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Abstract—With the development of very large scale integration
(VLSI) technologies, a large numbers of the processing elements
(PEs) can be integrated on a single chip. The increasing density
of VLSI arrays leads to the increase of the probability of
PEs malfunction during normal operation of the system. Fault-
tolerant techniques become a meaningful research topic to obtain
fault-free logical array, in order to guarantee the system stability
and reliability. In this paper, we propose a fast algorithm to
reconfigure logical arrays based on the strategy of shortest partial
path first extension. The algorithm selects the partial path with
the minimum number of long interconnect to extend, as the
partial path is often the part of the optimal logical column that
is to be constructed. Thus, the proposed algorithm can rapidly
generate the optimal logical column, as it is able to avoid the
search for all possible paths related to the fault-free PEs, without
loss of harvest. Experimental results show that the state-of-the-
art can be improved up to by 38.9% in 128 × 128 host array
with 20% faults, in terms of running time.

Index Terms—Reconfiguration; VLSI array; Fault tolerance;
Algorithm

I. INTRODUCTION

With the rapid development of personal computing devices

systems, designers were forced to decrease its power consump-

tion and improve the efficiency of time as much as possible

in high-performance system. In recent years, very large scale

integration (VLSI) technology integrates huge number of pro-

cessing elements (PEs) on a single chip in a tightly coupled

fashion to process massive amount of information in parallel.

However, as the density of the VLSI arrays increases, the

probability of the faults occur in the arrays during fabrication

also increases. There are different kinds of these faults on

PEs, one is called hard faults that are caused by physical

damage and its uneven lifetime, and the other is called soft

faults caused by current overheat, overload, or occupation by

other applications. The faulty PEs destroy the regular structure

of the communication networks, they reduce the processing

capabilities of the multiprocessor array, and thus the system

will be affected. VLSI processor arrays must provide fault-

tolerant techniques to reconfigure the system for improving

the stability and dependability [1]. The fast fault-tolerant

techniques for reconfiguring has been the necessary safeguards

for system, especially this kind of processor arrays used in the

aerospace craft.

In general, there are mainly two methods employed in

reconfiguration techniques, namely, redundancy approach and

degradation approach. In redundancy approach [2][3], the

system will provide some spare PEs and these PEs are utilized

to replace faulty PEs. The main characteristic of this approach

is that the size of the arrays is fixed. However, if the spare PEs

cannot replace all the fault of PEs, the method have to be gave

up. In contrast with the redundancy approach, the degradation

approach [4][5] doesnt have spare PEs, all PEs on the chip are

treated in an uniform way in the degradation approach. This

approach tries to utilize as many as possible fault-free PEs to

construct a logical subarray.

This paper focuses on the degradation strategy. The previous

literatures have shown that most reconfiguration problems

under certain constraints are NP-complete [4]. Due to the

complexity of the reconfiguration problems, many methods

have been proposed to increase the utilization rate of fault-free

PEs using different tracks [6][7], switches [8] and rerouting

schemes [9]. A traditional degradation approach based on

greedy strategy [10], named GCR (greed column rerouting),

can produce a maximum target array on the selected rows. It

is well known that the degradable arrays are constructed with

minimizing the total interconnection length will provide for

less routing cost, less capacitance, and less dynamic power

dissipation, while improving the overall reliability [11]. Thus,

a dynamic programming algorithm (DPA) is proposed in [12]

to reduce the number of long-interconnects for decreasing

power dissipation. Based on the DPA, a divide-and-conquer

algorithm was proposed in [13], resulting in significant im-

provements in terms of the total interconnection length. DPA
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needs to visit all fault-free PEs in the local area and calculate

the path information for every fault-free PEs, that will lead to

a relatively slow reconfiguration.

It is well known that the fast reconfiguration is very critical

for the system reliability when the faults occur, especially

for the systems utilized in aircraft and satellite. In view

of the weakness of DPA, we propose a new algorithm to

accelerate it. The proposed algorithm, named as SPPA in this

paper, constructs the optimal logical column by computing the

shortest path in the local area. The shorted path is expended

from the current partial shortest path, rather than visiting all

fault-free PEs in the area as DPA did. So the algorithm SPPA

can significantly accelerate the construction of the shortest

path for most cases. The harvest of SPPA is kept same as

that of DPA, because SPPA is still able to find an optimum

local column.

II. PRELIMINARIES

We introduce some definitions and notations to be used in

the following sections. A host array (or physical array) H is

the original processor array was obtained after manufacture,

the faulty PEs will random distribute among physical array.

A sub-array of H after reconfiguration, is called target array

(or logical array) T , which doesnt contain faulty PE. Assume

ρ indicates the fault density of the host array, where 0 <
ρ < 1, i.e., there are ρ · m · n faulty PEs in an m × n host

array. The rows (columns) in host array are called physical

rows (columns). The rows (columns) in logical array are called

logical rows (columns). An r×t target array is the logical array

with r logical rows and t logical columns. In this paper, all

the assumptions in architecture are the same as literature in

[12][13].

Figure 1 shows an example for the fault-tolerant architecture

of a 4 × 4 host array. In the array, each square stands for

a PE, while each circle represents a reconfigurable switch.

Neighboring PEs are connected to each other by a four-port

switch and switching functions are provided by a single-track

switch. All switches and links in the array are assumed to

be fault-free. This assumption can make the interconnection

between PEs relatively simple.

We can change the connection relationship among PEs by

the switch states. Every PE can connect eight PEs in up, down,

left, right four directions. ’Row bypass and column rerouting’

is one type of rerouting constraints in many reconfiguration

algorithms. As shown in Fig.1, e(i, j) indicates the PE located

at the position (i, j) in the host array. If e(i, j + 1) faults,

the data will bypass e(i, j + 1) through the internal bypass,

then e(i, j) can communicate with e(i, j + 2) directly. This

connection scheme is called row bypass schemes.

The column rerouting scheme change the states of relative

switches to form a logical column, and the fault-free PEs

located in different physical rows can be connected together

to form a logical column. In the column rerouting schemes,

e(i, j) can connect to e(i+1, j′) through two external switches,

where |j − j′| � d, and d is named compensation distance.

Figure 1. Switch functions and rerouting manners on a 4 × 4 mesh linked
by four-port switch.

According to the previous literature, we also limited d to 1.

For more detail, refer to [12][13].

Figure 2. The three different interconnects for column rerouting scheme

There are six possible types of link-ways for a target array.

They can be classified into two classes based on the number

of the switches used. One is called short interconnect, which

uses one switch to connect neighboring PEs, and the other is

called the long interconnect, which uses two switches. Figure

2 shows three different link-ways, due to the constraint of

’row bypass and column rerouting’ utilized in this paper. For

more details on the fault-tolerant architecture, see [14]. In

Figure 2, (a) is short interconnects, while the others are long

interconnects. For the convenience of description, this paper

uses a straight line (a’) on behalf of the short interconnect (a),

and oblique line (b’), (c’) represent the long interconnect (b),

(c) respectively.

Assume u indicates a PE in host array, where row(u)
(col(u)) indicates the physical row (column) index of the PE

u. The lower adjacent set Adj+(u) and the upper adjacent set

Adj−(u) of each fault-free PE u in the row Ri is defined as

follows:

1) Adj+(u)={v : v ∈ Ri+1, v is fault-free and |col(u) −
col(v)| � 1} 1 � i � m− 1.

2) Adj−(u)={v : v ∈ Ri−1, v is fault-free and |col(u) −
col(v)| � 1} 2 � i � m.
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For arbitrary v ∈ Adj+(u)/Adj−(u), v is called the lower

(upper) adjacent of u. Every adjacent sets Adj+(u)/Adj−(u)
have three elements, called lower (upper) left adjacent, lower

(upper) middle adjacent, and lower (upper) right adjacent,

respectively.

Let R1, R2, · · · , Rm be the rows of the given host array.

Assume Bl, Br are two logical columns passing through each

physical row of the mn host array, and they are known as the

left and right boundaries of the area, respectively, where Bl is

on the left of Br. In this paper, A[Bl, Br] indicates the area

that consists of the PEs bounded by Bl and Br (including Bl

and Br). A[Bl, Br) indicates the same area as above including

Bl but not excluding Br. Suppose that Bl is the i-th logical

column generated by GCR [15] in the left-to-right manner and

Br is the (k− i+ 1)-th logical column generated by GCR in

the right-to-left manner, where k is the total number of logical

columns. As pointed out in the literature [12], the boundaries

Bl and Br are not independent, i.e, there must exist at least

one intersection between Bl and Br. The area A[Bl, Br] is the

largest area available to generate the i-th local optimal logical

column.

III. THE PROPOSED ALGORITHM

The algorithm DPA calculates the shortest path by visiting

all fault-free PEs in local area, and they may get more than

one local optimum column. In order to improve the time

efficiency of reconfiguration, we propose a shortest partial

path first algorithm, denoted as SPPA, that constructs a local

optimal column only by visiting parts of the fault-free PEs

in the local area. The algorithm was proposed based on

backtracking method, together with assigning the priority to

the fault-free PEs in the reconfiguration process. Unlike DPA

which enumerates the all shortest paths, the proposed SPPA

terminates when one shortest path is obtained, in order to save

reconfiguration time.

Assume PE u is the current node prepared for expanding,

when we construct a local optimal logical column in the area

A[Bl, Br] by the algorithm SPPA. w(u) indicates the weight

of u, i.e., the path length from the start point to the PE u.

The weight of fault PE u′ is assigned to ∞, i.e., w(u′) =∞.

We set w(u) to Curw, where Curw indicates that the current

weight of u. It is noteworthy that there may exist several nodes

with the same weight of Curw.

We now briefly describe our algorithm SPPA. Initially, the

algorithm visits the nodes with the Curw value of 0 according

to the priority of the PEs. The algorithm determines whether

the search reaches the end of the logical column. If the

optimal logical column is not completed based on the current

weight of Curw, the procedure will continue its searching

with the updated weight Curw+1, according to their priority.

The proposed method repeats until getting an optimal logical

column.

It is worthwhile to pointed out that, the partial path with the

current weight of Curw in a logical column, is the shortest

partial path.

In the process of visiting the nodes, we put PE u as

the current node that will be extended. It is not difficult

to understand that the nodes with weight of Curw + 1 are

obtained by visiting the upper right (left) node of PE u with

the weight of Curw. When the upper right (left) node is the

PE u, we will continue the visiting to the upper middle node,

in order to obtain the nodes with the weight of Curw + 1.
Generally, there are some nodes with the same weight of

Curw in the extension of the shortest partial path. Then, we

need to considering the priority of the nodes. We define the

priority for these nodes as follows, in order to select someone

to extend from Curw to Curw + 1.
Assume that the shortest partial path is extended from the

bottom row Rm to the top row R1.

1) The node of the highest priority is the one that is closest

to the top row R1.

2) If several nodes have same weight of Curw and they

are in the same row, the node of the highest priority is

the rightmost one.

When we extend the nodes from Curw to Curw + 1,

the upper right node for every node with weight of Curw
has a higher priority than the upper left node. This process

may provide a larger area for another logical column. If there

is a shortest partial path which is not extend, the proposed

algorithm will not update the value of Curw, this is to

guarantee the check for all shortest partial paths.
The proposed algorithm constructs an optimal logical col-

umn in local area A[Bl, Br] and the weight can be calculated

in the manner of bottom-to-up way. In order to conveniently

understand the process of SPPA algorithm, Figure 3 shows an

example to illustrate the extension of the shortest partial path

on a 5× 5 host array. The top row R1 is the first line in the

main array. PE01 is the intersection of Bl and Br, i.e. the start

node of the partial path. The routing process terminates when

it reaches the top row R1.
As the PEs with weight of Curw+1 are obtained by visiting

the PEs with the weight of Curw, we need to backtrack to the

PE with a weight of Curw to extend. In the routing process,

if the PE has been visited, we will not to visit it again. For the

backtracked PEs, if the upper right (left) nodes was visited,

we will not to backtrack it again.
As shown in Figure 3, the algorithm visits PE01 in step 1

and then directly moves to PE02. After that, the PEs with the

weight of 0 has been extended. In step 2, we extend the PEs

according to the priority with the weight of 0. PE02 can be

extended to PE03, because PE03 does not reach the top row

R1, then we extend PE01 to obtain the PE with the weight of

1, this process can obtain PE04 and PE05. It is not difficult

to find the PEs with the weight of 1 do not reach the top row

R1. In step 3, we extend the PEs according to the priority

with weight of 1, to obtain the PEs with weight of 2. The

node of the highest priority is PE03, and PE06 is obtained,

but PE06 does not reach the top row R1. Then we visit PE04.

Because PE04 cant be extend, we obtain PE07, PE08, PE09

by sequential extension from PE05. As PE09 reach the top

row R1, the algorithm terminates.
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Figure 3. Example for extension of shortest partial path

In the process of constructing a shortest path, the size of

Curw was increased one by one and all nodes will be visited

when its weight less than Curw. If the nodes with the weight

of Curw cant get the optimal solution, then the procedure will

visit the PEs with the weight of Curw+1. When we obtain an

optimal solution in the weight of Curw, the all nodes with the

weight less then Curw must have been visited. Thus, we can

prove by the reduction to absurdity that the SPPA algorithm

can construct an optimal path.

Figure 4. (a) Local optimal column by DPA, and (b) SPPA algorithm

Figure 4 shows an example to compare the algorithms

DPA and SPPA in constructing the local optimal column.

LC1, LC21, · · · , LCm are the logical columns generated by

GCR in left-to-right manner, RC1, RC2, · · · , RCm are the

logical columns generated by GCR in right-to-left manner,

and C2 is the local optimal column constructed in the local

area between LC2 and RC2, i.e. LC2, RC2 is the boundary

Bl, Br, respectively. The numbers indicate the weight of the

PE. In the area A[LC2, RC2], it is clear that the DPA visits all

18 fault-free PEs, while the SPPA only needs to visit 8 PEs.

In the n × n host array, assume N is the total number of

fault-free PEs on the area A[Bl, Br], and m is the number of

visited fault-free PEs by SPPA to generate a local optimum

column on A[Bl, Br]. The worst time complexity of SPPA is

same as that of DPA, i.e., O(N). But SPPA works on O(m),
and m is very close to n for most cases, although SPPA has

to backtrack for the shortest path.

IV. EXPERIMENTAL RESULTS AND ANALYSIS

As mentioned in section 1, DPA has been employed by

many significant works, such as ALG01 and ALG02, to refine

the interconnect length of the target arrays. In this section,

we compare the proposed algorithms to DPA. In order to

make a fair comparisons, we keep the same assumptions as in

[12][13]. The algorithms are simulated in C++ on a personal

computer with Intel(R) Core(TM) i5-3470 CPU 3.20GHz and

4G RAM, and they are compared on the same random input

instances. The data is collected on different sized host array

with various fault densities.

The following notations are utilized for performance evalu-

ation of the algorithms.

- tot.len : the total number of long interconnects.

- tot.vis : the total number of visited PEs.

- imp.vis : the improvement of the SPPA algorithm over

DPA in terms of tot.vis, calculated by:(
1− tot.vis of SPPA

tot.vis of DPA

)
× 100%

- tot.t : the time of constructing a logical array.

- imp.t : the improvement of the SPPA algorithm over DPA

in terms of tot.t, calculated by:(
1− tot.t of SPPA

tot.t of DPA

)
× 100%

Figure 5 shows the performance comparisons between DPA

and SPPA for all logical columns in a host array. The data

are collected on the 256×256 host arrays. The subfigures (a),

(b), (c) show the number of the visited PEs for constructing

each logical column. The host array is with the fault rate of

1%, 10%, 20%, respectively. The fault PEs is distributed in the

array by a uniform way. The subfigures (a), (b), (c) show the

time efficiency that corresponding to (a), (b), (c), respectively.

It is evident that the proposed algorithm greatly reduces the

number of the visited fault-free PEs for constructing a local

optimal column in local area. Typically, the reconfiguration

time has been reduced with the decrease of the number of

visited fault-free PEs in constructing a local optimal column.

For the first 20 logical columns, the improvement is clear as

the corresponding local area to form the logical columns is

relatively larger. For the other logical columns, SPPA and DPA

are comparable in terms of the reconfiguration time.

Table 1 shows the performance comparisons of algorithms

DPA and SPPA for random faults of uniform distribution, aver-

aged over 20 random instances. The data are collected from the

host array with different sizes from 64×64 to 512×512. The

total number of visited PE (tot.vis) is successfully reduced,

resulting in the significant improvement in terms of running

time. For example, on 128× 128 arrays with 10% faults, the
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Figure 5. Performance Comparison

improvement of SPP over DPA is up to 41.7% in terms of

tot.vis, and the corresponding improvement is 35.3% in terms

of tot.t. This shows the superiority of the proposed SPPA in

accelerating reconfiguration of the VLSI arrays.

The number of the long interconnects of the target arrays

has a little bit increase by SPPA. For example, on the 128×128
host array with 10% faults, the target array produced by SPPA

has 4633 long interconnects, that is more 25 than 4608, i.e.,

about 0.5% acceptable increase. This is because DPA take

times to select the rightmost shortest path in order to enlarge

the local area for the next logical columns, while SPPA only

extends the current shortest partial path. Therefore, SPPA saves

time but may reduce the size of the local area for the next

logical columns, resulting in a little bit increase in the number

of the long interconnects. But the target arrays produced

by both algorithms have same size, and thus the harvest of

SPPA is kept same as that of DPA. Briefly, the proposed

SPPA significantly reduce the reconfiguration time, with an

acceptable increase in the number of long interconnects, but

without loss of harvest.

Table I
THE PERFORMANCE COMPARISON OF ALGORITHMS DPA AND SPPA FOR RANDOM FAULTS OF UNIFORM DISTRIBUTION, AVERAGED OVER 20

RANDOM INSTANCES

Host array Target array Performance

Size

m× n
Fault

(%)
Size

r × t
tot.len

DPA SPPA

tot.vis
DPA SPPA

imp.vis
(%)

tot.t(ms)

DPA SPPA

imp.t
(%)

64× 64

1

5

10

20

64× 61
64× 55
64× 48
64× 33

488 492

987 995

1056 1068

865 872

6649 3861

6589 3621

5821 3379

4894 2922

41.9

45.0

41.9

40.2

127 118

198 166

218 186

209 188

6.8

16.1

14.6

10.3

128× 128

1

5

10

20

128× 123
128× 110
128× 96
128× 68

3082 3122

4882 4904

4608 4633

3708 3783

29759 15704

26055 14889

23912 13950

19645 12191

47.2

42.8

41.7

37.9

1121 923

1531 1142

1888 1222

1934 1181

17.6

25.4

35.3

38.9

265× 265

1

5

10

20

256× 247
256× 221
256× 194
256× 136

17991 18350

23052 23375

20240 20462

15536 16310

114858 63668

104645 60696

93402 56832

77734 49543

44.5

42.0

39.2

36.3

4518 3769

6961 4768

6510 4937

8579 6794

16.5

31.5

24.1

20.7

512× 512

1

5

10

20

512× 496
512× 447
512× 390
512× 293

88374 88519

98374 98971

84718 86064

63479 64054

454986 256436

407001 243727

372759 229530

312820 205389

43.6

40.1

38.8

34.3

34244 28998

37665 28926

34052 23916

42104 34671

15.3

23.2

29.7

17.6
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V. CONCLUSIONS

In this paper, we have proposed an efficient algorithm to ac-

celerating reconfiguration for the degradable VLSI arrays with

fault PEs. The proposed algorithm selects the shortest partial

path to extend to an optimum logical column. Compared with

the existing algorithms, the proposed algorithm successfully

avoids the search for all possible shortest paths related to the

fault-free PEs, resulting in the significant improvement over

the state-of-the-art in terms of reconfiguration time, without

loss of harvest. Simulation results show that, the improvement

is from about 35% to 45% in the number of the visited PEs

for all cases considered in this paper, and the state-of-the-art

is accelerated up to by 38% in the best case.
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