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Abstract Low-complexity corner detection is essential

for many real-time computer vision applications that need

to be executed on low-cost/low-power embedded platforms

such as robots. The widely used Shi–Tomasi and Harris

corner detectors become prohibitive in such platforms due

to their high computational complexity, which is attributed

to the need to apply a complex corner measure on the entire

image. In this paper, we introduce a novel and computa-

tionally efficient technique to accelerate the Shi–Tomasi

and Harris corner detectors. The proposed technique con-

sists of two steps. In the first step, the complex corner

measure is replaced with simple approximations to quickly

prune away non-corners. In the second step, the complex

corner measure is applied to a small corner candidate set

obtained after pruning. Evaluations using standard image

benchmarks show that the proposed pruning technique

achieves up to 75 % speedup on the Nios-II platform, while

yielding corners with comparable or better accuracy than

the conventional Shi–Tomasi and Harris detectors.
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1 Introduction

Computer vision algorithms are being extensively used for

a wide range of applications such as vision-based naviga-

tion for image-guided medical interventions [1], navigation

of unmanned vehicles [2] and robots [3], video encoding on

unmanned aerial vehicles [4], video tracking [5] and visual

SLAM [6]. One fundamental step in these applications is

the detection of corners which represent identifiable anchor

points in the image. Corners are used for matching (e.g.,

image registration), tracking (e.g., video tracking) and as

robust image representation when combined with feature

descriptors for object recognition. Low-level corner

detection [7] techniques are evaluated based on two crite-

ria: (1) accuracy which is often measured using repeat-

ability rate [8] of the corners across various image

transformations, and (2) efficiency which is usually defined

by the computational complexity of the algorithm. For

embedded vision applications, it becomes critical to have

low-complexity corner detection as they have stringent

real-time and/or low-power constraints.

Several corner detectors have been proposed in the lit-

erature [7, 8] and comparative evaluations have shown that

the Shi–Tomasi [9] and Harris [10] corner detectors

achieve some of the best results [8, 11]. Also, wide range of

recent real-time applications [1–3, 5, 6] have used Shi–

Tomasi or Harris corner detectors. However, both the

algorithms require a complex corner measure computation

for every pixel in the image. This step is highly compute

intensive, requiring floating-point arithmetic and becomes

a bottleneck for real-time vision tasks. Reducing the

computational complexity of these corner detection algo-

rithms is essential in low-cost and low-power embedded

systems, especially those that do not support an on-board

floating-point unit (FPU).
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In our earlier paper [12], we introduced a low-complexity

pruning technique for Shi–Tomasi and Harris corner detec-

tors that created a small pool of corner candidates. The

complex corner measure was then applied only on this small

pool of candidates. We denote the pruning method in [12] as

PP which stands for ‘partial pruning’. When PP is combined

with the Shi–Tomasi and Harris corner detectors, it is

denoted as PPST and PPH, respectively. The pool of corner

candidates generated by PP still contains edge pixels that are

obvious non-corners and hence, PPST/H does not achieve

substantial savings in images that contain many strong edges.

In this paper, we extend our previous approach by

introducing a low-complexity edge pixels removal step to

further reduce the number of corner candidates. We denote

the edge pixels removal step as ER, for ‘edge removal’.

Our enhanced pruning algorithm, which combines PP and

ER, is denoted as PP-ER. PP-ERST and PP-ERH refer to the

proposed enhanced pruning method for Shi–Tomasi and

Harris, respectively. The proposed PP-ER approach is able

to quickly remove the non-corners using simple approxi-

mations of the complex Shi–Tomasi and Harris corner

measure and create a small but near-complete corner can-

didate set. The conventional Shi–Tomasi/Harris corner

measure is then applied only to this set of corner candidates

to extract the final corners, thereby slashing the overall

computation cost significantly. The proposed pruning

technique is devised based on the premise that in most

images, corner regions constitute a very small portion of

the image. While the complex corner measure of Shi–

Tomasi and Harris can be used to rank and extract the best

corners, they incur excessive computations for eliminating

non-corners in the entire image. Experimental results

reveal that the proposed technique not only leads to sig-

nificant speedup over the Shi–Tomasi and Harris corner

detectors, but also results in final corners with comparable

or better accuracy.

This paper differs from our previously reported work on

PPST/H [12] in the following ways:

1. We performed extensive evaluation of the PPST/H

method on a more comprehensive image dataset.

2. The edge removal step (ER) is introduced to remove

edge pixels from the corner candidate set obtained

after PP. We propose the enhanced pruning approach

(PP-ER), which combines the PP and ER pruning

strategies to quickly identify a small but complete

corner candidate set. The conventional Shi–Tomasi/

Harris corner measure is then applied only to this set of

corner candidates to extract the final corners.

3. We have investigated the benefits of the proposed

pruning methods on two variants of the Shi–Tomasi and

Harris corner detectors based on the filter used for

computing the auto-correlation matrix. In [12], we

showed the results for the more complex Gaussian filter

for the auto-correlation matrix. In this paper, we show

that pruning accelerates the corner detection even with

the simpler box filter for the auto-correlation matrix.

4. We compared the proposed pruning technique with

existing techniques for low-complexity corner detec-

tion to show the superiority of our method in terms of

computation cost and repeatability.

5. Experiments were undertaken on the Nios-II processor

with different configurable options (i.e., with and without

floating-point unit (FPU) and with and without cache).

6. We show the viability of the proposed technique on

feature-based global motion estimation (GME) in

video sequences.

The rest of the paper is organized as follows. In the next

section, we discuss the previously reported work on corner

detectors and techniques to accelerate them. In Sect. 3, we

introduce the proposed pruning method (PP-ER). Section 4

provides computational cost analysis of the proposed

method in comparison with other related work. Section 5

presents actual implementation results on the Nios-II pro-

cessor to evaluate the accuracy and performance of the

proposed technique with a set of image benchmarks. Sec-

tion 6 demonstrates the usefulness of the PP-ER method

for global motion estimation (GME) in videos. The paper

concludes in Sect. 7.

2 Related work

Tuytelaars and Mikolajczyk [7] and Schmid et al. [8] pro-

vide excellent surveys on corner detectors proposed in the

last 30 years. In this section, we focus on related work in

corner detection from the standpoint of efficiency. Earlier

work on corner detection involved looking for high curva-

ture points along the contours in the image which typically

correspond to true corners in 3D. In [13], such a method is

proposed that looks for maxima of curvature where the

gradient is large. Recent work in corner detection selects

points that are robust, stable and distinctive, and need not

always correspond to true corners [7]. Detectors that use the

Hessian matrix formed with the second-derivatives of

intensity values have been proposed [7]. However, they

have been shown to be relatively less reliable. Shi–Tomasi

[9] and Harris [10] corner detectors compute an auto-cor-

relation matrix using the first-order derivatives of the

intensity values and this matrix represents the degree of

intensity variations in various directions around a pixel.

SUSAN detector [14] operates directly on the image

intensity by computing the fraction of pixels within a

neighborhood that have similar intensity as the center pixel.

FAST [15] extends this idea to consider only pixels on a



circle around the center pixel and uses an efficient decision

tree to classify the center pixel as a corner.

It is well recognized that corner detection is a compute-

intensive step. There are typically two approaches that

have been reported in the literature for increasing the

computation efficiency of corner detection. The first

approach employs hardware accelerators while the second

approach focuses on algorithmic techniques to reduce the

computational complexity.

Hardware acceleration techniques have been proposed to

exploit the inherent parallelism in the corner detectors.

Efficient FPGA implementation for SUSAN has been pre-

sented in [16]. Although FAST is computationally simpler to

Harris and Shi–Tomasi detectors, recent evaluations [11]

have shown that FAST can be unreliable in many scenes and

the Harris detector is preferred. The evaluations in [8] also

show that Harris and Shi–Tomasi achieve among the best

results in low-level corner detection. Numerous approaches

to accelerate these detectors have, therefore, been reported.

Various fast implementations of Harris have been proposed

in the literature. The target accelerator platforms include

Application Specific Integrated Circuit (ASIC) [17], Field

Programmable Gate Array (FPGA) [18], Cell Processor [19]

and SIMD architecture [20]. In [21], a simpler floating-point

format is used by customizing instructions on the Nios-II

processor. In [22], a hardware implementation that performs

Harris corner detection on a rank transform image instead of

the original image is presented. FPGA implementation for

Shi–Tomasi in [23] employs an alternative corner measure

that uses only integer arithmetic consisting of additions and

multiplications and avoids the transcendental operations. In

[24, 25], the corner detection step for Shi–Tomasi is

implemented on GPU and the final step of non-maximal

suppression is parallelized.

Low-complexity techniques for corner detection are

achieved through algorithm innovations which are inde-

pendent of the underlying hardware architecture. In [26],

integral image is used and the computation time for corner

response computation is kept constant irrespective of the

window size used. In [27], a pruning technique based on

gradient magnitude is proposed that selects pixels with

high gradient magnitude as corner candidates for Shi–

Tomasi and Harris algorithms. Our work belongs to this

class of techniques and can potentially result in higher

computation savings when used with the architecture spe-

cific solutions discussed above.

In this paper, we have proposed the PP-ER method to

efficiently discard non-corners, which significantly reduces

the selection and evaluation effort for the presence of

corners to only corner-like regions. The approach proposed

in [27] has a similar motivation as our work. However, it

uses the gradient magnitude of a pixel alone as an indicator

of the corner and does not consider the intensity pattern of

the pixel neighborhood. This can potentially miss many

good corners. Also, the use of integral image in [26] shows

substantial savings only for large window sizes. Small

window sizes, i.e., 3 9 3, have been shown to be sufficient

for Shi–Tomasi/Harris detectors [5, 28]. In addition, while

the work in [24, 25] achieves speedup by exploiting par-

allelism on GPU, they are not well suited for low-cost/-

power embedded systems. Moreover, compared to [23–26],

our technique computes the corner response only on a

small set of corner candidates instead of the entire image.

As shown in the experimental results, the proposed method

leads to significant computation savings without compro-

mising on the accuracy of corner detection.

3 Proposed pruning technique for corner detection

Corner detection in both Shi–Tomasi and Harris detectors

is based on the local auto-correlation function that is

approximated by matrix M over a small window W for each

pixel p(x, y):

M ¼
P

W wðxÞI2
x

P
W wðxÞIxIyP

W wðxÞIxIy

P
W wðxÞI2

y

� �

¼ a b

b c

� �

ð1Þ

Ix and Iy are horizontal and vertical gradients, respec-

tively, and w(x) is an averaging filter that can be a box or a

Gaussian filter. The eigenvalues k1 and k2 of M (where

k1 C k2) indicate the type of intensity change in the win-

dow W around p(x, y):

• If both k1 and k2 are small, p(x, y) is a point in a flat

region.

• If k1 is large and k2 is small, p(x, y) is an edge point.

• If both k1 and k2 are large, p(x, y) represents a corner

point.

Shi–Tomasi directly compute the smaller eigenvalue k2

as the corner measure C as shown in (2):

C ¼ k2 ¼
1

2
aþ cð Þ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a� cð Þ2þ 4b2

q� �

ð2Þ

Harris combines the eigenvalues into a single corner

measure R as shown in (3), which avoids the explicit

computation of eigenvalues. In (3), k is an empirical con-

stant (k = 0.04–0.06).

C ¼ R ¼ k1k2 � k � k1 þ k2ð Þ2¼ detðMÞ � k � traceðMÞ2

¼ ac� b2
� �

� k � aþ cð Þ2 ð3Þ

Once the corner measures for every pixel are computed,

a threshold is applied on the corner measures to discard the

obvious non-corners. The rest of the pixels are then ranked

in the descending order of the corner measure and the

pixels with the highest corner measure are then selected as

corners after applying the non-maximal suppression.



We make the following observations on the Shi–Tomasi

and Harris detectors:

• In most images, the obvious non-corners (i.e., the flat

and edge regions) constitute a large majority of the

image. Hence, the Shi–Tomasi and Harris detectors

incur a lot of redundant computations as they evaluate

the entire image for a high corner response.

• Expanding (2), we get

k2 ¼
1

2
aþ cð Þ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a� cð Þ2þ4b2

q� �

¼ 1

2
aþ cð Þ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

aþ cð Þ2�4 ac� b2ð Þ
q� �

ð4Þ

k2 is most influenced by the term (ac - b2) as the two

(a ? c) terms cancel out. For a good corner, k2 needs

to be a large value. Hence, maximizing (ac - b2)

which is also det(M) can select good Shi–Tomasi

corners without explicit eigenvalue computation.

• In Harris, the trace(M) term is introduced so that edges

can also be detected. Ignoring the trace(M) term, the

det(M) term alone is sufficient to select corner regions.

Based on our observations, det(M) is the key term in the

corner measures for both Shi–Tomasi and Harris, and

pixels that maximize det(M) represent good corner candi-

dates. We therefore propose a low-complexity pruning

technique that employs simple approximations of the

det(M) to quickly remove the non-corners. Note that det

(M) = ac - b2 consists of two terms and our proposed

pruning technique is divided into two steps that handle

each term successively: PP that selects pixels with a large

value for ac, followed by ER that discards pixels with a

large value for b. In effect, PP and ER applied together

select pixels that maximize det(M).

3.1 Partial pruning (PP)

Partial pruning [12] is the first step of the proposed

enhanced pruning technique and it selects an initial set of

corner candidate pixels which have a large value for ac.

Applying an appropriate threshold can discard pixels with

low ac values. Figure 1b shows the initial corner candi-

dates selected by applying threshold = 0.05 9 Max(ac),

and it is clear that this covers the final Shi–Tomasi corner

regions in Fig. 1d well.

Fig. 1 a Original image.

b Corner candidates selected

using ac at

threshold = 0.05 9 Max(ac).

c Corner candidates selected

using a0c0 at

threshold = 0.05 9 Max(a0c0)
d Shi–Tomasi corner regions

with k2 at

threshold = 0.05 9 Max(k2)



Instead of computing a and c for every pixel explicitly,

we propose to approximate the Ix
2 and Iy

2 terms in the

expression for ac with the absolute values for Ix and Iy,

respectively, as follows:

a0 ¼
X

Ixj j; c0 ¼
X

Iy

	
	
	
	 ð5Þ

This eliminates the multiplication operations involved in

the squared gradients. Figure 1c shows that the a0c0 map

covers the ac map in Fig. 1b and the final corner regions in

Fig. 1d well.

Figure 2 shows that as the threshold for a0c0 map is

reduced under uniform illumination, corners and slanted

edges are released first. This is followed by vertical and

horizontal lines, and finally faint textures and flat regions.

This shows that when the threshold is applied to a0c0 map

of the image, non-corner regions are likely to be removed,

while retaining a significant amount of corners. Hence, a0c0

can be used as an effective corner indicator measure as it

elevates the corner regions above the non-corner regions.

At the end of PP, an initial corner candidate set denoted as

C1 is generated and further processing takes place on C1.

As seen in Fig. 2, C1 generated after PP contains many

edge pixels, which are obvious non-corner pixels. This is

because PP only looks for pixels with high values for ac

and does not consider b2, which is the second term in

det(M).

3.2 Removing edge pixels (ER)

To maximize det(M), for all the candidates in C1, the

second term b2 needs to be substantially smaller than the

first term ac. In other words, we need to eliminate pixels

that have comparable values for ac and b2. The det(M)

computed over a small window W of a pixel is given by (6):

detðMÞ ¼ ac� b2 ¼
Xw

i¼1

I2
xi
:
Xw

i¼1

I2
yi
�

Xw

i¼1

Ixi
Iyi

!2

ð6Þ

The gradient direction of the pixel is represented by

ki ¼ Iyi



Ixi

and det(M) can be rewritten in terms of the

gradient direction ki as:

detðMÞ ¼ ac� b2 ¼
Xw

i¼1

I2
xi
:
Xw

i¼1

ðkiIxi
Þ2 �

Xw

i¼1

kiI
2
xi

!2

ð7Þ

Fig. 2 Initial corner candidate

set C1 (a0c0 map) at various

thresholds a 0.5 b 0.1 c 0.05

d 0.01



When ki & k for all the neighbors of a pixel in window

W, the two terms, ac and b2, converge and det(M) & 0 as

shown in (8):

detðMÞ ¼ ac� b2 �
Xw

i¼1

I2
xi
:
Xw

i¼1

ðkIxi
Þ2 �

Xw

i¼1

kI2
xi

!2

¼ k2 �
Xw

i¼1

I2
xi

!2

� k2 �
Xw

i¼1

I2
xi

!2

¼ 0

ð8Þ

This happens when the pixel and its neighbors fall on an

edge with an edge direction given by k. Hence, we need to

remove edge pixels in C1 as they do not maximize det(M).

We propose a novel compute-efficient method to remove

the edge pixels by analyzing the gradients Ix and Iy of the

3 9 3 neighbors of the candidate pixels. The proposed ER

method avoids an explicit computation of the b2 term.

We divide the Ix - Iy space into two sets of overlapping

bins as shown in Fig. 3. Edge pixels will have all their

neighbors in the same bin whereas corner pixels will show

a spread and this allows quick detection of the edge pixels.

Overlapping bins are necessary to capture edge pixels

located along the bin boundaries in the Ix - Iy space. Also,

a 3 9 3 window is localized around the candidate pixel and

hence is the best option for our analysis.

Fig. 3 Bin boundaries for Ix-

Iy plots for the edge removal

(ER) step in pruning

Fig. 4 Ix - Iy plots for 3 9 3 neighborhood of pixel in various types of intensity patterns in the ER step



Figure 4 illustrates the Ix - Iy plot of the 3 9 3 patches

of various intensity patterns for an example image:

• Pixels with a relatively flat 3 9 3 neighborhood have

all the points clustered together close to the origin.

• Edge point and its neighbors fall along the edge

direction.

• Corner point and its neighbors are spread wider.

To identify an edge point, for each candidate pixel in C1,

we count the number of neighbor pixels in each bin in the

Ix - Iy space. Ideally, a candidate pixel and all its 3 9 3

neighbors should fall in the same bin for it to be considered

an edge point. However, this is often not the case in

practice as images are noisy and the gradient computation

is a numerical approximation. To overcome this problem, a

pixel is considered an edge point and is discarded when the

number of neighboring pixels in a particular bin exceeds a

predefined threshold (possibly lower than 3 9 3 = 9).

During the bin allocation for a candidate pixel in the

Ix - Iy space, if a neighbor pixel has a low gradient

magnitude, i.e., below the thresholds (Cx, Cy) as computed

in (9) and (10), it then contributes equally to all the bins:

Cx ¼ mean ðIxÞ þ k � SD ðIxÞ ð9Þ
Cy ¼ meanðIyÞ þ k � SD ðIyÞ ð10Þ

Here, Ix and Iy represent the x- and y-gradient maps of

the image and k = 0.25 is set empirically. SD refers to the

standard deviation.

The proposed method for removing edge pixels from the

initial corner candidate set C1 relies on the extremely com-

pute-efficient bin allocation strategy that is enabled by the

use of bin boundaries, which are factors of two of the gradient

magnitudes. This enables the bin boundary computation and

bin allocation to be achieved using only comparisons and bit

shifts. The corner candidate set generated at the end of ER is

referred to as C2 and the baseline algorithm (Shi–Tomasi or

Harris) is now applied only on C2.

4 Cost analysis

Algorithm 1 describes the proposed low-complexity

enhanced pruning technique applied to the baseline corner

detector. The proposed PP-ERST/H algorithm first applies



PP to generate a corner candidate set C1. It then removes

edge pixels from C1 using ER to generate C2. The baseline

algorithm is then applied only to the corner candidate set

C2. It is noteworthy that PP is applied to the entire image,

but subsequent steps of the pruning and baseline algorithm

are applied to only smaller candidate sets (i.e., C1 and C2).

The Shi–Tomasi and Harris algorithms have been used

as the baseline algorithms for this paper. They consist of

the following key steps—B1: compute auto-correlation

matrix M for each pixel, B2: compute corner measure (Shi–

Tomasi or Harris) C for each pixel, and B3: Sort all the

pixels based on the corner measure and apply non-maximal

suppression to generate the final corners.

Table 1 shows the computations incurred by the pruning

and the baseline algorithms per pixel. The pruning step PP

only has 16-bit additions and multiplications and ER only

has bit shifts and comparisons (which are reported as

additions). It is evident that the computations of PP and ER

are less complex compared to the steps B1 and B2 of the

baseline algorithms, thereby potentially resulting in sub-

stantial savings. When the baseline algorithm is used

without pruning, for each pixel, 3 (16-bit) multiplications

are incurred for B1a (computing the Ix
2, Iy

2, IxIy). When

pruning is applied, these values need to be computed for

the corner candidate as well as its neighbors in the window

W. Hence, B1a needs to be applied to all pixels in C1 and

their neighbors (represented by C1N for PP), and all pixels

in C2 and their neighbors (represented as C2N for PP-ER).

Figure 5 shows the number of pixels on which each step of

the PP-ERST/H is applied.

We compare the computations of PP-ERST/H with the

baseline algorithms (i.e., Shi–Tomasi and Harris), PPST/H,

and recently reported work that aim to reduce complexity

of the baseline algorithms [23, 26] in Tables 2 and 3. In

these comparisons, we assumed that a box filter i.e.,

w(x) = 1 and a 3 9 3 window (i.e., W = 9) is used for the

auto-correlation matrix M. When a Gaussian window is

used for w(x), additional floating-point (FP) multiplications

are incurred on the corner measure computation step B1b.

When compared to the box filter, the use of a Gaussian

window will clearly lead to higher savings for PP-ERST/H

as the overall number of multiplications increases signifi-

cantly in the baseline algorithms. Note that both [23] and

[26] reduce complexity of the baseline algorithm by

removing the square root in Shi–Tomasi and reducing the

number of additions for the window operations, respec-

tively. However, the computations are still applied to all

pixels in the image. In contrast, our proposed pruning

approach can potentially result in significant savings as the

values for C1j j; C2j j; jC1Nj and jC2Nj, which represent the

size of the corner candidates at various stages in the

algorithm, are typically substantially smaller than the

image size. To illustrate the savings in computations per

pixel, the corner candidate sizes for C1, C2, C1N and

Table 1 Per-pixel operations for the pruning and baseline algorithms

Per-pixel operations

Steps Multiplications Additions Sq.

root

PP 1 (16-bit) 2 W (16-bit) ? 2

ER 1 (32-bit) 39 (16-bit)

B1a: Ix
2, Iy

2, IxIy 3 (16-bit)

B1b: w(x)for M

Box 3 W (32-bit)

Gaussian 3 W (FP) 3 W (FP)

B2: C

Shi–Tomasi (Box) 2 (32-bit) 4 (32-bit) 1

Shi–Tomasi

(Gaussian)

2 (FP) 4 (FP) 1

Harris (Box) 3 (32-bit) ? 1

(FP)

2 (32-bit) ? 1

(FP)

Harris (Gaussian) 4 (FP) 3 (FP)

Table 3 Comparison of computations for each pixel for PP-ERH

Method Multiplications Additions

Harris [10] 6 30

SLC-Harris [24] 6 18

PPH [11] 1 ? pC1N 9 3

? pC1 9 4

20 ? pC1 9 30

PP-ERH 1 ? pC1 ? pC2N 9 3

? pC2 9 4

20 ? pC1 9 39

? pC2 9 30

Table 2 Comparison of computations for each pixel for PP-ERST

Method Multiplications Additions Square

root

Shi Tomasi [9] 5 31 1

Perona [21] 5 30

SLC-KLT [24] 5 19 1

PPST [11] 1 ? pC1N 9 3

? pC1 9 2

20 ? pC1 9 31 pC1

PP-ERST 1 ? pC1 ? pC2N 9 3

? pC2 9 2

20 ? pC1 9 39

? pC2 9 31

pC2

Fig. 5 Relationship of the

candidate sizes with the PP-ER

algorithm steps



C2N have been normalized with the image size and are

represented as pC1, pC2, pC1N and pC2N in Tables 2 and 3.

Our experiments with the chosen image dataset in Fig. 6

show that the average values for the normalized corner

candidate sizes of 300 corners for Shi–Tomasi and Harris

are pC1 = 0.083, pC2 = 0.052, pC1N = 0.173 and

pC2N = 0.134. The number of operations per pixel can be

estimated by substituting these values of pC1, pC2,

pC1N and pC2N in Tables 2 and 3. For example, the total

number of multiplications for PPST in Table 2 is

1 ? pC1N 9 3 ? pC19 2 & 1.6. We can compare this to

the corresponding baseline algorithm, Shi–Tomasi—5

multiplications per pixel.

Table 4 shows the comparison of the total number of

estimated memory accesses per pixel. The number of

memory accesses per pixel for pruning can be estimated by

substituting these values of pC1, pC2, pC1N and pC2N in

Table 4 as follows: total number of loads per pix-

el &3.24 W ? 0.26 and stores per pixel &2.54. There-

fore, compared to the baseline algorithms, there is a

reduction in the number of memory accesses per pixel.

Tables 1, 2, 3 show that the per-pixel complexity of the

operations in the proposed algorithms is lower than that in

the baseline algorithms. For example, the PP and ER

computations only require 16-bit operations whereas the

baseline corner measure computations require 32-bit and

floating-point operations. The actual realization of these

operations depends on the target processor. For example, if

the target processor does not support a floating-point unit,

multiple integer operations will be used to emulate the

floating-point operations in the conventional corner mea-

sure computation. The floating-point emulations will incur

a high computational complexity. Similarly, processors

that support only 16-bit memory transfers will result in a

higher number of memory load/store operations for the

conventional corner measure computation.

5 Evaluation and results

In this section, we evaluate the performance of our pro-

posed PP-ERST/H methods from the standpoint of accuracy

and efficiency, and compare it with PPST/H and the corre-

sponding baseline algorithms. Two variants of each of the

baseline algorithms have been used, which is based on the

weights w(x) of the filter for the auto-correlation matrix M:

(1) Simple averaging filter (also called Box) resulting in

Shi–Tomasi-Box (STB) and Harris-Box (HB), and (2)

Gaussian filter resulting in Shi–Tomasi–Gaussian (STG)

and Harris–Gaussian (HG). The window size is set to

W = 3 9 3 and r = 0.5 for the Gaussian filter, as in [5].

We used the normalized 3 9 3 discrete Gaussian kernel as

shown below:

Table 4 Comparison of memory load/store for each pixel for PP-

ERST/H

Method Loads Stores

Baseline Shi–Tomasi

and Harris

4 W ? 2 5

PP-ERST/H 3 W ? pC1 9 W

? pC2N 9 2

? pC2 9 3 W

2 ? pC1 ?

pC2N 9 3 ? pC2

Fig. 6 Image data set used for the evaluation a ‘‘graf’’ b ‘‘boat’’ c ‘‘bark’’ d ‘‘leuven’’ e ‘‘ubc’’ f ‘‘wall’’



wðxÞ ¼
0:0113 0:0838 0:0113

0:0838 0:6193 0:0838

0:0113 0:0838 0:0113

2

4

3

5 ð11Þ

We used the following 3 9 3 Sobel filters for computing

the horizontal and vertical gradient images Ix and Iy:

Gx ¼
1 0 �1

2 0 �2

1 0 �1

2

4

3

5; Gy ¼
1 2 1

0 0 0

�1 �2 �1

2

4

3

5 ð12Þ

Figure 6 shows the image dataset used, which contains six

sequences (‘‘graf’’, ‘‘boat’’, ‘‘bark’’, ‘‘leuven’’, ‘‘ubc’’, ‘‘wall’’)

of images with various image transformations such as changes

in viewpoint, zoom, rotation and illumination [29]. The image

resolutions are as follows: ‘‘graf’’—800 9 640, ‘‘boat’’—

850 9 680, ‘‘bark’’—765 9 512, ‘‘leuven’’—900 9 600,

‘‘ubc’’—800 9 640 and ‘‘wall’’—880 9 680. We generate a

feature set of 300 corners for all the algorithms considered. For

Shi–Tomasi, we set the threshold on cornerness Tc = 0.05 and

threshold on pruning filter Tp = 0.05. For Harris, we set

Tc = 0.005 and Tp = 0.05.

5.1 Accuracy evaluation

We used the following criteria to evaluate the accuracy of

the proposed methods (PPST/H and PP-ERST/H):

1. Feature matches: We compared the feature set of the

proposed methods with the baseline algorithm and

counted the number of corners in the baseline

algorithm that was also reported by the proposed

methods. We report this value as a percentage of the

total number of features (e.g., if 270 corners matched

out of the total of 300, then we report this as a 90 %

match).

2. Repeatability rate: Repeatability rate of a feature set

is the percentage of features that are simultaneously

present in two images and was introduced in [8]. A

higher repeatability rate of corner detection algo-

rithm between two images indicates that more

features can be matched between these two images

and hence these features can be reliably used for

aligning the two images. We computed the repeat-

ability rate for the feature sets generated by the

baseline and the proposed methods on the six image

sequences in Fig. 6. As we expect the pruning to

generate feature sets which are very close to the

feature sets generated by the baseline algorithm, we

report the difference in the repeatability rate of each

of the proposed methods and the corresponding

baseline method as follows:

Dr ¼ average rproposed � rbaseline

� �
ð13Þ

We report the range and the average of the difference in

repeatability Dr over all image sequences for each method.

When Dr is negative it implies that the repeatability of the

proposed method was lower than the baseline method and

vice versa. In Table 5, we report the results for the

accuracy of the proposed algorithm with respect to the

corresponding baseline algorithm for our chosen evaluation

criteria: % of feature matches in the feature sets, and

difference in repeatability rate. It is clear that the proposed

pruning methods are able to match the feature sets

produced by the baseline methods to a very high degree.

This is also reflected in the repeatability results which show

that on an average there is no difference in the repeatability

of the feature sets produced by the pruning methods and the

baseline algorithms. This shows that pruning is highly

efficient in retaining the best quality corners while

removing the non-corner regions.

The proposed PP-ER method is compared with the

cascaded candidate pruning (CCP) method [27]. CCP

selects corner candidates based on the gradient magnitudes

of the pixel and then performs non-maximal suppression

based on the gradient magnitude. For our analysis, 300

corners are found with both the Box and Gaussian versions

of Shi–Tomasi and Harris, and compared with the corners

generated by applying pruning using CCP to these baseline

Table 5 Accuracy results for PP and PP-ER in comparison to the

baseline algorithms

Proposed Methods # Feature matches Difference in

repeatability rate Dr

Min (%) Max (%) Min Max Average

PPSTB 99.7 100.0 0.00 0.33 0.01

PPSTG 95.7 100.0 0.00 0.00 0.00

PPHB 100.0 100.0 -0.33 0.00 -0.01

PPHG 99.0 100.0 0.00 0.00 0.00

PP-ERSTB 98.0 100.0 -1.84 0.33 -0.13

PP-ERSTG 95.0 100.0 -3.07 0.51 -0.17

PP-ERHB 96.7 100.0 -0.67 0.74 0.02

PP-ERHG 98.0 100.0 -3.57 1.26 -0.10

Table 6 Accuracy results for corner candidate pruning method

#Feature matches Difference in repeatability rate Dr

Min (%) Max (%) Min Max Average

CCPSTB 3.7 16.0 -28.91 1.04 -12.41

CCPSTG 2.7 20.3 -36.84 5.18 -9.66

CCPHB 4.7 20.7 -30.46 0.01 -13.40

CCPHG 10.7 38.0 -48.16 -0.51 -15.55



detectors. Table 6 shows the difference in repeatability for

each image sequence between the CCP method and the

baseline algorithm. From Tables 5 and 6, it can be seen that

the proposed technique PP-ER outperforms CCP. It is clear

that for almost all image transformations, CCP has sub-

stantially lower repeatability than the baseline algorithm.

The main reason for this is that CCP selects pixels that are

local maxima in the gradient values without considering

the pixel neighborhood. The Shi–Tomasi and Harris on the

other hand, rely on the variability of the gradient magni-

tudes in the pixel neighborhood and not the pixel alone.

Hence, potential corner pixels of Shi–Tomasi or Harris

may not be local maxima in the gradient values. This is the

reason why many such pixels are eliminated by the CCP

resulting in a lower quality corner set. This analysis

exemplifies the need for considering the pixel neighbor-

hood at the pruning stage so as to retain all the potential

good corners. The proposed PP-ER method is able to

achieve repeatability rates very close to the baseline

algorithms because the pruning steps PP and ER have been

derived directly from the baseline detectors and are hence

able to approximate the final corner measure with high

degree of accuracy.

5.2 Efficiency evaluation

The computational efficiency of the pruning techniques

PPST/H and PP-ERST/H is demonstrated by running the

algorithms on the Nios-II embedded platform [30]. The

execution time results are obtained for the first image in

each image sequence in Fig. 6. To show the overall savings

in computations achieved by introducing pruning, we

compute the relative speedup (%) of the proposed pruning

techniques with respect to the corresponding baseline

algorithms as follows:

Speedup ¼
tbaseline � tproposed

� �

tbaseline

� 100 ð14Þ

where tbaseline and tproposed are the execution times (in

seconds) of the corresponding baseline algorithm and the

pruning-based algorithm, respectively. As the images in

Fig. 6 have varying image sizes, we use the speedup to

normalize the overall savings in execution time over

varying image sizes.

As FPU often leads to high-cost and high-power dissi-

pation in embedded processors, we used two configurations

of the Nios-II soft core: with FPU disabled and FPU

enabled. Figure 7a shows the execution times (in seconds)

and speedup (%) for Shi–Tomasi on Nios-II when FPU is

disabled. The images have been arranged from left to right

from smallest to the largest in terms of their image size.

The execution time of the baseline algorithms i.e., STB and

STG depends on both the image size and the nature of the

image content. Therefore, images of larger size have higher

execution times—for example, ‘‘wall’’ has a higher exe-

cution time than ‘‘bark’’.

The overall execution time for STB is in the range of

(3.3–6.5) s. The execution time for STG is in the range of

(11.6–21.5) s due to the more complex corner measure

involving the Gaussian filter. The average speedup

achieved by PPSTB is 38 and 76 % for PPSTG. It is to be

noted that the execution time of PPST for both the Box and

Gaussian is almost the same. This shows how effective the

pruning has been in discarding most of the non-corner

regions resulting in very small corner candidate sets. The

nature of the image content determines the amount of

savings that can be achieved. For images that have a

combination of textures and homogenous regions—such as

‘‘boat’’—the savings are higher with pruning. In compari-

son, images with a comparable image size but with very

rich textures and less homogenous regions—such as

‘‘wall’’—the benefits from PPST are lower. Figure 7b

shows the additional speedup that is achieved with PP-

ERST when compared to PPST. It is evident that all the

images benefit from the removal of edge pixels resulting in

much smaller corner candidate sets that need the cornern-

ess computation. ‘‘graf’’ has very distinct edges that PPST

was unable to prune and, therefore, PP-ERST shows clear

benefits. ‘‘wall’’ does not benefit from PPST, but shows

positive speedup with PP-ERST.
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Figure 8 shows the corresponding timing results for

Harris. The execution times of HB are in the range of

(3–6) s. In comparison to STB, the corner measure of HB

is less complex and hence, the execution times are lower.

The average speedup achieved by PPHB and PPHG is 35 and

76 %, respectively. PP-ERH achieves higher average

speedup of 46 and 82 % for PP-ERHB and PP-ERHG,

respectively.

Figure 9 shows the timing results with FPU enabled on

Nios-II soft core. When the FPU is available the floating-

point operations are handled by the FPU and hence the

corner measure computation is executed much faster

compared to the software emulation of floating-point

arithmetic in the absence of an FPU. However, we still get

an average speedup with PPSTB of 43 %, PPSTG of 69 %,

PPHB of 8 % and PPHG of 64 %. PP-ERST/H still shows

significant improvements for ‘‘graf’’ and ‘‘wall’’ when

compared to PPST/H.

To analyze the impact of cache on the proposed method,

we implemented the baseline and proposed algorithms on

two configurations of the Nios-II processor: with and

without cache (FPU was disabled in both cases). We report

the speedup achieved by the PP-ERST/H in Fig. 10. When

the cache is disabled, then the memory access time

becomes the major component of the total execution time,

in comparison to the time computation time. However,

even in this case, we show substantial speedup of 33 % for

PP-ERST and 37 % for PP-ERH.

Finally we evaluate the impact of varying the threshold

on the corner detection and the speedup achieved with the

proposed pruning methods. Figure 11 shows the number of

corners released when the threshold Tc is varied for the
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baseline Shi–Tomasi and Harris algorithms and it can be

clearly seen that the number of corners released at a given

threshold depends on the image content. Also Shi–Tomasi

and Harris corner measure values have different ranges.

Harris corner measure is directly proportional to the

determinant of the auto-correlation matrix, det(M). Shi–

Tomasi corner measure is proportional to the root of the

determinant of the auto-correlation matrix det(M). Fig-

ure 11b shows that Harris requires much lower threshold

values for Tc to select comparable number of corners with

Shi–Tomasi.

Figure 12 shows the impact of varying the threshold

Tp (Tc is set to 0.05 for Shi–Tomasi and 0.005 for Harris

to ensure that 300 corners are found). A high value of Tp

results in insufficient number of corners whereas a low

value of Tp reduces the overall speedup achieved by

pruning. Our investigations show that when threshold Tp

is set such that 300 corners is found, the repeatability

and %feature matches does not vary much with the

threshold and is similar to what we have reported in

Table 5.

In addition, the benefit of PP-ER when compared to PP

can be clearly seen when the thresholds are set lower. At

lower thresholds such as when Tp = 0.01, PP is unable to

prune away many non-corner candidates and incurs an

overhead in computations as seen in images ‘‘bark’’,

‘‘ubc’’, ‘‘boat’’ and ‘‘wall’’. However, due to the efficient

pruning by the ER step, PP-ER achieves a speedup of an

average of 59 % for Shi–Tomasi (Box) and 56 % for Harris

(Box) at Tp = 0.01. This shows that PP-ER is a highly

efficient pruning technique compared to our previously

proposed method, PP.

6 Case study with GME on aerial videos

Unmanned aerial vehicles (UAVs) with a camera on-board

are increasingly being used for surveillance. Global motion

estimation (GME) is an important computer vision task for

these UAVs for video encoding [4] and vision-aided

takeoff and landing [31]. In this section, we apply the

proposed methods for corner detection to video sequences

Fig. 10 On Nios-II with FPU disabled. a Speedup in execution time for Shi–Tomasi (Box) with PP-ERST. b Speedup in execution time for Harris

(Box) with PP-ERH
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captured from a camera aboard a moving aerial vehicle,

and perform inter-frame registration using a feature-based

global motion estimation scheme. We chose a video

sequence of 150 frames from the VIRAT surveillance

dataset [32]. Figure 13 shows sample frames from this

sequence.

We perform feature-based GME on every frame pair in

the chosen video sequence. For every frame a maximum of

300 corners is detected using the box variants of the

baseline algorithms and their corresponding proposed

pruning-based methods. The thresholds are set as follows:

Shi–Tomasi-Box (Tc = 0.01, Tp = 0.01) and Harris-Box

(Tc = 0.001, Tp = 0.01). Then, we applied the Lucas–

Kanade feature tracking algorithm [33] to track the corners

in the next frame. Then the RanSaC algorithm is applied to

the tracked corners and a 2D affine transform is estimated

for the GME. This is used to reconstruct the next frame

from the current frame. The PSNR between the recon-

structed frame and the original frame is computed as in

(15):

PSNR ¼ 10� log10

2552

MSE

� �

ð15Þ

MSE is the mean of the squared error between the two

frames. The PSNR is used to evaluate the registration

accuracy of the GME. Table 7 shows the error margin in

PSNR for the video frames when the PPST/H and PP-ERST/H

are used in comparison to the corresponding baseline

algorithms. The error margin is within ±0.5 % and shows

that the pruning-based corner detection achieves compa-

rable accuracy in GME with the baseline corner detection

methods.

As the image content does not change substantially in

every frame, in order to demonstrate the computation

savings with pruning, we chose a key frame to represent a

batch of 15 consecutive frames. Figure 14 shows the

speedup achieved in the pruning-based corner detection in

these key frames, when executed on Nios-II platform with

the on-board FPU enabled.

As these frames contain many edges that need to be

removed after PPST/H, PP-ERST/H shows higher savings in

computation time for both STB and HB. For the Gaussian

variants of the baseline algorithms, we expect even higher

savings in computations than in the box variants. These

results show how pruning lowers the per-frame computa-

tion complexity of the corner detection enabling GME on

resource constrained systems such as robots.

7 Conclusions

In this paper, we have presented a low-complexity pruning

technique to accelerate the Shi–Tomasi and Harris corner

detectors using an approximate corner indicator derived

from the conventional corner measure. Evaluations for

repeatability showed that the corner candidates selected by

the proposed pruning technique are of the same quality as

those found by the baseline detectors. The approximate

measure used for pruning allows high thresholds to be

applied to remove non-corner regions, while retaining a

significant amount of corners. This facilitates the selection

Table 7 Quality evaluation for GME using pruning-based corner

detection

Methods PSNR

Min (%) Max (%)

PPSTB -0.3 0.1

PPHB 0.0 0.0

PP-ERSTB -0.4 0.2

PP-ERHB -0.4 0.2

Fig. 13 Sample frames from the video sequence used for GME with pruning-based feature detection
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of a small but near-complete set of corner candidates,

which results in significant computation savings on corner

response evaluation.

Evaluations on a Nios-II processor with FPU show that

the proposed PP-ER pruning technique leads to a sub-

stantial speedup (in terms of execution time) of 47–71 % in

Shi–Tomasi and 10–65 % in Harris for 300 corners. In the

absence of the FPU which typifies low-cost/low-power

embedded systems, both Shi–Tomasi and Harris benefit

from PP-ER with computational savings of 48–82 % and

45–81 %, respectively. When compared to our earlier

method PP, the proposed PP-ER pruning technique for 300

corners, shows an average additional speedup of up to

11 % for Harris and 13 % for Shi–Tomasi. However, for

lower threshold settings when PP fails to achieve any

speedup, PP-ER achieves a much higher average additional

speedup of 56 % for Harris and 59 % for Shi–Tomasi.

Also, PP-ER enables the use of the more robust but com-

plex Gaussian filter in corner detection especially on sys-

tems that do not support FPU. Hence, the proposed low-

complexity pruning technique, PP-ER is highly suited for

real-time and low-power vision-based embedded systems.
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