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Abstract

This paper proposes three algorithms for multiple-choice hardware-software partitioning with the objec-

tives: minimizing execution time and power consumption, while meeting the area constraint. A heuristic

algorithm is proposed to rapidly generate an approximate solution. A tabu search algorithm is cus-

tomized to refine the heuristic solution. Also, a dynamic programming algorithm is proposed to calculate

the exact solution. Simulation results show that the heuristic method produces results that are very close

to the exact ones, which can be further refined by tabu search to the solutions with an error of no more

than 1.5% for all cases considered in this paper.

Keywords: Multiple choice, hardware/software partitioning, bi-objective, power consumption,

algorithm

1. Introduction

Hardware/software (HW/SW) partitioning plays an essential role in embedded systems design to de-

cide which components (tasks) in an application should be mapped to software and hardware. Hardware

implementation is preferred when performance and power is a critical concern, however they are usually

achievable with significant cost. On the other hand, software is relatively cheap and is preferred when

programmability is important. However, pure software implementation are usually unable to meet the

timing constraints and power budgets of real-time systems. Therefore, typical embedded systems in-

corporates a mix of hardware-software components to meet the various conflicting constraints of speed,

power and cost.

The historical and primary work in the HW/SW partitioning problem can be found in [1]. Traditional

approaches include hardware-oriented and software-oriented methods. Hardware-oriented approach starts
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with a complete hardware solution and iteratively moves parts of the system to the software as long as the

performance constraints are fulfilled [2][3]. The latter approach starts with a software program and itera-

tively moves pieces to hardware to improve speed until the performance of the final system meets the given

constraint [4][5]. Many approaches emphasize on the algorithmic aspects since the HW/SW partitioning

has been shown to be NP-hard for most cases[6]. Thus, simulated annealing algorithms [4][7], dynamic

programming algorithms [8][9], integer programming approaches [10][11], genetic algorithms [12][13] and

particle swarm optimization [14] are generally utilized to perform the system partitioning and hardware

exploration. In addition, some heuristic approaches are introduced in [15][16] for HW/SW partitioning.

The work in [17] compared the genetic search, simulated annealing, and tabu search algorithms for solving

the partitioning problem and showed the superiority of the tabu search approach. The comparisons of

genetic search and simulated annealing algorithms can be found in [18]. While most of these approaches

can work well within their respective co-design environments, it is impossible to perform a comprehensive

comparison of all the existing approaches due to the large incompatibility in their co-design environments

and the lack of proper benchmarks [18]. In our previous work [19][20], the HW/SW partitioning problem

is transformed into a variation of knapsack problem. A theoretical approach to find the global optimum

of an NP-hard model was proposed in [21].

For a given application,we focus on its ’hot path’ which consists of the executed components with

high frequency. Hence, the HW/SW partitioning for the whole application can be approximately solved

by partitioning the selected hot path. It is fact that larger hardware area may provide higher speed

implementation for a given component due to the potential of parallel execution in hardware. Hence,

each component of the application has multiple-choice in the different ways of hardware implementation,

according to the different hardware areas assigned to it.

Due to the increasing complexity of the applications and growing importance in meeting multiple de-

sign constraints, there is a need for hardware-software partitioning algorithms that can produce multiple-

objectives and multiple-choice solutions. The challenge in solving for multi-objective problem stem from

the conflicting design goals/constraints, while the motivation of solving for multi-choice solutions arise

from the need to consider many different but feasible hardware implementation options of a single task.

This is a significantly challenging problem as each implementation option has different speed, power and

cost attributes.

In our previous work [22], the computing model of multi-choice HW/SW partitioning problem is given

and three algorithms are proposed to minimize the execution time of all the given components under the
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limited area. This model is very limited as it only considers the execution time and hardware area. Power

consumption which is an important design criteria in embedded systems today is ignored.

In this paper, we first formulate the multi-choice HW/SW partitioning problem for minimizing the

execution time and power consumption under the constraint of hardware area. The introduction of an

additional design objective (i.e. power) increases the complexity of the problem. In particular, this

now becomes a bi-objective multi-choice HW/SW partitioning problem and we have reformulated the

problem as a multi-objective knapsack problem. This enabled us to devise a heuristic approach to

rapidly generate high quality solutions. The solutions can be further refined with tabu search. We have

also devised an exact algorithm based on dynamic programming to solve the multi-objective multi-choice

problem. Results show that the approximate methods can produce solutions which marginally differs

from the exact solution.

Our algorithms can be used in the emerging applications for electric vehicles. We have previously

demonstrated the need for hardware-software partitioning of the Extended Kalman Filter for motor

control in electric vehicle applications [23]. While it is possible to implement the entire motor control

loop in reconfigurable hardware, a typical design will require certain amount of existing and certified motor

control software. Our investigation revealed that the communication latencies between the processor and

hardware accelerator will impact the hardware implementation choice. In addition, performance and

power consumption are essential design constraints in electric vehicle applications.

The rest of the paper is organized as follows: In section 2, we present the computing model and

formally describe the bi-objective multi-choice HW/SW partitioning problem. In section 3, we introduce

the proposed algorithms. In section 4, we show the experimental results. Finally, we conclude our work

in the last section.

2. Computing Models and Formulations

This section describes the bi-objective multi-choice HW/SW partitioning problem, which is the focus

of the paper. A hot path of an application consists of a sequence of n blocks, B = {B1, B2, · · · , Bn}, where

each block can be implemented in software or hardware. Note that the blocks are part of the hot path,

they cannot be implemented in parallel. However each block can be realized in hardware in different

ways by exploiting intra-block parallelism, whereby each implementation option may incur a different

hardware area. The goal of HW/SW partitioning is to decide which blocks should be implemented in

hardware and which in software to meet certain design objectives based on the given area constraint.
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Figure 1: Computing model.

Figure 1 shows an simple example of the computing model. The following notations are utilized to

formulate the partitioning problem.

• esi (psi ) denotes the execution time (power consumption) for implementing Bi in software, 1 ≤ i ≤ n.

• ri denotes the number of the implementation ways of Bi in hardware, 1 ≤ i ≤ n.

• aij denotes the area penalty of implementing Bi in hardware with the way j, where 1 ≤ j ≤ ri and

1 ≤ i ≤ n.

• eij (pij) denotes the execution time (power consumption) of Bi in hardware with area aij , 1 ≤ i ≤ n,

1 ≤ j ≤ ri.

• tshi (tssi ) denotes the communication time between Bi and Bi+1 if Bi is assigned to software and

Bi+1 is assigned to hardware (software), 1 ≤ i < n.

• thhi (thsi ) denotes the communication time between Bi and Bi+1 if Bi is assigned to hardware and

Bi+1 is assigned to hardware (software), 1 ≤ i < n.

• pshi (pssi ) denotes the communication power consumption between Bi and Bi+1 if Bi is assigned to

software and Bi+1 is assigned to hardware (software), 1 ≤ i < n.
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• phhi (phsi ) denotes the communication power consumption between Bi and Bi+1 if Bi is assigned to

hardware and Bi+1 is assigned to hardware (software), 1 ≤ i < n.

The communication time and communication power consumption of each hardware block with its

neighbor(s) is the same regardless of how that are implemented in hardware. If we regard the software

realization way as a special case in hardware, then the block Bi has ri+1 different ways of implementation.

Also, we set ai0 to 0, ei0 to esi and pi0 to psi , respectively, corresponding to the software implementation

of block Bi. Without loss of generality, we assume aij < aij′ and eij ≥ eij′ for 0 ≤ j < j′ ≤ ri and

pij < pi0 for 1 ≤ j ≤ ri for each block Bi, throughout this paper. This assumption implies that hardware

implementation with larger area, will lead to faster execution. As for the power consumption,we assume

that the power consumption of any hardware implementation way is less than it in software, due to the

diversity of the system structures.

Note that power consumption is not taken into account in the computing model reported in [22]. We

now extend it. Bsi indicates that block Bi is implemented in software and Bhi indicates that block Bi

is implemented in hardware. The pair of ordinal numbers associated with the lines connecting the two

blocks denote the communication time and power consumption respectively.

In Figure 1, there are 4 blocks to be partitioned. Now we take B1 as an example to explain the

proposed model. B1 has three implemented ways, one is in software and the other two are in hardware.

If B1 is realized in software, its execution time es1 is 12 and the execution power consumption ps1 is

17. When B2 is just implemented in software, the communication time tss1 and power consumption pss1

are 6 and 4, respectively. If B2 is implemented in hardware, the communication time tsh1 and power

consumption psh1 are 5 and 8, respectively. If B1 selects the first way in hardware, its execution time e11

becomes 2, the execution power consumption p11 turn into 2, and the area penalty of implementing B1

with the way 1, i.e., a11, is 3. When B2 is just implemented in software, the communication time ths1 and

power consumption phs1 are 4 and 7, respectively. If B2 is implemented in hardware, the communication

time thh1 and power consumption phh1 are 3 and 8, respectively. If B1 selects the second way in hardware,

its execution time e12 becomes 1, the execution power consumption p12 turns into 3, the area penalty a12

of implementing B1 with the way 1 is 4. It is worthy to note that the communication time and power

consumption are the same with the first way in hardware at this time.

Each block can be realized in several ways (implementation options), but only one way will be even-

tually selected. The binary variable xij ∈ {1, 0}, where xij = 1 (xij = 0) denotes that Bi is (not)

implemented in j-th way for j = 0, 1, · · · , ri. We can conclude that
ri∑
j=0

xij ≡ 1 because only one way is
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allowed to implement block Bi, and

xi0 = 1−
ri∑
j=1

xij . (1)

(x1,x2, · · · ,xn) indicates a feasible solution of the bi-objective multiple choice HW/SW partitioning

problem, where xi = (xi0, xi1, · · · , xiri) reflects the implementation way of block Bi. E(x1,x2, · · · ,xn)

indicates the corresponding execution time of the solution, that includes the inherent communication

overhead. P (x1,x2, · · · ,xn) indicates the corresponding power consumption. Ti(xi,xi+1) indicates the

communication time and Pi(xi,xi+1) indicates the communication power consumption between Bi and

Bi+1, where 1 ≤ i ≤ n− 1. So the execution time can be formalized as:

E(x1,x2, · · · ,xn) =

n∑
i=1

(esixi0 +

ri∑
j=1

eijxij) +

n−1∑
i=1

Ti(xi,xi+1),

and Ti(xi,xi+1) is calculated by:

Ti(xi,xi+1) = xi0 · xi+1,0 · tssi + xi0 · (1− xi+1,0) · tshi

+ (1− xi0) · xi+1,0 · thsi + (1− xi0) · (1− xi+1,0) · thhi .

The power consumption can be formalized as:

P (x1,x2, · · · ,xn) =

n∑
i=1

(psixi0 +

ri∑
j=1

pijxij) +

n−1∑
i=1

Pi(xi,xi+1), and

Pi(xi,xi+1) = xi0 · xi+1,0 · pssi + xi0 · (1− xi+1,0) · pshi

+ (1− xi0) · xi+1,0 · phsi + (1− xi0) · (1− xi+1,0) · phhi .

From (1), we conclude

E(x1,x2, · · · ,xn) =

n∑
i=1

(esi (1−
ri∑
j=1

xij) +

ri∑
j=1

eijxij) +

n−1∑
i=1

Ti(xi,xi+1)

=

n∑
i=1

esi −
n∑
i=1

ri∑
j=1

(esi − eij)xij +

n−1∑
i=1

Ti(xi,xi+1). (2)
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P (x1,x2, · · · ,xn) =

n∑
i=1

(psi (1−
ri∑
j=1

xij) +

ri∑
j=1

pijxij) +

n−1∑
i=1

Pi(xi,xi+1)

=

n∑
i=1

psi −
n∑
i=1

ri∑
j=1

(psi − pij)xij +

n−1∑
i=1

Pi(xi,xi+1). (3)

Given available hardware area A, the bi-objective multiple-choice HW/SW partitioning problem discussed

in this paper can be modeled as the following non-linear minimization problem P:

P :



minimize E(x1,x2, · · · ,xn)

P (x1,x2, · · · ,xn)

subject to
n∑
i=1

ri∑
j=0

aijxij ≤ A,
ri∑
j=0

xij = 1 and xij ∈ {0, 1},

i = 1, 2, · · · , n, j = 0, 1, · · · , ri.

Like the general multi-objective programming, the two objective functions discussed this paper are

also conflicting. This is because when total time is minimal, the total power consumption is not necessarily

minimal, vice versa. Deeper reason lies in the fact that the execution time for the same block decreases

with the area augmentation, but the power does not necessarily follow the same pattern.

First, we introduce the multi-objective knapsack problem. Consider an optimization problem with

t objective functions V1, . . . , Vt, and let I be an instance of this problem. If S is a feasible solution,

then Vk(S) denotes the value of S with respect to the k-th objective function, 1 ≤ k ≤ t. Without

loss of generality we assume that all objectives are maximization criteria. A feasible solution S1 weakly

dominates a feasible solution S2 if

Vk(S1) ≥ Vk(S2), 1 ≤ k ≤ t.

A weakly domination solution S1 even dominates solution S2 if at least one of the inequalities is strict.

A feasible solution S is efficient or Pareto optimal if there is no other feasible solution which dominates

S. The set R of efficient solutions for I is called Pareto frontier.

The multi-objective multi-choice knapsack problem (MOMCKP) is obtained from the classical multi-

choice knapsack problem by introducing t profit values instead of one for every item. More precisely, an
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instance I of MOMCKP consists of n classes of items S = {1, 2, . . . , n} and a knapsack with capacity

C. Every class has at least one item, and every item in a class is different. Each item in class i has t

profits pik and a weight wik, where k = 1, 2, . . . , t. The MOMCKP is aimed at finding a subset of all

items which maximizes t profits
∑
i∈S′ pik, k = 1, 2, . . . , t.

The problem P is an extended bi-objective multi-choice knapsack problem. Bi-objective multi-choice

knapsack problem is a special case of multi-objective knapsack problems which considers two objectives.

As the single objective case has been proven to be NP-complete, we can conclude that P is also NP-

complete because the number of pareto-optimal solutions can grow exponentially with the number of

items in the knapsack. Generally only one partitioning scheme, i.e. one feasible solution of the Pareto

frontier is required.

A solution of a bi-objective knapsack problem is called supported if it can be found through weighted

sum scalarization (wss), i.e. if it is a convex combination of the two objective functions. Otherwise it

is non-supported [24]. This supported solution is one solution of the Pareto frontier. Through this wss

method, the bi-objective problem is transformed into a single objective problem. We can formulate the

P by following single objective multi-choice knapsack problem which has been shown to be NP-hard:

P ′ :



minimize αE(x1,x2, · · · ,xn)

+(1− α)P (x1,x2, · · · ,xn)

subject to
n∑
i=1

ri∑
j=0

aijxij ≤ A,
ri∑
j=0

xij = 1 and xij ∈ {0, 1},

i = 1, 2, · · · , n, j = 0, 1, · · · , ri,

0 ≤ α ≤ 1.

Let B(x1,x2, · · · ,xn) = αE(x1,x2, · · · ,xn)+(1−α)P (x1,x2, · · · ,xn). Thus α is the weight of execution

time, and (1−α) is the weight of power consumption. The solution of P ′ is the supported solution under

this weight trade-off. If execution time is of higher concern, we can set α > 1− α, that is α > 0.5. In a

similar way, if the user attaches more importance to power consumption, we can set α < 0.5. When the

two objectives are of equal importance, α = 0.5.
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3. Proposed Algorithms

3.1. Heuristic Algorithm

The partitioning problem P ′ is closely related to multiple-choice knapsack problem (MCKP). Let

block Bi in the problem P ′ correspond to the item i in MCKP. Also aij and A in P ′ correspond to wij

and C in MCKP, respectively. The problem P ′can be reduced to MCKP when communication time and

power consumption are not taken into account. This is because, when all communication time and power

consumption values are set to 0, the two objective functions can be reduced from (2) and (3) to:

E(x1,x2, · · · ,xn) =

n∑
i=1

esi −
n∑
i=1

ri∑
j=1

(esi − eij)xij .

P (x1,x2, · · · ,xn) =

n∑
i=1

psi −
n∑
i=1

ri∑
j=1

(psi − pij)xij .

As min E(x1,x2, · · · ,xn) and P (x1,x2, · · · ,xn) are equivalent to

max

n∑
i=1

ri∑
j=1

(esi − eij)xij and
n∑
i=1

ri∑
j=1

(psi − pij)xij ,

the problem P ′ can be reduced to the following multiple-choice knapsack problem,



maximize α
n∑
i=1

ri∑
j=1

(esi − eij) · xij

+(1− α)
n∑
i=1

ri∑
j=1

(psi − pij)xij

subject to
n∑
i=1

ri∑
j=0

aijxij ≤ A,
ri∑
j=0

xij = 1 and xij ∈ {0, 1},

i = 1, 2, · · · , n, j = 0, 1, · · · , ri,

0 ≤ α ≤ 1.

The objective function of P ′ is nonlinear while it is not for MCKP. This is the only difference between

them. So the problem P ′ is also NP-hard.

We adopt the approach for calculating communication time in [22]. The communication time profit

for moving Bi from software to hardware, denoted as δi, is defined as

δi = ct sw(Bi)− ct hw(Bi),
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where, ct sw(Bi) (ct hw(Bi)) indicates the communication time of Bi to its neighbor(s) when Bi is

assigned to software (hardware). The power consumption due to communication profit can be calculated
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Figure 2: Calculation of δi and ηi.

in a similar way as the communication time. The communication power consumption profit for moving

Bi from software to hardware, denoted as ηi, is defined as

ηi = cp sw(Bi)− cp hw(Bi),

where, cp sw(Bi) (cp hw(Bi)) indicates the communication power consumption of Bi to its neighbor(s)

when Bi is assigned to software (hardware). Figure 2 shows all the cases for the communication time

when Bi is moved from software to hardware.Specifically, δi and ηi can be calculated as follows:

• case (a): δi = tssi−1 + tssi − tshi−1 − thsi , ηi = pssi−1 + pssi − pshi−1 − phsi ;

• case (b): δi = thsi−1 + tssi − thhi−1 − thsi , ηi = phsi−1 + pssi − phhi−1 − phsi ;

• case (c): δi = tssi−1 + tshi − tshi−1 − thhi , ηi = pssi−1 + pshi − pshi−1 − phhi ;

• case (d): δi = thsi−1 + tshi − thhi−1 − thhi , ηi = phsi−1 + pshi − phhi−1 − phhi .

As each block has ri + 1 different ways to be implemented, we evaluate each way via profit-to-area ratio.

If the block Bi is in its kth way and is being considered to be changed to jth way, where j > k, the

profit-to-area ratio for this case, denoted as λi(k, j) calculated by

α(eik − eij + δ(i, k)) + (1− α)(pik − pij + η(i, k))

aij − aik
(4)

where δ(i, k) =

 δi if k = 0,

0 otherwise.
and η(i, k) =

 ηi if k = 0,

0 otherwise.
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When k 6= 0, δ = 0, η = 0, the implementation way of block Bi changes within hardware. The communi-

cation time and the communication power consumption are not changed.

Our heuristic algorithm is based on finding the largest profit-to-area ratio in each iteration. Initially

we assume all blocks are realized in software. δis and ηis are computed as shown in figure 2(a). The

profit-to-area ratios are calculated for all blocks together with their different implementation ways. Then

the block with the maximum profit-to-area ratio is selected. The selected block will be considered to

be assigned to hardware if there is sufficient hardware area to implement it. All neighboring blocks of

the selected block update the corresponding communication profits, calculated as shown in figure 2(b),

2(c) and 2(d). Selecting the block with maximum profit-to-area ratio and updating the communication

profits are repeated on the remaining blocks with different ways of implementations, until no block and

no implementation way can fit the remaining hardware area.

The proposed heuristic algorithm (HEA) is outlined below.

Input: Source data for the blocks B1, B2, · · · , Bn;

Output: The heuristic solution : solution[1 : n]. /* solution[i] = j indicates block Bi is implemented in j-th way. */

Algorithm HEA

begin

1 residual area := A;

2 for i := 1 to n do /* initializing */

solution(i) := 0, ki := 0;

Calculate λi(ki, j) using (4) for 0 < j ≤ ri;

end of for;

3 repeat

3.1 λi′ (ki′ , j
′) := max{λi(ki, j) | 1 ≤ i ≤ n and 0 < j ≤ ri};

3.2 if (ai′j′ ≤ residual area) and (λi′ (ki′ , j
′) > 0)

then begin/* implement block Bi′ in j′-th way, update */

solution(i′) := j′; /* Update solution(i′) */

ki′ := solution(i′);

Update profit-to-area ratios for block Bi′ and its neighbor(s);

residual area := residual area− ai′j′ ;

end;

until (no block fits for the residual hardware area);

4 Output solution[1 : n];

end.

Steps 1 and 2 run in O(n · r) time. Step 3 also run in O(n · r) to select the maximum profit-to-area

ratio and update the communication profits. Therefore, we can conclude that the time complexity of HA
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is bounded by O(n · r).

3.2. Tabu Search Algorithm

Tabu search algorithm is a local search algorithm that can be used for effectively solving the NP-hard

problems[25]. It utilizes seven primary parameters: stopping rule, tabu list, frequency-base memory,

aspiration criteria, tabu conditions, recency-based memory and neighborhoods. We use tabu search

algorithm (TSA) to refine the heuristic solution generated by HEA.

The problem P can be resolved using tabu search as follow. The approximate solution of HEA can

be represented by a string of numbers. For example in the following string ‘145035231’, ‘2’ indicates

that block B7 is realized in hardware using the second implementation option, while ‘0’ indicates that

the corresponding blocks are realized in software. The customized TSA starts with the initial solution

generated by HEA. In each iteration, we generate a fixed number of the neighbors (i.e. neighborhood size)

for the current solution. Each neighbor, denoted as Xneib, is generated by randomly changing two bits

(where each bit is associated with a block). If the generated neighbor fails to meet the area constraint, it

is discarded and new attempts are made to generate a new neighbor. This is repeated for a fixed number

of times. If all attempts fail, only one block is changed to obtain a feasible solution instead of two.

In each iteration of the TSA, we determine which neighbor is the most suitable based on recency-

based memory, frequency-based memory and the neighbor solution’s value E(Xneib). The most suitable

neighbor, denoted as Xlocal, is selected to replace the local solution. To exploit recency-based memory,

the selected neighbors are labeled as tabu-active.

In the entire search process, a neighbor solution Xneib may enter the tabu list many times. Assume

the latest entrance for Xneib is in the iteration iter late(Xneib) and the current search is at the iteration

iter curr. The tabu degree of Xneib, denoted as T d(Xneib), is defined as

T d(Xneib) = iter late(Xneib) + tabu tenure− iter curr.

Tabu degree is updated for each neighbor in each iteration. A positive tabu degree of a neighbor implies

that the neighbor is tabu-active. On the other hand, a negative one implies that the neighbor is not

tabu-active.

In TSA, the solution value is computed to select a good neighbor solution. Let Xneib be a neighbor

of the local solution Xlocal. It is evident that the smaller the value of B(Xneib), the better the quality of

the neighbor Xneib will be. Thus, Xi is better than Xj if B(Xi) < B(Xj). At each iteration, the move
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obtained the best solution in the neighborhood is selected, even if this results in a worse solution. A

fixed number of iterations is chosen as the stopping rule of the tabu search. The following is the formal

description of the tabu search approach.

Input: Xheur – The heuristic solution generated by the algorithm HEA;

Output: Xbest – the best-so-far solution found by tabu search;

Algorithm TSA

/* Tabu Search Algorithm for the problem MCHS. M indicates the fixed number of iterations. q indicates the neighborhood size.

*/

begin

1 Xlocal := Xheur, and Xbest := Xheur;

2 for iter := 1 to M do

begin

2.1 Generate q neighbors of Xlocal;

2.2 Compute the degrees and B(Xneib)s of the q neighbors;

2.3 Xmin neib := the neighbor with the minimal B(Xneib);

2.4 if B(Xneib) < B(Xbest) /* aspiration criterion */

then Xlocal :=Xmin neib, and Xbest :=Xmin neib

else begin

if all q neighbors are tabu-active

then Xlocal := the neighbor with the minimal tabu degree

else reward the neighbor(s) that never tabu-active and

Xlocal := the neighbor with the minimal B(Xneib);

end

2.5 Update frequency-based memory and recency-based memory;

/*put Xlocal into tabu list*/

end;

end

3.3. Exact Algorithm

In order to evaluate the performance of the algorithms HEA and TSA, we propose a dynamic program-

ming approach for the problem P ′, denoted as DPA in this subsection to calculate the optimal solution

of the problem P ′. The main idea is as follows. Assuming that the optimal HW/SW partitioning for

B1, B2, · · · , Bi−1 has been computed where the utilized hardware area is less than a. We now consider

how to partition the blocks B1, B2, · · · , Bi within the available area a. This is achieved by first arriving

at all partitioning possibilities based on representing the current block Bi in software or in hardware. The

optimal partitioning results is the best value. If Bi is implemented in software, the optimal partitioning

for B1, B2, · · · , Bi for the hardware area a is identical to the optimal partitioning for B1, B2, · · · , Bi−1.

If Bi is moved to hardware in j-th way, the optimal partitioning for B1, B2, · · · , Bi can be found by
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examining partitioning for the blocks B1, B2, · · · , Bi−1 for area a−aij . Now we consider the first i blocks

B1, B2, · · · , Bi, i ≤ n. Let B(i, j, a) indicate the objective function value by moving Bi to hardware of

area aij and then moving some or all blocks from B1, B2, · · · , Bi−1 to area a− aij . B(i, j, a) recursively

depends on B(i− 1, t, a− aij) for t = 0, 1, · · · , ri−1, because Bi−1 has ri−1 + 1 possible assignments, and

the hardware space has been partially occupied by block Bi.

Let ci(j, t) indicate the communication time and power consumption in the objective function between

blocks Bi and Bi+1 when Bi is implemented in hardware of area aij (in j-th way, 0 ≤ j ≤ ri) and Bi+1 is

implemented in hardware of area ai+1,t (in t-th way, 0 ≤ t ≤ ri+1). We define ci(j, t) for i = 1, 2, · · · , n−1,

as follows.

ci(j, t) =



α · tssi + (1− α) · pssi , for j = 0 & t = 0;

α · tshi + (1− α) · pshi , for j = 0 & t > 0;

α · thsi + (1− α) · phsi , for j > 0 & t = 0;

α · thhi + (1− α) · phhi , for j > 0 & t > 0;

Also, let B op(n,A) indicate the optimal objective function value achievable by moving some or all

the blocks from B1, B2, · · · , Bn to hardware of area A. The recurrent idea as described above can be

outlined as the following DPA:

DPA :



B(1, j, a) =

 ∞ for a1j > a,

α · e1j + (1− α) · p1j otherwise,

for 0 ≤ a ≤ A and 0 ≤ j ≤ r1;

B(i, j, a) =


∞ for aij > a,

min
0≤t≤ri−1

{B(i− 1, t, a− aij + ci−1(t, j)

+ α · eij + (1− α) · pij} otherwise,

for 2 ≤ i ≤ n− 1, 0 ≤ j ≤ ri and 0 ≤ a ≤ A;

B(n, j, A) =


∞ for anj > a,

min
0≤t≤rn−1

{B(n− 1, t, A− anj) + cn−1(t, j)

+ α · enj + (1− α) · pnj} otherwise,

for 0 ≤ j ≤ rn;

B op(n,A) = min
0≤j≤rn

{B(n, j, A)}

The pseudo-code below is given for the problem with n blocks and a list of trial area 〈A0, A1, · · · , Am〉.

A0 is set to 0, as it corresponds to software implementation. Am is set to the whole hardware size A.
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Step 1 is used for the initialization of the first block, that corresponds to the case of i = 1 in formula

DPA. Each B(i, j, a) is calculated by the nested for-loops (steps 2 and 3), the optimal objective function

value B op(n,Am) is calculated by step 4, in which the calculations for backtracking are undertaken.

trace(i, j, a) = l means that the block Bi−1 is implemented in l-th way. The array solution[1 : n] is used

to store the solution of partitioning n blocks within the area Am.

Let r = max1≤i≤n{ri}. Given n blocks and the list of trial area 〈A0, A1, · · · , Am〉, Step 2 runs in

O(n · r2 ·m) time, that dominates the computing time of DPA. By similar analysis, we conclude that the

space complexity is bounded by O(n · r ·m).

Unlike heuristic algorithms, DPA not only depends on the number of the blocks but also on the plot

granularity of the given hardware area A. In fact, given n blocks and the list of trial areas 〈A1, A2, · · · ,

Am〉, its complexity is bounded by O(n·r2 ·m) time. But DPA is very limited in dealing with the problem.

This is mainly due to the computational and memory requirements up to O(n·r ·m) in practice. However,

DPA can produce the optimal solution according to the dynamic programming principle of optimality

[1]. We utilize it to evaluate the proposed HEA and TSA.

Input: Source data for the blocks B1, B2, · · · , Bn;

A0, A1, · · · , Am – trial hardware area for total area A, where,

A0 = 0 corresponds to software implementation, and Am = A.

Output:The optimal solution stored in solution[1 : n].

Algorithm DPA

begin

1 for j := 0 to r1 do /* initializing for the first block */

for a := A0 to Am do

if a1,j ≤ a then B(1, j, a) := α · e1j + (1− α) · p1j else B(1, j, a) :=∞;

2 for i := 2 to n− 1 do /* computing for the first n− 1 blocks */

for j := 0 to ri do

for a := A0 to Am do

if aij ≤ a then

begin

for t := 0 to ri−1 do

if aij + ai−1,t ≤ a then

temp(t) := B(i− 1, t, a− aij) + ci−1(t, j) + α · eij + (1− α) · pij
else temp(t) :=∞;

end of for;

Find l such that temp(l) = min
0≤t≤rk−1

{temp(t)};

B(i, j, a) := temp(l) and trace(i, j, a) := l;

end

else B(i, j, a) :=∞ and trace(i, j, a) := NA;

3 for j := 0 to rn do /* computing for n-th (last) block */

if anj ≤ Am then

begin
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for t := 0 to rn−1 do

if anj + an−1,t ≤ Am then

temp(t) := B(n− 1, t, Am − anj) + cn−1(t, j) + α · enj + (1− α) · Pnj

else temp(t) :=∞;

end of for;

Find l such that temp(l) = min
0≤t≤rn−1

{temp(t)};

B(n, j, Am) := temp(l) and trace(n, j, Am) := l;

end

else B(n, j, Am) :=∞;

/*followed by backtracking along the trace for solution.*/

4 Find l such that B(n, l, Am) = min
0≤j≤rn

{B(n, j, Am)};

B op(n,Am) := B(n, l, Am), solution(n) := l and area := Am;

for i := n− 1 down to 1 do

solution(i) := trace(i+ 1, solution(i+ 1), area);

q := solution(i+ 1) and area := area− ai+1,q

end of for;

end

4. Simulation Results

The proposed algorithms HEA, TSA and DPA are simulated in C on a Workstation–Intel Xeon

E5-1650, 3.20GHz CPU, 16.00GB of RAM, running Microsoft Windows 7 enterprise operating system.

Random instances generated in the similar manner to that used in [6][19][20][22] are utilized in our

simulations. In order to make the dimension of time and power consumption comparable in terms of

importance, we use the same order of magnitude to generate their value randomly.

• aij is randomly generated in [1, 40], for j = 1, 2, · · · , ri. A is set to β · Ā, where Ā =
∑n
i=1 ai,ri , for

0 < β < 1. Given integer r, each ri is randomly generated in [1, r].

• esi , i.e., ei,0, is randomly generated in [1, 100] for i = 1, 2, · · · , n.

• eij is set to µi ·ei,j−1 for j = 1, 2, · · · , ri, where µi is randomly generated in (0, 1), for i = 1, 2, · · · , n.

• psi , i.e., pi,0, is randomly generated in [30, 100] for i = 1, 2, · · · , n.

• pij is randomly generated in [1, psi ] for j = 1, 2, · · · , ri.
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• tssi , tshi , thsi and thhi are randomly generated in [0, t] for each i, where t is called communication

time basis, 0 ≤ t ≤ 100.

• pssi , pshi , phsi and phhi are randomly generated in [0, p] for each i, where p is called communication

power basis, 0 ≤ p ≤ 100.

Let x∗ be the optimal solution produced by DPA, B(x∗) be the solution value of x∗. The quality of

an approximate solution x is measured by

ε(x) =
B(x)−B(x∗)

B(x∗)
× 100%.

Here, ε(x) is called solution error. In our simulations, when one parameter (e.g., neighborhood size in

figure 3(a)) changes, all other parameters are set to a fixed value.

4.1. Solution by TSA

For a given problem, the solution produced by TSA mainly depends on the utilized 4 parameters,

neighborhood size, the number of the iterations, tabu tenure and penalty value [6][20][22]. Without loss

of generality, the area constraint is set to 50% · Ā, α = 0.5, communication time (power) is set to 50, and

each block is assumed to have at most 3 hardware implementation ways. Figure 3 shows the relationship

between solution error and the 4 parameters of TSA on the random instance with 1000 blocks. The

solution error appears smaller and smaller with the increasing neighborhood size, as shown in figure 3(a).

This is due to the fact that when more neighbors are considered in the search process, there is a higher

probability of getting a better solution. The solution error decreases faster for the neighborhood size in

(0, 500]. While the solution error continues to decrease after 1000, the effort to refine the current solution

becomes increasingly difficult. Hence, we choose 1000 as the neighborhood size of TSA in our simulations.

Similar characteristics are exhibited for the number of the iterations as shown in figure 3(b). TSA may

refine the HEA solution to a better solution, and the solution error is reduced from 1.13% to 0.5% with

increasing number of iterations. After 1000 iterations, the rate of decreasing error is not significant. From

figure 3(c) and (d), we can observe that 100 and 2 are relatively good values for the tabu tenure and the

penalty respectively as they may lead to the solutions with the minimum error.

4.2. Performance Comparison

The proposed three algorithms are compared based on two metrics, solution value and solution error,

with different communication time, communication power, area constraint, number of ways (implemen-
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Figure 3: TSA solution quality on different parameters, averaged over 20 instances with n = 1000, A = 50% · Ā, α = 0.5,
t = 50, p = 50 and r = 3. The neighborhood size, the number of the iterations, tabu tenure and penalty value are set to
1000, 1000, 100, and 2, respectively.
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Figure 4: Solution vs. communication for algorithms HEA, TSA and DPA, averaged over 20 instances with n = 1000,
A = 50% · Ā, α = 0.5, t = 50, p = 50 and r = 3. The neighborhood size, the number of the iterations, tabu tenure and
penalty value are set to 1000, 2000, 100, and 2, respectively.

tation choices). From figure 4(a) and 4(b), we can observe that the solution error is almost stable with

varying communication time. The TSA can refine the solution error of HEA to be under 1%. Foe example

the solution error of HEA is about 1.4% for communication time basis is 40, and it can be refined to 0.6%

by TSA in figure 4(b).

Different scenario are exhibited when the communication power varies. The solution error of HEA

initially drops below 10 then rises. This is due to the combined influence of communication time and

communication power. However, the solution of HEA can be significantly refined by TSA, resulting in

better solutions with the error of no more than 1.5% as shown in figure 4(d).

From figure 5(a) and (b), it can be observed that HEA is able to produce nearly optimal solutions

when the area is tightly constrained (A < 20% · Ā). Each solution value gradually becomes better with

increasing hardware area. This is because more hardware area generally supports more blocks in hardware
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Figure 5: Solution vs. area and number of choices for algorithms HEA, TSA and DPA, averaged over 20 instances with
n = 1000, A = 50% · Ā, α = 0.5, t = 50, p = 50 and r = 3. The neighborhood size, the number of the iterations, tabu
tenure and penalty value are set to 1000, 2000, 100, and 2, respectively.

implementation, resulting in smaller solution values (execution time and power consumption). TSA can

still maintain the solution error to be under 1.0%.

As shown in figure 5(c), larger number of implementation choices also contribute to reduction in the

solution value. For example, the solution value of each algorithm is more than 5.7 × 104 for the case

where only one choice (implementation option) is allowed. But it reduces to about 4.0× 104 for the case

where 6 choices are allowed. With the increasing number of the implementation choices, the solution

error of the two algorithms become larger. However the solution error for HEA is less than 2.8% and the

solution error of TSA is under 1.0%, as shown in figure 5(d).
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Table 1: The solution quality ε (%) and the algorithm runtime T (ms) on different area constraint, averaged over 20 random
instances, r = 3, t = 50 and p = 50.

A = 20% · Ā A = 50% · Ā A = 80% · Ā
DPA HEA TSA DPA HEA TSA DPA HEA TSA

n B(x∗) T ε T ε T B(x∗) T ε T ε T B(x∗) T ε T ε T
100 5973.7 16.4 0.38 0.0 0.10 1585.8 4477.6 43.7 1.13 0.0 0.18 837.0 3948.4 61.6 2.58 0.0 0.07 578.8

150 9038.5 36.7 0.58 0.0 0.12 1915.0 6758.2 87.9 1.10 0.0 0.25 1088.2 5873.4 142.7 2.69 0.0 0.08 679.5

200 11921.9 64.8 0.32 0.0 0.11 2250.3 9022.2 162.3 1.07 0.0 0.26 1286.2 7927.1 255.1 2.51 0.0 0.10 813.8

250 15007.0 99.0 0.43 0.0 0.14 2441.4 11304.6 248.1 1.06 0.0 0.33 1341.0 9784.1 401.8 2.67 0.0 0.09 911.1

300 17982.1 144.0 0.36 0.1 0.16 2878.5 13555.8 362.7 1.11 0.0 0.31 1619.9 11885.9 568.6 2.50 0.0 0.10 1030.4

500 30155.8 399.4 0.35 0.8 0.17 4211.3 22574.0 998.6 1.10 2.3 0.46 2219.0 19715.6 1598.2 2.63 0.8 0.12 1406.5

600 35954.8 581.8 0.36 1.5 0.19 4531.8 26995.8 1440.7 1.13 2.4 0.47 2637.9 23803.3 2318.9 2.69 1.6 0.13 1633.3

700 41866.0 781.4 0.35 1.6 0.21 5349.3 31408.1 1967.3 1.08 3.1 0.46 2975.9 27685.8 3146.5 2.60 2.3 0.13 1842.4

800 47992.3 1026.0 0.36 1.8 0.21 5741.7 36031.1 2569.5 1.08 3.9 0.47 3270.0 31700.1 4102.2 2.54 2.4 0.12 2009.3

900 54069.6 1293.9 0.34 3.1 0.22 6389.3 40692.3 3252.7 1.03 4.7 0.50 3622.4 35518.6 5211.9 2.74 3.2 0.15 2227.0

1000 60112.1 1609.2 0.35 3.9 0.26 6993.4 45124.8 4042.1 1.16 7.1 0.56 3996.0 39489.3 6482.8 2.72 6.7 0.17 2455.7

1500 89910.2 3766.1 0.35 8.0 0.27 9958.9 67696.5 9335.2 1.12 7.8 0.61 5658.1 59255.3 14985.5 2.64 14.2 0.24 3428.9

2000 120162.5 3443.7 0.33 9.3 0.28 12881.1 - - - 17.8 - 7246.9 - - - 21.3 - 4400.8

4.3. Solution Quality and Runtime

Table 1 and table 2 show the quality of the approximate solutions and the runtime of the proposed

algorithms on the problems with different area constraints and α. The smaller the value of ε, the higher

the quality of the approximate solution. As shown in Table 1 and Table 2, the solution quality of HEA is

relatively stable for varying problem size (number of the blocks). In contrast to HEA, the problem size

slightly impacts the solution quality of TSA.

TSA can generate better solutions than HEA, but it takes longer runtime than HEA. For the case

where n = 1000 and A = 50% · Ā in table 1, HEA produces a solution with error 1.16 in 7.1ms, while

TSA generates better solution with error 0.56 but in 3996ms. This is the trade-off between the solution

accuracy and computational effort.

DPA can generate an exact solution, but it is limited by the computer memory constraints. This is

reflected as ‘ - ’ in table 1 in cases where the number of blocks or the available hardware area is large. It

is noteworthy that in these cases, HEA can continue to produce good approximate solutions.

5. Conclusions

In modern embedded systems each task has various implementation options both in software and in

hardware, where different implementation is of different speed, power and cost. This leads to an explosion

in the design space. In order to overcome the challenges in embedded systems design, this paper has

introduced a bi-objective multiple-choice HW/SW partitioning problem, which is characterized of mul-
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Table 2: The solution quality ε (%) and the algorithm runtime T (ms) on different α, averaged over 20 random instances,
r = 3, t = 50 and p = 50.

α = 0.2 α = 0.5 α = 0.8

DPA HEA TSA DPA HEA TSA DPA HEA TSA

n B(x∗) T ε T ε T B(x∗) T ε T ε T B(x∗) T ε T ε T
100 4625.1 45.3 1.38 0.0 0.30 765.0 4477.6 43.7 1.13 0.0 0.18 837.0 3892.6 36.8 1.35 0.0 0.18 916.4

150 6904.0 88.1 1.55 0.0 0.34 1003.9 6758.2 87.9 1.10 0.0 0.25 1088.2 5957.4 90.6 1.21 0.0 0.25 1136.5

200 9124.2 159.9 1.45 0.0 0.32 1103.7 9022.2 162.3 1.07 0.0 0.26 1286.2 7960.7 160.0 1.10 0.0 0.39 1314.4

250 11467.2 248.2 1.40 0.0 0.36 1278.5 11304.6 248.1 1.06 0.0 0.33 1341.0 9983.5 252.9 1.50 0.0 0.46 1592.8

300 13792.9 359.5 1.53 0.0 0.39 1510.8 13555.8 362.7 1.11 0.0 0.31 1619.9 11980.4 357.2 1.26 0.0 0.47 1767.5

500 22994.4 1000.8 1.41 0.8 0.46 2055.3 22574.0 998.6 1.10 2.3 0.46 2219.0 19926.5 1003.0 1.15 1.6 0.47 2627.1

600 27578.6 1446.1 1.40 2.4 0.58 2412.5 26995.8 1440.7 1.13 2.4 0.47 2637.9 23982.7 1440.7 1.21 2.3 0.56 2949.2

700 32254.0 1956.3 1.39 3.1 0.56 2708.9 31408.1 1967.3 1.08 3.1 0.46 2975.9 28010.5 1951.6 1.27 2.4 0.65 3342.4

800 36754.2 2578.0 1.38 3.9 0.60 3000.6 36031.1 2569.5 1.08 3.9 0.47 3270.0 32070.7 2551.5 1.18 3.8 0.59 3758.2

900 41454.3 3252.6 1.28 4.0 0.54 3351.0 40692.3 3252.7 1.03 4.7 0.50 3622.4 35906.9 3234.7 1.16 3.9 0.68 4095.0

1000 46107.4 4025.4 1.28 5.5 0.59 3673.0 45124.8 4042.1 1.16 7.1 0.56 3996.0 40110.0 4001.4 1.13 4.7 0.67 4396.0

1500 69061.2 9424.7 1.39 11.0 0.70 5162.0 67696.5 9335.2 1.12 7.8 0.61 5658.1 59836.1 9378.9 1.17 10.3 0.75 6340.0

2000 - - - 19.7 - 7029.0 - - - 17.8 - 7246.9 - - - 18.8 - 8129.3

tiple conflicting design goals for the complex applications. We optimize the solution of the partitioning

problem with the following two objectives: minimizing execution time and power consumption, while

meeting the area constraint. We have extended the computing model of the problem so that the power

consumption of each component and the communication between neighboring components are considered.

The new computing model has been formulated as a non-linear minimization optimizing problem. We

have proposed three algorithms utilizing the weighted sum scalarization method, 1) an efficient heuristic

algorithm based on the bi-objective knapsack problem to rapidly generate an approximate solution, 2) a

tabu search algorithm that refines the solution of the heuristic method, and 3) a dynamic programming

algorithm to calculate the exact solution. The proposed heuristic algorithm together with tabu search,

can be applied to solve large problems, while the dynamic programming algorithm can provide exact

solutions for relatively small problems. It has been shown that our heuristic algorithm is able to rapidly

generate approximate solutions that are very close to the exact ones. In addition, the proposed tabu

search algorithm can further refine the heuristic method to generate the solutions with errors that are

less than 1.0% for all cases considered in this paper.
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