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Abstract—It has been well recognized that detecting road 

surfaces in a realistic environment is a challenging problem that is 

also computationally intensive. Existing road surface detection 

methods attempt to fit the road surface into rigid models (e.g. 

planar, clothoid or B-Spline), thereby restricting to road surfaces 

that match specific models. In addition, the curve fitting strategies 

employed in such techniques incur high-computational 

complexity making them unsuitable for in-vehicle deployments. In 

this paper, we propose an efficient non-parametric road surface 

detection algorithm that exploits the depth cue. The proposed 

method relies on four intrinsic road scene attributes observed 

under stereo geometry and has been shown to reliably detect both 

planar and non-planar road surfaces efficiently. Extensive 

evaluations are performed on three widely used benchmarks (i.e. 

enpeda, KITTI and Daimler) encompassing many complex road 

scenarios. The experimental results show that the proposed 

algorithm significantly outperforms the well-known techniques 

both in terms of detection accuracy and runtime performance.  

 
Index Terms—ADAS, Depth, Non-parametric, Obstacle, Road 

Surface, V-disparity  

I. INTRODUCTION 

HE task of detecting road surface is the first key step 

towards the realization of autonomous vehicle [1, 2]. Road 

refers to the drivable area that allows vehicle to proceed 

without encountering obstructions that would prevent the 

onward traversal.  Road surface detection in realistic road 

scenarios faces a myriad of challenges. The road surface can be 

planar or non-planar (e.g. up-hills, down-hills, and undulating 

hills). The shape of the roads can also vary (e.g. straight or 

curved). In addition, the presence of crowded objects, cluttered 

background, varying illumination condition, dappled shadows 

make the road surface detection process extremely challenging. 

In order to deal with such high variability in road scenes, many 

cues such as color, texture, and depth are often exploited for 

detecting road surfaces. 

In this paper, we propose a non-parametric road surface 

detection algorithm that relies on the depth cue only. Unlike 

existing methods, the proposed road surface detection 

algorithm does not fit the road surface into fixed mathematical 

models. Instead it relies on simple but effective strategies that 

are based on the following four special attributes present in 
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realistic road conditions: 1) The road surface extends away 

from the camera and obstacles are often in upright position; 2) 

The road surface constitutes the major portion of the scene after 

the large obstacles (e.g. cars, buildings, trees, etc.) are removed, 

especially in the vicinity of the vehicle; 3) Due to the 

perspective projection effect of the camera imaging process, 

road regions that are further away from the camera will be 

located in higher portion of the captured image; and 4) The 

distance of an obstacle point from the camera should be lesser 

than or equal to that of a road point if they are both projected 

onto the same row in the captured image. By formulating these 

observations, the proposed algorithm is able to work with 

highly dynamic road scenarios at low computational 

complexity.  

The paper is organized as follows: Section II reviews the 

existing works in road surface detection; Section III introduces 

the stereo model and the salient road scene attributes that are 

observed under this model. Based on these observations, the 

proposed road surface detection algorithm is presented in 

Section IV. In Section V, we present the experimental results to 

demonstrate that the proposed algorithm outperforms the 

baseline methods in various complex road scenarios. Finally, 

we conclude the paper in Section VI. 

II. RELATED WORKS 

Road color and texture are the two important cues exploited 

for monocular vision based road surface detection. Thorpe et al. 

[2] classifies the image points as ‘road’ or ‘non-road’ using 

multiclass adaptive color classification. The work in [3] 
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Fig. 1.  Three sample results of road surface detection using the proposed 

approach. Top row: Two different scenarios with undulating-hills. Bottom 

row: Urban planar road scenario.    
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estimates the road shape by extracting lane markings. However, 

lane markings are not present in many realistic road scenarios, 

and hence the method in [3] is only applicable to specific road 

scenes. The approach in [4] detects road surfaces by combining 

the results of road boundary estimation based on intensity 

image and road-area segmentation based on color image. [5, 6] 

estimate the vanishing points of roads by exploiting the texture 

cue first and then localizing the road boundary using the color 

cue. The work in [7] proposes a road detection algorithm by 

combining low-level, contextual and temporal cues in a 

Bayesian framework. However, this approach imposes a high 

computational cost. 

There is also a large body of work that exploits the depth cue 

for road surface detection. By restricting the problem to planar 

roads, the work in [8] finds that the corresponding longitudinal 

road profile will be projected as a diagonal straight line in the 

v-disparity image. Curve fitting techniques e.g. Hough 

transform [8], Radon Transform [9], linear regression scheme 

[10] and so on are then adopted to extract the straight line. 

Instead of working in v-disparity space, [11] works in the 

Euclidean space and detects the road surface by fitting the 3D 

road data points into a plane using RANSAC based 

least-squares approach.  

Unfortunately, the above techniques restrict the problem to 

handle only planar roads, hence limiting their applicability in 

many real world scenarios. Road surfaces are often highly 

unstructured due to up-hills, down-hills, undulating hills, road 

speed bumps, etc. Recently, researchers are increasingly 

shifting their efforts to deal with the non-planar road geometry. 

Besides taking care of the planar road, [8] also models the 

non-planar road surface as a succession of parts of oblique 

planes. The corresponding longitudinal road profile is 

formulated as a piecewise linear curve. Based on this model, a 

global road profile is extracted in [12], and a classification and 

propagation operation is performed to refine the road profile. 

[13] approximates the road surface as a quadratic model while 

[14] fits the road surface into a clothoid model. However, all of 

the aforementioned techniques allow for road slope changes in 

only one direction [15]. This motivates the work in [15] to 

represent the road surface as a general parametric B-spline 

curve. However, it is difficult to determine the surface 

parameters.  

Our work belongs to the category that exploits the depth 

information for road surface detection. Unlike the existing 

works that fit the road surface into fixed mathematical models, 

the proposed method detects road surface by exploiting their 

intrinsic attributes under a stereo geometry. By mathematically 

formulating the observed road scene attributes, we are able to 

devise a simple but efficient non-parametric road surface 

detection algorithm that is applicable to both planar and 

non-planar road scenarios. 

III. OBSERVATIONS OF SPECIAL ROAD SCENE ATTRIBUTES 

UNDER STEREO GEOMETRY 

In this section, we will first describe the stereo geometry and 

the corresponding u-v disparity images briefly. We will then 

discuss four important road scene attributes observed under the 

stereo geometry. The observed road scene attributes serve as 

the mathematical foundations of the proposed algorithm 

presented in Section IV. 

A. Stereo Geometry   

A parallel stereo rig is set up as in [8].  As shown in Fig. 2, a 

scene point          will be projected onto an image point 

      . Assume   is the cameras’ pitch angle;   is the height 

of the cameras above the ground;   is the stereo baseline;   is 

the focal length measured in pixel;        is the image 

coordinate of the projection of the optical center of the camera; 

  indicates left camera or right camera,       and      . 

Then the coordinate       is given as shown in (1) & (2): 
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    The disparity value         is given in (3):  
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A map containing the disparity value for each pixel is called 

the disparity map.  

A relationship between     and   is given in (4): 

  
                     

     
                    (4) 

Note that when   is small enough,       , and the term 

         can be ignored. We assume a small   in this paper. 

In addition, we assume that the cameras are installed such that 

the roll angle is negligible as in [14, 16, 17]. 

B. U-V disparity Images 

The concepts of u-disparity image and v-disparity image are 

first proposed in [8]. V-disparity image is obtained by 

accumulating the points with the same disparity in the scan-line 

of the disparity map. The v-disparity image provides a 

side-view projection of the 3-D scene. U-disparity image on the 

other hand, accumulates the points with the same disparity in a 

 

 
 
Fig. 2.  A stereo model (from [8]) and an example of a road scenario with 

undulating hill.  
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column wise manner and therefore provides a top-view 

projection of the scene. Fig. 3(b) and (d) illustrates the 

u-disparity image and v-disparity image for the disparity map in 

Fig. 3(a). 

C. Special Road Scene Attributes  

The example of a road scene depicted in Fig. 2 shows a 

challenging road scenario, i.e. non-planar road with undulating 

hill and dynamic obstacles on the road. When the road scene is 

mapped to the stereo coordinate system as described in Section 

III-A, several intrinsic road scene attributes in the u-v disparity 

images are identified, which will enable us to distinguish the 

road surface from the obstacles. The following describes these 

observed attributes: 

1) A longitudinal road line is defined as a set of road points 

which have the same X value but varying Z values. According 

to (1) & (3), a longitudinal road line will fall into distributed 

regions in the u-disparity image. On the other hand, up-right 

obstacle points with the same X and Z values will converge 

onto the same position in the u-disparity image, therefore 

producing peak regions. Fig. 3(b) clearly illustrates this 

concept. 

2) A lateral road line is defined as a set of road points which 

have the same Z value but varying X values. In most cases, the 

points along the same lateral road line have the same value of Y 

or values of Y that are very close to each other. According to (2) 

& (3), the lateral road line will be projected onto the same v and 

associated with the same ∆, i.e. they will converge onto the 

same position in the v-disparity image. When a vehicle is 

moving forward, the road surface will occupy a major part of 

the scene, especially in the vicinity of the vehicle. This implies 

that the point with maximum intensity value for each row in the 

v-disparity image is very likely to be the projection of the points 

of the corresponding lateral road line. However, this property 

will be violated when there are lots of obstacles (especially 

large obstacles) on the road. In order to increase the confidence 

that the peak regions in the v-disparity image will correspond to 

the lateral road lines, the obstacles can be first removed from 

the disparity map prior to generating the v-disparity image.  

3) According to (2) & (3), larger values of Z will lead to 

smaller values of v and ∆. This explains the following 

phenomenon: due to the perspective projection effect of the 

camera imaging process, road points that are farther away from 

the camera will be projected onto the higher part of the captured 

image. In addition, they will have smaller disparity values. 

4) According to (4), when two points are projected onto the 

same row v, the point with larger value of Y will have smaller 

∆. This implies that when a road point and an obstacle point are 

projected onto the same row v, the Z value of the obstacle point 

is smaller than that of the road point.  In addition, the disparity 

value corresponding to the obstacle point is larger than the 

disparity value for the road point. 

IV. PROPOSED ALGORITHM 

Existing methods have mainly concentrated on fitting the 

shape of road surface into a specific model. We argue that it is 

very difficult to find a single model that can accommodate all 

road scenarios since the environment is highly dynamic. As 

such, we have developed a novel road surface detection 

algorithm that is based on the road scene’s intrinsic attributes 

under a stereo geometry as discussed in Section III. In this 

section, we will show how these attributes are combined and 

formulated into an efficient road surface detection algorithm. 

The proposed method consists of four steps: 1) Crude obstacles 

removal; 2) Longitudinal road profile extraction; 3) 

Determination of the horizon line; 4) Road surface extraction. 

The only input required by the proposed algorithm is a dense or 

semi-dense disparity map. 

A. Crude Obstacle Removal 

This step serves as a pre-processing step to facilitate road 

profile extraction that will be discussed in Section IV-B. We 

resort to the u-disparity image for fast obstacle removal. As 

explained in Section III-C, obstacles, in particular large 

obstacles correspond to peak regions in the u-disparity image. 

In order to identify these peaks in the u-disparity image, we 

simply apply a thresholding operation with a threshold denoted 

as threshold_largeobj. If the intensity value of a point in the 

u-disparity image is higher than threshold_largeobj, the point is 

labeled as obstacle point. A new disparity map is then generated 

after removing the obstacles from the original disparity map. It 

is noteworthy that this pre-processing stage is not intended at 

finding all the obstacle pixels present in the disparity map, but 

rather as a means to reduce the difficulty of extracting the road 

profile. It can be observed in Fig. 3(c) that the crude obstacle 

removal step removes the sky and trees, but retains the short 

grass. This is however sufficient for increasing the accuracy of 

road profile extraction which will be discussed in the following 

section. 

 

B. Longitudinal Road Profile Extraction 

 In this step, the longitudinal road profile is extracted based 

on the v-disparity image, which is generated from the new 

disparity map after removing the large obstacles. As described 

in Section III-C, the points with maximum intensity value for 

each row in the v-disparity image are very likely to correspond 

to the projections of the lateral road lines after removing the 

obstacles. These points constitute the initial road profile. Fig. 

(a) (b) 

(c) (d) 
(d) 

(a) (b) 

(c) (d) 

 

 
 

Fig. 3.  (a) shows the original disparity map and the corresponding u-disparity 

image and v-disparity image are shown in (b) and (d). The obstacles in (c), 
shown in blue are identified in the crude obstacle removal step, and the new 

v-disparity image (after removing obstacles) is shown in (e). 
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4(c) shows an example of the initial road profile for a given 

disparity map.  

In our experiments, we find that the majority of the initial 

road profile points do correspond to the actual road profile, 

especially in the vicinity of the vehicle. Nevertheless, there can 

be exceptions due to two reasons. The first reason is the higher 

portion of the initial road profile may not correspond to the 

physical lateral road lines. For example in Fig. 4(c), the green 

rectangle corresponds to the higher region of the captured 

image which does not contain the road. Another reason is due to 

the highly unstructured road scenes or the noisy and erroneous 

input disparity map. The initial road profile therefore needs to 

be refined.  

According to the third observation in Section III-C, as the 

road regions extend away from the camera, they will be 

projected onto the higher portion of the image and will be 

associated with smaller disparity values. Mathematically, this 

can be formulated as shown in (5): 

                                                   (5) 

where                   represents the disparity value of the 

road profile point in row v. Equation (5) is therefore used as a 

criterion to examine the validity of the initial road profile. This 

examination process is carried out from the bottom row to the 

highest row in the v-disparity image. If (5) is violated for some 

row, the next point with the largest intensity that conforms to 

(5) is determined as the new road profile point for that row. 

There are two important issues that need to be addressed 

during the refinement of the road profile.  Firstly, Equation (5) 

implies that the refinement of road profile for current row 

depends on its previous row. It is therefore very important to 

determine a suitable initial road profile point to begin the 

refinement process. As can be observed in the blue inset of Fig. 

4(c), it is possible that the initial road profile point for the first 

row is not an actual road profile point when the disparity values 

for most of the pixels in the first row of the disparity map are 

uncertain or erroneous. At this time, it is an outlier. If we begin 

the refinement process from this row, the extraction of the 

following road profile points will be affected. From our 

experiments, we observe that a good road profile point to start 

the refinement process is one that possesses the largest disparity 

value among the first five rows. The row corresponding to that 

road profile point is treated as the starting row.  

Secondly, Equation (5) is able to distinguish the outliers 

from the initial road profile that appear on the right side of the 

actual road profile. However in a few cases, outliers may 

appear on the left side of the actual road profile due to noisy 

input. As illustrated in Fig. 4(c), the outliers can be easily 

visually identified as they are located far from the previous 

rows. However, in the subsequent rows, the initial road profile 

points get closer again. If this situation is not corrected, 

Equation (5) will cause the extracted road profile to deviate 

from the actual road profile in the subsequent rows during the 

refinement process. In order to resolve this issue, during the 

refinement of the initial road profile, if the current row’s initial 

road profile point conforms to (5), the distance  
 ̅                                   is checked. If  

 ̅  is larger than some threshold value denoted as 

threshold_close, then the first road profile point in the 

subsequent rows within a limited range whose disparity value is 

larger than                 is found. The corresponding row is 

denoted as   . If                                      , the initial 

road profile point for row v is then classified as an outlier. Then 

the point located in the range 

                                                      that has the 

largest intensity in the corresponding v-disparity image will be 

selected as the new road profile point. 

C. Determination of the Horizon Line 

According to the third observation in Section III-C, the 

further away the road is, the smaller the values v and ∆ will 

become. Therefore, if the extracted road profile stops extending 

 
Fig. 4.  (a) shows a captured image and its corresponding disparity map with 

enhanced contrast is shown in (b). (c) is the initial road profile (see blue inset 
for enhanced visualization of the range indicated by the red vertical dotted 

line), (d) is the refined road profile (see blue inset for enhanced visualization).   

 

 

 
     (a)                                                                (b)                                                                (c)                                                          (d) 

Fig. 5.  Illustration of road surface extraction process. (a) shows the noisy input disparity map with enhanced contrast for better visualization; (b), (c) are the 

intermediate results during the extraction process; and (d) is the final detected road surface . 
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towards the left for certain number of rows in the v-disparity 

image, this will mean that the road will cease to be visible in the 

road scene at that particular row. This row is the horizon line as 

illustrated in Fig. 4(d). The road profile‘s disparity value will 

not decrease further above the horizon line. 

D. Road Surface Extraction 

Once the longitudinal road profile is extracted, according to 

the fourth observation in Section III-C, it should be 

straightforward to extract the road surface as follows. For the 

image portion under the horizon line, the image points whose 

disparity values are smaller than or equal to the corresponding 

road profile is classified as road point, otherwise, it is regarded 

as obstacles. Regions with invalid disparity values are labeled 

according to their neighbors. This is the methodology adopted 

in [8]. However, the disparity map is often noisy. Some points 

in the same lateral road lines may not have the same disparity 

value in the given disparity map. For example, some road 

points may have larger disparity values than the majority of the 

road points for that scan-line. Hence, this approach will result 

in a lot of small blobs that are wrongly labeled.  

 We propose to extract the road surface in a more controlled 

fashion: 1) For each row v in the disparity map, the image point 

whose disparity value is smaller than or equal to                  

is classified as road point. In addition, the image point whose 

disparity value is larger than                   by certain degree 

denoted as threshold_variance and  is not labeled as obstacle 

point (based on the outcome of crude obstacles removal as 

discussed in Section IV-A), is also classified as road point; 2) 

The input disparity map may contain invalid regions whose 

disparity values are uncertain. Hence, it is necessary to perform 

interpolation for the invalid regions. The interpolation is 

performed in a scan-line manner. For each continuous invalid 

span, we check its left and right neighboring spans to see if they 

are of the same label. If the left and right neighboring spans 

have the same label, then the invalid scan-line is assigned the 

same label as its neighbors. Otherwise, the invalid scan-line is 

assigned the same label as its larger neighbor; 3) At this time, 

there may still be some wrongly classified regions consisting of 

thin horizontal blobs within the correctly classified regions. 

Post-processing must then be undertaken to filter out these 

wrongly classified blob regions. The filtering process is carried 

out by checking its neighbors in a column-wise manner. For 

each column in the disparity map, we identify small vertical 

spans consisting of points with the same label. If the length of 

the span is smaller than threshold_largeobj and also notably 

smaller than the length of its neighboring spans, the points of 

the vertical span will be re-assigned a new label. That is, if they 

are labeled as obstacle, they will be re-labeled as road and vice 

versa. The whole process of road surface extraction is 

illustrated in Fig. 5. 

V. EXPERIMENTS 

A. Data sets 

We have evaluated our algorithm on three challenging 

benchmarks.  

1) The enpeda dataset [18] is a sequence of 394 640*480 

synthetic stereo frames containing both planar and non-planar 

road scenarios. The ground truth disparity map is provided with 

sub-pixel accuracy for every pixel except for the occlusion part.  

2) The KITTI benchmark [19] contains 194 1240*376 stereo 

pairs and the corresponding semi-dense (approximately 50%) 

ground truth disparity maps. This benchmark mainly focuses on 

planar road scenarios. However, it covers quite an amount of 

different road contexts.   

3) The Daimler benchmark [20] is a large scale sequence of 

21,790 stereo frames captured in busy urban environment with 

planar and non-planar roads. As no ground truth disparity maps 

are provided for this benchmark, we have used the OpenCV 

implementation of the Semi-Global Matching algorithm [21] to 

generate the disparity maps. We use the default parameter 

settings in OpenCV. The obtained disparity maps are noisy and 

contain large invalid and erroneous regions.  

The three chosen benchmarks constitute a comprehensive 

test bed which encompasses highly dynamic road situations. 

Some samples of the three benchmarks and the corresponding 

disparity maps are shown in Fig. 6.  

B. Road Surface Detection Performance 

Three parameters are required for the proposed algorithm: 

threshold_largeobj, threshold_close and threshold_variance as 

introduced in Section IV. In this paper, threshold_largeobj are 

set to 12 for all three benchmarks. Since sub-pixel accuracy is 

enabled and the ground truth disparity value is provided for 

every pixel in the enpeda dataset, threshold_close is set to 2 and 

threshold_variance is set to 1 for this dataset. For the other two 

datasets, threshold_close is set to 1 and threshold_variance is 

set to 2.    

We have chosen the works in [8] and [13] as the baseline 

algorithms. The first baseline algorithm (i.e. [8]) is chosen as it 

is a representative work of the planar road assumption, which is 

the most widely used model to date. In addition, to the best of 

our knowledge, the work in [8] has presented the lowest 

computational complexity among all the reported stereo based 

road surface detection methods in the literature. The second 

baseline algorithm (i.e. [13]) is one of the most recent works in 

the literature.  

The work in [8] formulates the longitudinal road profile as a 

slanted straight line for planar road and a piecewise linear curve 

for non-planar road in the v-disparity image. Hough Transform 

 
(a)                                                        (b) 

Fig. 6.  Samples of (a) left images of the stereo pairs from the enpeda dataset 

(first row), the KITTI dataset (second row), and the Daimler dataset (third 

row) and (b) their corresponding disparity maps for the three benchmarks used 
in our experiments. The contrast is enhanced for better visualization. The 

disparity maps serve as the inputs. 
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is then utilized to extract the lines. The binary image input to 

the Hough Transform is obtained by thresholding the 

v-disparity image with the value 25 in this experiment. For the 

planar road case, the longest line is extracted and treated as the 

road profile. While for the non-planar road case, the 10 highest 

Hough transform values are extracted. The upper or lower 

envelope of these 10 lines, depending on the accumulative grey 

value score, corresponds to the final road profile. For a fair 

comparison, all of these parameters are obtained after careful 

tuning. In addition, as explained in Section IV-D, the road 

surface extraction module in [8] is highly susceptible to noisy 

input. Again, in order to ensure a fair comparison, we have 

applied the proposed road surface extraction step to the baseline 

algorithm in order to increase the robustness of the baseline 

algorithm. Since the KITTI dataset encompasses planar road 

scenarios, we enable the planar road assumption for the 

baseline algorithm on the KITTI benchmark. For the other two 

benchmarks, we enable the non-planar road assumption for the 

baseline algorithm.  

The main problem in [8] stems from the fact that it heavily 

relies on data fitting techniques but it doesn’t employ any 

countermeasure to deal with cases where the inputs to data 

fitting techniques are noisy. Not only roads but also obstacles 

will be projected as lines in the v-disparity. Hence, line 

extraction techniques like Hough Transform will end up 

extracting multiple lines and this makes it difficult to identify 

the line (planar) or a family of lines (non-planar) that 

corresponds to the actual road profile. The advantage of our 

algorithm over [8] is clearly illustrated in Fig. 7 and Fig. 8. In 

Fig. 7, the two algorithms are compared for a planar road 

scenario. The effectiveness of using Hough Transform to 

extract road profile is clearly impeded by the projection of the 

bushes along the side of road. In Fig. 8, the two algorithms are 

compared using a non-planar road scenario with an undulating 

hill. Since the baseline algorithm assumes that the road profile 

curvature is of constant sign, which is not true in this case, the 

baseline algorithm fails. It is noteworthy that the road profile 

extracted in Fig. 8 by the proposed method is not a regular 

curve that can be modeled mathematically. This clearly 

demonstrates that the proposed algorithm is not restricted to 

specific road scenarios but is able to accurately extract varying 

road profile shapes. In addition, it is evident from Fig. 8 that the 

proposed method is able to detect road at a large distance and 

correctly distinguish the vehicle that is very far away as 

non-road object. 

Instead of working in the disparity space, [13] works in the 

3D digital elevation map (DEM) space. To distinguish road 

from non-road entities including obstacle and traffic isles, two 

classifiers are adopted. The density-based classifier marks 

DEM cells as road or obstacles based on the density of the 

reconstructed 3D points. For the road surface based classifier, 

the road surface is modeled such that quadratic variations of the 

height Y with the horizontal displacements X and depths Z are 

allowed. Then a combination of RANSAC, region growing and 

least-squares fitting are employed to compute the quadratic 

road surface. Based on the computed road surface model, road 

and non-road entities are discriminated.  Fusion and error 

filtering is finally performed on the results of the two 

classifiers. We have adopted the parameter settings suggested 

by the authors in [13] for our experiments. 

Compared to the planar road model, quadratic road model is 

more capable in some situations where the road surface 

presents quadratic curvature. However, due to its restricted 

parameterization, quadratic road model can only model slope 

changes in one direction. Hence, it will fail if the road is 

undulating. Fig. 9 presents the same world scenario as the one 

in Fig. 8 where the road surface is in an undulating shape. As 

shown in Fig. 9(a), the quadratic road model reconstructed by 

[13] only dovetails the realistic road surface in the vicinity of 

the vehicle. From the range of about 25 meter, the reconstructed 

road model begins to fail. 

3D world points are reconstructed from the disparity space 

and reconstruction noise will be further introduced to the input 

data. As mentioned by the authors of [13], the reconstructed 

 

 
 
Fig. 7.  Comparison for a planar road scenario. The top-left image shows the 

result of the baseline algorithm, and the bottom left image shows the result of 

the proposed algorithm. The right image shows the corresponding extracted 
road profiles of the baseline (red) and proposed algorithm (green). Blue inset 

highlights the two road profiles for better visualization.  

 

 
 

Fig. 8.  Comparison for a non-planar road scenario. The top-left image shows 
the result of the baseline algorithm, and the bottom left image shows the result 

of the proposed algorithm. The right image shows the corresponding extracted 

road profiles of the baseline (red) and proposed algorithm (green). Blue inset 
highlights a portion of the two road profiles for better visualization. Note that 

two vehicles are present in the image. The proposed algorithm can also 

correctly distinguish the vehicle that is further away whereas the baseline 
algorithm fails.   
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points’ height uncertainty increases with depth and a 3D road 

point at a depth of 30 meter can have a height uncertainty of up 

to 17cm. This makes the road surface based classifier reliable 

only within a certain range. Due to this limitation, in the fusion 

and error filtering step, the work in [13] relies only on the 

results of the density based classification for points at depth 

greater than 30m.  

The working principle for density based classification is that 

obstacle cells have larger density values than the road for the 

same depth. A double thresholding technique is designed by 

taking into account only the uphill road surface. Although the 

density based classifier works fine with the planar and uphill 

road surface, it may fail for the case of downhill road surface. 

An obstacle standing on the downhill road may be misclassified 

as road depending on its height. As can be seen in Fig. 9(b), the 

vehicle on the downhill part of the road is wrongly classified by 

the density based classifier. Fig. 9(c) shows the result of the 

road surface based classifier. The final detection result is 

presented in Fig. 9(d), which is the fusion of Fig. 9(b) and 

Fig.9(c). It can be observed that the algorithm proposed in [13] 

eventually wrongly classifies the vehicle as the road due to the 

intrinsic limitation of each classifier.  

Crowded road scenario is a kind of situation that needs to be 

given high attention as they are usually encountered in daily 

traffic. Since the proposed algorithm is well designed to 

remove the large obstacle at the first step, it is able to deal with 

this situation well. Some detection results from the proposed 

algorithm in crowded road scenarios are shown in Fig. 10.  

Another special scenario is one where the vehicle is turning. 

The yaw rate depicts vehicle’s turning degree. Although the 

yaw rate will not impact directly on our computations since the 

proposed algorithm does not utilize the temporal information, 

the high yaw rate may lead to changes in the roll angle. This 

may violate the assumption we have made in section III-A that 

the cameras are installed such that the roll angle is negligible. 

Two factors help to lessen vehicle’s turning effect for the 

proposed algorithm. First, we are working on rectified images. 

The turning effect can be compensated by the image 

rectification algorithm to a large degree. Second, the proposed 

algorithm extracts the road surface in a controlled manner. The 

parameter threshold_variance helps to further reduce the 

turning effect. The Daimler dataset contains many cases where 

the vehicle is turning. Note that the dataset has been rectified. 

Some examples of the detection results from the proposed 

algorithm for scenarios where vehicle is turning at a high yaw 

rate are presented in Fig.11. Our evaluations show that the 

proposed algorithm also works fine in these scenarios. 

Finally, we carry out both qualitative and quantitative 

evaluation between the proposed and the baseline algorithms. 

In the following, the work in [8] is denoted as Baseline_A and 

the work in [13] is denoted as Baseline_B. Note that the 

datasets used in this evaluation contain a lot of invalid regions 

whose disparity values are not available. For the image points 

within these regions, the corresponding 3D coordinates are not 

reconstructed and therefore cannot be classified. To ensure a 

 
                                                           (a)   

                (b)                                     (c)                                     (d) 

 
Fig. 9.  (a) The quadratic road model reconstructed by [12] only dovetails the 

realistic road surface in the vicinity of the vehicle. (b) Classification result of 

the density based classifier from [12]. (c) Classification result of the road 
surface based classifier from [12]. (d) Final classification result after fusing 

and filtering of (b) and (c).  

 

 
 
Fig. 10.  Examples of detection results of proposed algorithm for scenarios 

where the vicinity of the vehicle is filled with crowded objects. 

 
 

Fig. 11.  Examples of detection results of proposed algorithm for scenarios 
where vehicle is turning. The corresponding yaw rate for the vehicle is 0.5256, 

-0.2144,-0.5625 and 0.3946. The unit of the yaw rate is degree/second. 

 

 

 
 
Fig. 12.  More comparisons between Baseline_A (red), Baseline_B (blue) and 

proposed algorithm (green) for KITTI dataset. 
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fair comparison, the interpolation technique for the invalid 

regions proposed in Section IV-D has been also applied to 

Baseline_B.  Besides Fig. 7, Fig. 8 and Fig. 9, more qualitative 

evaluation results are presented in Fig. 12 and Fig. 13 

respectively. Note that the testing samples in Fig. 12 and Fig. 

13 includes different scenarios such as planar road scenarios, 

up-hill, down-hill and undulating hill non-planar road 

scenarios, the scenario where the vicinity of the vehicle is filled 

with crowded objects and the scenario where the vehicle is 

turning. As explained earlier, Baseline_A is frail in these 

complex scenarios. Baseline_B works well with the KITTI 

dataset since the KITTI dataset mainly contains planar or 

up-hill road scenarios. In addition, the disparity maps used in 

this dataset are ground truth, hence the reconstructed 3D points 

present high accuracy. It is noteworthy that the traffic isles in 

this dataset are also correctly discriminated from the road by 

Baseline_B as shown in Fig. 12.  Since enpeda dataset contains 

many frames where the road surface is undulating, Baseline_B 

can only detect the road surface correctly in the vicinity of the 

vehicle for these frames. Daimler dataset encompasses all the 

dynamic road shape including planar, up-hill, down-hill, and 

undulating hill road scenarios. In addition, the corresponding 

disparity maps are quite noisy and contain large invalid and 

erroneous regions. The data noisy will be further amplified 

during the process of 3D reconstruction from disparity space. In 

order to distinguish the road surface from traffic isles, the 

classification threshold for road in Baseline_B is set 

conservatively. These three factors contribute to large amount 

of false detection in Baseline_B. The visual comparison in Fig. 

12 and Fig. 13 clearly demonstrates the superiority of the 

proposed algorithm over the baseline algorithms in various 

challenging road scenarios.  

For the quantitative evaluation, we adopt the evaluation 

framework in [7]. Manual road labeling is performed on all the 

left images in the enpeda, KITTI datasets, and a subset of the 

Daimler dataset containing 1613 frames to generate the ground 

truth. The Daimler dataset consists of a 27-minute sequence of 

video. We have chosen the frames within the 10th and 20th 

minute period of the video sequence for manual labeling. The 

10th minute of the Daimler sequence depicts a situation where 

the vehicle is moving on a planar road with crowded obstacles 

in the vicinity of the vehicle. The 20th minute Daimler 

sequence is a situation which encompasses all the dynamic road 

situations like planar, up-hill, down-hill and undulating hill 

road scenarios. In addition, many cases where the vehicle is 

turning are present in this sub-sequence. Based on the ground 

truth and the detection results, each pixel in the test samples is 

labeled as one of the four cases: TP, TN, FP and FN according 

to Table I. Then four metrics are adopted to describe the 

detection performance: Quality (Q), Detection rate (P), 

Detection accuracy (R) and Effectiveness (F) as formulated in 

Table II. Each of the metric provides a different insight. For the 

detailed interpretation of these metric, please refer to [7].  

 
TABLE I 

CONTINGENCY TABLE 

 Ground Truth 

Non-Road Road 

Result Non-Road TN FN 

Road FP TP 

  
TABLE II 

FOUR PIXEL-WISE METRICS FOR PERFORMANCE EVALUATION 

Pixel-wise Metric Definition 

Quality Q = TP/TP+FP+FN 

Detection Rate P = TP/TP+FP 

Detection Accuracy R = TP/TP+FN 

Effectiveness F = 2PR/P+R 

 

The quantitative evaluation results have been summarized in 

Table III. From Table III, we can observe that the proposed 

algorithm outperforms Baseline_A for all the metrics on all the 

test cases. The proposed algorithm also achieves better results 

than Baseline_B for all the metrics except the detection rate on 

enpeda and KITTI datasets. The proposed algorithm obtains a 

slightly lower detection rate than Baseline_B on these two 

datasets due to the following reasons: for enpeda dataset, the 

proposed method misclassifies the grass field at a distance of 

more than 150 meter as road surface. While for the KITTI 

dataset, some of the traffic isles whose height is quite close to 

road surface are misclassified by the proposed algorithm as 

road surface. The quantitative evaluation results are consistent 

with the qualitatively results.  

It is noteworthy that although the input disparity maps for the 

KITTI dataset only achieve semi-dense density (approximately 

50%) and the input disparity maps for the Daimler dataset are 

noisy and contain large invalid and erroneous regions, the 

 
 

Fig. 13.  More comparisons between Baseline_A (red), Baseline_B (blue) and 

proposed algorithm (green) for enpeda and Daimler datasets. The  images 
within the first two columns in the higher part are from enpeda dataset while 

the others are from Daimler dataset. 
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proposed algorithm can still achieve high detection 

performance. This clearly demonstrates that the proposed 

algorithm is robust to noisy input. For the enpeda dataset, the 

major contributing factor that prevents the detection 

performance of the proposed algorithm from achieving 100% 

performance lies in the existence of the grass field present from 

the 71th frame to 200th frame in the dataset. An example of this 

is illustrated in Fig. 8. As can be seen, the grass field extends far 

away from the camera (more than 150 meter) and the difference 

between the heights of the grass field and the road surface is 

small. Therefore, the observed disparity values for the grass 

field and the disparity values for the road surface nearby are 

almost the same. Due to this, the proposed algorithm classifies 

these grass fields as the road surface.  

 
TABLE III 

COMPARISONS OF THE DETECTION PERFORMANCE BETWEEN THE 

BASELINE AND PROPOSED ALGORITHMS 

  Q P R F 

enpeda Baseline_A 64.17% 93.66% 67.08% 78.17% 

Baseline_B 81.33% 98.70% 82.21% 89.71% 

Proposed 88.34% 95.62% 92.07% 93.81% 

Improvement_A 24.17% 1.96% 24.99% 15.64% 

Improvement_B 7.01% -3.08% 9.86% 4.10% 

KITTI Baseline_A 79.25% 84.92% 92.23% 88.42% 

Baseline_B 78.24% 93.15% 83.02% 87.79% 

Proposed 82.09% 86.32% 94.36% 90.16% 

Improvement_A 2.84% 1.40% 2.13% 1.74% 

Improvement_B 3.85% -6.83% 11.34% 2.37% 

Daimler Baseline_A 80.72% 90.40% 88.29% 89.33% 

Baseline_B 63.22% 89.32% 68.39% 77.46% 

Proposed 85.16% 92.47% 91.51% 91.99% 

Improvement_A 4.44% 2.07% 3.22% 2.66% 

Improvement_B 21.94% 3.15% 23.12% 14.53% 

 

C. Run-time Performance 

The proposed algorithm does not require complex 

calculations (i.e. only integer addition and comparison 

operations are needed.) The run-time bottleneck of the work in 

[8] mainly lies in the Hough Transform employed to extract the 

lines in the v-disparity image.  

The work in [13] presents a much higher computational 

complexity. Dense 3D points need to be reconstructed. Canny 

edge detector and RANSAC based plane fitting are employed 

for initial surface fitting. The biggest bottleneck for [13] lies in 

the uncertainty model-driven surface growing period. During 

this period, the quadratic surface is recomputed, in a 

least-squares fashion, about N times per frame on average. The 

value of N depends on the road surface types and the quality of 

the 3D reconstruction of world points and can be up to 200 as 

reported in [13]. For our experiments conducted on the three 

adopted datasets, we observe that N can be up to 300.  Many 

intensive computations with double precision data type are 

required.  

To compare the run-time performance, we have 

implemented the proposed algorithm and both of the baseline 

algorithms in C++ on an Intel Core 2 3.16GHz machine. In 

order to make a fair comparison, we have employed the highly 

optimized implementation of Hough Transform in OpenCV for 

the implementation of [8] and Canny edge detector for [13]. In 

addition, for our implementation of [13], the expected road 

density maps are computed offline for each dataset and not 

included into the run-time measurement. During the stage of 

region growing, the matrix used to compute the quadratic 

surface model defined by (5) in [13] is updated using only the 

newly added DEM cells for each iteration. Compared to the 

experiment setup in [13], the image size is larger in our 

experiments. In addition, the 3D points are reconstructed in 

software instead of using specific hardware.  

The results in Table IV show that the proposed algorithm 

easily achieves real-time performance (less than 0.015s per 

frame).  Therefore, the proposed algorithm is highly suitable for 

in-vehicle deployments which often have limited computation 

resources. In addition, the proposed algorithm is about 35% 

faster than the baseline algorithm in [8] and about 94.13% 

faster than the work in [13] on average. Note the runtime does 

not include the computation time of the disparity map for both 

the baseline algorithms and the proposed algorithm.  

 
TABLE IV 

RUNTIME COMPARISON BETWEEN BASELINE AND PROPOSED 

APPROACH 

 
 enpeda KITTI Daimler 

 

Baseline_A 

(Seconds) 

Total 4.423 2.640 236.168 

Per Frame 0.011 0.014 0.011 

Baseline_B 
(Seconds) 

Total 41.429 41.121 2187.59 

Per Frame 0.105 0.212 0.100 

Proposed 

(Seconds) 

Total 2.749 2.054 131.09 

Per Frame 0.007 0.011 0.006 

Speedup_A(%) 37.85 22.20 44.50 

Speedup_B (%) 93.36 95.00 94.01 

 

VI. CONCLUSIONS 

Road surface detection is usually required as an initial step in 

many applications (e.g. free space computation, object 

detection and tracking) to provide the geometrical constraint to 

facilitate the subsequent step. In this paper, we have proposed a 

simple but efficient non-parametric depth based road surface 

detection algorithm that is inspired by four intrinsic road 

attributes observed under stereo geometry. Unlike existing 

methods that rely on rigid mathematical models, the proposed 

non-parametric algorithm has been shown to be capable of 

tackling highly dynamic road scenarios. This has paved the way 

for overcoming the limitations of existing parametric methods 

that cannot cope with cases where the road profile doesn’t fit 

the pre-defined model or when the constantly varying road 

profiles cannot be modeled mathematically. Extensive 

experimental results using three challenging benchmarks (i.e. 

enpeda, KITTI, and Daimler) show that the proposed algorithm 

outperforms the baseline algorithms both in terms of detection 

accuracy and runtime performance. The data set used to 

evaluate the proposed technique includes different scenarios 

such as various planar road scenarios, up-hill, down-hill and 

undulating hill non-planar road scenarios, the scenarios where 

the vicinity of the vehicle is filled with crowded objects and 

scenarios involving turning vehicles. The experimental results 

show that the proposed algorithm achieves both high detection 
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and runtime performance, and hence it is well suited for 

deployment in a wide range of applications involving advanced 

driver assistance.  
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