
Noname manuscript No.
(will be inserted by the editor)

Parallel Reconfiguration Algorithms for
Mesh-connected Processor Arrays

Jigang Wu1 · Guiyuan Jiang2 ·
Yuze Shen3 · Siew-Kei Lam4 ·
Jizhou Sun2 · Thambipillai Srikanthan4

Received: date / Accepted: date

Abstract Effective fault tolerance techniques are essential for improving the
reliability of multiprocessor systems. At the same time, fault tolerance must
be achieved at high-speed to meet the real-time constraints of embedded sys-
tems. While parallelism has often been exploited to increase performance, to
the best of our knowledge, there has been no previously reported work on
parallel reconfiguration of mesh-connected processor arrays with faults. This
paper presents two parallel algorithms to accelerate reconfiguration of the
processor arrays. The first algorithm reconfigures a host array in parallel in a
multi-threading manner. The threads in the parallel algorithm executes inde-
pendently within a safe rerouting distance. The second algorithm is based on
divide-and-conquer approach to first generate the leftmost segments in parallel
and then merge the segments in parallel. When compared to the conventional
algorithm, simulation results on a large number of instances confirm that the
proposed algorithms significantly accelerate the reconfiguration without loss
of harvest.

Keywords Processor array · reconfiguration · fault tolerance · parallel
algorithm.

J. Wu
School of Computer Science and Software Engineering, Tianjin Polytechnic University,
Tianjin, 300387, China
E-mail: asjgwu@gmail.com

G. Jiang, J. Sun
School of Computer Science and Technology, Tianjin University, Tianjin, 300072, China
E-mail: jguiyuan@gmail.com, jzsun@tju.edu.cn

Y. Shen
College of Computer and Information Science, Northeastern University,
Boston, Massachusetts, 02115, USA
E-mail: shenyuze@ccs.neu.edu

S.K. Lam, T. Srikanthan
School of Computer Engineering, Nanyang Technological University, 639798, Singapore
E-mail: assklam@ntu.edu.sg, astsrikan@ntu.edu.sg

2 Jigang Wu1 et al.

1 Introduction

As technology advances, hundreds to thousands of processing elements (PEs)
are integrated on a single chip, such as Intel’s terascale processor [1] and
Tilera’s TILE64 processor [2], to process massive amounts of information in
parallel. This has led to significant speedups and power efficiency as the pro-
cessing cores can be clocked at lower frequency while meeting the performance
constraints. However, due to circuit reliability issues, dependability becomes a
major concern in these multi-processor systems. As such fault tolerance have
become an essential component in the design of multi-processor systems in or-
der to mitigate the dependability issues. Many works have been undertaken to
tackle the challenge of dependability and fault tolerance for processor arrays
(e.g. multi-processor systems).

The mesh topology is one of the most common communication infrastruc-
ture for multi-processor system due to its well-controlled electrical parameters
and ease of implementation. The hardware architecture of the direct acyclic
graph (DAG) and the mesh topology are compared in [3] and it was shown
the mesh topology is well-suited for reconfiguration to enable fault tolerance.
Fault-tolerant based reconfiguration is achieved by re-organizing the fault-free
PEs in the processor array to a new mesh topology. Optical circuit switches
have recently been proposed as a low-cost, low-power and high-bandwidth al-
ternative in the design of high-performance chip multiprocessor systems [4–7].
An added advantage of these switches is that they allow for a reconfiguration
of the network topology.

Two types of fault tolerance architectures, namely router-based architec-
ture and switch-based architecture, are frequently investigated for mesh con-
nected processor arrays. Router-based architecture [8–12] consists of network
nodes connected by links in mesh topology. Each network node consists of
a conventional router which is enclosed by topology switches. The topology
switches are used to connect links and routers, which allows different logi-
cal topologies to be configured on top of the same physical architecture. Al-
though, the router-based architecture is easier to reconfigure, it requires a com-
plex router circuit which increases the hardware cost, power consumption and
router faults. Moreover, the routing procedure is usually very time-consuming.

In switch-based architecture [13], single track switches are laid between
neighboring PEs, and the switches are also interconnected with each other.
In this type of architecture, once the connection is set up, data can be trans-
ferred through the connection without any header information; furthermore,
the time delay is negligible since no routing or arbitration is needed. Hence,
switch-based architecture is superior in terms of hardware cost, time delay,
power consumption and probability of router/switch faults. However the chal-
lenge in switch based architecture lies in the design of efficient reconfiguration
algorithms. In this paper, we focus on developing efficient reconfiguration al-
gorithms for the switch-based fault tolerant architecture.

Generally, two distinct approaches, i.e., the redundancy approach and the
degradation approach, have been investigated for switch based fault-tolerant

Parallel Reconfiguration Algorithms for Mesh-connected Processor Arrays 3

architecture. The redundancy approaches tolerates faulty PEs by replacing
them with spare PEs to reconstruct a logical array with required size [14–
16], However, the chip has to be discarded if spare PEs failed in replacing all
faulty ones. In the degradation approach, there is no spare PEs and all PEs are
treated in a uniform way. Therefore, a degradable logical array can be formed
using fault-free PEs from a faulty array under the constraint of the minimum
dimension which is dependent on the requirement of applications. Many effec-
tive approaches for processor array reconfiguration have been proposed under
three different rerouting constraints [18], namely 1) row and column bypass, 2)
row bypass and column rerouting, and 3) row and column rerouting elements.
They have shown that most problems that arise under these constraints are
NP-complete and they also proposed some heuristic reconfiguration algorithms
for these problems. An optimal algorithm named GCR was proposed in [19] to
find a maximal logical array (MLA) that contains a set of the selected rows.
The techniques which perform row-exclusion and compensation were proposed
in [20]. A heuristic algorithm is formulated by combining the techniques with
GCR to generate an approximate MLA. Recently, a dynamic programming
approach was introduced for reducing power dissipation of a logical array in
[21] by reducing the number of long-interconnects. In [22], reconfiguration un-
der both row and column re-routing schemes are investigated to maximize the
logical target array using 4-port switches. In [23], a genetic algorithm for the
reconfiguration of degradable mesh arrays is presented for constructing logi-
cal rows/columns. A strategy based rerouting scheme is proposed to reroute
the inter-connections of fault-free PEs in both row and column directions. In
[24], novel techniques are presented to accelerate reconfiguration by employing
flexible upper bound and lower bound for MLA. In [25,26], the reconfigura-
tion algorithms are proposed for three-dimensional processor array. Methods
that use different tracks and switches to increase harvest on the reconfigurable
processor arrays are reported in [15,17,28–30]. Other approaches for faulty
processor diagnoses, such as software based self-testing, functional based test-
ing and structural scan-based testing are found in [31–36].

The reconfiguration time is one of the important criteria in real-time sys-
tems, as fatal error may occur if the deadline is missed as a result of recon-
figuration. This motivates us to develop fast reconfiguration algorithms by
exploiting parallelism.. In this paper, we propose two parallel algorithms to
accelerate a traditional but frequently used algorithm, named GCR. The first
one reconfigures a host array in parallel using the multi-threading approach,
where each thread tries to form a logical column independently. These threads
execute within a safe routing distance to avoid routing errors, resulting in a
logical array with same size as produced by GCR. The second algorithm con-
structs a logical array in parallel based on divide-and-conquer approach. It
constructs single logical column by generating its leftmost segments in paral-
lel, and then it merges them in parallel. Each logical column is constructed
one by one from left to right on the host array. To the best of our knowledge,
this paper is the first contribution on parallel techniques for reconfiguration
of degradable processor arrays.

4 Jigang Wu1 et al.

fault tolerance architecture fault-free PE

faulty PE

column rerouting switch

row rerouting switch

row bypass

column rerouting

switch states

S1 S2 S3

Fig. 1 Fault tolerant architecture and reconfiguration schemes

The rest of the paper is organized as follows. In section 2, we provide
the important notations that will be used throughout the paper. We will also
discuss the fault-tolerant architecture and provide a brief retrospection for the
previous work. In section 3, we describe our multi-threading algorithm and
in section 4, we present the divide-and-conquer algorithm. Simulation results
and analysis are shown and discussed in Section 5. Finally, we conclude our
work in section 6.

2 Preliminaries

2.1 Fault Tolerant Architecture and Reconfiguration Schemes

Let H indicate the physical (host) array where some of the PEs are defective.
Assume the fault density of the physical array is ρ, then there are N = (1 −
ρ) ·m · n fault-free PEs in a m× n physical array. A subarray constructed by
changing the states of the switches is called logical/target array, denoted as T
in this paper. There is no faulty PE in a logical array. The row (column) in
physical array is called physical row (column), and the row (column) in logical
array is called logical row (column).

Fig. 1 shows a 4 × 4 host array. In this fault-tolerant architecture, adja-
cent PEs are connected by links with four-port switches. The fault-tolerant
reconfiguration is achieved by inserting several switches in the network, which
allows the network to dynamically change the interconnections among PEs.
Each square box in the host array represents a PE, whereas each circle rep-
resents a configuration switch. In this paper, the shaded boxes in the figures
represent faulty PEs while unshaded ones represent fault-free PEs. As shown
in Fig. 1, there are 4 states for each switch. Throughout this paper, ei,j(e

′
i,j)

indicates the PE located at the position of (i, j) of the host (logical) array,
where i is its row index and j is its column index. row(u) (col(u)) denotes the

Parallel Reconfiguration Algorithms for Mesh-connected Processor Arrays 5

physical row (physical column) index of the PE u. u = v indicates that u is
identical to v.

In a target array, any two neighboring PEs are interconnected through a
group of physical links, and these physical links form a interconnection path
between the two PEs. Since this architecture implements fault tolerance using
simple switches, overlap of physical links is not allowed between any two in-
terconnection paths, i.e., no physical link is shared by any two interconnection
paths of a feasible target array. In order to generate target arrays without
overlaps, two software control schemes, i.e., bypass and rerouting schemes, are
utilized to guide reconfiguration algorithms. In particular, row bypass and col-
umn rerouting schemes are mostly employed in previous works. As shown in
Fig. 1, if PE ei,j is faulty, then PE ei,j−1 can communicate with PE ei,j+1 and
the data will bypass ei,j through an internal bypass link. This scheme is called
row bypass scheme. In column rerouting scheme, PE ei,j can connect to ei+1,j′

by changing states of relative switches (i.e., s1, s2 and s3) where |j − j′| ≤ d
and d is called the compensation distance [18–20]. If d is limited to 1, then
the PE ei,j can connect to any one of the three PEs, i.e., ei+1,j−1, ei+1,j or
ei+1,j+1, to form a logical column. The three PEs are called neighbors of ei,j .
Column rerouting scheme allows two non-faulty elements that are located in
different physical columns to form a logical column. In order to reduce the
complexity of the switching mechanisms and keep the cost of physical imple-
mentation low, it is necessary to maintain a small d. As same as most previous
research works [19–21,23,24], d is also limited to 1 in this paper. Column by-
pass and row rerouting schemes can be similarly defined. With the bypass
and rerouting schemes described above, a logical array can be formed from a
host array by changing the states of the switches. In this paper, we study the
degradable reconfiguration problem under the constraints of row bypass and
column rerouting.

2.2 Problem Description and Previous Work

Problem R. Given an m× n mesh-connected host array with faults, find a
maximum target array that contains the selected rows under the row bypass
and column rerouting scheme.

Let R0, R1, . . . , Rm−1 be the rows of the given host array. Assume Rr0 , Rr1 ,
. . ., R′

rs−1
are the selected rows to construct a target array, where 0≤ s ≤ m.

Logical columns can be constructed under column rerouting scheme on the
selected rows. These logical columns can be interconnected under the row
bypass scheme to form a target array. A logical array T is said to contain Rr0 ,
Rr1 , . . ., Rrs−1 if each logical column in T contains exact one fault-free PE from
each of the selected rows. On the other hand, if a physical row is not selected
for inclusion into target array, all PEs in the row will be bypassed under row
bypass scheme. This additional constraint on the selected rows simplifies the
general reconfiguration problem, as each selected row must contribute one and

6 Jigang Wu1 et al.

only one PE to each logical column in this case. It has been proved that the
problemR is not of NP-hard, and it is optimally solved by an algorithm named
GCR (Greedy Column Rerouting) [19,20], meaning that GCR can produce
maximum target array with selected rows. All operations in GCR are carried
out on the adjacent neighbor sets of each fault-free PE ei,j in the row Ri. The
set is defined as Adj(ei,j)={ei+1,t : ei+1,t is unused fault-free PE and |j−t| ≤ 1
}. Adj(e) consists of PEs in the next selected row and they can directly connect
to e. The PEs in Adj(e) are ordered in increasing columns index. The PE with
the minimum column index in Adj(e) is called the leftmost connectable PE
for e.

Algorithm GCR constructs logical columns one by one in the left-to-right
manner. Each logical column is constructed in the top-to-down manner. With-
out loss of generality, we assume that Rr0 , Rr1 , . . . , Rrs−1 (0 ≤ s ≤ m) are the
selected rows to construct the logical array. GCR starts by selecting the left-
most fault-free PE, say u, of the row Rr0 for inclusion into a logical column.
Next, the leftmost PE, say v, in Adj(u) will be connected to u. The process
is repeated as follows: in each step, GCR tries to connect the current PE v
to the leftmost PE which has not been previously examined in Adj(v). If the
connection is not made, then a logical column containing the current PE v can-
not be formed. This leads to backtracking to the previous PE, say w, which
was connected to v. The connection of w to the leftmost PE of Adj(w) − v
that has not been examined previously can now be attempted. The process
will be repeated until either 1) a PE v in the row Rrs−1 is connected to a PE
in previous row Rrs−2 or 2) GCR backtracks to the PE u in the row Rr0 . A
single logical column is produced by GCR in each iteration. For the detailed
description of GCR, see [20].

Algorithm GCR consists of two types of routing steps, routing-forth and
backtrack, which are defined as follows,

1. Routing-forth: for current routing PE u, if |Adj(u)| > 0, a fault-free PE v
can be found in Adj(u) such that u can directly connect to v. In this case,
the routing result for current routing PE u is called routing-forth, as shown
in Fig. 2(a), where |Adj(u)| = 1.

2. Backtrack : for current routing PE u, if |Adj(u)| = 0, then current routing
PE cannot find a fault-free PE in Adj(u) to connect, and thus the algo-
rithm has to backtrack to the previous position p. In this case, the routing
result for current routing PE v is called backtrack. As shown in Fig. 2(b),
|Adj(u)| = 0 because the PE v has been used for forming the previous
logical column. Thus, the algorithm backtracks to PE p.

3 Parallel Reconfiguration Based on Multithread

In this section, we present our parallel algorithm PRM. It reconfigures the
host array based on a multi-threading approach. Initially, we introduce some
definitions to aid the understanding of the parallel algorithm. We define the
process to construct a logical column staring with PE er0,j , for 0 ≤ j < n, as

Parallel Reconfiguration Algorithms for Mesh-connected Processor Arrays 7

u

v

(a) route-forth (b) backtrack

v

u

p

Fig. 2 Two types of routing steps.

u∈Adj(p)u∈Adj(v)

v p

u

Fig. 3 Example of routing dependence.

a rerouting task denoted as tj . Then, the algorithm GCR is comprised of n
tasks, i.e., t1, t2, ..., tn, and the n tasks are handled one by one serially.

Let Sj be the logical column constructed by task tj . During the parallel
reconfiguration process, Sj might be a partial logical column. The PE with
largest row index in column Sj is called the current routing PE of column Sj .
In algorithm GCR, when processing task tj , each Si for 0 ≤ i < j is either a
complete column or a empty column.

Given two fault-free PEs v ∈ Sa and p ∈ Sb such that a < b and row(v) =
row(p). If Adj(v)∩Adj(p) ̸= ϕ, then p’s routing result depends on v’s routing
result, denoted as v ≻ p. We call this dependence as routing dependence.
As shown in Fig. 3, PE v and p belong to different physical columns, and
Adj(v) ∩ Adj(p) ̸= ϕ, thus v ≻ p. The routing dependence indicates that
v should routes before p. Otherwise, p’s routing result will occupy a PE in
Adj(v) ∩ Adj(p), which may results in backtracking on v. This may decreas
the total number of logical columns, leading to loss in harvest.

In the parallel algorithm, the n tasks are executed in parallel by n threads.
Hence, a task tb can start before its prior task ta (a < b) is completed. The
routing dependence between PEs results in relative threads dependence, which
is defined as follows.

Let threads Ta and Tb (a < b) construct columns Sa and Sb, respectively.
Assume v ∈ Sa, p ∈ Sb and v ≻ p. Then Tb depends on Ta, denoted as Ta ≻ Tb

or dep(Tb) = Ta. Ta is called the dependence thread of Tb.

In the parallel reconfiguration process, a thread, say Tb, must monitor
its dependence thread, say Ta, to prevent incorrect routing due to threads
dependence. Assume thread Ta is routing in the i-th selected row and thread
Tb is routing in the i′-th selected row. The routing distance rd between Ta and

8 Jigang Wu1 et al.

Tb is calculated by i − i′. Routing under the condition rd < 1 may lead to
incorrect routing between two threads with dependence relationship. In order
to avoid incorrect routing, thread Tb must keep a routing distance no less than
1 with its dependence thread dep(Tb) (see lemma 1). This can be implemented
using a conservative distance cd = 3 as follows.

– If routing distance rd between Ta and Tb is no less than 3, then Tb routes
in the same way as GCR does.

– If routing distance rd between Ta and Tb is less than 3, then thread Tb

unmarks its current routing PE, say v, and backtracks to the prior PE
pre(v).

In this way, the routing distance rd is no less than 1 during the parallel com-
putation. Before starting to route, thread Tb must waits for Ta to perform a
few routing steps first. During these steps, thread Tb is idle and we call this an
empty step. Therefore, the parallel algorithm PRM consists of routing steps
including routing-forth, backtrack and empty step.

The algorithm PRM is formed as follows. All tasks, i.e., t0, t1, ..., tn−1, are
regarded as n threads that will be executed in parallel. Each thread, say Ti,
must monitors its dependence thread Tj (0 < j < i), and routes based on the
routing distance. If the dependence thread dep(Ti) terminates, Ti finds a new
monitor target until no active thread exists in {T0, T1, · · · , Ti−1}.

A thread, say Tb, may terminates under 2 conditions: (1) Tb successfully
forms a logical column, (2) thread Tb is routing on row Er0 and needs to per-
form a backtrack step even if rd ≥ cd = 3. Note that, performing a backtrack
step from row Er0 due to thread dependence will not lead to the termination
of the thread. The algorithm terminates when all threads have completed the
routing process. The pseudo-code of the PRM is as follows.

We present following lemma and theorem to prove that PRM and GCR
can produce the same logical array.

Lemma 1. For two dependence threads, if the routing distance between
them is no less than 1 in their parallel processing, the two threads do not affect
each other and can route correctly in parallel.

Proof: For two threads Ti and Tj , assume i < j and Ti ≻ Tj . Let u and v be
the current PE routing in Ti and Tj , respectively. Thus row(u)− row(v) ≥ 1.
In the next routing step, when both threads perform route-forth or backtrack,
Ti will not route to a PE in Adj(v) from its current PE u. Also, Tj will not
route to a PE in Adj(u) from its current PE v. This implies that Ti and Tj

do not affect each other in the next routing step. If routing distance between
Ti and Tj is no less than 1 in their parallel processing, the logical columns
generated by Ti and Tj are identical to the ones produced by GCR. In other
words, Ti and Tj can execute independently to produce logical columns. This
concludes the lemma.

Theorem 1. Algorithm PRM produces the same target array as algo-
rithm GCR does.

Proof: It is noteworthy that, in PRM, all tasks t0, t1, ..., tn−1, are exe-
cuted in parallel in the presence of thread dependences. We prove that both

Parallel Reconfiguration Algorithms for Mesh-connected Processor Arrays 9

Algorithm 1: PRM(H, r0, r1, ..., rs−1, n)

Input: host array H of m×n; index of selected rows: r0, r1, . . . , rs−1; number of
threads n.

Output: Target array T .
begin
for each processor i in {0, 1, ..., s− 1} parallel do

Ei ← set of fault-free elements in Rri ; /* initialization in parallel */
for each u ∈ Ei do

pre(u)← null;

for each processor i in {0, 1, ..., s− 1} parallel do
for each u ∈ Ei do
Adj(u)← {v : v ∈ Eri+1 , |col(u)− col(v)| ≤ 1}; /* initialize Adj(u) */

for each processor i in {1,2,..., n-1} parallel do
myid← get processor id; dep(myid)← myid− 1; /* initialize dep(i) */

/* construct logical columns in parallel */
while threads n-1 is not finished do

for each active thread i in {0, 1, ..., n-1} parallel do
PARA Route(Adj, pre, dep); /* perform a routing step in parallel */
synchronization;

end

Procedure: PARA Route(Adj, pre, dep)

begin
myid← get processor id;
if thread dep(myid) is finished then

dep(myid)← active thread of biggest id in {1,2,...,myid-1}
if failed in find a valid dep(myid) then

dep(myid)←null;

e0 ← current routing PE in thread dep(myid);
cur ← current routing PE in thread myid
if row(e0)− row(cur) ≥ 3 then

if |Adj(cur)| > 0 then
q ← leftmost PE in Adj(cur); pre(q)← cur; cur ← q; mark q as used;

else
if cur /∈ Er0 then cur ← pre(cur); else Smyid ← Null; end thread; end

if v ∈ Ers−1 then Return column Smyid; end thread; end

else
unmarke cur; cur ← pred(cur); /* backtrack caused by thread dependence */

end

algorithms produces same target array based on the fact that threads within
dependence relationship do not impact each other during the generation of
logical columns.

It is evident that thread T0 produces the same logical column as GCR,
because T0 does not depend on any other thread.

Assume that routing results of tasks t0, t1, ..., ti−1 by threads T0, T1, ..., Ti−1

are the same as routing results of tasks t0, t1, ..., ti−1 by GCR. Also, assume

10 Jigang Wu1 et al.

that Ti monitors Tk ∈ {T0, T1, ..., Ti−1}, i.e., Tk ≻ Ti, we will prove that Tk

and Ti do not impact each other despite of dependence constraints.

Let ei and ek be the current PEs routing in threads Ti and Tk. There are
two possible scenarios:

1. No backtracking occurs in Tk: in this case, row(ek)−row(ei) ≥ 3 is satisfied
during the parallel execution.

2. Backtracking occurs in Tk: 1⃝ if routing distance is no less than 3, then Tk

will backtracks and Ti will route-forth, thus row(ek) − row(ei) ≥ 1 after
one routing step. 2⃝ If routing distance is less than 3, thread Tk backtracks
and thread Ti also backtracks due to thread dependence, and the routing
distance is kept unchanged. In addition, Ti will removes the used-marker
from current routing PE before backtrack.

Therefore, row(ek)−row(ei)≥ 1 is satisfied at during the parallel execution
regardless of whether backtracking occurs or not. Thus, threads Tk and Ti

do not impact each other in column rerouting, see Lemma 1. Therefore, we
conclude that each thread Tj can produce the same result as GCR does in
processing task tj , for 0 ≤ j < n.

We now analyze the time complexity of algorithm PRM. Assume the host
array is of size m × n. In the best case, i.e., no backtracking occurs in any
thread, the routing distance between any two neighboring threads is 3, thus
the accumulated distance among all threads are 3(n − 1). In addition, the
last thread need an extra m routing steps to terminate. Therefore, the time
complexity of the algorithm is bounded by O(m + n). In the worst case, i.e.,
the routing step of backtrack occurs most frequently and no logical column
can be formed, at most three routing steps can be performed on each PE, i.e.,
one routing-forth and two backtrack, thus the time complexity for the worst
case is O(mn).

4 Parallel Reconfiguration Based on Divide-and-Conquer

We now present a parallel reconfiguration algorithm based on divide-and-
conquer, denoted as PRDC in this paper. In this section, a logical column
is regarded as the connection of some partial logical columns, and each par-
tial column is called a column segment (segment in short). Let Ci,j =<
ei, ei+1, · · · , ej >, which indicates a feasible segment from the row Ri to Rj ,
0 ≤ i < j < s, where ek lies in Rk for i ≤ k ≤ j. ei and ej are called start PE
and end PE of Ci,j , respectively.

PRDC involves three procedures, namely Divide, Conquer and Merge.
Initially, the original physical array is divided into some subarrays in proce-
dure Divide. Then, the leftmost column segments are generated in parallel by
PRDC on the corresponding subarrays, and they are merged to form a logical
column. By performing Conquer and Merge alternately, PRDC constructs
logical columns one by one, from left to right, to form a logical array.

Parallel Reconfiguration Algorithms for Mesh-connected Processor Arrays 11

P0

P0

P1

P0

P1

P2

P3

C0,7

C8,15

C16,23

C24,31

C32,39

C40,47

C48,55

C56,63

C0,15

C16,31

C32,47

C48,63

C0,31

C32,63

C0,63

Fig. 4 Merge 8 segments using 4 processors, on a 64× 64 host array.

4.1 Divide and Conquer

Assume that there are p processors labeled as 0, 1, ..., p− 1, respectively. Then
the s rows selected from the original physical array is uniformly divided into p
subarrays, such that each subarray contains about ⌈s/p⌉ rows. Let At,b indicate
a subarray where t and b represent indexes of the top row and the bottom row
of the subarray, respectively. The procedureDivide is implemented in parallel,
such that the index ti of top row and the index bi of bottom row are calculated
by processor i (0 ≤ i < p). For example, a 10×10 host array can be divided into
4 basic subarrays, A0,2, A3,5, A6,7 and A8,9. The algorithm PRDC constructs
a leftmost segment on each basic subarray in the same manner as used in
algorithm GCR.

4.2 Merge

A complete logical column can be obtained by merging all segments con-
structed from the subarrays. Fig. 4 shows an example of parallel merging in
which eight segments are merged using four processors. Each processor receives
two segments and merges them into one larger segment for the subsequent
merging stage.

Assume Ct,m and Cm+1,b are the leftmost segments on subarrays At,m and
Am+1,b. The end PE of Ct,m and the start PE of Cm+1,b are denoted as em
and em+1. Given Ct,m and Cm+1,b, we construct Ct,b by merging Ct,m and
Cm+1,b according to the following routing conditions.

1. If |col(em)− col(em+1)| ≤ 1, i.e., em is able to connect em+1 directly, then
Ct,b can be easily obtained by linking em and em+1. This type of merging
is denoted as Ct,b = Ct,m ⊕ Cm+1,b.

12 Jigang Wu1 et al.

(a) (b) (c)

Down-rout pathUp-rout pathNon-faulty PEFaulty PE

C0,1

C2,3

C4,5

C6,7

C0,3

C4,7

C0,7

e1,1

e2,3

e3,3

e4,0

Fig. 5 (a) Conquer: construct four column segments in parallel. (b) Merge: construct
C0,3 and C4,7 in parallel by merging. (c) Merge: merge C0,3 and C4,7 to form C0,7.

2. If col(em) − col(em+1) > 1, it implies that PE em lies to the right of PE
em+1. Then, the algorithm routes down starting from PE em in the same
manner as used in algorithm GCR, and the routing procedure terminates
if it converges with a segment Cm+1,b or arrives at row Rb. The routing
process is called Down rout.

3. If col(em+1)−col(em) > 1, i.e., PE em lies to the left of PE em+1. Then, the
algorithm routes up starting from PE em+1 towards Ct,m until it converges
with a segment Ct,m or arrives at row Rt. The routing process is called
Up rout. It constructs a leftmost segment in the manner of down-to-up,
instead of top-to-down as used in GCR.

The algorithm terminates if the current logical column violates the physical
boundary of host array H. for more details, see the pseudo-code of PRDC.

Fig. 5 shows an example of constructing a logical column by performing
Conquer and Merge. As shown in Fig. 5(a), four leftmost segments, i.e.,
C0,1, C2,3, C4,5 and C6,7, are produced in parallel by procedure Conquer on
4 subarrays. As shown in Fig. 5(b), C0,1 and C2,3 are to be merged into one
larger segment by procedure Merge. Since the end PE e1,1 in C0,1 cannot
directly connect to the start PE e2,3 in C2,3, and PE e1,1 lies to the left of
PE e2,3, the algorithm performs Up rout starting from PE e2,3 to converge
with C0,1. This process terminates either it successfully converges with C0,1

or it routes upward to row R0 which is the first row for C0,1. The up-routing
paths are illustrated in the figure within the merged segment C0,3. Similar
up-routing is required for C4,7. Fig. 5(c) shows the process of merging C0,3

and C4,7 into C0,7. Since PE e3,3 cannot connect to PE e4,0 directly and PE
e3,3 lies to the right of PE e4,0, the algorithm performs Down rout starting
from PE e3,3 to converge with segment C4,7. The down-routing paths and the
final merged segment C0,7 are illustrated in Fig. 5(c).

It is easy to understand that PRDC produces the same target array as
generated by GCR, because PRDC still constructs the leftmost logical column
but in a parallel way, instead of in sequence way as used in GCR. In addition,

Parallel Reconfiguration Algorithms for Mesh-connected Processor Arrays 13

Algorithm 2: PRDC(H, r0, r1, ..., rs−1, p)

Input: physical array H of m×n; index of selected rows: r0, r1, . . . , rs−1; number of
processors p.

Output: Target array T .
begin
/* Divide: Divide the s selected rows into p subarrays in parallel */
for each processor i in {0, 1, ..., p− 1} parallel do

Q← s/p; M ← s mod p;
if i ≤M then

ti ← i ∗Q+ i; bi ← ti +Q+ 1;

else
ti ← i ∗Q+M + 1; bi ← ti +Q;

while (1) do
/* Conquer: Construct leftmost segment on each subarray in parallel */
for each processor i in {0, 1, ..., p− 1} parallel do

Cti,bi ← Left Most Segment in Ati,bi ;

/* Merge: Merge p segments to form a logical column */
C ← PARA Merge(Cti,bi for 0 ≤ i < p, H);
if C is an invalid column then break; end
T ← T ∪ C;

return T ;
end

Procedure: PARA Merge(Cti,bi for 0 ≤ i < p, H) /* Merge p segments to

form a complete logical column. */

Input: Original physical array H; Cti,bi (0 ≤ i < p) are segments from p subarrays;
Output: a complete column C0,k−1 merged from p segments
begin
num← p; /* number of segments */
while (num > 1) do

for each processor i in {0, 1, ..., ⌈num/2⌉ − 1} parallel do
/* calculate bounds for the merged segment */
t← t2i; mid← b2i; b← b2i+1;

/* Ct,b is obtained by merging segments Ct,mid and Cmid+1,b. The end PE
of Ct,mid and the start PE of Cmid+1,b are denoted as emid and emid+1.*/
if |col(emid)− col(emid+1)| ≤ 1 then

Ct,b=Ct,mid ⊕ Cmid+1,b.

else
if col(emid) > col(emid+1) then

Ct,b ← Down rout(H, emid, Cmid+1,b); /* merge by
down-route from PE emid */

else
Ct,b ← Up rout(H, emid+1, Ct,mid); /* merge by up-route
from PE emid+1 */

num← ⌈num/2⌉;

return C0,k−1;
end

14 Jigang Wu1 et al.

PRDC also involves in three types of routing steps, i.e., routing forth, backtrack
and empty step. The empty step occurs in the procedure Merge .

Now we analyze the time complexity of the algorithm PRDC. Assume p
processors are available for parallel reconfiguration, then the original physical
array is divided into p basic subarrays. The Divide procedure runs in O(1),
since the p subarrays are calculated by p processors in parallel. There are
about ⌈s/p⌉ rows in each subarray, thus constructing a segment in procedure
Conquer requiresO(s/p) in the best case (where no backtracking occurs), and
O(sn/p) time in the worst case (where backtracking occurs most frequently).
The procedure Merge runs in O(1) to connect two segments in the best case
(directly merging) and thus takes O(log p) time to merge all segments. For the
worst case, it runs in O(l · n) when merging two segments with lengths of l,
where n is the number of physical columns. The Merge runs in log p times
and its i-th iteration runs in O(li ·n), i.e., O(⌈ s

2i ⌉ ·n). Thus, for the worst case
it takes O(n ·s) time to merge all segments, from

∑⌈log p⌉
i=0

s
2i ≤ 2 ·s. Therefore,

the running time of PRDC is bounded by O(s · n) in the worst case, while it
executes in O(n·s/p) in the best case, from O(1+n ·(s/p+log p)) = O(n ·s/p).

5 Simulation Results and Analysis

Since both parallel algorithms achieve target array with same size as generated
by GCR, we only evaluate the acceleration of the proposed parallel algorithms
over GCR. As discussed before, routing steps are the basic operations for re-
configuration. In this section, we evaluate the two proposed parallel algorithms
PRM and PRDC in terms of routing steps. We have implemented a simulator
in C language to compute the routing steps and executed the parallel algo-
rithms on a large number of randomly generated dataset that is used in [18–26].
The distribution of faults were generated by a uniform random generator, with
fault density from 1% to 10%. In order to make a fair comparison, we keep
the same assumptions as in [18–27]. Faults are only associated with PEs and
communication infrastructure is assumed to be fault free. This assumption is
justified since the switches and links use much less hardware resources when
compared to the processors and are thus less vulnerable to defects.

The number of routing steps required by algorithm GCR is denoted as
G steps. The number of routing steps in the longest thread of algorithms PRM
and PRDC are denoted asM steps andD steps, respectively. The acceleration
of PRM over GCR is calculated as follows.

speedup =
G steps

M steps
× 100%

The acceleration of algorithm PRDC over GCR can be similarly calculated.

Parallel Reconfiguration Algorithms for Mesh-connected Processor Arrays 15

Table 1 Performance evaluation of PRM on host arrays, from 32×32 to 128×128, averaged
over 40 random instances.

Host array
ProcNum

Acceleration
size fault density G steps M steps speedup

32×32
1%

32
971 107 9.0

5% 920 136 6.7
10% 874 168 5.2

64×64
1%

64
3960 253 15.6

5% 3794 355 10.7
10% 3612 441 8.2

128×128
1%

128
16256 381 42.67

5% 15413 892 17.28
10% 14460 1047 13.81

1% 3% 5% 7% 9% fault density
0

1000

2000

3000

4000

5000

 r
ou

tin
g

st
ep

s

G_steps

M_steps

speedup

 (a) on host array of 64×64

1% 3% 5% 7% 9% fault density
0

5

10

15

20

25

 s
pe

ed
up

0 8 16 32 64 128 256 512 scale
0

0.5

1

1.5

2

2.5

3
x 10

4

 r
ou

tin
g

st
ep

s

G_steps

M_steps

speedup

 (b) on host array with fault density 1%

0 8 16 32 64 128 256 512 scale
0

20

40

60

80

 s
pe

ed
up

Fig. 6 Effects of fault density and array size on acceleration of PRDC, averaged over 40
random instances.

5.1 Performance Evaluation of PRM

The comparisons between PRM and GCR are presented in table 1. Data are
collected on host arrays with sizes ranging from 32×32 to 128×128 and fault
density ranging from 1% to 10%. In general, PRM significantly accelerates
its serial counterpart. For the case of a 64 × 64 host array with fault density
1%, G steps is 3950 and M steps is 379, thus resulting in the speedup of 10.43
over GCR. In addition, the acceleration is more significant on large host arrays
than on the smaller ones. It can also be observed that the speedup is more
significant on less defective host arrays than on arrays with large number of
defects, and this will be discussed later.

Fig. 6(a) shows the impact of fault density on the acceleration of algorithm
PRM. Simulation results are collected on host arrays of 64×64 with fault den-
sity from 1% to 10%, and each case is averaged over 40 random instances. The
value of G steps tends to decrease with increasing fault density, while M steps
increases with the increasing fault density. This is because GCR only exam-
ines fault-free PEs while the increasing fault density decreases the number of

16 Jigang Wu1 et al.

Table 2 Performance evaluation of PRDC on host arrays, from 64 × 64 to 256 × 256,
averaged over 40 random instances.

Host array
ProcNum

Acceleration
size fault density G steps D steps speedup

64×64
1%

32
3950 379 10.43

5% 3764 440 8.56
10% 3542 497 7.12

128×128
1%

64
16212 945 17.15

5% 15322 1233 12.43
10% 14680 1408 10.42

256×256
1%

128
64614 2374 27.22

5% 61731 3340 18.49
10% 59204 3855 15.36

nonfaulty PEs, which leads to the reduction in routing steps. For M steps, the
increasing fault density reduces the chance for a thread, say Ti, to construct a
complete logical column. This leads to an increase in backtracking and rerout-
ing steps of the thread Ti and other threads depending on Ti. Therefore, the
value of M steps increases with increasing fault density. In addition, speedup
decreases with increasing fault density because the G steps decreases while
M steps increases.

Fig. 6(b) illustrates the impact of increasing array sizes on the acceleration
of algorithm PRM. Simulation results are collected on host arrays with size
ranging from 8×8 to 64×64. The fault density is set to be 1% and each case is
averaged over 40 random instances. It is easy to understand that the number
of routing steps in both GCR and PRDC increases when the size of host array
scales up. This is due to the fact that, the total number of PEs increases with
increasing array size. In Fig. 6(b), speedup grows rapidly when the size of the
host array increases as more threads are able to run in parallel.

5.2 Performance Evaluation of PRDC

Table 2 shows the performance comparison between PRDC and GCR in terms
of speedup, on physical arrays with size ranging from 64 × 64 to 256 × 256
and fault densities ranging from 1% to 10%. Each host array with size of
m × n is divided into ⌈m/2⌉ basic sub-arrays for our simulation, and ⌈m/2⌉
processors are employed for parallel reconfiguration. Each value in the table
is averaged over 40 instances. In general, PRDC significantly accelerates its
serial counterpart, i.e., algorithm GCR, which can be seen from the values of
speedup in the table. For example, for the 256 × 256 host array with fault
density 1%, algorithm PRDC achieves as much as 27 times acceleration. The
value of speedup decreases with the increasing fault density. On host arrays
with size of 128 × 128, the values of speedup are 17.15, 12.43 and 10.42 for
fault densities 1%, 5% and 10%, respectively. This is due to the fact that, the
increasing fault density makes it more difficult to merge two segments. In other
words, operation Up rout and Down rout perform more routing steps to

Parallel Reconfiguration Algorithms for Mesh-connected Processor Arrays 17

0 2 4 8 16 32 64 ProcNum
0

0.4

0.8

1.2

1.6

2
x 10

4

 r
ou

tin
g

st
ep

s

G_steps

D_steps

speedup

0 2 4 8 16 32 64 ProcNum
0

4

8

12

16

20

 s
pe

ed
up

Fig. 7 Acceleration of PRDC over GCR on host arrays of 128×128 using different number
of processors

merge two segments when fault density is large. In addition, the speedup tends
to increase with increasing array size. For example, on host arrays with fault
density 1%, the values of speedup are 10.43, 17.15 and 27.22 on host arrays
with size of 64 × 64, 128 × 128 and 256 × 256, respectively. This is because,
with the increasing size of host array, more subarrays could be obtained by
dividing the original host array, which allows for more processors to be used
for parallel reconfiguration.

Next,we examine the scalability of the parallel algorithms by varying the
number of processors utilized in parallel reconfiguration. ProcNum indicates
how many basic subarrays the original host array are divided into, as well as
how many processors are utilized in parallel processing. In Fig. 7, simulation
are conducted on host arrays with size of 128 × 128 and fault density of 5%.
ProcNum is set to 1, 2, 4, 8, 16, 32 and 64, respectively. Each value illustrated
in the figure is averaged over 40 instances. The acceleration increases with the
increasing ProcNum. For example, the speedup increases from 1.99 to 15.31
when ProcNum increases from 2 to 64. This is because original host array
is divided into more sub-arrays and this enables more processors to perform
parallel computations to accelerate GCR.

6 Conclusions

We have presented two novel parallel algorithms to accelerate a conventional
but widely used algorithm GCR for the reconfiguration of processor arrays.
The first algorithm can implement the reconfiguration in parallel using multi-
threading approach. Each thread is able to generate a logical column, and the
multithreads execute within a safe rerouting distance, thus avoiding routing
errors. The second algorithm consists of three procedures, Divide, Conquer
and Merge. Divide and Conquer are used to split the host array into a
number of subarrays and leftmost segments are generated on each subarray.

18 Jigang Wu1 et al.

Next, the Merge connects these segments from separate sub-arrays to form
logical columns. Both parallel algorithms can produce logical arrays with the
same size as produced by GCR. We also provide simulation results on host
arrays with different size. The first algorithm can achieve a speedup of up to
42 times on 128×128 host arrays. Notable accelerations are also demonstrated
by the second algorithm.

Acknowledgements This work was supported by the National Natural Science Founda-
tion of China under Grant No. 61173032 and No. 61070136, and Specialized Research Fund
for the Doctoral Program of Higher Education under Grant No. 20131201110002.

References

1. S. R. Vangal, J. Howard, G. Ruhl, S. Dighe, H. Wilson, J. Tschanz, D. Finan, A. Singh,
T. Jacob, S. Jain, V. Erraguntla, C. Roberts, Y. Hoskote, N. Borkar, and S. Borkar.
“An 80-tile sub-100-w teraflops processor in 65-nm cmos,” IEEE Journal of Solid-State
Circuits, vol. 43, no. 1, pp. 29-41, 2008.

2. S. Bell, B. Edwards, J. Amann, R. Conlin, K. Joyce, V. Leung, J. MacKay, M. Reif, Liewei
Bao, J. Brown, M. Mattina, Chyi-Chang Miao, C. Ramey, D. Wentzlaff, W. Anderson,
E. Berger, N. Fairbanks, D. Khan, F. Montenegro, J. Stickney, and J. Zook. “TILE64-
Processor: A 64-Core SoC with Mesh Interconnect,” In Digest of Technical Papers, IEEE
International Solid-State Circuits Conference (ISSCC), pp. 99, 598, 2008.

3. J. Antusiak, A. Trouv and K. Murakami, “A Comparison of DAG and Mesh Topologies
for Coarse-Grain Reconfigurable Array,” Proc. of 2012 IEEE 26th International Parallel &
Distributed Processing Symposium Workshops & PhD Forum (IPDPSW 2012), Shanghai,
China, pp.220-226, May 2012.

4. P. Pepeljugoski, J. Kash, F. Doany, D. Kuchta, L. Schares, C. Schow, M. Taubenblatt,
B. Offrein, and A. Benner, “Towards exaflop servers and supercomputers: The roadmap
for lower power and higher density optical interconnects,” Proc. of 2010 36th European
Conference and Exhibition on Optical Communication (ECOC), pp. 1-14, Sept. 2010.

5. S. Kamil, L. Oliker, A. Pinar and J. Shalf, “Communication Requirements and Intercon-
nect Optimization for High-End Scientific Applications,” IEEE Transactions on Parallel
and Distributed Systems (TPDS), vol. 21, no. 2, pp. 188-202, 2009.

6. D. Ajwani, S. Ali, J.P. Morrison, “Graph Partitioning for Reconfigurable Topology,”2012
IEEE 26th International Parallel & Distributed Processing Symposium (IPDPS), Shang-
hai, China, pp. 836-847, May 2012.

7. L. Schares, X. J. Zhang, R. Wagle, D. Rajan, P. Selo, S.-P. Chang, J. R. Giles, K. Hildrum,
D. M. Kuchta, J. L. Wolf, and E. Schenfeld, “A reconfigurable interconnect fabric with
optical circuit switch and software optimizer for stream computing systems,” Proc. of 2009
Conference on Optical Fiber Communication (OFC), pp.1-3, 2009.

8. M. B. Stensgaard and J. Spars, “ReNoC: A Network-on-Chip Architecture with Recon-
figurable Topology ,” Proc. of Second ACM/IEEE International Symposium on Networks-
on-Chip(NoCS 2008), Newcastle upon Tyne, England, pp.55-64,2008.

9. J. H. Collet, P. Zajac, M. Psarakis, and D. Gizopoulos, “Chip Self-Organization and Fault
Tolerance in Massively Defective Multicore Arrays,” IEEE Transactions on Dependable
and Secure Computing, vol. 8, no. 2, pp. 207-217, march 2011.

10. Z. Liu, J. Cai, M. Du, L. Yao, Z. Li, “Hybrid Communication Reconfigurable Network
on Chip for MPSoC,” Proc. of 2010 24th IEEE International Conference on Advanced
Information Networking and Applications (AINA), pp. 356-361, Perth, Australia, 2010.

11. J. H. Collet, M. Psarakis, P. Zajac, D. Gizopoulos, and A. Napieralski, “Comparison of
Fault-Tolerance Techniques for Massively Defective Fine- and Coarse-Grained Nanochips,”
Proc. of 16th International Conference on Mixed Design of Integrated Circuits and Sys-
tems,(MIXDES 2009), Lodz, Poland, pp.23-30,June 2009.

Parallel Reconfiguration Algorithms for Mesh-connected Processor Arrays 19

12. A. Avakian, J. Nafziger, A. Panda and R. Vemuri, “A Reconfigurable Architecture for
Multicore Systems,” Proc. of 2010 24th IEEE International Symposium on Parallel &
Distributed Processing, Workshops and Phd Forum (IPDPSW 2010), Atlanta, GA, USA,
pp.1-8 , April 2010

13. M. Modarressi, H. Sarbazi-Azad, A. Tavakkol, “An efficient dynamically reconfigurable
on-chip network architecture,” Proc. of the 47th Design Automation Conference (DAC’10),
pp.310-313, 2010.

14. Y. Y. Chen, S. J. Upadhyaya and C. H. Cheng, “A comprehensive reconfiguration
scheme for fault-tolerant VLSI/WSI array processors,” IEEE Transactions on Computers,
vol. 46, no. 12, pp. 1363-1371, Dec. 1997.

15. T. Horita and I. Takanami, “Fault-tolerant processor arrays based on the 1.5-track
switches with flexible spare distributions,” IEEE Transactions on Computers, vol. 49, no.
6, pp. 542-552, June 2000.

16. Li Zhang, “Fault-Tolerant meshes with small degree,” IEEE Transactions on Computers,
col. 51, No. 5, pp. 553-560, May 2002.

17. M. Fukushi and S. Horiguchi, “A Self-reconfigurable Hardware Architecture for Mesh
Arrays Using Single/double Vertical Track Switches”, IEEE Transactions on Instrumen-
tation and Measurement, vol. 53, no. 2, pp. 357-367, April 2004.

18. S. Y. Kuo and I. Y. Chen, “Efficient reconfiguration algorithms for degradable
VLSI/WSI arrays,” IEEE Transactions on Computer-Aided Design, vol. 11, no. 10, pp.
1289-1300, Oct. 1992.

19. C. P. Low and H. W. Leong, “On the reconfiguration of degradable VLSI/WSI arrays,”
IEEE Transactions Computer-Aided Design of integrated circuits and systems, vol. 16,
no. 10, pp. 1213-1221, Oct. 1997.

20. C. P. Low, “An efficient reconfiguration algorithm for degradable VLSI/WSI arrays,”
IEEE Transactions on Computers, vol. 49, no. 6, pp. 553-559, June 2000.

21. J. Wu and T. Srikanthan, “Reconfiguration Algorithms for Power Efficient VLSI Subar-
rays with 4-port Switches”, IEEE Transactions on Computers, vol. 55, no. 3, pp. 243-253,
March 2006.

22. J. Wu and T. Srikanthan, “Integrated row and column re-routing for reconfiguration of
VLSI arrays with 4-port switches”, IEEE Transactions on Computers, vol. 56, no. 10, pp.
1387-1400, Oct. 2007.

23. M. Fukushi, Y. Fukushima, and S. Horiguchi, “A genetic approach for the reconfigura-
tion of degradable processor arrays”, in Proc. of 20th IEEE International Symposium on
Defect Fault Tolerance VLSI System., pp. 63-71, June, 2005.

24. J. Wu, T. Srikanthan, and X. Han, “Preprocessing and Partial Rerouting Techniques
for Accelerating Reconfiguration of Degradable VLSI Arrays,” IEEE Transactions on Very
Large Scale Intergration (VLSI) Systems, vol. 18, no. 2, pp. 315-319, August 2010.

25. G. Jiang, J. Wu and J. Sun. “Non-Backtracking Reconfiguration Algorithm for Three-
dimensional VLSI Arrays,” in Proc. of 2012 IEEE 18th International Conference on Par-
allel and Distributed Systems (ICPADS), Singapore, pp.362-367, Dec. 2012.

26. G. Jiang, J. Wu and J. Sun, “Efficient Reconfiguration Algorithms for Communication-
Aware Three-dimensional Processor Arrays,” Parallel Computing (2013), doi:
http://dx.doi.org/10.1016/j.parco.2013.04.005.

27. L. Zhang, Y. Han, Q. Xu, X. Li and H. Li, “On Topology Reconfiguration for Defect-
Tolerant NoC-Based Homogeneous Manycore Systems,” IEEE Transactions on Very Large
Scale Intergration (VLSI) Systems, vol. 17, no. 9, pp. 1173-1186, 2009.

28. N. R. Mahapatra and S. Dutt, “Hardware-efficient and Highly Reconfigurable 4- and
2-track Fault-tolerant Designs for Mesh-connected Arrays”, Journal of Parallel and Dis-
tributed Computing, vol. 61, no. 10, pp. 1391-411, Oct. 2001.

29. I. Takanami, “Self-reconfiguring of 1.5-track-switch Mesh Arrays with Spares on One
Row and One Column by Simple Built-in Circuit”, IEICE Transactions on Information
and Systems, vol. E87-D, no. 10, pp. 2318-2328, 2004.

30. J. Wu, T. Srikanthan, and Schroder Heiko, “Efficient Reconfigurable Techniques for
VLSI Arrays with 6-port Switches,” IEEE Transactions on Very Large Scale Integration
(VLSI) Systems, vol. 13, no. 8, pp. 976-979, August 2005.

31. P. Parvathala, K. Maneparambil, W. Lindsay, “FRITS - A Microprocessor Functional
BIST Method”, Proc. of IEEE International Test Conference , pp 590-598, 2002.

20 Jigang Wu1 et al.

32. L. Chen, S. Ravi, A. Raghunathan, S. Dey, “A Scalable Software-Based Self-Test
Methodology for Programmable Processors”, Proc. of IEEE/ACM Design Automation
Conference (DAC 2003), pp. 548-553, 2003.

33. A. Paschalis and D. Gizopoulos, “Effective Software-Based Self-Test Strategies for On-
Line Periodic Testing of Embedded Processors”, IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems , vol. 24, no 1, pp. 88-99, 2005.

34. F. Corno, E. Sanchez, M. Sonza Reorda, G. Squillero, “Automatic Test Program Gen-
eration - a Case Study”, IEEE Design & Test of Computers , vol. 21, no. 2, pp. 102-109,
2004.

35. M. Hatzimihail, M. Psarakis, D. Gizopoulos and A. Paschalis, “A Methodology for De-
tecting Performance Faults in Microprocessor Speculative Execution Units via Hardware
Performance Monitoring”, Proc. of IEEE International Test Conference , paper 29.3, 2007.

36. D. Gizopoulos, M. Psarakis, M. Hatzimihail, M. Maniatakos, A. Paschalis, A. Raghu-
nathan and S. Ravi, “Systematic Software-Based Self-Test for Pipelined Processors”, IEEE
Transactions on Very Large Scale Integration (VLSI) Systems , vol. 16, no 11, pp. 1441-
1453, 2008.

