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Abstract—Recently, compressive sensing has attracted a lot of
research interest due to its potential for realizing lightweight
image compression solutions. Approximate or inexact computing
on the other hand has been successfully applied to lower the
complexity of hardware architectures for applications where a
certain amount of performance degradation is acceptable (e.g.
lossy image compression). In our work, we present a novel
method for compressive sensing using approximate computing
paradigm, in order to realize a hardware-efficient image com-
pression architecture. We adopt Gaussian Random matrix based
compression in our work. Library based pruning is used to realize
the approximate compression architecture. Further we present a
multi-objective optimization method to fine tune our pruning
and increase performance of architecture. When compared to
the baseline architecture that uses regular multipliers on 65-nm
CMOS technology, our proposed image compression architecture
achieves 43% area and 54% power savings with minimal PSNR
degradation.

I. INTRODUCTION

Approximate computing has gained wide attention as it has
been shown to lead to significant improvement in performance
and power efficiency of computing systems [1]. Approximate
computing provides area and power savings by trading off
the accuracy of the results [2]. The reduced accuracy is
acceptable in systems that take advantage of limited human
perception capabilities. Such applications include multimedia
(image and video processing), data-mining, search and weather
forecast applications [3], [4], [5]. Approximate computing is
also used to improve CPU performance. This is acheived by
approximating the memory based computations and content
addressable memory accelerators [6], [7]. Fig. 1 shows an
example where energy savings are achieved at the expense
of image output quality when FFT architectures with varying
degrees of inexactness are employed [8].

Compressive Sensing (CS) is a recently developed technique
that samples signals at sub-Nyquist rate and simultaneously
compresses them using random projections [9]. Due to this, CS
reduces communication cost and resources for compression.
Generally, CS is applied to signals in the analog domain before
they are converted to digital signals, thus minimizing power
for signal compression [10], [11], [12]. However, analog based
CS cannot be used with most of the existing camera sensors
that produces digital outputs (i.e. pixel streams). Digital CS
overcomes this problem by performing compressive sensing
on the pixel outputs of existing camera sensors.

In this work, we focus on digital CS for image compression.
During CS, the signals are compressed using matrix multi-
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Fig. 1. Output images of approximate FFT architectures with different inexact
components. More energy savings can be obtained at expense of lower output
image quality [8].

plication and the resulting image can be recovered from the
compressed image using an optimization process [13]. The CS
reconstruction method does not recover the exact signals, but
instead recovers signals that are close to or approximated to the
original signals. CS based compression uses a measurement
matrix for compressing the input signal. The compressed
values are a linear combination of the measurement matrix
elements. Due to the approximate nature of CS reconstruction,
less accurate compressed values can still be recovered. This
provides the opportunity to use approximate computing for
CS based compression which has previously been shown to
be effective in bio-signal processing [14].

In this paper, we will exploit approximate computing for
CS based image compression in order to reduce hardware
cost and power consumption. Image compression typically
requires many operations due to the large image sizes. For
example, CS based compression of 512×512 size image
requires 26.7 million multiply and accumulate operations, at
a measurement rate of 0.1. As a first step, we developed a
library of inexact multipliers using a probabilistic pruning
approach. Various internal elements of multipliers are removed
to create different instances of inexact multiplier circuits, and
the pruning effects on the outputs of the multiplier instances
are measured. The pruning of the internal elements also leads
to varying power and area savings of the instances. These



instances form our inexact multiplier library components. The
unpruned multiplier is also included in the library as reference.

The library components are used to replace the exact
multipliers in the original CS based image compression archi-
tecture. We present a multi-objective optimization approach to
judiciously replace the multipliers in the image compression
architecture with the inexact library components in order to
achieve a good trade off between the compression perfor-
mance, and power-area savings. Our experiments show that the
proposed architecture on 65-nm CMOS technology achieves
43% area and 54% power savings when compared to the
original architecture with minimal PSNR degradation.

The rest of the paper is organized as follows. In the
following section we provide a brief background on com-
pressive sensing and approximate computing. In Section III,
we describe the architecture and operations of the CS based
image compression architecture that will be used as our
baseline. In Section IV, we introduce our methodology for
designing the library of inexact multipliers and propose an
optimization technique for choosing suitable library instances
for the image compression architecture. Section V presents
the experimental results and hardware savings obtained by the
proposed architecture. Finally, Section VI concludes the paper.

II. BACKGROUND

In this section, we briefly review the concepts in compres-
sive sensing and approximate computing.

A. Compressive Sensing

Given a sparse-signal, the compressive sensing method ac-
quires sub-Nyquist rate samples from the signal. It compresses
N -samples of the sparse signal (X) into M -samples of signal
(Y ) using a measurement matrix Φ of size M × N , where
M << N . This method is broadly called CS compression
or CS encoding. The equation governing CS compression is
shown in Eq. 1, where X is a sparse signal.

YM×1 = ΦM×NXN×1 where M � N (1)

An estimate of the original sparse signal X can be recovered
from Y using the l0-optimization. Since l0-optimization is a
NP-complete problem, we can apply Basis-Pursuit (BP) or l1-
optimization as an alternative method for recovering signal.
l1-optimization is defined as:

X = arg min ‖ X ‖1 subjected to Y = ΦX (2)

We can also apply CS to non-sparse signals, if the non-
sparse signals are present in certain domains e.g. Discrete
Wavelet, Discrete Cosine etc. The non-sparse signals can be
compressed using Eq. 1 and reconstructed using Eq. 3. Ψ
in Eq. 3 represents the Discrete Wavelet or Discrete Cosine
transform.

X = arg min ‖ X ‖1 subjected to Y = ΦΨX (3)

Compression of 2-D signals like images need to be trans-
formed to 1-D signals before applying CS. The CS reconstruc-
tion of images requires more computational power compared

to CS compression due to the large value of N . The Block
based Compressive Sensing (BCS) presented in [15], splits an
image into several small blocks of size B×B and applies CS
compression and reconstruction method on each block. In this
paper, we use the BCS method [16] for image compression
and a Smoothed Projected Landweber (SPL) method for image
reconstruction. The BCS compression of an image block is
given as:

Y = ΦM×B2X (4)

where Y is the compressed block and X is the image block.
The sizes of X , Y and Φ-matrix are B2 × 1, M × 1 and
M×B2 respectively. The measurement rate (MR) is given as:

Measurement Rate =
M

B2
(5)

CS compression and reconstruction mainly depends on the
measurement matrix Φ. The measurement matrices have to
satisfy the Restricted Isometry Property (RIP) [13]. Gaussian
random matrices, Partial Fourier matrices and Bernoulli ran-
dom matrices satisfy the RIP and any of them can be used
as measurement matrices. In this paper, we use orthogonal
Gaussian random matrix as Φ-matrix for compression of
images. The orthogonal random matrices are preferred due
to their low computational complexity for CS reconstruction.

B. Approximate Computing

Approximate computing has gained a lot of attention owing
to the ever growing demand for power minimization. This
approach offers a relaxation on the accuracy of the overall
system’s output in order to achieve significant gains in power
and area. Common strategies for introducing approximate
computing in designs include probabilistic pruning, proba-
bilistic logic minimization, and bit-width reduction/truncation.
These methods are typically applied to the data-paths of
hardware architectures that exhibit higher error tolerance.

Probabilistic Pruning removes elements of a given circuit
that do not contribute significantly to the output [17]. On
the other hand, Probabilistic Logic Minimization selectively
changes certain output states of the system so as to reduce the
required logic resources [18]. This method is also denoted as
Bit-Flipping. Bit-Width Reduction or Truncation is employed
to optimize the bit-widths of data-paths with data precision of
lesser importance. However, such optimization often leads to
additional effort in redesigning the routing architecture [19].

In this work we combine Probabilistic Pruning and Proba-
bilistic Logic Minimization to design inexact multipliers for
our image compression architecture. In addition, we also
propose a multi-objective optimization technique to identify
suitable inexact levels for each multiplier in the architecture
in order to obtain a good trade off between power-area savings
and compression performance.

III. IMAGE COMPRESSION ARCHITECTURE

In this section, we present the baseline architecture for
digital CS based image compression. The BCS compression
in Eq. 4 compresses the image block X of B × B samples



into a compressed block Y of M samples. Before applying
the CS compression, the 2D signal X is converted into a 1D
signal of size B2 × 1. The architecture for CS compression,
which is based on Eq. 4, is shown in Fig. 2.
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Fig. 2. Architecture of CS compression stage

The architecture in Fig. 2 takes a single image pixel Xi

at a time and multiplies it with the corresponding column
elements of Φ-matrix. The multiplication results are added to
the previous multiply and accumulator (MAC) outputs. The
output of the MAC unit at the ith iteration is given as:

Y i
j = Y i−1

j + Φj(i)Xi (6)

The term Φj(i) in Eq. 6 represents the element of Φ-matrix
in the jth row of the ith column. The MAC units multiply
the image pixels with the corresponding matrix elements and
add the results to the previous MAC results until the entire
image block has been compressed. This process takes B2 clock
cycles for generating the M compressed values of a single
image block. All the values of the MAC units are reset to zero
before compression of next image block begins. This process
is repeated till the compression of an entire image completes.

TABLE I
TOTAL MAC OPERATIONS REQUIRED FOR SINGLE IMAGE BLOCK OF SIZE

32× 32 AT DIFFERENT MEASUREMENT RATES (MR)

MR size of M Total MAC operations
0.1 102 104448
0.2 205 209920
0.3 307 314368
0.4 410 419840
0.5 512 524288

Each single image block of size B × B requires MB2

number of MAC operations for the generation of M com-
pressed samples. Table I shows the number of MAC opera-
tions required for a single 32 × 32 image block at different
measurement rates.

In this paper, we consider the block size of 32 × 32.
This provides better PSNR values for reconstructed images.
Increasing the block-size will lead to increase in the compu-
tational complexity at the reconstruction side. On the other
hand, decreasing the block-size reduces the PSNR values for

reconstructed images. Hence, we have chosen the optimal
block-size to be 32 × 32. From Table I, we can observe
that the minimum number of MAC operations required are
in the order of 105 for MR 0.1. It can be observed that the
MAC operations increases linearly with MR. The image of
size 512×512 requires at least 26.7 million MAC operations
for generating the compressed samples using CS. The power
savings at each MAC operation contributes to the power
savings for overall image compression. It is noteworthy that
the MSB-bits of compressed samples play a major role in
CS reconstruction. This provides the motivation in our work
to prune the compression architecture to achieve power-area
savings with out affecting the MSB bits of reconstructed
signal.

IV. PROPOSED METHOD

In this section, we first discuss our methodology to design
a library of inexact multiplier units that will aid in pruning
the CS compression architecture. Next, we present a Non-
dominated Search Genetic Algorithm (NSGA) based multi
objective optimization to tune the architecture for achieving
a good trade-off between power, area and output quality .

A. Approximate Library Formulation

The library of approximate multipliers is constructed using
probabilistic pruning and probabilistic logic minimization.

First according to the Probabilistic Pruning method a given
circuit is considered as a graph with various gates as nodes and
interconnects as edges. The activity for each node in the circuit
is estimated based on the path from input to output in which
it is present. Based on a its relative influence on the output,
a weight is assigned to each node. The nodes are then ranked
based on the product of weight and activity. Next, the nodes
are removed one at a time starting from the lowest ranked
nodes, and the resulting output error of the circuit is estimated.
If the estimated error is less than the acceptable error, the
pruning is considered to be successful. Otherwise, the node
is replaced, and the pruning process is repeated on the next
lower ranked node till all nodes have been considered. Each
successful pruning create an instance of the inexact multiplier
in the library.

Probabilistic Logic Minimization is carried out in a similar
manner at the logic level through guided bit flipping of
Karnaugh maps to reduce the in-built logic. In this method
the logic to be realized by a certain node is further minimized
using flipping of certain bits, hence introducing some error.
This can lead to either reduced logic or increased logic,
resulting in both increase or decrease in power area savings.
These can be called as favourable and unfavourable cases.
We consider only for the favourable cases. For the input
combinations, which occur with less probability, the bit flips
would result in less error at the output. Such cases are given
more significance and hence stand out a better chance to be
part of the library.

The removal of various internal logic as described above,
will give rise to different errors at the output and also



different power, area savings. We categorized these instances
into different inexact levels based on the output degradation.
Using the above-mentioned techniques, we created 11 different
multiplier instances with increasing magnitude of error at the
output. These are termed as inexact levels, L1, L2 . . . , L11.
L1 refers to the exact multiplier, L2 refers to inexact 1, L11

refers to inexact 10, so on. The multiplier instances form the
members of multiplier library (Lmult). All the components
(members) in the library are 16 bit multipliers. The normal-
ized power, area savings (with respect to that of the exact
multiplier) for each inexact level are shown in Fig. 3.

From the compression architecture in Fig. 2, it can be
observed that each MAC unit consists of a multiplier and
an adder. In this work, we focus on pruning the multipliers
only, since the error introduced by pruning the adders exceeds
the acceptable level. Each of the multipliers in the ’M’ MAC
units can be replaced with a particular component from Lmult,
as shown in Fig. 4. In the next subsection, we describe an
approach to judiciously identify suitable multiplier instances
for the compression architecture.
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Fig. 3. Normalized area and power savings of the compression architecture
obtained using various inexact multipliers. Each instance of the architecture
shown uses multipliers with the same inexact level.
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Fig. 4. A library of multipliers created using Probabilistic Pruning and
Probabilistic Logic Minimization[19], are used to replace the multipliers in
the MAC units of the compression architecture.

B. Allocating Inexact Multipliers to Compression Architecture
The library (Lmult) described in the previous subsection

contains k number of multiplier instances (k = 11), each

obtained through probabilistic pruning and probabilistic logic
minimization. Each of the k instance have a corresponding
power-area savings, along with the error value. Note that the
behaviour of these k components are characterized by using a
large database of random samples as inputs and observing their
respective outputs. The error associated with each output of the
inexact instance is then calculated based on the difference with
the exact component. The power, area and error characteristics
of each instance are used for allocating the multiplier instances
to the compression architecture.

For a particular measurement rate (say 0.3) of the com-
pression architecture, the number of multipliers are fixed.
Each multiplier can be implemented using one of the levels
(instances) of inexactness defined in the library Lmult. The
set of inexact levels for the multipliers can be regarded as a
level vector (

−−−→
Level) which corresponds to a particular area,

power savings and error at the output. In order to make
judicious choice in the selection of inexact levels for each
multiplier, we use a multi-objective optimization. The two
objectives we focus in this work are power-area product
(PAP ), maximum error (Maxerror) at the ouput of the CS
architecture. We aim to simultaneously minimize simulata-
neously PAP and Maxerror. A non dominated sorting based
genetic algorithm (NSGA-II) [20] is used to carry out this
optimization. Compared to other genetic algorithms, (NSGA-
II) has faster convergence and elitism is maintained during
selection process. Hence we chose this optimization method.
We calculate PAP for a given level vector

−−−→
Level using a

function fpap and Maxerror by another function ferr. Both
these functions are written as different sub routines.

Hence, the problem of finding an optimum level vector−−−→
Levelopt for entire array of multipliers Opt Conf can be
defined as :

Opt Conf{
−−−→
Levelopt} =minimize[PAP = fpap(

−−−→
Level)],

minimize[Maxerror = ferr(
−−−→
Level)],

subject to
−−−→
Levelexact ⊆

−−−→
Levelopt ⊆

−−−→
Levelmax,

and PAPopt ≤ PAPTH , erropt ≤ errTH

for some constants PAPTH , errTH

The NSGA-II optimization gives an optimum level vector
(
−−−→
Levelopt), which yields a power-area product (PAPopt)

and error (erropt) satisfying the threshold requirements
(PAPTH , errTH ).

−−−→
Levelmax refers to all multipliers realized

using L11 and
−−−→
Levelexact refers to all multipliers using L1.−−−→

Levelopt is further used for realizing the optimum MAC
architecture.

V. EXPERIMENTAL RESULTS

We performed the CS compression using original and
various inexact configurations with varying measurement rate
from 0.2 to 0.9. The CS architecture in Fig. 2 takes an image
pixel of size 8-bits and multiplies it to the corresponding Φ-
matrix element of size 8-bits. This is added to the previous
output value. The elements of Φ-matrix range from 0 to 0.99.
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Fig. 5. Reconstructed Images (Lenna, Barbara, Gold hill, Cameraman) with measurement rate of 0.3 at various inexact levels (a) level 1 (b) level 11 (c) level
6 (optimum case)

Hence, a maximum of 16-bits are sufficient for representing
the compressed samples Y . Fig. 5 shows the reconstructed
images with original (level 1), worst case approximate (level
11) and optimum approximate (level 6) compressed values
with block-size of 32×32 and measurement rate of 0.3.

It can be seen from Fig. 5, that there is a significant loss of
quality in the reconstructed images with higher inexactness
(level 11) compared to the quality of images in optimum
case (level 6). This establishes the need for judicious pruning
for realizing approximate architectures. Fig. 6 compares the
peak signal-to-noise ratio (PSNR) in dB for different images
over different inexact levels. Maximum degradation of PSNR,
occurs for ’Lenna’ at inexact level 11. From the figure, it can
be observed that PSNR values do not decrease linearly with
higher inexact levels. This is due to the fact that the inexact
levels are assigned based on the standard deviation error. This
acts as a generalized yardstick for the library. However the
mean error of the levels may have a different trend, which
result in variations of PSNR trend. By and large we can
observe a trend of decreasing PSNR in higher inexact levels.

The approximate library instances are described using hard-
ware description languages (i.e. VHDL) and synthesized using
Synopsys Design Compiler. The error estimate model is de-
signed in MATLAB. The entire design process is carried out
using technology process TSMC 65nm. The supply voltage for
technology node is obtained from the corresponding foundry
specifications. The performance advantage obtained by ap-
proximate components are validated in two circumstances
namely maximum operating frequency and minimum appli-
cable power. The normalized gains for various error metrics
of 16-bit array multiplier are recorded. Since the approximate
components are used in the data path, we fixed the bit width
to be 16.

We have used the MATLAB optimization tool box for
carrying out the multi objective optimization. The parameters
for optimization are chosen as described in [20]. Standard
two point crossover and bit string format for chromosome are
chosen. Maximum error caused by the inexact architecture and

the power area product(pap) are considered as two objectives.
For a particular case ( measurement rate = 0.3, sample ’Cam-
eraman’) the pareto curve is shown in Fig. 7. By definition
[20], all the points existing on the pareto curve are as good
as others. However, for the optimum case, we chose a point
at the knee of the curve and consider it as our ’Characteristic
point’. This point gives a very good PAP savings and beyond
this the max error increases steeply. The optimum power and
area savings are estimated for this point only.

Changing inexact levels at a granularity of individual mul-
tiplier as well as at entire array of multipliers is also explored.
Rigorous analysis leads to level 6 as the optimum case. This
case produced a PSNR degradation near to 1 dB (average over
various images). We estimated the overall power and area for
the inexact architecture, to observe affect of approximation at
system level. We considered multiplier and adder blocks to be
the most important power consuming blocks. In this work, as
mentioned earlier we prune only multipliers because the error
introduced by inexact adders is too huge compared to their
returns in terms of power, area. Hence, for overall estimation
the power, area for adder blocks is considered same as in the
exact case.

The optimal architecture showed an overall 43% area im-
provement and 54% power improvement which demonstrate
the usefulness of judicious realization inexact circuits. The
power area product is improved by 3.84× when compared to
the exact architecture.

VI. CONCLUSIONS

This work presents a novel approach for minimizing the area
utilization and power consumption of compressive sensing
based image compression architecture with marginal PSNR
degradation. We designed an inexact MAC architecture for
realizing the compression circuit. Our approach is validated
over different standard inputs, and achieves 54% and 43%
improvement in overall power and area respectively, with only
a slight degradation in PSNR. In future, we plan to extend this
work for inexact realization of the reconstruction architecture.
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