
1

A Framework for Fast and Robust Visual Odometry
Meiqing Wu, Member, IEEE, Siew-Kei Lam, Member, IEEE and Thambipillai Srikanthan, Senior Member, IEEE

Abstract—Knowledge of the ego-vehicle's motion state is essen-
tial for assessing the collision risk in Advanced Driver Assistance
Systems (ADASs) or autonomous driving. Vision-based methods
for estimating the ego-motion of vehicle, i.e. visual odometry,
face a number of challenges in uncontrolled realistic urban
environments. Existing solutions fail to achieve a good trade-
off between high accuracy and low computational complexity.
In this paper, a framework for ego-motion estimation that
integrates runtime-efficient strategies with robust techniques at
various core stages in visual odometry is proposed. Firstly,
a pruning method is employed to reduce the computational
complexity of KLT feature detection without compromising on
the quality of the features. Next, three strategies, i.e. smooth
motion constraint, adaptive integration window technique and
automatic tracking failure detection scheme, are introduced into
the conventional KanadeLucasTomasi(KLT) tracker to facilitate
generation of feature correspondences in a robust and runtime
efficient way. Finally, an early termination condition for the
Random sample consensus(RANSAC) algorithm is integrated
with the Gauss-Newton optimization scheme to enable rapid
convergence of the motion estimation process while achieving
robustness. Experimental results based on the KITTI odometry
dataset show that the proposed technique outperforms state-of-
the-art visual odometry methods by producing more accurate
ego-motion estimation in notably lesser amount of time.

Index Terms—Visual odometry, ego-motion, collision avoid-
ance, feature detection, feature tracking, motion estimation,
ADASs, autonomous vehicles

I. INTRODUCTION

THE knowledge of ego-vehicle's motion state relative to
the road serves as the foundation for assessing the risk

of collision in Advanced Driver Assistance Systems (ADASs)
and autonomous driving. Conventional means of obtaining the
ego-motion of the vehicle rely on Inertial Measuring Units
(IMUs) or Global Positioning System (GPS). However, IMUs
cannot provide all the necessary information like the pitch
angle and the roll rate [1], while GPS cannot be relied upon
to obtain the vehicle's ego-motion in GPS-denied environment
e.g. under bridges or urban jungles [2]. As such, vision based
methods for ego-motion estimation are becoming increasingly
popular as they overcome the drawbacks of IMUs and GPS.
In addition, camera-based systems offer other advantages e.g.
ease of maintenance and integration into other functionality
modules, and reduced cost [3]. Ego-motion estimation that
relies solely on vision-based sensing is referred to as visual
odometry [4].

Visual odometry in the context of external traffic envi-
ronment faces huge challenges. Firstly, unlike the indoor
environment, the external traffic scene is totally uncontrolled.

Meiqing Wu, Siew-Kei Lam and Thambipillai Srikanthan are with School
of Computer Science& Engineering, Nanyang Technological University, Sin-
gapore (e-mail: wume0007@e.ntu.edu.sg).

Manuscript received March 21, 2016; revised September 12, 2016.

The scene can be cluttered and contains a lot of moving
objects. The scene can also be subjected to inconsistent il-
lumination. As such, visual odometry algorithms must be able
to work robustly under such challenging situations. Secondly,
computing systems in vehicles are embedded systems with
restricted computational resources. The proposed algorithm
should therefore be of low computational complexity to allow
for in-vehicle deployment.

In this paper, a framework for robust and runtime-efficient
visual odometry is proposed. The proposed framework inte-
grates runtime-efficient strategies with robust techniques at
each of the core stages in visual odometry. Specifically, a
pruning method is employed to reduce the computational
complexity of KLT feature detection without compromising on
the quality of detected features. Ego-motion prior is leveraged
to determine a better initial position for KLT tracking process
to increase the chance for correct convergence, which signif-
icantly increases the proposed technique's robustness in chal-
lenging environments. The robustness of the proposed tech-
nique is further enhanced by adopting an automatic tracking
failure detection scheme during feature tracking. In addition,
an adaptive and small integration window for each feature is
set during tracking based on its distance from the ego-vehicle.
This significantly reduces the computational complexity. Fi-
nally, we apply an early RANSAC termination condition in
the Gauss-Newton based motion estimation process to further
increase the algorithmic robustness and reduce the algorithmic
computation time. Experimental results based on the KITTI
dataset show that the proposed technique outperforms state-of-
the-art visual odometry methods by producing more accurate
ego-motion estimation in notably shorter amount of time.

This paper is organized as follows: Section II reviews the
existing works in visual odometry. Section III formulates
visual odometry as a mathematical minimization problem. The
proposed algorithm is presented in Section IV. A comprehen-
sive evaluation of the proposed method with existing state-of-
the-art methods using the well-known KITTI odometry dataset
is presented in Section V, and Section VI concludes the paper.

II. RELATED WORKS

The core stages of visual odometry typically consist of
feature correspondences setup that relies on feature detection
and feature tracking, and motion estimation that solves a math-
ematical optimization problem on the set of correspondences
[5], [6]. Depending on the dimension of the features, existing
techniques can be divided into two categories: monocular
vision based [3], [4], [7]–[10] and stereo vision based [4],
[11]–[16]. In addition, robust estimation methods like iterative
outliers removal [11], [16] or RANSAC [17], [18] have been
utilized to increase the accuracy of motion estimation in

2

the presence of noisy or erroneous feature correspondences.
Interested readers are referred to [5], [6] for a comprehensive
literature review on visual odometry. In this paper, we focus on
stereo vision based methods for visual odometry and we will
summarize the related state-of-the-art works in this section.

Many works have been submitted to the KITTI odometry
platform [19] for evaluation. The work presented in [11]
outperforms all other visual odometry methods in terms of
translational and rotational accuracy till 2015. The work in
[11] uses the whole history of the tracked feature points
to compute the ego-motion in order to reduce the motion
drift caused by accumulation of feature tracking errors from
frame to frame and avoid using of the highly complex bundle
adjustment technique [20], [21]. In their technique, the key
idea is to integrate the features measured and tracked over
all past frames into a single and improved estimate. An
augmented feature set, obtained by the sample mean of all
previous measured features which are transformed into the
current frame, is added to the optimization formula.

The work in [11] is able to reduce pose error compared
to their earlier work, however this is achieved at the expense
of huge computational complexity. The use of complex fea-
ture detector Harris [22] and feature descriptor FREAK [23]
contributes to high time complexity. Up to 4,096 features
are tracked between consecutive frames. The key-points are
matched between consecutive frames by brute-force combina-
torial search. In their implementation, multi-threaded program-
ming technology OpenMP is enabled and algorithm hotspot is
optimized using the Intel Performance Primitives library. The
speed of the method in [11] is 0.05 seconds/frame on a 2.7
GHz CPU with 4 cores.

On the other hand, the work in [12] achieves one of the
lowest computational complexities for visual odometry in the
KITTI odometry platform [19]. This is accomplished with the
adoption of a much simpler feature detector and descriptor.
Feature locations are found by extracting the maximum or
minimum Sobel filter response. In addition, instead of using
the complex rotation and scale invariant feature descriptors
like SURF [24] or SIFT [25], features are described by
concatenating the response over a sparse set of 16 locations
within the 11*11 block and compared by using the sum of
absolute differences (SAD) error metric. Finally, the inputs to
the visual odometry algorithm are circular features matched
between four images, namely the left and right images of
two consecutive frames. Although the work in [12] is able
to achieve real-time performance of 0.05 seconds/frame on a
single CPU core @2.5 Hz, its accuracy is far from satisfactory.
In particular, the average translational error and rotational error
are 2.44% and 0.0114 [deg/m] respectively.

A. Main Contributions of Our Work

The existing solutions fail to achieve a good balance be-
tween high accuracy and low computational complexity [19].
The proposed work aims to bridge this gap with a solution
for visual odometry that can produce accurate results in short
computation time. Hence, an ego-motion estimation frame-
work that integrates suitable runtime-efficient strategies with

robust techniques at various core stages in visual odometry is
proposed. The main contributions of the proposed method are
as follow:

1) A fast corner detector with pruning technique that re-
duces the computational complexity of detecting high
quality corner features.

2) A robust and compute-efficient feature tracker that em-
ploys smooth motion constraint, adaptive window tech-
nique and automatic tracking failure detection scheme.

3) A robust and fast motion estimation method that is
based on Gauss-Newton optimization scheme with early
RANSAC termination condition.

4) The above contributions are integrated into a framework
for fast and robust visual odometry. Experimental results
on the widely known KITTI evaluation platform [19]
demonstrate that the proposed framework can produce
accurate ego-motion estimation. In terms of accuracy,
the proposed algorithm is ranked highly in the KITTI
odometry evaluation platform. In addition, the proposed
algorithm performs notably faster than most of the
techniques in the KITTI odometry evaluation platform.

III. PROBLEM FORMULATION

A camera installed on a moving vehicle is subjected to six
degrees of freedom (DOF). That is, it can be translated in three
perpendicular x-y-z axes, denoted as (tx, ty, tz) (in meter), and
rotated about the three axes, denoted as (rx, ry, rz) (in radian).
The goal of visual odometry is to obtain the value of X =
(tx, ty, tz, rx, ry, rz)T at each discrete time instance.

The motion of a camera installed on the moving vehicle
from the previous frame In−1 to current frame In can be
represented by the matrix Mn ∈ R4∗4 [26] as shown in Eq. 1:

Mn =

[
ROn trn

0 1

]
(1)

ROn = cy ∗ cz −cy ∗ sz sy
sx ∗ sy ∗ cz + cx ∗ sz −sx ∗ sy ∗ sz + cx ∗ cz −sx ∗ cy
−cx ∗ sy ∗ cz + sx ∗ sz cx ∗ sy ∗ sz + sx ∗ cz cx ∗ cy


(2)

trn = [tx ty tz]T (3)

sx = sin(rx); cx = cos(rx)

sy = sin(ry); cy = cos(ry)

sz = sin(rz); cz = cos(rz)

(4)

The camera pose Cn from the point of initialization can
be obtained by concatenating all the transformations Mn as
shown in Eq. 5. Tn in Eq. 6 represents the scene motion,
which is the inverse of the camera motion.

Cn =

n∏
i=1

Mi (5)

Tn = M−1n =

[
Rn tn
0 1

]
(6)

3

Motion
State Xn

Motion Estimation

Select n
Samples

Randomly

GNO(n
Samples)

Compute
Inlier Set

Is
RANSACiter

reached?

GNO(Largest
Inlier Set)

N

Update Largest Inlier
Set and RANSACiter

Image
Sequence

Feature Correspondences Setup

Feature Detection
with Pruning

Technique

Feature Tracking
using Improved

KLT Tracker
{𝒎𝒏−𝟏

𝒊 } {𝒎𝒏
𝒊 }

Smooth Motion Constraint

Y

Fig. 1. Overview of the proposed visual odometry framework. The proposed framework consists of two stages. The first stage extracts feature correspondences
by applying a pruning technique to the KLT corner detector for feature detection and improving the KLT feature tracker with three strategies for feature
tracking. The second stage estimates motion parameters based on Gauss-Newton optimization scheme (GNO) which is integrated with the early RANSAC
termination condition.

Assume that the set of static points (features) in Eu-
clidean space observed in frame In−1 are {pin−1 =
(xin−1, y

i
n−1, z

i
n−1)

T |i = 1, 2, . . . , k} and their correspon-
dences in frame In are {pin = (xin, y

i
n, z

i
n)

T |i = 1, 2, . . . , k}.
Then the relationship between a pair of correspondences pin−1
and pin through Tn is shown in Eq. 7:

pin = Rn ∗ pin−1 + tn (7)

Therefore the ego-motion parameters Xn =
(tx, ty, tz, rx, ry, rz)T can be found by minimizing the
residual function in Eq. 8, where wi is the weighting factor
that denotes the contribution of point i to the least square
solution.

E = arg min
{Xn}

k∑
i=1

wi‖pin − Rn ∗ pin−1 − tn‖2 (8)

Eq. 8 calculates the residual in Euclidean space. However,
as discussed in [16], [27], stereo triangulation error can be
highly anisotropic and correlated. As such, a recommended
approach is to compute the residual in image space, where the
noise level is similar for all components of the measurement
vector:

E = arg min
{Xn}

k∑
i=1

wi‖mi
n − h(Rn ∗ g(mi

n−1) + tn)‖2 (9)

Where mi
n = (uin, v

i
n, d

i
n)

T is the projection of pin in the
image frame In. g is the triangulation equation, while h =
g−1 is the projection function. b and f are the corresponding
baseline and focus length.

pi
n = g(mi

n) =

 xin = (uin − u0) ∗ b/din
yin = (vin − v0) ∗ b/din
zin = f ∗ b/din

(10)

mi
n = h(pin) =


uin = f ∗ xi

n

zi
n
+ u0

vin = f ∗ yi
n

zi
n
+ v0

din = f ∗ b/zin

(11)

The aim of feature detection is to identify a set of points
{mn−1} in frame In−1, while the aim of feature tracking is

to identify {mn}, which are the correspondences of {mn−1}
in frame In. Motion estimation computes the ego-motion
parameters Xn = (tx, ty, tz, rx, ry, rz)T by solving Eq. 9.

IV. PROPOSED ALGORITHM

As highlighted in [11], the extraction of reliable feature
correspondences that correspond to the static scene plays
an essential role in the success of visual odometry. The
KLT feature tracker [28], which consists of corner feature
detection and tracking, is a widely accepted method for feature
correspondence extraction [15], [29]–[32]. Although KLT has
been shown to be one of the best feature tracker, direct
adoption of KLT can lead to inaccurate tracking results in
highly complex urban environments as will be shown in the
following discussion and experimental results. In addition,
KLT is time consuming [33]. On the other hand, the extracted
feature correspondences may come from self-moving objects.
Direct motion estimation based on feature correspondences
that are contaminated with self-moving or inaccurately tracked
features will lead to inaccurate results.

The proposed technique aims to overcome the limitations
of existing solutions by integrating strategies to achieve robust
visual odometry at low computational complexity at various
core stages of the ego-motion estimation framework. Fig.1
shows the overview of the proposed framework. Taking the
image sequence from the stereo rig and the corresponding
disparity map as the input, the proposed visual odometry
framework consists of the following two stages: 1) Feature
correspondences setup, and 2) Motion estimation.

The first stage incorporates techniques for robust and low-
complexity feature correspondences setup. This stage further
consists of the following two steps: (i) Low-complexity corner
detection with pruning, and (ii) Robust and low-complexity
feature tracking using improved KLT tracker. For each time
step n, corner detection is applied on the previous left image
In−1 to extract a set of corner features {mn−1} using a pruning
technique. The computational complexity of corner detection
is significantly reduced due to the pruning process without
compromising on the quality of the extracted corner features.
Next, for each feature mi

n−1 in {mn−1}, its correspondence
mi

n in current left image In is identified using an improved

4

KLT tracker. Smooth motion constraint is utilized to determine
a better starting point for KLT tracking process, which leads to
fast and accurate convergence during the tracking. In addition,
an adaptive window technique, which is based on the distance
of the feature from the ego-vehicle and the smooth motion
constraint, is employed to track each feature. This significantly
reduces the runtime complexity. Finally, an automatic tracking
failure detection scheme is adopted during feature tracking to
further increase the robustness of the method.

The second stage incorporates techniques for robust and
fast motion estimation. Given the set of feature correspon-
dences {mn−1} and {mn}, the motion parameters Xn =
(tx, ty, tz, rx, ry, rz)T are computed by solving the function
formulated in Eq. 9 using Gauss-Newton method. In order
to increase the robustness and also decrease the computation
time, RANSAC with an early termination condition is enabled
to remove the outliers that do not exhibit coherent movement.

In the following sub-sections, detailed descriptions of each
stage for the proposed framework are provided.

A. Low Complexity Corner Detection with Pruning

In order to detect corners, KLT computes a corner response
λ2 for each pixel:

λ2 =
(a+ c)−

√
(a− c)2 + 4b2

2
(12)

λ2 corresponds to the minimum eigen-value of the matrix
A, which approximates a local auto-correlation function:

A =

[∑
w α(x)I

2
x

∑
w α(x)IxIy∑

w α(x)IxIy
∑

w α(x)I
2
y

]
=

[
a b
b c

]
(13)

Where Ix and Iy are the horizontal and vertical gradients
respectively, and α(x) is the weight function, which can be a
simple box window or Gaussian window. The eigen-values λ1
and λ2 of A (where λ1 >= λ2) represent the two dominant
directions of intensity change.

A threshold is applied on the corner response λ2 to remove
the obvious non-corners. The rest of the pixels are then ranked
in descending order of their corner response and the pixels
with the highest corner response are selected as corners after
applying non-maximal suppression.

In order to identify good features, KLT computes the
complex corner measure λ2 for each pixel and chooses the
ones with high λ2 value. However, the obvious non-corners,
i.e. the smooth and low curvature regions, constitute a large
majority of the image in most cases. This incurs a lot of
computational redundancies when the complex corner measure
for the obvious non-corners are computed. As such, a pruning
method to select only the most relevant features for tracking
is employed. The pruning method is explained as follows.

Expanding Eq. 12, we obtain:

λ2 =
(a+ c)−

√
(a− c)2 + 4b2

2

=
(a+ c)−

√
(a+ c)2 − 4(ac− b2)

2

(14)

It can be observed that λ2 is heavily influenced by the term
(ac−b2) as the two (a+c) terms get cancelled out. Hence the
goal of identifying pixels with large λ2 can be simplified as
one that identifies pixels with large (ac − b2). In addition, in
order to maximize (ac− b2), the first term ac should be large.
In other words, pixels that have small ac values are less likely
to be good features.

Based on the analysis above, when applying an appropriate
threshold to discard pixels with low ac values, the remaining
pixels contain the final good KLT corners. Fig. 2(b) shows
the corner candidates selected by applying threshold = 0.05 *
max(ac).

In addition, the I2x and I2y terms in the a and c value
can be approximated with the absolute values of Ix and Iy
respectively as follows:

a′ =
∑
|Ix|; c′ =

∑
|Iy| (15)

This eliminates the multiplication operations involved in the
squared gradients. As such, pixels that have high a′c′ values
will also have high ac values and therefore are highly likely
to be good KLT corners. Fig. 2(c) shows that the a′c′ map
does not lose the distinctive corner regions. In addition, as
shown in Fig. 3, when the threshold for a′c′ map is reduced,
distinctive corner and edge features are released before texture
and flat regions. Hence, a′c′ can be used as a corner indicator
measure as it can effectively distinguish the corner regions
from the non-corner regions.

Therefore, as illustrated in Algorithm 1, instead of comput-
ing the complex corner measure as formulated in Eq. 12 for
every pixel, a much simpler corner candidate indicator a′c′

as formulated in Eq. 15 is utilized as a pruning measure to
remove the non-corner regions quickly and generate a small
set of corner candidates. The final KLT corner measure is
computed only on the small set of corner candidates and
corners with highest measure value are chosen. By doing this,
the computational complexity for corner detection is reduced
and the quality of the extracted features is not compromised.
Readers are referred to [34] for a detailed discussion.

We would like to point out that compared to the Sobel edge
key points which are calculated based on the sobel response
over only a single point, the pruning metric a′c′ is the product
of the value of a′ and c′ that are calculated based on the
sum of sobel response over their respective neighborhood
window. A point that has a high sobel response may not
necessarily have a large a′c′ value and vice versa. The pruning
metric a′c′ has a tighter association with the conventional KLT
corner measure and it ensures that corners are detected in the
same order as the conventional KLT corner detection method,
that is, corners with higher KLT corner quality are detected
earlier than those that are of lower corner quality. As such
the proposed pruning technique enables rapid corner detection
without losing distinctive KLT corners.

B. Feature Tracking using Improved KLT Tracker

Mathematically, the KLT tracking process is formulated as
a least square problem to minimize a residual function over
an integration window as defined in Eq. 16.

5

(a) (b)

(c) (d)

Fig. 2. Illustration of corner detection using different metrics: (a) Original image; (b) Corner candidates selected using ac at threshold=0.05*max(ac); (c)
Corner candidates selected using a′c′ at threshold=0.05*max(a′c′); (d) Corner regions with λ2 > 0.05*max(λ2).

(a) (b)

(c) (d)

Fig. 3. a′c′ map at various thresholds: (a) 0.5; (b) 0.1; (c) 0.05; (d) 0.01.

E = arg min
{dx,dy}

ux+r∑
x=ux−r

uy+r∑
y=uy−r

(In−1(x, y)−

In(x+ dx, y + dy))
2

(16)

Where In−1(ux, uy) and In(ux + dx, uy + dy) are the
correspondence located in image In−1 and In respectively.
d = [dx dy]

T is the optical flow for feature In−1(ux, uy). r
is the radius of the integration window.

The way KLT solves Eq. 16 using an iterative Newton
Raphson method consists of a sequence of search operations
that try to find a image patch with size [2r+1, 2r+1] in image
In such that there is minimum intensity difference between it
and the image patch in image In−1 of size [2r + 1, 2r + 1]
with feature In−1(ux, uy) in the center. As observed in [35],
starting the search process in the position (ux, uy) in image
In, a small integration window size is preferred to increase
the accuracy by avoiding smoothing out the image details.
However, the integration window must also be sufficiently
large to cater to the displacement of feature that undergoes
large motion to increase robustness. In order to obtain a good
tradeoff between local accuracy and robustness when choosing
the integration window size, the pyramidal implementation of
KLT has been introduced in [35]. However, this approach is
time-consuming as tracking needs to be performed at different
levels of the pyramid. In addition, we will show in the

following that the pyramidal implementation of KLT can still
lead to inaccurate results in highly complex urban driving
environment.

In order to evaluate the accuracy of the conventional KLT
in complex urban driving environment, an experiment is
conducted based on the KITTI's stereo/flow benchmark [19],
which provides 194 training images with ground truth flow
fields and disparity maps. For each consecutive pair of images,
up to 500 good features are extracted and tracked using
OpenCV's implementation of KLT. The computed optical
flows are compared with the ground truth. Fig. 4 illustrates the
distribution of estimated flow error for all features in the order
of descending corner measure for one of the image pairs. It can
be observed that the conventional KLT results in high tracking
error even for the features with high quality. The tracking error
becomes more prominent when the feature quality decreases.
This indicates that the conventional KLT for feature tracking
is highly susceptible to noise.

1) Improving Tracking Robustness using Smooth Motion
Constraint: In the conventional KLT tracker, the optimization
process as indicated in Eq. 16 starts the search of a feature in
the current frame at its same position in the previous frame.
This can easily lead to KLT tracking failure if the starting
point is too far from the convergence region. Such cases are
common in scenarios where ego-mtion is large or when the
features are not distinctive enough from their surroundings. We

6

0

50

100

150

200

250

300

350

1 18 35 52 69 86 10
3

12
0

13
7

15
4

17
1

18
8

20
5

22
2

23
9

25
6

27
3

29
0

30
7

32
4

34
1

35
8

37
5

39
2

40
9

42
6

Er
ro

r i
n

Pi
xe

l

Features in the order of features’ descending corner measure

Fig. 4. Error distribution of optical flows estimated using conventional KLT
algorithm.

B
A

B3
B2

B1

A4

A1

A3

A2

(a) Previous Frame

(b) Current Frame

Fig. 5. An example of road scenario: Features that are detected in previous
frame (a) are tracked in current frame (b).

will explain such a scenario with the help of Fig. 5. Assume
that feature A has been detected in the previous frame. Its
ground truth correspondence in the current image is A1 but
the conventional KLT tracker results in A2. The reason that
the KLT tracker fails in detecting the correct correspondence is

Algorithm 1 Pruning based Corner Detector
Input: Image I, feature quality threshold t
Output: A set of corners {mi} in image I

/* Pruning */
1: Compute horizontal and vertical gradient image Ix, Iy;
2: Compute |Ix|, |Iy| for each pixel in I;
3: Compute a′c′ =

∑
|Ix| ∗ |Iy| for each pixel in I;

4: Threshold a′c′ map with threshold = t * max(a′c′) to
obtain corner candidate set K;
/* Corner Response Function */

5: for each pixel in K do
6: Compute a =

∑
I2x, c =

∑
I2y , b =

∑
IxIy;

7: Compute corner response C = λ2;
8: end for
9: Threshold K with threshold = t * max(C) to obtain

candidate set Q;
10: Sort Q in descending order of C;
11: Apply non-maximal suppression to obtain {mi}.

due to the fact that it starts the search for A's correspondence at
A3 (the same position as A in the previous image). Since A3 is
closer to A2 and the local patches around A2 and A are largely
similar, the KLT algorithm converges to A2 and terminates
the search. This demonstrates that the initial position for the
correspondence search significantly affects the accuracy of
KLT.

The authors in [33] also observed the importance of setting
a proper starting point for KLT tracker. To ensure that the
starting point falls as close as possible to the convergence
point, the work in [33] relies on inertial sensor that is at-
tached to the camera. However, this requires additional effort
for sensor calibration and synchronization. Unlike [33], the
proposed method determines a better starting point for KLT
with the aid of the ego-motion estimated in previous step. In
general, when the frame rate is high enough, a smooth motion
pattern is presented between consecutive frames [15]. That
is, the motion at time n is highly likely to be similar to the
immediate previous motion at time n-1. Such phenomenon is
referred to as Smooth Motion Constraint (SMC) [15].

Let Mn−1 denote the motion estimated from frame In−2
to frame In−1. When frame In is available, by projecting the
features detected in frame In−1 to frame In using the previous
motion Mn−1, the projected location in frame In is highly
likely to reside in the convergence region of KLT and therefore
serves as a good starting point for KLT tracking process. We
will describe this phenomenon again with the help of Fig. 5.
By transforming A with the previously estimated motion and
projecting it onto the current image, the new position locates
in A4, which is much closer to the ground truth. Using A4 as
the starting point, KLT is able to adapt to the motion in the
current frame and finally correctly converge to A1.

There exist works that utilize SMC for ego-motion compu-
tation in a different manner from the proposed method. For
example, the work in [15] utilizes SMC to remove outliers
that exhibit incoherent movement. The work in [11] utilizes
SMC to generate an additional set of augmented features
that try to complement the original features. The work in
[36] utilizes camera motion to define a specific search region
in the image for normalized cross-correlation based feature
matching. In order to avoid the danger that the predicted search
region misses the target, a computationally complex two-step
projection operation together with uncertainty calculation is
performed in [36]. Moreover, an additional step is required
for re-localization in the presence of high uncertainty. Unlike
existing works, the proposed method utilizes SMC to increase
the chance of correct convergence for KLT tracking process
by determining a better starting point.

2) Improving Tracking Accuracy and Efficiency Using
Adaptive Integration Window Technique: The size of the
integration window for KLT tracker will affect not only the
tracking accuracy but also the computational complexity. The
conventional KLT tracker employs uniform window size and
pyramid levels for all features, which easily violates the fact
that a small window size is preferred to avoid smoothing out
the details contained in the images while a large integration
window is required to handle large motions.

In order to determine a suitable window size for KLT

7

Disparity (pixel)
0 20 40 60 80 100 120 140

Op
tic

al
Fl

ow
 (p

ixe
l)

0

100

200

300

400

500

600

Fig. 6. Relationship between disparity and optical flow: pixels at a near
distance from the camera are prone to large motion and pixels at a far distance
are prone to small motion.

. . .

backward trajectory

forward trajectory

forward-
backward

error

 𝑿𝑡
 𝑿𝑡+1

𝑿𝑡

𝑰𝑡 𝑰𝑡+1 𝑰𝑡+𝑘

𝑿𝑡+1

𝑿𝑡+𝑘

Fig. 7. Automatic tracking failure detection scheme. Figure from [37].

feature tracking, the relationship between the optical flow and
the corresponding disparity field has been analyzed using the
KITTI's flow/stereo benchmark. It can be observed from Fig. 6
that pixels at a near distance from the camera are prone to large
motion and pixels at a far distance are prone to small motion.
Inspired by this idea, an adaptive window size for the KLT can
be employed based on the disparity information. For features
in the near region, a larger window size or more pyramid
levels are used. For features in the far region, a small window
size or lesser pyramid levels are employed. This scheme helps
to avoid the deployment of unnecessary large window size
or pyramid levels for the features that undergo small motion,
which will therefore improve the accuracy of the KLT tracker
and also the compute efficiency.

In addition, large KLT window size or more pyramid levels
which are typically required for features undergoing large
motion can be further avoided by utilizing SMC. As shown in
Fig. 5, given the feature B detected in the previous frame, its
ground truth correspondence is B1 in the current frame. The
initial search position employed by the conventional KLT is
at B2, which is far from B1. As such, a large window size
is needed to track feature B correctly. However, following the
strategy proposed in previous sub-section to identify the initial
point with the aid of SMC, the initial position to track feature
B by the proposed method is set at B3. It can be observed that
B3 is close to B1 and the required window size and pyramid
levels can therefore be set to a smaller value.

3) Improving Tracking Robustness using Automatic Track-
ing Failure Detection Scheme: As pointed out in [15], track-
ing error is unavoidable. In order to identify such tracking

0

10

20

30

40

50

60

70

80

1 9 17 25 33 41 49 57 65 73 81 89 97 10
5

11
3

12
1

12
9

13
7

14
5

15
3

16
1

16
9

17
7

18
5

19
3

Er
ro

r i
n

Pi
xe

l

Features in the order of features’ descending corner measure

Fig. 8. Error distribution of optical flows estimated using KLT with automatic
tracking failure detection.

failures, an automatic tracking failure detection scheme that is
presented in [37] is adopted. As illustrated in Fig. 7, the basic
idea is to check the forward-backward error during tracking.
That is, forward and backward tracking is performed and the
discrepancy between the starting point of the forward trajec-
tory and the end-point of the backward trajectory is computed.
If the forward-backward error is larger than some threshold,
the corresponding feature pair is regarded as wrong setup
and is therefore rejected. Fig. 8 shows the new distribution
of estimated flow error after applying the automatic tracking
failure detection scheme. It can be observed that the majority
of features with high tracking error in Fig. 4 has been removed.

Based on the discussion above, we propose to improve
the conventional KLT tracker as follows: 1) improve the
tracking robustness by determining a better starting point
for KLT tracking process with the aid of SMC; 2) improve
tracking accuracy and efficiency by setting the integration
window adaptively; 3) further improve the tracking robustness
by enabling the automatic tracking failure detection scheme.
The improved KLT feature tracking method is outlined in
Algorithm 2.

C. Robust Gauss-Newton based Motion Estimation with Early
RANSAC Termination Condition

Given the set of feature correspondences, motion estimation
computes the six motion parameters by solving the nonlinear
least square problem as defined in Eq. 9. The Gauss-Newton
optimization algorithm is chosen to solve this residual function
as it avoids computing the second derivatives.

Starting with an initial estimate X0, the Gauss-Newton
algorithm iteratively converges to a local minimum through
Eq. 17, where f is the set of residual functions and Jf ∈ R2k∗6

represents the Jacobian matrix.

Xs+1 = Xs − (JTf ∗ Jf)
−1 ∗ JTf ∗ f(Xs) (17)

fi = wi(mi
n − h(Rn ∗ g(mi

n−1) + tn)), i = 1, 2, . . . , k (18)

(Jf)ij =
∂fi(Xs)

∂Xj
, i = 1, 2, . . . , 2k; j = 1, 2, . . . , 6 (19)

Eq. 17 is repeatedly computed until the residual ε in Eq.
20 is smaller than some predefined threshold.

8

Algorithm 2 Improved KLT Tracker
Input: Consecutive images In−1 and In;

Detected feature set {mi
n−1} in frame In−1;

Previous ego-motion Mn−1;
Disparity maps Dn−1 and Dn;
Calibrated camera parameters.

Output: Tracked feature correspondences {mi
n} in In.

/* Forward Tracking */
1: for each feature mi

n−1 in frame in−1 do
2: - Get its disparity value din−1;
3: - Set qi

n as its initial estimate in frame In:
4: pin−1 = g(mi

n−1);
5: pin = (Mn−1)

−1 ∗ pi
n−1;

6: qin = h(pi
n);

7: - Perform KLT pyramid setup:
8: Level = 1 (2 levels only);
9: if din−1 < 10 then

10: integration window size r = 3;
11: else if din−1 < 20 then
12: integration window size r = 5;
13: else
14: integration window size r = 7;
15: end if
16: - Generate the new position of mi

n by applying the KLT
tracker.

17: end for
/* Backward Tracking */

18: for each feature mi
n in frame In do

19: - Get its disparity value din;
20: - Set qi

n−1 as its initial estimate in frame In−1:
21: pin = g(mi

n);
22: pin−1 = Mn−1 ∗ pi

n;
23: qin−1 = h(pin−1);
24: - Perform KLT pyramid setup:
25: Level = 1 (2 levels only);
26: if din < 10 then
27: integration window size r = 3;
28: else if din < 20 then
29: integration window size r = 5;
30: else
31: integration window size r = 7;
32: end if
33: - Generate the new position of oin−1 by applying the

KLT tracker.
34: end for
35: Reject feature correspondences where dist(mi

n−1, oi
n−1) >

1 pixel.

ε = |Xs+1 − Xs| = |(JTf ∗ Jf)
−1 ∗ JT

f ∗ f(Xs)| (20)

The feature correspondences are usually contaminated with
outliers. This is typically exhibited in feature correspondences
extracted from moving objects such as pedestrians or vehicles.
In addition, some feature points will be wrongly tracked. All of
these noisy correspondences contribute to outliers and should
be eliminated from the motion computation in order to increase

the robustness of the estimated motion. In order to ensure
robust estimation, the RANSAC algorithm [17] is adopted to
identify outliers. The basic idea of RANSAC is to compute
a fitting model from a set of samples selected randomly and
check the number of points that are in consensus with the
current estimated fitting model, i.e. inliers. This process is
iteratively repeated until the maximum number of iterations
has elapsed. Finally, the final model parameters are estimated
using the largest set of inliers.

Instead of setting the maximum number of iterations man-
ually, it has been pointed out in [17] that the number of
iterations for RANSAC needed to achieve a desired accuracy
requirement can be theoretically derived as shown below:

RANSACiter =
log(1− p)
log(1− wn)

(21)

Where n is the number of minimum points needed for
estimating a model, w is the percentage of inliers in the data
points, p is the requested probability of success. Due to the
formulation adopted in Eq. 9, at least three points are needed
for estimating a model, therefore n = 3. It can be observed
from Eq. 21 that RANSACiter is dynamically determined
based on the number of inliers found in current iteration. This
means that once a set of inliers that are large enough are
identified, there is no need to continue repeating the RANSAC
sampling operation anymore. We refer to this phenomenon as
Early RANSAC Termination Condition (ERTC). The proposed
method has employed strategies to increase the accuracy of the
extracted feature correspondences in previous sections. With
the accurate feature correspondences provided from Stage 1,
the Gauss-Newton optimization with ERTC enabled is able to
converge faster.

Based on the above discussion, given the set of correspon-
dences {mi

n−1} and {mi
n}, the method proposed for motion

estimation is given in Algorithm 3 and Algorithm 4.

V. EVALUATION

In this section, the proposed method will be thoroughly
evaluated using a large scale benchmark. We will first describe
the benchmark, evaluation criteria and baseline algorithms
that are adopted in this experiment. We will then evaluate
the proposed algorithm in terms of accuracy and computation
time by comparing the proposed algorithm with the state-of-art
baseline algorithms.

A. Experimental Setup

Experiments are conducted based on the widely known
KITTI odometry evaluation platform [19]. The KITTI's odom-
etry benchmark consists of 22 stereo 1344*391 sequences,
where the first 11 sequences (00-10) are provided with ground
truth trajectories for training and the remaining 11 sequences
do not have ground truth. These 22 sequences were collected
from stereo cameras installed in a vehicle that was driven
around Karlsruhe, Germany. This benchmark covers a variety
of road scenarios and provides a very challenging test-bed.
Some samples of the benchmark are illustrated in Fig. 9.

9

Algorithm 3 Motion Estimation
Input: Feature correspondences {mi

n−1} and {mi
n};

Successful probability p;
Output: X = (tx, ty, tz, rx, ry, rz)

/* Initialization */
1: Transform features from 2D to 3D via triangulation:
2: pin−1 = g(mi

n−1) for each i = 1, 2, . . . , k;
3: largest inlier set α = ∅;
4: RANSACiter = 50;
5: trialcount = 0;

/* RANSAC Iterative Refinement */
6: while trialcount < RANSACiter do
7: {Ci} ← 3 correspondences selected randomly;
8: X = GNO({Ci});
9: Calculate current inlier set incurr based on X;

10: if incurr.size > α.size then
11: α = incurr;
12: end if
13: Update RANSACiter based on Eq. 21;
14: (trialcount)++;
15: end while
16: X = GNO(α)

Algorithm 4 Gauss-Newton Optimization Method (GNO)
Input: Feature correspondences {Ci};

Successful probability p;
Maximum Gauss-Newton iteration GNmax;
Residual threshold tres;

Output: X = (tx, ty, tz, rx, ry, rz).
/* Initialization */

1: X0 = 0;
2: s = 0;

/* Start Gauss-Newton Minimization Circle */
3: while not converged and s < GNmax do
4: s = s + 1;
5: Calculate Jf at Xs−1;
6: Xs = Xs−1 − (JTf ∗ Jf)

−1 ∗ JT
f ∗ f(Xs−1);

7: ε = Xs − Xs−1;
8: if |ε| < tres then
9: Successfully converged;

10: end if
11: end while
12: X = Xs.

The evaluation criteria suggested by KITTI [19] is adopted,
that is, translational and rotational errors for all possible
subsequences of length (100, ..., 800) meters. Translational
errors are measured in percentage while rotational errors are
measured in degrees per meter. The average of these errors
are used to compare the performance of various approaches in
the KITTI evaluation platform.

1) Baseline Algorithms: Many works have been submitted
to the KITTI platform for evaluation. As discussed in Sec-
tion II, the work [11] outperforms all other visual odometry
methods in terms of accuracy till 2015 and the work [12]
has one of the lowest computational complexity in the KITTI

odometry evaluation platform. They are therefore chosen as
the baseline algorithms in this paper. In the following, we
will denote the work from [11] as MFI and the work from
[12] as VISO2-S. In addition, the proposed work is capable of
rapidly extracting a set of accurate feature correspondences by
improving the KLT feature tracker. In order to illustrate this
improvement, the proposed algorithm will also be compared
to the visual odometry algorithm that uses conventional KLT
with and without automatic tracking failure detection ability.
These baseline algorithms are denoted as FB-KLT and ORG-
KLT respectively.

The differences between the baseline algorithms and the
proposed algorithm are highlighted in Table I.

2) Implementation Details: For the proposed, ORG-KLT
and FB-KLT algorithms, up to 500 features are extracted for
each frame and tracked in the consecutive frame. The required
disparity information for features are provided by the OpenCV
implementation of the Semi-Global Matching algorithm [38].
We use the default parameter settings in OpenCV and do not
enable the multi-threaded programming functionality inside
OpenCV. The proposed algorithm, ORG-KLT and FB-KLT are
implemented in C++ on a 3.5GHz CPU system. It is note-
worthy that unlike the implementation of MFI, we currently
do not employ any code optimization technique like multi-
threaded programming or GPU programming. For MFI and
VISO2-S, we directly use the experimental figures reported in
their papers.

B. Accuracy Evaluation

First, an extensive quantitative evaluation between ORG-
KLT, FB-KLT and the proposed algorithm is conducted based
on the 11 training sequences. Fig. 10 and Fig. 11 show the
ground-truth and estimated vehicle's trajectories from ORG-
KLT, FB-KLT and the proposed algorithm for these 11 training
sequences. This provides an intuitive way to visualize the eval-
uation results. It can be observed that the estimated trajectories
from the proposed algorithm are closer to the ground truth than
the ones from ORG-KLT and FB-KLT.

In particular, interesting phenomenons can be observed from
Fig. 10(b) corresponding to Sequence 01, where there exists a
lot of challenging scenarios in the mid trajectory segments
as discussed in Section IV.B. Firstly, it can be observed

Fig. 9. Some samples of the benchmark.

10

TABLE I
OVERVIEW OF THE BASELINE AND PROPOSED ALGORITHMS

Feature Correspondence Setup Motion Estimation
Feature Detection Feature Tracking Optimization Scheme Robust Estimation

MFI Harris+FREAK Feature matching by brute-force
combinatorial search

Newton method based mini-
mization of re-projection resid-
ual in left image space

Iteratively reject outliers whose
re-projection residual is larger
than some threshold

VISO2-S

Minima and maxima of blob
and corner filter responses +
concatenation of sobel filter re-
sponses based descriptor

SAD dissimilarity metric based
two-passes circle feature match-
ing

Gauss-Newton method based
minimization of re-projection
residual in both of left and right
image space + Kalman Filter
Refinement

RANSAC

ORG-KLT Conventional KLT corner detec-
tor conventional KLT tracker

Gauss-Newton method based
minimization of re-projection
residual in left image space

RANSAC with early termina-
tion condition

FB-KLT Conventional KLT corner detec-
tor

conventional KLT tracker with
automatic tracking failure de-
tection ability

Gauss-Newton method based
minimization of re-projection
residual in left image space

RANSAC with early termina-
tion condition

Proposed KLT corner detector with prun-
ing Improved KLT tracker

Gauss-Newton method based
minimization of re-projection
residual in left image space

RANSAC with early termina-
tion condition

that the reconstructed paths from all of ORG-KLT, FB-KLT
and the proposed algorithm deviate from the ground truth at
approximately one quarter mark along the full trajectory and
persist for certain amount of time. At approximately halfway
mark along the full trajectory, the reconstructed paths from
ORG-KLT and FB-KLT deviate again. This means that the
proposed method is more robust than ORG-KLT and FB-KLT
in dealing with challenging environment. Secondly, although
the proposed method fails at position A, the reconstructed
path from the proposed algorithm shows the same shape as
the ground-truth at the end. This means that the proposed
algorithm is able to automatically recover from wrong previous
motion estimation when the scene is not challenging. The
reason that the proposed algorithm is capable of recovering
from wrong motion estimation in scenarios where the scene is
not challenging is due to the fact that the utilization of SMC in
the proposed method aims to increase the chance that the start-
ing search point for KLT falls within the convergence region,
thereby enabling the KLT tracker to more likely converge to
the true global minimum. However, as pointed out by [33],
KLT tracking process is tolerant to an initial parameter error
as long as the initial point falls within the convergence region.
Therefore, if the initial position guided by wrong motion still
falls in the convergence region, KLT is still able to converge
correctly and the proposed method is therefore able to recover
from wrong previous motion estimation.

In addition, the average translational and rotational errors
relative to the ground truth for the proposed algorithm, ORG-
KLT and FB-KLT for the 11 training sequences are pre-
sented in Fig. 12. On average, the translation and rotation
errors for ORG-KLT, FB-KLT and the proposed algorithm
are (1.7934%, 0.0084[deg/m]), (1.3974%, 0.0061[deg/m]) and
(0.9768%, 0.0056[deg/m]). Therefore, the proposed algorithm
is 46% better than ORG-KLT and 30% better than FB-KLT.
This clearly demonstrates that the three strategies, i.e. smooth
motion constraint, adaptive integration window technique and
automatic tracking failure detection scheme in the proposed
algorithm lead to significant improvement in the visual odom-
etry accuracy.

We have also submitted the results of the proposed method
for the 11 test sequences to the KITTI odometry evaluation
platform. The average translation and rotation errors relative to
the ground truth for proposed algorithm, MFI and VISO2-S for
the 11 test sequences are presented in Fig. 13. In addition, the
corresponding estimated trajectories from proposed algorithm,
MFI and VISO2-S over sequences 11-15 (the website only
provide the computed trajectories relative to the ground-truth
for sequences 11-15) are depicted in Fig. 14. On average,
the translational and rotational errors for MFI, VISO2-S and
the proposed algorithm for the 11 testing sequences are
(1.30%, 0.0030[deg/m]), (2.44%, 0.0114[deg/m]) and (1.26%,
0.0038[deg/m]) respectively. It can be observed that the pro-
posed algorithm performs approximately 3% better than MFI
and 48% better than VISO2-S. At the time of submission
into the KITTI odometry evaluation platform, the proposed
method was ranked in the 8th place in terms of accuracy,
while MFI and VISO2-S were ranked in the 10th and 38th

places respectively. Currently, the proposed method is ranked
in 14th place in terms of accuracy, while MFI and VISO2-S
are ranked in the 15th and 37th places respectively.

C. Computation Time Evaluation

Table II shows the computation time for the proposed
algorithm and all the four baseline algorithms. In the current
implementation, the dense disparity map is directly provided
for the proposed algorithm, ORG-KLT and FB-KLT. For a fair
comparison, the computation time for disparity computation
is not included for all the five algorithms. The proposed
algorithm has the similar running time as ORG-KLT although
it needs to conduct one more round of feature tracking for each
feature than ORG-KLT, and is 28% faster than FB-KLT. This
is due to the low computational complexity strategies adopted
in the feature correspondence setup. In addition, since robust
techniques during the KLT tracking process and the RANSAC
with early termination rule are employed, the set of accurate
feature correspondences allows the Gauss-Newton process to
converge faster.

11

MFI is able to reduce pose error compared to their earlier
work [15], [16], however this is achieved at the expense
of huge computational complexity. Up to 4,096 features
are tracked between consecutive frames. The key-points are
matched between consecutive frames by brute-force combina-
torial search. The computation time reported by MFI is only
possible after they enable the multi-threaded programming
technology OpenMP and intense code optimization using the
Intel Performance Primitives library on 2.7 GHz CPU with 4
cores. Finally, VISO2-S achieves a short computation time at
the price of reduced estimation accuracy.

The proposed method also exhibits lower computational
complexity when compared to other methods that are recently
submitted to the KITTI evaluation platform. For example, the
computation time for the top three visual odometry methods
in the KITTI platform (at the time this paper is submitted) are
between 0.1 to 0.3 seconds/frame on 2.0Ghz or 2.5 Ghz plat-
forms with dual cores. The computation time for the proposed
algorithm is 0.03 seconds/frame on a 3.5GHz platform (one
core) without utilizing any code optimization technique (e.g.
multi-threaded programming or GPU programming). We are
confident that the computation time of the proposed method
will further reduce if such code optimization techniques are
enabled.

TABLE II
COMPUTATION TIME COMPARISON

Correspondences
Extraction

Motion
Estimation Total Platform

MFI 37.1 ms 8.8 ms 45.9 ms 2.7GHz
(4 Cores)

VISO2-S 36.6 ms 4.3 ms 40.9 ms 2.5GHz
(1 Core)

ORG-
KLT 29.1 ms 1.1 ms 30.2 ms 3.5GHz

(1 Core)

FB-KLT 40.8 ms 1.1 ms 41.9 ms 3.5GHz
(1 Core)

Proposed 29.5 ms 0.8 ms 30.3 ms 3.5GHz
(1 Core)

VI. CONCLUSION

It has been shown that the proposed method for estimating
the ego-motion of vehicle overcomes the limitations of exist-
ing solutions by integrating runtime-efficient strategies with
robust techniques at various core stages in visual odometry.
A novel pruning technique is adopted to notably reduce the
computational complexity of detecting corner features without
compromising on the quality of the extracted corner features.
A robust and compute-efficient KLT tracker is proposed to
facilitate the generation of the feature correspondences in a
robust and runtime efficient way. The accuracy of extracted
feature correspondences is improved by leveraging ego-motion
prior to determine a better initial point for fast and accurate
feature convergence during tracking and incorporating an auto-
matic tracking failure detection scheme to exclude the feature
correspondences with large tracking error. In addition, the
computational complexity of the conventional KLT has been
improved by setting the integration window size adaptively.

With the accurate feature correspondences provided, Gauss-
Newton optimization scheme supported by an early RANSAC
termination condition is shown to converge faster in the motion
estimation process. The above contributions are integrated into
a framework for fast and robust visual odometry. The exper-
imental results based on a widely used evaluation platform
clearly demonstrate the advantages of the proposed framework
over existing state-of-the-art solutions for robust and runtime-
efficient visual odometry.

REFERENCES

[1] C. Rabe, U. Franke, and S. Gehrig, “Fast detection of moving objects
in complex scenarios,” in 2007 IEEE Intelligent Vehicles Symposium.
IEEE, 2007, pp. 398–403.

[2] Y. Watanabe, P. Fabiani, and G. Le Besnerais, “Simultaneous visual tar-
get tracking and navigation in a gps-denied environment,” in Advanced
Robotics, 2009. ICAR 2009. International Conference on. IEEE, 2009,
pp. 1–6.

[3] D. Scaramuzza, “1-point-ransac structure from motion for vehicle-
mounted cameras by exploiting non-holonomic constraints,” Interna-
tional journal of computer vision, vol. 95, no. 1, pp. 74–85, 2011.

[4] D. Nistér, O. Naroditsky, and J. Bergen, “Visual odometry,” in Computer
Vision and Pattern Recognition, 2004. CVPR 2004. Proceedings of the
2004 IEEE Computer Society Conference on, vol. 1. IEEE, 2004, pp.
I–652–I–659.

[5] D. Scaramuzza and F. Fraundorfer, “Visual odometry: Part i: The first
30 years and fundamentals,” IEEE Robotics and Automation Magazine,
vol. 18, no. 4, pp. 80–92, 2011.

[6] F. Fraundorfer and D. Scaramuzza, “Visual odometry: Part ii: Matching,
robustness, optimization, and applications,” IEEE Robotics and Automa-
tion Magazine, vol. 19, no. 2, pp. 78–90, 2012.

[7] G. P. Stein, O. Mano, and A. Shashua, “A robust method for computing
vehicle ego-motion,” in Intelligent Vehicles Symposium, 2000. IV 2000.
Proceedings of the IEEE. IEEE, 2000, pp. 362–368.

[8] D. Nistér, O. Naroditsky, and J. Bergen, “Visual odometry for ground
vehicle applications,” Journal of Field Robotics, vol. 23, no. 1, pp. 3–20,
2006.

[9] J.-P. Tardif, Y. Pavlidis, and K. Daniilidis, “Monocular visual odometry
in urban environments using an omnidirectional camera,” in 2008
IEEE/RSJ International Conference on Intelligent Robots and Systems.
IEEE, 2008, pp. 2531–2538.

[10] M. J. Milford and G. F. Wyeth, “Single camera vision-only slam on a
suburban road network,” in Robotics and Automation, 2008. ICRA 2008.
IEEE International Conference on. IEEE, 2008, pp. 3684–3689.

[11] H. Badino, A. Yamamoto, and T. Kanade, “Visual odometry by multi-
frame feature integration,” in Proceedings of the IEEE International
Conference on Computer Vision Workshops, 2013, pp. 222–229.

[12] A. Geiger, J. Ziegler, and C. Stiller, “Stereoscan: Dense 3d reconstruc-
tion in real-time,” in Intelligent Vehicles Symposium (IV), 2011 IEEE.
IEEE, 2011, pp. 963–968.

[13] C. F. Olson, L. H. Matthies, M. Schoppers, and M. W. Maimone, “Rover
navigation using stereo ego-motion,” Robotics and Autonomous Systems,
vol. 43, no. 4, pp. 215–229, 2003.

[14] B. Kitt, A. Geiger, and H. Lategahn, “Visual odometry based on
stereo image sequences with ransac-based outlier rejection scheme.” in
Intelligent Vehicles Symposium, 2010, pp. 486–492.

[15] H. Badino, “A robust approach for ego-motion estimation using a mobile
stereo platform,” in Complex Motion. Springer Berlin Heidelberg, 2007,
pp. 198–208.

[16] H. Badino and T. Kanade, “A head-wearable short-baseline stereo system
for the simultaneous estimation of structure and motion.” in MVA, 2011,
pp. 185–189.

[17] M. A. Fischler and R. C. Bolles, “Random sample consensus: a paradigm
for model fitting with applications to image analysis and automated
cartography,” Communications of the ACM, vol. 24, no. 6, pp. 381–395,
1981.

[18] D. Nistér, “Preemptive ransac for live structure and motion estimation,”
Machine Vision and Applications, vol. 16, no. 5, pp. 321–329, 2005.

[19] A. Geiger, P. Lenz, and R. Urtasun, “Are we ready for autonomous
driving? the kitti vision benchmark suite,” in Computer Vision and
Pattern Recognition (CVPR), 2012 IEEE Conference on. IEEE, 2012,
pp. 3354–3361.

12

[20] B. Triggs, P. F. McLauchlan, R. I. Hartley, and A. W. Fitzgibbon,
“Bundle adjustmenta modern synthesis,” in International workshop on
vision algorithms. Springer Berlin Heidelberg, 1999, pp. 298–372.

[21] J.-P. Tardif, M. George, M. Laverne, A. Kelly, and A. Stentz, “A new
approach to vision-aided inertial navigation,” in Intelligent Robots and
Systems (IROS), 2010 IEEE/RSJ International Conference on. IEEE,
2010, pp. 4161–4168.

[22] C. Harris and M. Stephens, “A combined corner and edge detector.” in
Alvey vision conference, vol. 15. Citeseer, 1988, p. 50.

[23] A. Alahi, R. Ortiz, and P. Vandergheynst, “Freak: Fast retina keypoint,”
in Computer vision and pattern recognition (CVPR), 2012 IEEE con-
ference on. Ieee, 2012, pp. 510–517.

[24] H. Bay, A. Ess, T. Tuytelaars, and L. Van Gool, “Speeded-up robust
features (surf),” Computer vision and image understanding, vol. 110,
no. 3, pp. 346–359, 2008.

[25] D. G. Lowe, “Distinctive image features from scale-invariant keypoints,”
International journal of computer vision, vol. 60, no. 2, pp. 91–110,
2004.

[26] R. Hartley and A. Zisserman, Multiple view geometry in computer vision.
Cambridge university press, 2003.

[27] G. Sibley, L. Matthies, and G. Sukhatme, “Bias reduction and filter
convergence for long range stereo,” in Robotics Research. Springer
Berlin Heidelberg, 2007, pp. 285–294.

[28] J. Shi and C. Tomasi, “Good features to track,” in Computer Vision
and Pattern Recognition, 1994. Proceedings CVPR’94., 1994 IEEE
Computer Society Conference on. IEEE, 1994, pp. 593–600.

[29] U. Franke, C. Rabe, H. Badino, and S. Gehrig, “6d-vision: Fusion of
stereo and motion for robust environment perception,” in Joint Pattern
Recognition Symposium. Springer Berlin Heidelberg, 2005, pp. 216–
223.

[30] F. Erbs, B. Schwarz, and U. Franke, “From stixels to objectsa conditional
random field based approach,” in Intelligent Vehicles Symposium (IV),
2013 IEEE. IEEE, 2013, pp. 586–591.

[31] M. Muffert, D. Pfeiffer, and U. Franke, “A stereo-vision based object
tracking approach at roundabouts,” IEEE Intelligent Transportation
Systems Magazine, vol. 5, no. 2, pp. 22–32, 2013.

[32] A. Barth and U. Franke, “Estimating the driving state of oncoming
vehicles from a moving platform using stereo vision,” IEEE Transactions
on Intelligent Transportation Systems, vol. 10, no. 4, pp. 560–571, 2009.

[33] M. Hwangbo, J.-S. Kim, and T. Kanade, “Gyro-aided feature tracking
for a moving camera: fusion, auto-calibration and gpu implementation,”
The International Journal of Robotics Research, vol. 30, no. 14, pp.
1755–1774, 2011.

[34] M. Wu, N. Ramakrishnan, S.-K. Lam, and T. Srikanthan, “Low-
complexity pruning for accelerating corner detection,” in 2012 IEEE
International Symposium on Circuits and Systems. IEEE, 2012, pp.
1684–1687.

[35] J.-Y. Bouguet, “Pyramidal implementation of the affine lucas kanade
feature tracker description of the algorithm,” Intel Corporation, vol. 5,
no. 1-10, p. 4, 2001.

[36] A. J. Davison, I. D. Reid, N. D. Molton, and O. Stasse, “Monoslam:
Real-time single camera slam,” IEEE transactions on pattern analysis
and machine intelligence, vol. 29, no. 6, pp. 1052–1067, 2007.

[37] Z. Kalal, K. Mikolajczyk, and J. Matas, “Forward-backward error:
Automatic detection of tracking failures,” in Pattern recognition (ICPR),
2010 20th international conference on. IEEE, 2010, pp. 2756–2759.

[38] H. Hirschmuller, “Stereo processing by semiglobal matching and mu-
tual information,” IEEE Transactions on pattern analysis and machine
intelligence, vol. 30, no. 2, pp. 328–341, 2008.

Meiqing Wu (M16) received M.S. degree in Com-
puter Engineering from Peking University, China in
2009. She is currently working toward the Ph.D.
degree in the School of Computer Engineering in
Nanyang Technological University, Singapore.

Her current research interests include stereo vi-
sion, motion analysis, object detection and tracking
for urban traffic scene understanding.

Siew-Kei Lam (M03) received his BASc, MEng
and PhD from Nanyang Technological University
(NTU), Singapore. He is currently an Assistant Pro-
fessor in School of Computer Engineering (SCE),
NTU and his research investigates methods for re-
alizing custom computing solutions in embedded
systems. He has published over 75 international
refereed journals and conferences in design method-
ologies for heterogeneous and reconfigurable sys-
tems, embedded vision and autonomous systems,
and high-speed computer arithmetic.

Thambipillai Srikanthan (SM92) joined Nanyang
Technological University (NTU), Singapore in 1991.
At present, he holds a full professor and joint
appointments as Director of a 100 strong Centre
for High Performance Embedded Systems (CHiPES)
and Director of the Intelligent Devices and Systems
(IDeAS) cluster. He founded CHiPES in 1998 and
elevated it to a university level research centre in
February 2000. He has published more than 250
technical papers. His research interests include de-
sign methodologies for complex embedded systems,

architectural translations of compute intensive algorithms, computer arith-
metic, and high-speed techniques for image processing and dynamic routing.

13

 0

 100

 200

 300

 400

 500

-300 -200 -100 0 100 200 300

z
[m

]

x [m]

Ground Truth
ORG-KLT

FB-KLT
Proposed

Sequence Start

(a) Sequence 00

-1500

-1000

-500

 0

 500

 0 500 1000 1500 2000

z
[m

]

x [m]

Ground Truth
ORG-KLT

FB-KLT
Proposed

Sequence Start

(b) Sequence 01

 0

 200

 400

 600

 800

-200 0 200 400 600 800

z
[m

]

x [m]

Ground Truth
ORG-KLT

FB-KLT
Proposed

Sequence Start

(c) Sequence 02

-100

 0

 100

 200

 300

 0 100 200 300 400

z
[m

]

x [m]

Ground Truth
ORG-KLT

FB-KLT
Proposed

Sequence Start

(d) Sequence 03

 0

 50

 100

 150

 200

 250

 300

 350

 400

-200 -150 -100 -50 0 50 100 150 200

z
[m

]

x [m]

Ground Truth
ORG-KLT

FB-KLT
Proposed

Sequence Start

(e) Sequence 04

-100

 0

 100

 200

 300

 400

-200 -100 0 100 200

z
[m

]

x [m]

Ground Truth
ORG-KLT

FB-KLT
Proposed

Sequence Start

(f) Sequence 05

Fig. 10. Reconstruction of paths from ORG-KLT,FB-KLT and Proposed algorithm for Sequences 00-05.

14

-100

 0

 100

 200

 300

-200 -100 0 100 200

z
[m

]

x [m]

Ground Truth
ORG-KLT

FB-KLT
Proposed

Sequence Start

(a) Sequence 06

-50

 0

 50

 100

-200 -150 -100 -50 0

z
[m

]

x [m]

Ground Truth
ORG-KLT

FB-KLT
Proposed

Sequence Start

(b) Sequence 07

-200

-100

 0

 100

 200

 300

 400

 500

 600

-400 -300 -200 -100 0 100 200 300 400

z
[m

]

x [m]

Ground Truth
ORG-KLT

FB-KLT
Proposed

Sequence Start

(c) Sequence 08

 0

 100

 200

 300

 400

 500

-200 -100 0 100 200 300 400

z
[m

]

x [m]

Ground Truth
ORG-KLT

FB-KLT
Proposed

Sequence Start

(d) Sequence 09

-300

-200

-100

 0

 100

 200

 300

 400

 0 100 200 300 400 500 600 700

z
[m

]

x [m]

Ground Truth
ORG-KLT

FB-KLT
Proposed

Sequence Start

(e) Sequence 10

Fig. 11. Reconstruction of paths from ORG-KLT,FB-KLT and Proposed algorithm for Sequences 06-10.

15

 0

 0.001

 0.002

 0.003

 0.004

 0.005

 0.006

 0.007

 0.008

 0.009

 100 200 300 400 500 600 700 800

R
ot

at
io

n
E

rr
or

 [d
eg

/m
]

Path Length [m]

ORG-KLT
FB-KLT

Proposed

(a)

 0

 0.001

 0.002

 0.003

 0.004

 0.005

 0.006

 0.007

 0.008

 0.009

 10 20 30 40 50 60 70 80 90

R
ot

at
io

n
E

rr
or

 [d
eg

/m
]

Speed [km/h]

ORG-KLT
FB-KLT

Proposed

(b)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 100 200 300 400 500 600 700 800

T
ra

ns
la

tio
n

E
rr

or
 [%

]

Path Length [m]

ORG-KLT
FB-KLT

Proposed

(c)

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 10 20 30 40 50 60 70 80 90
Tr

an
sl

at
io

n
E

rr
or

 [%
]

Speed [km/h]

ORG-KLT
FB-KLT

Proposed

(d)

Fig. 12. Average translational and rotational error for ORG-KLT, FB-KLT and Proposed algorithm over sequences 00-10. The proposed algorithm is 46%
better than ORG-KLT and 30% better than FB-KLT.

 0

 0.002

 0.004

 0.006

 0.008

 0.01

 0.012

 0.014

 100 200 300 400 500 600 700 800

R
ot

at
io

n
E

rr
or

 [d
eg

/m
]

Path Length [m]

MFI
VISO2-S

Proposed

(a)

 0

 0.002

 0.004

 0.006

 0.008

 0.01

 0.012

 0.014

 0.016

 10 20 30 40 50 60 70 80 90

R
ot

at
io

n
E

rr
or

 [d
eg

/m
]

Speed [km/h]

MFI
VISO2-S

Proposed

(b)

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 100 200 300 400 500 600 700 800

T
ra

ns
la

tio
n

E
rr

or
 [%

]

Path Length [m]

MFI
VISO2-S

Proposed

(c)

 0

 0.5

 1

 1.5

 2

 2.5

 3

 10 20 30 40 50 60 70 80 90

T
ra

ns
la

tio
n

E
rr

or
 [%

]

Speed [km/h]

MFI
VISO2-S

Proposed

(d)

Fig. 13. Average translational and rotational error for MFI, VISO2-S and Proposed algorithm over Sequences 11-21. The proposed algorithm performs 3%
better than MFI and 48% better than VISO2-S.

16

 0

 100

 200

 300

 400

 500

 600

-300 -200 -100 0 100 200 300

z
[m

]

x [m]

Ground Truth
MFI

VISO2-S
Proposed

Sequence Start

(a) Sequence 11

-200

 0

 200

 400

 600

 800

 1000

 1200

 0 200 400 600 800 1000 1200 1400

z
[m

]

x [m]

Ground Truth
MFI

VISO2-S
Proposed

Sequence Start

(b) Sequence 12

-200

-100

 0

 100

 200

 300

 400

-300 -200 -100 0 100 200 300 400

z
[m

]

x [m]

Ground Truth
MFI

VISO2-S
Proposed

Sequence Start

(c) Sequence 13

 0

 20

 40

 60

 80

 0 20 40 60 80

z
[m

]

x [m]

Ground Truth
MFI

VISO2-S
Proposed

Sequence Start

(d) Sequence 14

-150

-100

-50

 0

 50

 100

 150

 0 50 100 150 200 250 300

z
[m

]

x [m]

Ground Truth
MFI

VISO2-S
Proposed

Sequence Start

(e) Sequence 15

Fig. 14. Reconstruction of paths from MFI, VISO2-S and Proposed algorithm for Sequences 11-15.

