COLLABORATIVE TASK OFFLOADING WITH COMPUTATION RESULT REUSING FOR MOBILE EDGE COMPUTING

SECTION B: COMPUTER AND COMMUNICATIONS NETWORKS AND SYSTEMS
THE COMPUTER JOURNAL, 2019

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/advance-article-abstract/doi/10.1093/com
jnl/bxz027/5462515 by U

niversity of M
elbourne Library user on 20 April 2019



the terminal decision epoch based on the dynamic program-
ming method. There exist two kinds of expected optimal cost
tables in the set , i.e. expected optimal energy cost table

( )V sE
t , expected optimal time cost table ( )V sT

t . The detail of
the algorithm OCT is shown in Algorithm 2.
This algorithm uses traversal to get expected optimal cost

from each state to the terminal decision epoch, which can be
viewed as a forward process of dynamic programming. The
time complexity of OCT is ( )O nk2 and the space complexity
of OCT is ( )O nk , where n is the number of the nodes and k
is the number of the system states.

3.2.2. Online stage
In order to adaptively solve this problem with a dynamic
changing system environment, an online algorithm GRP is
developed using the set of expected optimal cost tables 
which have been calculated in the offline stage, as shown in
Algorithm 3.
Based on A* algorithm [42], at each iteration of online

decision epoch, the optimal offloading policy is selected to
minimize

= ( ) + ( ) ( )--
E E x x y V s, , , 15t v v t t t

E
t,

comm
1t t1

where vt is the current task to get the offloading decision,
( )--

E x x y, ,v v t t t,
comm

1t t1
is obtained using (5), and ( )V sE

t is the
expected optimal energy cost from current task to the
terminal.
Since there exists delay constraint, at each iteration of

online decision epoch, the optimal policy is selected to satisfy

( ) + ( ) + £ ( )--
T x x y V s T t, , , 16v v t t t

T
t d,

comm
1 currentt t1

where ( )--
T x x y, ,v v t t t,

comm
1t t1

is obtained using (4), ( )V sT
t is the

expected optimal time consumption from current task to the
terminal, Tcurrent is the time consumption from beginning till

current offloading epoch, and td is the delay constraint of the
application.
Using this online algorithm GRP, the optimal offloading pol-

icy can be obtained for the current task under current system
environment.

4. NUMERIAL ANALYSIS

In this section, we evaluate the performance of our proposed
algorithms in various situations.

4.1. Parameters for devices and applications

We evaluate the performance of the proposed algorithm on
Matlab. Detail notations are shown in Table 1 and adapted in
our simulation as in [39].
In this paper, we concentrate on sequential task topology.

Computation workload and data transmission between tasks
are set based on [20, 21]. To better reflect real-world scen-
arios, the size of the data is obtained based on the measure-
ment of the real-time weather information API [43], indoor/
outdoor map information API [44] and transportation infor-
mation API [45]. We randomly generate applications’ task
graph based on the following parameters:

Algorithm 2 OCT /*Offline Stage to get expected optimal
cost table*/

Input:< >S A Pr C S, , , , 0

Output: Set 
1: Init ( ) =+ +V s : 0n n1 1 .
2: for k = n to 0 do
3: for each state Îs Sk do
4: for Î { }a 0,1k do
5: Get ( )Q s a,k k k according to Eq. (14).
6: end for
7: Get ( )V sk k according to Eq. (13).
8: end for
9: end for
10: Return .

Algorithm 3 GRP/*online stage to get real-time policy*/

Input:  t, d

Output: online policy p
1: Measure current channel state g g,i i

up down.
2: Get the latest offloading decision p ( - )i 1 and

application running time from initial to current Tcurrent.
3: Update yi for the coming task i.

/* Calculate energy cost and time consumption of data
transmission from task -i 1 to task i with current
channel state */

4: for Î { }x 0,1i do
5: calculate p( ( - ) )

-
T i x y1 , ,v v i i,

comm
i i1

using Eq. (4).
6: calculate p( ( - ) )

-
E i x y1 , ,v v i i,

comm
i i1

using Eq. (5).
7: end for
8: if p g g( ( - ) ) + ( ) >

-
E i y V i1 , 0, , 0, ,v v i

E
i i,

comm up down
i i1

p g g( ( - ) ) + ( )
-

E i y V i1 , 1, , 1, ,v v i
E

i i,
comm up down
i i1

9: if p g g( ( - ) ) + ( )
-

T i y V i1 , 1, , 1, ,v v i
T

i i,
comm up down
i i1

+ <T tdcurrent then
10: p ( ) =i :  1
11: else
12: p ( ) =i :  0
13: end if
14: end if

8 Z. ZHANG et al.

SECTION B: COMPUTER AND COMMUNICATIONS NETWORKS AND SYSTEMS
THE COMPUTER JOURNAL, 2019

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/advance-article-abstract/doi/10.1093/com
jnl/bxz027/5462515 by U

niversity of M
elbourne Library user on 20 April 2019



• Node weight: computation workload
w = [ ]20, 60 Mcycles.

• Edge weight: data transmission between tasks
a = [ ]10, 100 KB.

• The size of the data transmitted between the cloud-
side database and task: = [ ]d 4, 40 KB.

4.2. Performance of rapid static algorithm

The rapid static algorithm is proposed with rarely changing
system environment. In this subsection, assuming the envir-
onment is static, we evaluate the running speed of the rapid
static algorithm and explore whether the algorithm is suitable
to the proposed Access Control management architecture.

4.2.1. Running speed with different time constraint and task
scale

First, the rapid static algorithm is a kind of dynamic program-
ming algorithm that always gets the exact optimal solution.
So, the offloading performance of this algorithm is known as
the optimal and it is not tested in this simulation. Then, we
simulate and compare the computation speed between enu-
meration method and algorithm STA, since the offloading
problem with a time constraint is not convex and no exact
solution is delivered without enumeration method.
Assuming that the total time consumption of all tasks run-

ning on the mobile device is t, we compare the enumeration
method and the algorithm STA with time constraint t, 0.9t and
0.8t in terms of the computation time. As shown in Fig. 3(a),
time constraint does not have a significant impact on the run-
ning speed. In general, algorithm STA runs more than four
times faster than the enumeration method. However, the run-
ning time of the two algorithms changes with the scale of
task graph, as shown in Fig. 3(b). As a result, our proposed
algorithm STA achieves much better improvement when the
number of tasks increases.

4.2.2. Offloading performance with different communication
rates and different PTR

Since the environment is assumed as static, yi is taken as a
priori in the modeling process. In the simulation, we ran-
domly generate yi during each repetitive experiment. In order
to evaluate the impact of resource reusing to task offloading,

we randomly chose different percentages of tasks whose
results have been stored on MEC server (PTR). For simula-
tion, the PTR is set to 0, 10%, 20%, 30%, respectively, and
the communication rate ranges from 20 kb/s to 100 kb/s.
When giving PTR as r and the total number of tasks as n, we
randomly select rn tasks whose task results have already been
stored on MEC server. As shown in Fig. 4, we observe that
the objective function value decreases with the increasing
communication rate and the energy consumption decreases
when PTR increase.

4.3. Performance of two-stage online algorithm

In order to evaluate the performance of the proposed algo-
rithms in frequently changing environment, we set four fading
channels with different state transfer probability and different
resource reusing possibilities. Parameters of the network
environment are shown in Table 2. In this paper, the state
transition rates in Table 2 are set from 0.7 to 1, while Prgg is

TABLE 1. Parameters of machine profile.

Data transmission power of the MDa =p 0.1Wup

Data receiving power of the MD =p 0.05Wdown

Computation power of the MD =p 0.5Wm

Idle power of the MD =p 0.001Widle

CPU frequency of the MD =f 500MHzm

CPU frequency of the cloud clone =f 3000MHzc

aMD is short for mobile device in this table.

(a)

(b)

FIGURE 3. Comparisons of algorithm simulation time with differ-
ent time constraints and different task scales.

9COLLABORATIVE TASK OFFLOADING WITH COMPUTATION RESULT REUSING FOR MOBILE EDGE COMPUTING

SECTION B: COMPUTER AND COMMUNICATIONS NETWORKS AND SYSTEMS
THE COMPUTER JOURNAL, 2019

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/advance-article-abstract/doi/10.1093/com
jnl/bxz027/5462515 by U

niversity of M
elbourne Library user on 20 April 2019



set to 0.995 and Prbb is set to 0.96 in previous works [19–22,
34]. The state transition rate set as in Table 2 is to verify the
performance of the proposed algorithms in dynamic changing
environment. Data uploading and downloading with good
channel state are set according to [46] and data uploading and
downloading with bad channel state are set according to aver-
age bad data transmission rate of our real measurement using
Speedtest [47]. The details are as follows:

• Data uploading rate with good channel state:
= /r 256KB sg

up .
• Data downloading with good channel state:

= /r 1800KB sg
down .

• Data uploading with bad channel state: = /r 50KB sb
up .

• Data downloading with bad channel state:
= /r 200KB sb

down .

4.3.1. Offloading performance with different repetition
possibilities of task’s results

In order to measure the performance of our proposed architec-
ture while eliminating the influence of the dynamic network,
we compare the average energy consumption with the static
network environment (fading channel C1) and different
resource reusing possibilities. Without loss of generality, all
tasks’ results are set with the same repetition possibilities

which are varying from 0 to 0.3, and yi is randomly generated
for each time slot under the constraint of repetition
possibility.
Due to the application’s inscape, two kinds of delay con-

straints are used, as shown in Fig. 5. When delay constraint is
larger than 0.38 s, the offloading policy remains {1, 1, 1, 1,
1}; when delay constraint is between 0.21 s and 0.37 s, the
offloading policy remains {0, 1, 1, 1, 1}. We can see that,
with resource reusing possibility increasing, the energy con-
sumption is smaller for any kind of delay constraint. This
demonstrates the efficiency of our proposed Access Control
management architecture. When delay constraint is larger
than 0.38 s, the energy consumption changes more slowly
compared with delay constraint between 0.21 s and 0.37 s.

4.3.2. Offloading performance with different fading
channels

In order to measure the performance of the proposed online
algorithm GRP, we compare the average energy consumption
with different kinds of fading channel ( )C C C C, , ,1 2 3 4 and a
fixed repetition possibility of tasks’ result (every repetition
possibility of tasks’ results is set as 0.1). The baseline policies
are the offline policy produced by exhaustive enumeration
with static system environment and the online policy pro-
duced by the online algorithm ARHOS [28].
As shown in Fig. 6, we can see that, with channel state

more frequently changed, the average energy consumption of
both the baseline policies and the proposed online policy
becomes larger. This indicates that the frequency change of
channel states has negative influence to the energy consump-
tion. GRP’s policy is more efficient than the baseline policies.
When the fading channel is static, GRP performances better

FIGURE 4. Impact of PTR and communication rate for static algo-
rithm STA.

TABLE 2. Parameters of network environment.

Fading channel 1 = { = }C Pr 1gg1

Fading channel 2 = { = = }C Pr Pr0.9, 0.9gg bb2

Fading channel 3 = { = = }C Pr Pr0.8, 0.8gg bb3

Fading channel 4 = { = = }C Pr Pr0.7, 0.7gg bb4

FIGURE 5. Energy consumption performance of GRP with differ-
ent resource reusing possibilities. ω = {31,42,59,26,21}, α =
{69,13,86,94,71,78}, d = {0,28,0,33,0}.

10 Z. ZHANG et al.

SECTION B: COMPUTER AND COMMUNICATIONS NETWORKS AND SYSTEMS
THE COMPUTER JOURNAL, 2019

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/advance-article-abstract/doi/10.1093/com
jnl/bxz027/5462515 by U

niversity of M
elbourne Library user on 20 April 2019



than offline method (exhaustive enumeration), since GRP can
get the optimal solution for current state using OCT and more
flexible with dynamic changing repetition possibility of tasks’
results. When fading channel changes more frequently (C3

and C4), online algorithms performance much better than off-
line method (exhaustive enumeration), and GRP performances
better than online algorithm ARHOS. For fading channel C4,
nearly 34% of energy consumption is saved compared with
the offline method (exhaustive enumeration) and 16.3% of
energy consumption is saved compared with online algorithm
ARHOS.

4.3.3. Time violation rate with different delay constraints
Time violation means that the real-time consumption of the
policy violates the given delay constraint, and it can affects
users’ experience significantly. In the test, resource reusing
possibility (repetition possibility of tasks’ result) is fixed as
0.1, network environment is fixed as C2 and delay constraint
is set between the time consumptions that all tasks are run-
ning on cloud side and on the mobile device. Then, we evalu-
ate time violation rates with different delay constraints.
In this subsection, we use MDM to indicate baseline algo-

rithm [21]. When time violation rate is no more than 0.25
with Gilbert–Elliott model for MDM, no policy can satisfy the
delay constraint. But, since our Access Control management
architecture can save more time and energy consumption, it is
not fair to directly compare with [21]. So we adapt MDM with
our new architecture that can reuse computational resource,
and named it as MDM-NEW. As shown in Fig. 7, when delay
constraint is 0.4, 52% of time violation rate is reduced by
MDM-NEW compared with MDM.
Our online algorithm GRP has smaller time violation rates

than MDM-NEW. When delay constraint is 0.4, 25% of time

violation rate is reduced compared with MDM-NEW. That is
because our online algorithm GRP can dynamically choose a
suitable policy to satisfy the delay constraint.

5. CONCLUSION

In this paper, we have proposed an architecture of access con-
troller management for 5 G heterogeneous network, by mak-
ing full use of Base Station’s storage capability and reusing
repetitive task computation. The architecture can reduce both
energy and time consumption for mobile applications. Then,
a collaborative task graph with real-time computational infor-
mation was proposed which supports energy efficient offload-
ing policy while satisfies the time constraint. Two algorithms
have been proposed for determining offloading under two dif-
ferent scenarios, i.e. rarely changing system environment and
frequently changing system environment, respectively. For
rarely changing system environment, an optimal static algo-
rithm runs more than four times faster than enumeration
method. For frequently changing system environment, pro-
posed algorithm can save 16.3% energy compared with algo-
rithm ARHOS and reduce the time violation rate by 25%
compared with a modified offline algorithm. In the future, we
will investigate the effect of the management of computation
results reusing.

FUNDING

This work was supported by the National Key R&D Program of
China under Grant no. 2018YFB1003201, and Guangdong Key
R&D Program of China under Grant no. 2018B010107003. It
was also supported in part by the National Natural Science
Foundation of China under Grant nos. 61702115 and 61672171,
by the Major Research Project of Guangdong Province under
Grant nos. 2016KZDXM052 and 2018B030311007.

FIGURE 6. Energy consumption with different fading channels.

FIGURE 7. Time violation rate with different delay constraints.
ω = {31,42,59,26,21}, α = {69,13,86,94,71,78}, d = {0,28,0,33,0}.

11COLLABORATIVE TASK OFFLOADING WITH COMPUTATION RESULT REUSING FOR MOBILE EDGE COMPUTING

SECTION B: COMPUTER AND COMMUNICATIONS NETWORKS AND SYSTEMS
THE COMPUTER JOURNAL, 2019

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/advance-article-abstract/doi/10.1093/com
jnl/bxz027/5462515 by U

niversity of M
elbourne Library user on 20 April 2019



REFERENCES

[1] Dinh, H.T., Lee, C., Niyato, D. and Wang, P. (2013) A survey
of mobile cloud computing: architecture, applications, and
approaches. Wirel. Commun. Mobile Comput., 13, 1587–1611.

[2] Cui, Y., Ma, X., Wang, H., Stojmenovic, I. and Liu, J. (2013)
A survey of energy efficient wireless transmission and model-
ing in mobile cloud computing. Mobile Netw. Appl., 18,
148–155.

[3] Computing, E.M.E., Initiative, I. et al (2014). Mobile-edge
computing: introductory technical white paper.

[4] Kumar, K., Liu, J., Lu, Y.-H. and Bhargava, B. (2013) A sur-
vey of computation offloading for mobile systems. Mobile
Netw. Appl., 18, 129–140.

[5] Hu, Y.C., Patel, M., Sabella, D., Sprecher, N. and Young, V.
(2015) Mobile edge computing a key technology towards 5g.
ETSI white paper, 11, 1–16.

[6] Zhang, K., Mao, Y., Leng, S., Zhao, Q., Li, L., Peng, X., Pan,
L., Maharjan, S. and Zhang, Y. (2016) Energy-efficient offload-
ing for mobile edge computing in 5g heterogeneous networks.
IEEE Access, 4, 5896–5907.

[7] Guo, S., Xiao, B., Yang, Y. and Yang, Y. (2016) Energy-
Efficient Dynamic Offloading and Resource Scheduling in
Mobile Cloud Computing. INFOCOM 2016—35th Annu. IEEE
Int. Conf. Computer Communications, IEEE, pp. 1–9. IEEE.

[8] Chen, L., Wu, J., Dai, H.N. and Huang, X. (2018) Brains: joint
bandwidth-relay allocation in multi-homing cooperative d2d
networks. IEEE Trans. Vehicular Technol., PP, 1–12. doi:10.
1109/TVT.2018.2799970.

[9] Rimal, B.P., Van, D.P. and Maier, M. (2017) Mobile edge
computing empowered fiber-wireless access networks in the 5g
era. IEEE Commun. Mag., 55, 192–200.

[10] Tamoor-ul Hassan, S., Bennis, M., Nardelli, P.H. and Latva-
Aho, M. (2016) Caching in wireless small cell networks: a
storage-bandwidth tradeoff. IEEE Commun. Lett., 20,
1175–1178.

[11] Jiang, W., Feng, G. and Qin, S. (2017) Optimal cooperative
content caching and delivery policy for heterogeneous cellular
networks. IEEE Trans. Mobile Comput., 16, 1382–1393.

[12] Chen, L., Wu, J., Zhang, X.X. and Zhou, G. (2017) Tarco:
two-stage auction for d2d relay aided computation resource
allocation in hetnet. IEEE Trans. Serv. Comput., PP, 1–14.
doi:10.1109/TSC.2018.2792024.

[13] Wang, T., Wei, X., Tang, C. and Fan, J. (2018) Efficient multi-
tasks scheduling algorithm in mobile cloud computing with
time constraints. Peer-to-Peer Network. Appl., 11, 793–807.

[14] Taleb, T., Samdanis, K., Mada, B., Flinck, H., Dutta, S. and
Sabella, D. (2017) On multi-access edge computing: a survey
of the emerging 5g network edge cloud architecture and
orchestration. IEEE Commun. Surv. Tutorials, 19, 1657–1681.

[15] Barbarossa, S., Sardellitti, S. and Di Lorenzo, P. (2014)
Communicating while computing: distributed mobile cloud
computing over 5g heterogeneous networks. IEEE Signal
Processing Magazine, 31, 45–55.

[16] Lyu, X., Tian, H., Ni, W., Zhang, Y., Zhang, P. and Liu, R.P.
(2018) Energy-efficient admission of delay-sensitive tasks for

mobile edge computing. IEEE Trans. Commun., PP, 1–14.
doi:10.1109/TCOMM.2018.2799937.

[17] Cuervo, E., Balasubramanian, A., Cho, D.-K., Wolman, A.,
Saroiu, S., Chandra, R. and Bahl, P. (2010) Maui: Making
Smartphones Last Longer with Code Offload. Proc. 8th Int. Conf.
Mobile Systems, Applications, and Services, pp. 49–62. ACM.

[18] Wu, H. and Wolter, K. (2015) Software Aging in Mobile
Devices: Partial Computation Offloading as a Solution. 2015
IEEE Int. Sympos. Software Reliability Engineering Workshops
(ISSREW), pp. 125–131. IEEE.

[19] Shahzad, H. and Szymanski, T.H. (2016) A Dynamic
Programming Offloading Algorithm Using Biased
Randomization. 2016 IEEE 9th Int. Conf. Cloud Computing
(CLOUD), pp. 960–965. IEEE.

[20] Zhang, W., Wen, Y. and Wu, D.O. (2013) Energy-Efficient
Scheduling Policy for Collaborative Execution in Mobile Cloud
Computing. INFOCOM, 2013 Proc. IEEE, pp. 190–194. IEEE.

[21] Zhang, W., Wen, Y. and Wu, D.O. (2015) Collaborative task
execution in mobile cloud computing under a stochastic wire-
less channel. IEEE Trans. Wirel. Commun., 14, 81–93.

[22] Liu, J., Mao, Y., Zhang, J. and Letaief, K.B. (2016) Delay-
Optimal Computation Task Scheduling for Mobile-edge
Computing Systems. IEEE Int. Sympos. Information Theory,
pp. 1451–1455.

[23] Kwak, J., Kim, Y., Lee, J. and Chong, S. (2015) Dream:
dynamic resource and task allocation for energy minimization
in mobile cloud systems. IEEE J. Selected Areas Commun., 33,
2510–2523.

[24] Wang, J., Peng, J., Wei, Y., Liu, D. and Fu, J. (2017) Adaptive
application offloading decision and transmission scheduling for
mobile cloud computing. China Commun., 14, 169–181.

[25] Mao, Y., Zhang, J. and Letaief, K.B. (2016) Dynamic compu-
tation offloading for mobile-edge computing with energy har-
vesting devices. IEEE J. Selected Areas Commun., 34,
3590–3605.

[26] Mattingley, J., Wang, Y. and Boyd, S. (2011) Receding hori-
zon control. IEEE Control Syst., 31, 52–65.

[27] Guo, H. and Liu, J. (2018) Collaborative computation offload-
ing for multi-access edge computing over fiber-wireless net-
works. IEEE Trans. Vehicular Technol., 67, 4514–4526.

[28] Lyu, X. and Tian, H. (2016) Adaptive receding horizon off-
loading strategy under dynamic environment. IEEE Commun.
Lett., 20, 878–881.

[29] Song, J., Cui, Y., Li, M., Qiu, J. and Buyya, R. (2014) Energy-
Traffic Tradeoff Cooperative Offloading For Mobile Cloud
Computing. 2014 IEEE 22nd Int. Sympos. Quality of Service
(IWQoS), pp. 284–289. IEEE.

[30] Anand, A., Gupta, A., Akella, A., Seshan, S. and Shenker, S.
(2008) Packet caches on routers: the implications of universal
redundant traffic elimination. ACM SIGCOMM Comput.
Commun. Rev., 38, 219–230.

[31] Spring, N.T. and Wetherall, D. (2000) A protocol-independent
technique for eliminating redundant network traffic. ACM
SIGCOMM Comput. Commun. Rev., 30, 87–95.

[32] Feng, J., Li, H., Huang, M., Liu, S., Ou, W., Wang, Z. and Zhu,
X. (2018) Learning to Collaborate: Multi-scenario Ranking via

12 Z. ZHANG et al.

SECTION B: COMPUTER AND COMMUNICATIONS NETWORKS AND SYSTEMS
THE COMPUTER JOURNAL, 2019

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/advance-article-abstract/doi/10.1093/com
jnl/bxz027/5462515 by U

niversity of M
elbourne Library user on 20 April 2019

http://dx.doi.org/10.1109/TVT.2018.2799970
http://dx.doi.org/10.1109/TVT.2018.2799970
http://dx.doi.org/10.1109/TSC.2018.2792024
http://dx.doi.org/10.1109/TCOMM.2018.2799937


Multi-agent Reinforcement Learning. Proc. 2018 World Wide
Web Conf. World Wide Web, pp. 1939–1948. International World
Wide Web Conferences Steering Committee.

[33] Gkatzikis, L. and Koutsopoulos, I. (2013) Migrate or not?
exploiting dynamic task migration in mobile cloud computing
systems. IEEE Wirel. Commun., 20, 24–32.

[34] Terefe, M.B., Lee, H., Heo, N., Fox, G.C. and Oh, S. (2016)
Energy-efficient multisite offloading policy using Markov deci-
sion process for mobile cloud computing. Pervasive Mobile
Comput., 27, 75–89.

[35] Johnston, L.A. and Krishnamurthy, V. (2006) Opportunistic
file transfer over a fading channel: a pomdp search theory for-
mulation with optimal threshold policies. IEEE Trans. Wirel.
Commun., 5, 394–405.

[36] Wu, Y. and Krishnamachari, B. (2012) Online Learning to Optimize
Transmission over an Unknown Gilbert–Elliott Channel. 2012 10th
Int. Sympos. Modeling and Optimization in Mobile, Ad Hoc and
Wireless Networks (WiOpt), pp. 27–32. IEEE.

[37] Cai, Z., Li, X. and Gupta, J.N. (2016) Heuristics for provision-
ing services to workflows in xaas clouds. IEEE Trans. Serv.
Comput., 9, 250–263.

[38] Zhang, Z., Wu, J., Jiang, G., Chen, L. and Lam, S.K. (2017)
Qoe-Qware Task Offloading for Time Constraint Mobile

Applications. IEEE Conf. Local Computer Networks, pp.
510–513.

[39] Zhang, W. and Wen, Y. (2015) Energy-efficient task execution
for application as a general topology in mobile cloud comput-
ing. IEEE Trans. Cloud Comput., PP, 1–12. doi:10.1109/TCC.
2015.2511727.

[40] Kellerer, H., Pferschy, U. and Pisinger, D. (2004) Knapsack
Problems. Springer, Berlin Heidelberg.

[41] Smith, D.K. (1994) Network flows: theory, algorithms, and
applications. J. Oper. Res. Soc., 45, 1340.

[42] Zeng, W. and Church, R.L. (2009) Finding shortest paths on
real road networks: the case for a. Int. J. Geogr. Inf. Sci., 23,
531–543.

[43] weatherdt (2017). weather_api. http://www.weatherdt.com/
market/datastore/api_details/96.

[44] baidu (2017). Baidumap_api. http://lbsyun.baidu.com/
apiconsole/key.

[45] data, J. (2017). traffic_infomation_api. http://v.juhe.cn/
trafficInfo/getTrafficInfoByName.

[46] wikipedia (2017). 4g_data_transmission_wiki. https://en.
wikipedia.org/wiki/4G.

[47] by Ookla, S. (2017). Speedtest to test speed. http://www.
speedtest.net/.

13COLLABORATIVE TASK OFFLOADING WITH COMPUTATION RESULT REUSING FOR MOBILE EDGE COMPUTING

SECTION B: COMPUTER AND COMMUNICATIONS NETWORKS AND SYSTEMS
THE COMPUTER JOURNAL, 2019

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/advance-article-abstract/doi/10.1093/com
jnl/bxz027/5462515 by U

niversity of M
elbourne Library user on 20 April 2019

http://dx.doi.org/10.1109/TCC.2015.2511727
http://dx.doi.org/10.1109/TCC.2015.2511727
http://www.weatherdt.com/market/datastore/api_details/96
http://www.weatherdt.com/market/datastore/api_details/96
http://lbsyun.baidu.com/apiconsole/key
http://lbsyun.baidu.com/apiconsole/key
http://v.juhe.cn/trafficInfo/getTrafficInfoByName
http://v.juhe.cn/trafficInfo/getTrafficInfoByName
https://en.wikipedia.org/wiki/4G
https://en.wikipedia.org/wiki/4G
http://www.speedtest.net/
http://www.speedtest.net/

	Collaborative Task Offloading with Computation Result Reusing for Mobile Edge Computing
	1. INTRODUCTION
	2. SYSTEM MODEL AND PROBLEM DEFINITIONS
	2.1. System architecture
	2.2. Computing model
	2.3. Problem formulation

	3. PROPOSED ALGORITHM
	3.1. Optimal static algorithm
	3.2. Online algorithm
	3.2.1. Offline stage
	3.2.2. Online stage


	4. NUMERIAL ANALYSIS
	4.1. Parameters for devices and applications
	4.2. Performance of rapid static algorithm
	4.2.1. Running speed with different time constraint and task scale
	4.2.2. Offloading performance with different communication rates and different PTR

	4.3. Performance of two-stage online algorithm
	4.3.1. Offloading performance with different repetition possibilities of task’s results
	4.3.2. Offloading performance with different fading channels
	4.3.3. Time violation rate with different delay constraints


	5. CONCLUSION
	FUNDING
	References


