

ACM Transactions on xxxxxxxx, Vol. xx, No. x, Article xx, Publication date: Month YYYY

Exploiting FPGA-Aware Merging of Custom Instructions for
Runtime Reconfiguration 

SIEW-KEI LAM, Nanyang Technological University
CHRISTOPHER T. CLARKE, University of Bath
THAMBIPILLAI SRIKANTHAN, Nanyang Technological University

Runtime reconfiguration is a promising solution for reducing hardware cost in embedded systems, without
compromising on performance. We present a framework that aims to increase the performance benefits of
reconfigurable processors that support full or partial runtime reconfiguration. The proposed framework
achieves this by: 1) providing a means for choosing suitable custom instruction selection heuristics, 2)
leveraging FPGA-aware merging of custom instructions to maximize the reconfigurable logic block
utilization in each configuration, and 3) incorporating a hierarchical loop partitioning strategy to reduce
runtime reconfiguration overhead. We show that performance gain can be improved by employing suitable
custom instruction selection heuristics, which in turn depends on the reconfigurable resource constraints
and the merging factor (extent that the selected custom instructions can be merged). The hierarchical loop
partitioning strategy leads to an average performance gain of over 31% and 46% for full and partial
runtime reconfiguration respectively. Performance gain can be further increased to over 52% and 70% for
full and partial runtime reconfiguration respectively by exploiting FPGA-aware merging of custom
instructions.

Categories and Subject Descriptors: C [Computer Systems Organization]: Adaptable Architectures

General Terms: Design, Algorithms, Performance

Additional Key Words and Phrases: Custom instructions, FPGA, full/partial runtime reconfiguration, loop
partitioning, reconfigurable processors

1. INTRODUCTION

The computing systems market is increasingly dominated by embedded systems.
Non-Recurring Engineering (NRE) costs and Time-To-Market (TTM) will become key
factors to market success and future embedded systems will be compelled to reuse
off-the-shelf components instead of employing custom chips. At the same time, they
need to maintain product differentiation and this will pose major challenges to small
companies. In light of this, Field Programmable Gate Arrays (FPGAs) are fast
becoming the preferred computing platform dominating the integrated circuit market
particularly when concerns over market uncertainties as well as shorter product life
cycles of embedded systems cannot be ignored. Today, commercially available FPGAs
incorporate reconfigurable processors to provide for high instruction set
programmability, while leveraging the computational power of configurable
hardware. These reconfigurable processors enable the basic instruction set of the
microprocessor to be extended by implementing custom instructions.

Author’s addresses: Siew-Kei Lam, Centre for High Performance Embedded Systems, Nanyang
Technological University, Singapore; Christopher T. Clarke, Department of Electronic and Electrical
Engineering, University of Bath, Bath, United Kingdom; Thambipillai Srikanthan, Centre for High
Performance Embedded Systems, Nanyang Technological University, Singapore.
Permission to make digital or hardcopies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation.
Copyrights for components of this work owned by others than ACM must be honored. Abstracting with
credits permitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any
component of this work in other works requires prior specific permission and/or a fee. Permissions may be
requested from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA,
fax +1 (212) 869-0481, or permissions@acm.org.
© 2010 ACM 1539-9087/2010/03-ART39 $15.00

DOI:http://dx.doi.org/10.1145/0000000.0000000

1

1:2 Lam et al.

ACM Transactions on xxxxxxxx, Vol. xx, No. x, Article x, Publication date: Month YYYY

Runtime reconfiguration enables the realization of low cost systems without
compromising performance by allowing the configuration of the hardware to change
dynamically during program execution. Although runtime reconfiguration is possible
in commercial FPGAs, the fine-grained programmable structure of commercially
available reconfigurable architectures results in large reconfiguration overhead. In
addition, there is a lack of tools and methodologies to support runtime
reconfiguration in commercial FPGAs.

In [Lam et. al. 2012], we presented a framework to generate efficient custom
instructions for reconfigurable processors that support full or partial runtime
reconfiguration. The proposed framework identifies a suitable set of runtime
configurations or temporal partitions from a given application. Rapid area-time
estimation of the custom instructions in the temporal partitions are undertaken to
evaluate the benefits of runtime reconfiguration early in the design cycle. The
proposed framework incorporates a hierarchical loop partitioning strategy that
reduces the search space complexity for determining full and partially reconfigurable
custom instructions. The framework leverages the cluster merging technique that we
previously proposed in [Lam et al. 2011] to increase the benefits of runtime
reconfiguration on reconfigurable processors. We target area-constrained FPGAs
with multi-bit logic blocks and bus-based architecture that facilitate configuration
memory sharing, which is similar to [Ye et al. 2006]. Experiment results for the
Cjpeg application show that both the full and partial reconfiguration models of the
target FPGA can benefit notably from the proposed cluster merging based
hierarchical loop partitioning strategy.

In this paper, we extend our work in [Lam et. al. 2012] to investigate the effects of
different custom instruction selection strategies on runtime reconfiguration. We
employed a graph covering algorithm with two widely-used heuristics for custom
instructions selection and show that the suitability of the heuristics not only depends
on the reconfigurable resource constraints but also on the merging factor (i.e. the
extent that the resulting custom instructions can be merged). Specifically, the custom
instruction selection heuristic that leads to higher merging factor will result in
higher performance gain. For comparisons with the proposed framework, we
implemented a knapsack algorithm for custom instruction selection. In addition to
the Cjpeg application, we provide experimental results for two other well-known
applications (i.e. Sha and BlowfishEnc) to demonstrate the advantages of the
proposed framework over the knapsack-based custom instruction selection approach.

2. RELATED WORK

Custom instruction selection aims to select a set of non-overlapping custom
instruction instances that best meets the objectives of the design (in terms of area,
speed, and/or power consumption). We have previously shown in [Li et. al. 2010] that
exact algorithms for custom instruction selection are prohibitive for large sized
problems. Hence, approximate solutions, such as heuristic and knapsack-based
approaches are often used. The work in [Atasu et. al. 2008][Cong et. al. 2004]
formulated the custom instruction selection process as a knapsack problem. The work
in [Bonzini et. al. 2008] proposed a hybrid algorithm for recurrence-aware custom
instruction selection that combines a greedy covering algorithm and an exact branch
and bound algorithm. The method in [Guo et. al. 2003] employs a graph-covering
algorithm to maximize the number of covered nodes using a minimum number of
custom instructions. Our recent work in [Prakash et. al. 2013] demonstrated that

ACM Transactions on xxxxxxxx, Vol. xx, No. xx, Article xx, Publication date: Month YYYY

results of custom instruction selection can be improved by incorporating FPGA
architecture characteristics in the selection heuristics.

The work in [Bauer et al. 2007] has demonstrated runtime reconfiguration for
JPEG and H.264 encoder/decoder on Xilinx Virtex FPGA based reconfigurable
processors. However, the fine-grained programmable structure in commercial FPGAs
necessitates high reconfiguration overhead which may nullify the speedup obtained
through hardware acceleration. This overhead is significant. For example, partial
reconfiguration on Xilinx Virtex FPGA and the Stretch processor [Stretch] is in the
order of milliseconds. Hence, FPGA architectures with multi-bit logic blocks and bus-
based architecture that facilitate configuration memory sharing (e.g. [Ye et al. 2006])
is an attractive proposition.

Temporal partitioning is required to partition the application into mutually
exclusive configurations such that the area requirement of each configuration is
within the reconfigurable resource capacity. Integer Linear Programming (ILP) has
been used for temporal partitioning of application task graph in [Kaul et al. 1999].
This is accompanied by a loop transformation strategy that aims to increase the
throughput while minimizing the reconfiguration overhead. The framework in [Li et
al. 2000] presented a strategy that traverse the loop graph in a hierarchical top-down
fashion, while recursively combining nested loops. The work in [Mehdipour et al.
2006] presented a method that partitions and modifies custom instructions so that
they can be mapped onto coarse-grained functional units. The authors in [Huynh et
al. 2009] presented a framework which performs temporal partitioning of frequently
executed application loops. The framework assumes that custom instruction versions
and their corresponding hardware area-time measures are available prior to the
partitioning process. Recently, we proposed a hierarchical partitioning strategy that
heuristically determines whether the application loops can be merged with existing
configurations or unfolded for further evaluation in order to obtain a set of runtime
configurations that contain profitable custom instructions [Lam et al. 2010].

3. OVERVIEW OF FRAMEWORK

Figure 1 shows an overview of the proposed framework. The framework relies on the
Trimaran compiler infrastructure [Trimaran] to generate the Intermediate
Representation (IR) of C-application in the form of a Data Flow Graph (DFG). The IR
serves as input to the Custom Instruction Identification and Selection stage to
determine a set of custom instructions. We have employed a graph covering
algorithm that can adopt different objective functions for custom instruction selection.
This will be described in Section 4.

Cluster merging is then performed on the selected custom instructions to
determine the merged clusters. As discussed in Section 5, cluster merging provides
an indication of the area costs and critical path delays of the custom instructions
when they are implemented on the reconfigurable multi-bit logic blocks. A
configuration graph is then generated to enable temporal partitioning of loops using
the proposed hierarchical loop partitioning strategy. We will discuss the generation
of the configuration graph and the hierarchical loop partitioning strategy in Section 6.
Note that the partitioning strategy relies on the hardware estimation results from
the cluster merging process in order to obtain a set of custom instruction
configurations. In addition, the partitioning strategy also utilizes the results from
cluster merging to increase the performance gain of the configurations and to reduce
reconfiguration cost.

The target FPGA model, which is described in detail in [Lam et. al. 2008] consists
of a set of multi-bit logic blocks that is organized around an interconnection network.
Each multi-bit logic block incorporates programmable fine-grained logic elements

1:4 Lam et al.

ACM Transactions on xxxxxxxx, Vol. xx, No. x, Article x, Publication date: Month YYYY

that are similar to those found in commercial FPGA architectures. In particular,
these logic elements consist of 4-input LUTs that are accompanied by fast carry
propagation structure. It is noteworthy that in our framework, the use of the variable
to indicate the number of direct inputs to the logic block makes the approach
applicable in situations where the number of inputs is different. Unlike commercial
architectures, the logic elements within each multi-bit block shares the same
configuration memory, which leads to reduce runtime reconfiguration overhead. We
assume that the smallest possible configuration unit is a multi-bit logic block. If the
computation resource requirement of the custom instructions exceeds the number of
available logic blocks in the reconfigurable logic, then the custom instructions are
mapped to different configurations. At runtime, a reconfiguration manager
automatically loads the required configurations onto the logic blocks for computing
the custom instructions.

Figure 1: Framework for generating runtime reconfigurations.

4. CLUSTER INSTRUCTION SELECTION

We have used the exhaustive custom instruction enumeration proposed in [Pozzi et.
al. 2006] to identify custom instruction instances from the pre-register allocated IR.
The same constraint set described in [Lam et. al. 2009] is used in the enumeration
process. In particular, only connected integer operations are allowed in the custom
instruction instances and the maximum number of input/output ports is 5/2. Previous
work has shown that input-output ports more than this range result in little
performance gain. Finally, only convex sub-graphs are allowed in the instances.

The custom instruction selection problem can be formulated as follows: Given an
application DFG G, a unique set of custom instructions T = {T1, T2, …, Ti} and the
instances of each custom instruction Ti, Ii = {Ii,1, Ii,2, …, Ii,j}, find a subset of the set I
that covers G.

 We have adopted the graph covering algorithm presented in [Guo et. al. 2003] to
find a set of non-overlapping nodes from the conflict graph based on some objective
function. A conflict graph is an undirected graph Gu(Vu,Eu). Each vertex represents a
custom instruction instance Ii,j that is associated with a unique custom instruction Ti.
An edge e ∈ Eu between two instances signifies that the instances have at least one
overlapping node. The number of nodes in an instance Ii,j is denoted as size(Ii,j). The
covering algorithm starts by taking all the custom instruction instances and
constructing a conflict graph with them. For each unique template Ti, the Maximum
Independent Set (MIS) (referred to hereinafter as MISi) is the largest subset of
instances in Ti for which those instances do not share any common edges (they are
mutually non-adjacent). This is established using an iterative approach. The term
size(MISi) is used in this paper to indicate the number of instances that are contained
within MISi . The MISi with the largest objective function (w(MISi)) is then selected.
All instances that match the selected MIS then become selected instances. After
selection, these instances and their neighbors can be removed from the conflict graph.

TrimaranApplication

Generate
Weighted

CFGBasic
Block
Trace

Generate
Configuration

GraphCFG

Custom
Instruction
Selection

DFG
Cluster Merging

Selected
Custom

Instructions

Hierarchical
Loop

Partitioning

Configuration
Graph

Selected Custom
Instructions and
Corresponding

Clusters/Merged
Clusters

FPGA Area
Constraint

Runtime
Configurations

ACM Transactions on xxxxxxxx, Vol. xx, No. xx, Article xx, Publication date: Month YYYY

This algorithm is repeated until the conflict graph is empty. The computation of the
MIS can be implemented in time linear in the number of vertices and edges of Gu
[Halldórsson et. al. 1994].

The choice of objective function (i.e. w(MISi)) will have significant impact on the
custom instruction selection process. In this paper, we have evaluated two commonly
used objective functions: 1) Most-Frequent-Largest-Fit-First (MLFF), and 2) Largest-
Fit-First (LFF). The objective function for MLFF is:      ixi MSIsizevsizeMSIw  ,
which takes into account both the frequency of custom instruction occurrence and the
size of the custom instructions. The objective function for the LFF heuristic is:
   xi vsizeMSIw  . The LFF approach attempts to select the MIS with the largest

instances first. The selected custom instructions using the objective function MLFF
or LFF will then undergo the cluster merging process described in the next section.

5. CLUSTER MERGING

In [Lam et. al. 2011], we proposed the cluster merging technique to generate area-
time efficient custom instructions. Figure 2 illustrates an example of cluster merging
of two custom instructions G1 and G2, with the assumption that there is only one
available output port. Each custom instruction consists of a set of primitive integer
arithmetic (e.g. addition, subtraction, multiplication), logical (and, or, xor), and
relational (e.g. logical and arithmetic shift) operations.

Figure 2: Example of cluster merging for custom instructions G1 and G2.

The cluster merging method first partitions the custom instructions into a set of

clusters such that each cluster can be mapped onto a single FPGA logic block. This
resembles the technology mapping process, where a set of clusters that effectively
cover each custom instruction is identified. In Figure 2(a), G1 is partitioned into
clusters 1

1C , 2
1C and 3

1C , and G2 is partitioned into clusters 4
2C and 5

2C . Next,
clusters from different custom instructions are merged if the resulting merged cluster
can still be mapped onto a single FPGA logic block. This process takes into account
the architectural constraints of the FPGA device for generating area-time efficient
custom instructions. It can be observed that the merged data-path in Figure 2(b) is
capable of performing the functionality of the original custom instructions (yx
denotes x and y have been merged). A heuristic is used to select a unique set of
merged clusters with the aim to maximize the area utilization of the FPGA resources.
As discussed in [Lam et. al. 2011], the time complexity of cluster merging is ܱሺ| ௨ܸ|ଶሻ,
where | ௨ܸ| is the number of clusters that are evaluated in each iteration.

1

1
C

4

2

1

1
CC 

3

1
C

5

2

2

1
CC 

116

3

1
C

2

1
C 4

2
C

5

2
C

1:6 Lam et al.

ACM Transactions on xxxxxxxx, Vol. xx, No. x, Article x, Publication date: Month YYYY

The results of cluster merging also provide area-time estimation of FPGA
realization due to the architecture-aware nature of the cluster merging process. For
example, the merged data-path in Figure 2(b) utilizes three FPGA logic blocks and
has a critical path delay that is equivalent to the latency of three FPGA logic blocks.
In the next section, we describe how the cluster merging technique can lead to
performance benefits for runtime reconfiguration.

6. TEMPORAL PARTITIONING

6.1 Generating the Configuration Graph

The configuration graph is intended to provide visibility of sections of the
application that run together and hence would be considered as a group for custom
instruction reconfiguration. Figure 3 shows an example of configuration graph
generation from the basic block trace of an application obtained from Trimaran. The
basic block trace lists the actual execution sequence of the basic blocks for a given
input dataset.

We first convert the basic block trace into a weighted Control Flow Graph (CFG),
which encapsulates the control flow between unique basic blocks and the
corresponding frequency. This is achieved with a simple program that parses the
basic block trace and constructs an adjacency matrix which records the control edges
of each basic block. In particular, the weighted CFG is a directed graph G(V,E,w),
where V is a set of vertices that represent the unique basic blocks in the basic block
trace. An edge e ∈ E is an ordered pair (u,v), where u, v ∈ V, that represents the
control flow between basic blocks u and v. Each edge (u,v) is associated with a weight
w that represents the frequency of the control flow between u and v.

The configuration graph is a directed graph Gc(Vc,Ec,wc) that is generated from the
weighted CFG. Each vertex uc ∈ Vc in the configuration graph, denoted as a
configuration, is a set of basic blocks (i.e. uc = {u1, u2, ..., uk} ∈ V) that are reachable
from one another. In other words, a cycle can be found between any pair of basic
blocks in a configuration. In addition, there are no duplicated basic blocks in different
configurations (i.e. uc ∩ vc = ø, where uc, vc ∈ Vc and uc ≠ vc). For example in Figure 3,
configuration C1 in the configuration graph consists of basic blocks BB1, BB2, ... BB7,
configuration C3 in the configuration graph consists of basic blocks BB8, BB9, ...
BB13, and configuration C2 in the configuration graph consists of basic blocks BB14,
BB15, ... BB18. It is noteworthy that the basic blocks in each configuration belong to
application loops, which are the most frequently executed segments of embedded
applications.

We have used transitive closure to identify the existence of cycles between each
pair of basic block in the weighted CFG. The acyclic graph is then generated by
collapsing the basic blocks into the corresponding configurations. It can be observed
that the edges of the configuration graph are associated with a weight, which is the
sum of edge weights between basic blocks in different configurations. Note that
weights of the edges in the configuration graph are typically very small, as these
edges represent the less occurring control flow between disjoint loops in the
application. Each configuration in the initial configuration graph is a potential
runtime configuration candidate. Hence, the weight of an edge in the configuration
graph wc(uc,vc), where uc, vc ∈ Vc, represent the number of times configuration uc is
reconfigured to vc.

ACM Transactions on xxxxxxxx, Vol. xx, No. xx, Article xx, Publication date: Month YYYY

Figure 3: Generating configuration graph from basic block trace.

6.2 Hierarchical Loop Partitioning

The proposed hierarchical loop partitioning temporally partitions the application
loops, in a top-down fashion starting from the initial acyclic configuration graph, into
one or more configurations such that the overall performance gain of runtime
reconfiguration is maximized. The final output of the partitioning process is a set of
configurations and the selected custom instructions in each configuration.

Figure 4 shows an example of the proposed method. In the initial step, the
performance gain of the custom instructions in each configuration C1, C2 and C3 of
the configuration graph (see Figure 3c), is calculated. The performance gain is
computed by selecting the set of custom instructions in each configuration that leads
to the highest software cycle savings while meeting the FPGA area constraint using
Eq. (1). Details of the performance gain computation will be discussed later.

In the subsequent iterations of the partitioning process, each configuration is
partitioned into two new configurations. For example in Figure 4, C1 is partitioned to
C1.1 and C1.2; C2 is partitioned to C2.1 and C2.2; and C3 is partitioned to C3.1 and
C3.2. We have used the multilevel 2-way partitioning algorithm in [Karypis et al.
1998a] to partition each configuration into two parts with the objective to minimize
the edge-cut. The edge-cut is defined as the sum of the weight of the straddling edges
between the partitions. Each new partition can be represented by a new vertex in Gc,
which represents a possible runtime configuration candidate. Note that the
partitioning also introduces additional edges in the configuration graph which
represents the straddling edges between the basic blocks in the various partitions.

For each partition solution, the total performance gain (calculated using Eq. (1)) of
the resulting partitions is compared to the performance gain of the initial
configuration. If the post-partition performance is less than the initial performance,
then the new partitions are discarded and the initial configuration is restored. This
can be observed in Iteration 2 of Figure 4 where some of the configurations in
Iteration 1 do not lead to any further partitions. In particular, C1.2, C2.1, C2.2 and
C3.2 do not undergo further partitions as doing so will not lead to improved
performance gain. For example, consider that C1.2 is further partitioned to two

60

10002000

5000

500200
BB1

BB2

BB3

BB4

BB5 BB6

BB8

BB9

BB10

BB11

BB12

BB13

BB14 BB15 BB16

BB17BB18

80

5
BB7

7

50

6000

BB1 BB4 BB3 BB1 BB4 BB3 BB1 BB4 BB3 BB5 BB6 BB4 BB1 BB2 BB3 BB1 BB2 BB3 BB7 BB6 BB4 BB3 BB7 BB6 . . .

(a) Basic Block Trace

Generate
Weighted

Control Flow
Graph

(b) Weighted CFG

Generate
Configuration

 Graph(c) Configuration Graph

C1 C3

C2

15

1:8 Lam et al.

ACM Transactions on xxxxxxxx, Vol. xx, No. x, Article x, Publication date: Month YYYY

configurations (e.g. C1.2.1 that consists of BB5, and C1.2.2 that consists of BB6 and
BB7). The partitioning process will now result in additional overhead that is required
to reconfigure C1.2.1 to C1.2.2. In particular, we need to take into account the time
required for the additional 500 reconfigurations. Assuming that this overhead
obviates the benefits of the partitioning process, we have to discard the
configurations C1.2.1 to C1.2.2 and retain the original partition C1.2.

Figure 4: Example of hierarchical loop partitioning.

The partition process is repeated until no new partitions are formed in a

particular iteration. [Karypis et al. 1998b] has shown that the k-way graph
partitioning can be achieved in ܱሺ|ܧ|ሻ time, where |ܧ| is the number of edges in the
graph. Since each configuration may be partitioned to two in an iteration, the total
number of partitions evaluated is at most twice the number of resulting partitions.
Note that the proposed hierarchical partitioning strategy reduces the search space by
avoiding further partitioning if the resulting partitions do not lead to higher
performance. The final set of partitions is the runtime configurations.

ALGORITHM 1 shows the pseudo code for the proposed hierarchical loop
partitioning strategy. In each iteration (lines 4-14), the performance gain of each
existing configuration in the configuration graph Gc is first evaluated (line 5) using
the function CAL-GAIN and temporarily removed from Gc (line 6). The existing
configuration is then partitioned into two smaller configurations using the 2-Way-
Partition function (line 7) and the new configurations are inserted into Gc along with
the corresponding edges (line 8). The performance gain of the two new configurations
is evaluated (lines 9-10) and compared to the performance gain of the initial
configuration (line 11). In the event that the partitioning has led to less favorable
performance gain, the initial partition is restored (line 12) in the configuration graph
and the new configurations are removed from the configuration graph (line 13). When
no new partitions are generated in an iteration (evaluated in line 2), the algorithm
returns the configuration graph consisting of the final set of configurations (line 15).

The effective performance gain for each new configuration x ∈ Vc (in terms of
software cycle savings) is computed as shown in Eq. (1), where x

iG is a custom

instruction in configuration x,)(x
iGF is the execution frequency of instruction x

iG ,

)(x
iS GT denotes the number of operations in x

iG ,)(x
iH GT is the estimated critical path

C1 C3

C2

15

200
BB1

BB2

BB4

500
BB5 BB6

BB7

2000
BB14 BB15

BB18

BB16

BB17

5000
BB8

BB9

BB10

BB11

BB12

BB13

6000

BB1
BB2

BB4

80
BB3

500
BB5 BB6

BB7

BB3

60

2000
BB14 BB15

BB18

BB16

BB17
60

5000
BB8

BB9

BB10

BB11

BB12

BB13

6000

Iteration 1

Iteration 2

C1.1

C1.2
C2.1 C2.2

C3.1
C3.2

C1.1.1
C1.1.2

C3.1.1

C3.1.2

ACM Transactions on xxxxxxxx, Vol. xx, No. xx, Article xx, Publication date: Month YYYY

delay of x
iG (inferred from cluster merging), r is the ratio between the clock

frequency of the FPGA and base processor, and x
RTRT is the reconfiguration cost of x.

Note that Eq. (1) makes the following assumptions: each operation executes in one
clock cycle on the soft-core processor and at any one time, only the base instruction or
custom instruction is executed.

ALGORITHM 1. Hierarchical Loop Partitioning
1. partition_exist := true
2. while (partition_exist = true) {
3. partition_exist := false
4. for each node uc ∈ Gc {
5. SCS(uc) = Cal-Gain (uc, AFPGA)
6. remove uc from Gc

7. 21, cc uu = 2-WAY-PARTITION (uc)

8. insert 1
cu and 2

cu in Gc

9. SCS(1
cu) = CAL-GAIN (1

cu , AFPGA)

10. SCS(2
cu) = CAL-GAIN (2

cu , AFPGA)

11. if SCS(1
cu) + SCS(2

cu) < SCS(uc) {

12. restore uc in Gc

13. remove 1
cu and 2

cu from Gc }

14. else partition_exist := true }}
15. return Gc

The area utilization of all the custom instructions x

iG in x cannot exceed the
FPGA area constraint AFPGA (in terms of number of logic blocks) as shown in Eq. (2).
In our work, x

iG is selected from the set of custom instructions in configuration x that
leads to the highest software cycle savings while meeting the FPGA area constraint.

       x
RTR

c

i

x
iH

x
iS

x
i TGTrGTGFxSCS )((1)

  
c

i
FPGA

x
i AGAxA)((2)

 
   












RTRpartialifnATxuw

RTRfullifATxuw
T

cFPGA
lb
RTRcc

FPGA
lb
RTRccx

RTR
,

,
 (3)

The reconfiguration cost of configuration x is computed differently for the full and
partial reconfiguration model as shown in Eq. (3).   xuw cc , is the sum of weights of

the incoming edges of x in the configuration graph. In other words,   xuw cc ,

represents the number of times configuration x will be reconfigured on the FPGA at
runtime. lb

RTRT is the reconfiguration cost of a single multi-bit logic block and is
measured in terms of software clock cycles. Finally, nc is the number of common
clusters/merged clusters in configuration x and the previous configuration uc, i.e. (uc,
x) ∈ Ec. For partial reconfiguration, we can avoid reconfiguring logic blocks with
common clusters/merged clusters in two consecutive configurations.

1:10 Lam et al.

ACM Transactions on xxxxxxxx, Vol. xx, No. x, Article x, Publication date: Month YYYY

7. EXPERIMENTAL RESULTS

Runtime reconfiguration on reconfigurable processors is only feasible for applications
where the performance of the custom instructions can mitigate the high
reconfiguration overhead of the FPGA architecture. The proposed framework
employs cluster merging to increase the utilization of each configuration by packing
larger number of profitable custom instructions in each configuration. Hence, the
proposed strategy can lead to high performance benefits if most of the profitable
custom instructions in the application have common clusters.

Table I reports the cluster statistics from BlowfishEnc, Sha [Guthaus et. al. 2001]
and Cjpeg application [EEMBC]. The second and third column lists the number of
selected custom instructions, the fourth and fifth column lists the average size of the
selected custom instructions (in terms of number of operations), the sixth and
seventh column lists the number of basic clusters that are obtained using the
clustering technique, the eighth and ninth column lists the number of unique basic
clusters, and the final two columns report the number of unique basic/merged
clusters after the cluster merging. Results for the MLFF and LFF approaches are
reported. The unique clusters in the last four columns of Table I are the set of non-
isomorphic clusters (i.e. each of the clusters are unique in their operations and
interconnectivity between operations) before and after cluster merging. In the last
two columns (i.e. unique cluster after merging), the merging factor (calculated as the
ratio of basic clusters and unique clusters) is reported in brackets. The merging
factor signifies the extent that the custom instructions can be merged.

It can be observed that the merging factor of Cjpeg is the highest among the three
applications. In addition, the merging factor of the LFF approach in Cjpeg is
significantly higher that the MLFF approach. It can also be observed that on average
over 34% and 49% of the basic clusters in the three applications are isomorphic for
MLFF and LFF approaches respectively. The number of unique clusters can be
further reduced by an average of over 45% and 39% through cluster merging for
MLFF and LFF approaches respectively. The notable number of isomorphic clusters
found in these applications provides a strong justification for adopting the cluster-
based runtime reconfiguration approach.

Table I. Cluster Statistics

Application
Custom

Instructions
Average Size Basic Clusters Unique Clusters

(Before Merging)
Unique Clusters
(After Merging)

MLFF LFF MLFF LFF MLFF LFF MLFF LFF MLFF LFF
BlowfishEnc 7 8 3.14 3.38 13 15 8 9 5 (2.6) 6 (2.5)

Sha 8 8 2.27 3.01 11 17 9 11 5 (2.2) 7 (2.4)
Cjpeg 52 90 3.13 5.00 81 191 43 54 20 (4.1) 27 (7.1)

In the following sections, we will evaluate the proposed hierarchical loop

partitioning strategy for both full reconfiguration and partial reconfiguration models.
In addition, we will also investigate the impact of cluster merging on the different
custom instruction selection approaches for increasing the performance gain of
runtime reconfigurable processors. In the experiments we have chosen r = 3 in Eq. (1)
based on the area-optimized configuration of the MicroBlaze soft-core processor
[Mattson et. al. 2004].

7.1 Full Reconfiguration

The full reconfiguration model requires the complete reprogramming of the entire
configuration memory during runtime reconfiguration. The charts in the left of
Figure 5 compares the performance between the hierarchical loop partitioning

ACM Transactions on xxxxxxxx, Vol. xx, No. xx, Article xx, Publication date: Month YYYY

without cluster merging (No Merging) and hierarchical loop partitioning with cluster
merging (Merging) for the full reconfiguration model. The results for MLFF and LFF
approaches are shown. The performance is calculated by summing up the software
cycle savings of all the configurations (calculated using Eq. (1)). In addition, the
performance without runtime reconfiguration (No RTR) is also shown. In order to
obtain the performance of No RTR, a custom instruction selection algorithm based on
the knapsack approach is used to select a set of custom instructions that lead to the
highest performance while meeting the area constraint. It is noteworthy that No RTR
outperforms the baseline processor (where no custom instructions are deployed) by
20.6%, 35.8% and 14.8% for BlowfishEnc, Sha and Cjpeg respectively. Hierarchical
loop partitioning is not employed for No RTR. These values are obtained for varying
FPGA area constraints in terms of percentage of the maximum FPGA logic blocks
that is required to implement all the selected custom instructions for each
application. Larger area constraints are not shown as they will not lead to notable
performance gains in the approaches considered.

It can be observed that for the LFF approach, No Merging either does not
outperform No RTR (i.e. BlowfishEnc) or only outperforms No RTR for a few cases
when the area constraint is less than or equal to 6% (i.e. Sha and Cjpeg). Thereafter,
there is no significant difference between the performance of No Merging and No
RTR. On the other hand, Cluster Merging (denoted as Merging) outperforms both No
RTR and No Merging for: 1) BlowfishEnc when area constraint is 14%, 2) Sha when
area constraint is 36% and 42%, and 3) Cjpeg when area constraint is less than 30%.

The MLFF approach performs significantly better than the LFF approach in
BlowfishEnc and Sha when the area constraint is small. For example, in BlowfishEnc,
MLFF outperforms No RTR for area constraint up to 27% and in Sha, MLFF
outperforms No RTR for area constraint up 53%. Cluster Merging provides additional
performance gain in certain cases for these applications. However for Cjpeg, the LFF
approach is more favorable across all area constraints. These results clearly
demonstrate that the choice of custom instruction selection approach is essential to
obtain high performance gain in runtime reconfiguration. MLFF usually produces
smaller custom instructions compared to LFF (which has a preference for selecting
larger custom instructions first) and hence the MLFF approach is typically more
favorable when the area constraint is tight. This is evident in BlowfishEnc and Sha
where MLFF performs better than LFF for small area constraints but becomes less
favorable when the area constraints are relaxed. However for Cjpeg, LFF is preferred
even when the area constraints is small due to its high merging factor (see Table 1).
The high merging factor enables higher utilization of the FPGA space, which in turns
result in higher performance per unit area for the LFF approach.

We define performance threshold as the point at which the hierarchical loop
partitioning strategy (using the best custom instruction selection approach) is no
longer feasible when the area constraint is increased further. For area constraints
higher than the performance threshold, runtime reconfiguration does not lead to any
benefits. The performance threshold for BlowfishEnc, Sha and Cjpeg occurs when the
area constraint is 27%, 53% and 28% respectively. Note that beyond these
performance thresholds, No RTR gives comparable performance with the hierarchical
loop partitioning approach. Hence, one of the benefits of the framework is that it
provides a means for identifying the minimal area that is required for achieving
maximal performance through custom instructions. The experimental results clearly
demonstrate this as the performance gain of runtime reconfiguration exceeds the
performance gain of No RTR in many cases when the area constraint is less than the
performance threshold.

1:12 Lam et al.

ACM Transactions on xxxxxxxx, Vol. xx, No. x, Article x, Publication date: Month YYYY

Figure 5: Performance gain for full (left) and partial (right) reconfiguration models

The average performance gain can then be calculated for all the area constraints

up to (and including) the performance threshold. As shown in Figure 5, when
compared to No RTR, the proposed hierarchical loop partitioning strategy (No
Merging) leads to an average performance gain of 20.8% for BlowfishEnc (using
MLFF approach), 59% for Sha (using MLFF approach), and 13.1% for Cjpeg (using
LFF approach). When cluster merging is employed (Merging), the average
performance gain over No RTR increases to 50.5% for BlowfishEnc, 62.9% for Sha,
and 42.8% for Cjpeg.

The charts on the left of Figure 6 shows the total runtime reconfiguration cost
(represented with lines), which is calculated using Eq. (3), and the number of
configurations (represented by columns) for the full reconfiguration model. It can be
observed that when the area constraint is relaxed, the number of configurations
generally reduces to a point where it will not change anymore. In BlowfishEnc and
Sha, the number of configurations reduces to 1 for all the methods considered when
the area constraint is 20% and 48% respectively. When the area constraint is further

0.0E+00

1.0E+06

2.0E+06

3.0E+06

4.0E+06

5.0E+06

6.0E+06

7.0E+06

8.0E+06

9.0E+06

1.0E+07

7 14 20 27 34 40 47 54 60 67 74

C
lo
ck
 C
yc
le
 S
av
in
gs

Logic Block (%)

BlowfishEnc (Full)

No Merging (LFF) Merging (LFF) No Merging (MLFF) Merging (MLFF) No RTR

0.0E+00

1.0E+06

2.0E+06

3.0E+06

4.0E+06

5.0E+06

6.0E+06

7.0E+06

8.0E+06

9.0E+06

1.0E+07

7 14 20 27 34 40 47 54 60 67 74

C
lo
ck
 C
yc
le
 S
av
in
gs

Logic Block (%)

BlowfishEnc (Partial)

No Merging (LFF) Merging (LFF) No Merging (MLFF) Merging (MLFF) No RTR

0.0E+00

5.0E+05

1.0E+06

1.5E+06

2.0E+06

2.5E+06

3.0E+06

3.5E+06

4.0E+06

4.5E+06

6 12 18 24 30 36 42 48 53 59 65 71 77 83

C
lo
ck
 C
yc
le
 S
av
in
gs

Logic Block (%)

Sha (Full)

No Merging (LFF) Merging (LFF) No Merging (MLFF) Merging (MLFF) No RTR

0.0E+00

5.0E+05

1.0E+06

1.5E+06

2.0E+06

2.5E+06

3.0E+06

3.5E+06

4.0E+06

4.5E+06

6 12 18 24 30 36 42 48 53 59 65 71 77 83

C
lo
ck
 C
yc
le
 S
av
in
gs

Logic Block (%)

Sha (Partial)

No Merging (LFF) Merging (LFF) No Merging (MLFF) Merging (MLFF) No RTR

0.0E+00

5.0E+05

1.0E+06

1.5E+06

2.0E+06

2.5E+06

2 4 6 8 10 12 14 16 18 20 21 22 23 24 25 26 27 28 29 30

C
lo
ck
 C
yc
le
 S
av
in
gs

Logic Block (%)

Cjpeg (Full)

No Merging (LFF) Merging (LFF) No Merging (MLFF) Merging (MLFF) No RTR

0.0E+00

5.0E+05

1.0E+06

1.5E+06

2.0E+06

2.5E+06

2 4 6 8 10 12 14 16 18 20 21 22 23 24 25 26 27 28 29 30

C
lo
ck
 C
yc
le
 S
av
in
gs

Logic Block (%)

Cjpeg (Partial)

No Merging (LFF) Merging (LFF) No Merging (MLFF) Merging (MLFF) No RTR

ACM Transactions on xxxxxxxx, Vol. xx, No. xx, Article xx, Publication date: Month YYYY

relaxed, runtime reconfiguration no longer leads to any performance gain. It can also
be observed that the number of configurations in No Merging is always equal to or
less than Merging for both the LFF and MLFF approaches. This is due to the fact
that when cluster merging is taken into account during hierarchical loop partitioning,
more configurations could be generated as the overall performance gain compensates
for the runtime reconfiguration cost. The reconfiguration cost for LFF (Merging) in
Cjpeg gradually increases due to the increase in the number of logic blocks that
undergo runtime reconfiguration. This shows the LFF (Merging) approach for Cjpeg
can effectively increase the utilization of the configurations, which in turn lead to the
generation of more configurations.

7.2 Partial Reconfiguration

Partial reconfiguration enables a portion of the configuration memory to be
programmed during runtime reconfiguration and hence this can lead to higher
savings in the runtime reconfiguration cost. The charts on the right of Figure 5
compare the performance between No Merging, Merging and No RTR for the partial
reconfiguration model.

Compared to full reconfiguration, partial reconfiguration leads to higher
performance gain in No Merging. This is evident for BlowfishEnc and Cjpeg where
No Merging outperforms No RTR for area constraints up to 14% and 12%
respectively. Similar to the full reconfiguration model, the MLFF approach is
generally more favorable for BlowfishEnc and Sha when the area constraints are
tight, while the LFF approach is preferred for Cjpeg. This is explained in the
previous sub-section whereby custom instruction selection approaches that leads to
higher merging factor results in better performance. However, partial
reconfiguration results in performance advantage for larger number of design points
when compared to full reconfiguration. In particular, the performance threshold of
the partial reconfiguration model increases to 34%, 59% and 30% for BlowfishEnc,
Sha and Cjpeg respectively. Based on the performance threshold of the full
reconfiguration model, the proposed hierarchical loop partitioning strategy (No
Merging) outperforms No RTR by an average of 60.1% for BlowfishEnc (using MLFF
approach), 61.1% for Sha (using MLFF approach), and 16.8% for Cjpeg (using LFF
approach). With cluster merging (Merging), the average performance gain over No
RTR increases to 97.6% for BlowfishEnc, 69.1% for Sha, and 45.5% for Cjpeg.

The charts on the right of Figure 6 shows the total runtime reconfiguration cost
(represented with lines), which is calculated using Eq. (3), and the number of
configurations (represented by columns) for the partial reconfiguration model.
Similar to the full reconfiguration method, the number of configurations obtained
with No Merging is always lower than or equal to the number of configurations
obtained with Merging. An exception to this is a few cases in the LFF method for
Cjpeg when the area constraints are 8%-12%. The number of configurations
generated is also generally higher than the full reconfiguration model. For example,
in BlowfishEnc and Sha, the area constraint at which the number of configurations
reduces to 1 for all the methods considered increases to 40% and 65% respectively. In
addition, the runtime reconfiguration cost of the LFF (Merging) for Cjpeg is evidently
smaller than the full reconfiguration model as the area constraint is relaxed. This is
due to the fact that unlike full reconfiguration, the partial runtime reconfiguration
cost is not dependent on the area constraint but on the common clusters/merged
clusters in consecutive configurations. These results show that cluster merging can
lead to higher performance benefits for the partial reconfiguration model in two ways:
1) increasing the utilization of the configurations, and 2) reducing the runtime
reconfiguration cost.

1:14 Lam et al.

ACM Transactions on xxxxxxxx, Vol. xx, No. x, Article x, Publication date: Month YYYY

Figure 6: Runtime reconfiguration cost and number of configurations

8. CONCLUSION

A framework which aims to maximize the performance of custom instructions
through runtime reconfiguration, while minimizing the reconfiguration overhead has
been presented. The proposed framework incorporates a hierarchical loop
partitioning strategy that employs cluster merging to enable a larger number of
profitable custom instructions to be implemented in each configuration. In particular,
cluster merging can effectively increase the utilization of the configurations,
resulting in higher performance per unit area. Cluster merging also plays an
important role to determine the best custom instruction selection strategy for
runtime reconfiguration. Our analysis reveals that performance gain can be
improved by employing a custom instruction selection heuristic that results in a
higher merging factor. Experiment results show that both the full and partial
runtime reconfiguration can benefit notably from the proposed cluster merging based
hierarchical loop partitioning strategy when appropriate cluster selection strategy is
adopted.

1
2

1 1 1 1 1 1 1 1 1

1

2

1 1 1 1 1 1 1 1 1

1

2

1 1 1 1 1 1 1 1 1

1

2

1 1 1 1 1 1 1 1 1

0.0E+00

5.0E+05

1.0E+06

1.5E+06

2.0E+06

2.5E+06

3.0E+06

3.5E+06

4.0E+06

4.5E+06

7 14 20 27 34 40 47 54 60 67 74

R
u
n
ti
m
e
R
e
co
n
fi
gu
ra
ti
o
n
 C
o
st

Logic Block (%)

BlowfishEnc (Full)

No Merging (LFF) Merging (LFF) No Merging (MLFF) Merging (MLFF)

No Merging (LFF) Merging (LFF) No Merging (MLFF) Merging (MLFF)

1
2

1 1 1 1 1 1 1 1 1

1

2

2 2 2
1 1 1 1 1 1

1

2

1 1 1

1 1 1 1 1 1

1

2

2 2
1

1 1 1 1 1 1

0.0E+00

5.0E+05

1.0E+06

1.5E+06

2.0E+06

2.5E+06

3.0E+06

3.5E+06

4.0E+06

4.5E+06

5.0E+06

7 14 20 27 34 40 47 54 60 67 74

R
u
n
ti
m
e
R
e
co
n
fi
gu
ra
ti
o
n
 C
o
st

Logic Block (%)

BlowfishEnc (Partial)

No Merging (LFF) Merging (LFF) No Merging (MLFF) Merging (MLFF)

No Merging (LFF) Merging (LFF) No Merging (MLFF) Merging (MLFF)

2
1 1

2
1 1 1 1 1 1 1 1 1 1

2

1 1

2

2 2 2
1 1 1 1 1 1 1

2

2
1

1

1 1 1

1 1 1 1 1 1 1

2

2

2

1

1 1 1

1 1 1 1 1 1 1

0.0E+00

2.0E+05

4.0E+05

6.0E+05

8.0E+05

1.0E+06

1.2E+06

1.4E+06

6 12 18 24 30 36 42 48 53 59 65 71 77 83

R
u
n
ti
m
e
 R
e
co
n
fi
gu

ra
ti
o
n
 C
o
st

Logic Block (%)

Sha (Full)

No Merging (LFF) Merging (LFF) No Merging (MLFF) Merging (MLFF)

No Merging (LFF) Merging (LFF) No Merging (MLFF) Merging (MLFF)

3

1
2 2

1 1
2

1 1 1 1 1 1 1

3

1

3
2

2 2

2

2 2 2
1 1 1 1

3

2

2

1

1 1

1

1 1 1

1 1 1 1

3

2

2

2

1 1

1

1 1 1

1 1 1 1

0.0E+00

2.0E+05

4.0E+05

6.0E+05

8.0E+05

1.0E+06

1.2E+06

1.4E+06

6 12 18 24 30 36 42 48 53 59 65 71 77 83

R
u
n
ti
m
e
 R
ec
o
n
fi
gu

ra
ti
o
n
 C
o
st

Logic Block (%)

Sha (Partial)

No Merging (LFF) Merging (LFF) No Merging (MLFF) Merging (MLFF)

No Merging (LFF) Merging (LFF) No Merging (MLFF) Merging (MLFF)

3 3 3

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

3 3
2

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

3
2

2

2 2
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

3

3

2

2 2

2
1 1 1 1 1 1 1 1 1 1 1 1 1 1

0.0E+00

2.0E+04

4.0E+04

6.0E+04

8.0E+04

1.0E+05

1.2E+05

1.4E+05

2 4 6 8 10 12 14 16 18 20 21 22 23 24 25 26 27 28 29 30

R
u
n
ti
m
e
R
e
co
n
fi
gu
ra
ti
o
n
 C
o
st

Logic Block (%)

Cjpeg (Full)

No Merging (LFF) Merging (LFF) No Merging (MLFF) Merging (MLFF)

No Merging (LFF) Merging (LFF) No Merging (MLFF) Merging (MLFF)

3 3 3 3 3 3
2 2

1 1 1 1 1 1 1 1 1 1 1 1

3 3 3
2 2 2

2 2

2 2 2 2 2 2 2 2 2 2 2 2

3 3
2

2 2
1

1 1

1 1 1 1 1 1 1 1 1 1 1 1

3 3

2

2 2

2

2 2

1 1 1 1 1 1 1 1 1 1 1 1

0.0E+00

2.0E+04

4.0E+04

6.0E+04

8.0E+04

1.0E+05

1.2E+05

1.4E+05

2 4 6 8 10 12 14 16 18 20 21 22 23 24 25 26 27 28 29 30

R
u
n
ti
m
e
R
e
co
n
fi
gu
ra
ti
o
n
 C
o
st

Logic Block (%)

Cjpeg (Partial)

No Merging (LFF) Merging (LFF) No Merging (MLFF) Merging (MLFF)

No Merging (LFF) Merging (LFF) No Merging (MLFF) Merging (MLFF)

ACM Transactions on xxxxxxxx, Vol. xx, No. xx, Article xx, Publication date: Month YYYY

REFERENCES

Atasu, K., Özturan, C., Dündar, G., Mencer, O., and Luk, W. 2008. CHIPS: Custom Hardware Instruction
Processor Synthesis. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,
Vol. 27, No. 3, 528-541.

Bauer, L., Shafique, M., Kramer, S., and Henkel, J. 2007. RISPP: Rotating Instruction Set Processing
Platform. In ACM/IEEE/EDA 44th Design Automation Conference. 791-796.

Bonzini, P. and Pozzi, L. 2008. Recurrence-Aware Instruction Set Selection for Extensible Embedded
Processors. IEEE Transactions on Very Large Scale Integration Systems, Vol. 16, No. 10, 1259-1267.

Cong, J., Fan, Y., Han, G. and Zhang, Z. 2004. Application-Specific Instruction Generation for
Configurable Processor Architectures. Proceedings of the ACM/SIGDA 12th International Symposium
on Field Programmable Gate Arrays, 183-189.

EEMBC: The Embedded Microprocessor Benchmark Consortium, Online: http://www.eembc.org
Guo, Y., Smit, G.J.M., Broersma, H., and Heysters, P.M. 2003. A Graph Covering Algorithm for a Coarse

Grain Reconfigurable System. Proceedings of the ACM SIGPLAN Conference on Language, Compiler,
and Tool for Embedded Systems, 199-208.

Guthaus, M.R., Ringenberg, J.S., Ernst, D., Austin, T.M., Mudge, T., and Brown, R.B. 2001. MiBench: A
Free, Commercially Representative Embedded Benchmark Suite. IEEE International Workshop on
Workload Characterization, 3-14.

Halldórsson M. and Radhakrishna J. 1994. Greed is Good: Approximating Independent Sets in Sparse and
Bounded-Degree Graphs. Proceedings of the Annual ACM Symposium on Theory of Computing, 439-
448

Huynh H.P., Sim J.E., and Mitra, T. 2009. An Efficient Framework for Dynamic Reconfiguration of
Instruction-Set Customization. Design Automation for Embedded Systems, 91-113.

Karypis, G., and Kumar, V. 1998a. A Software Package for Partitioning Unstructured Graphs,
Partitioning Meshes and Computing Fill-Reducing Orderings of Sparse Matrices. University of
Minnesota.

Karypis, G., and Kumar, V. 1998b. Multilevel k-way Partitioning Scheme for Irregular Graphs. Journal of
Parallel and Distributed Computing, Vol. 48, pp. 96-129.

Kaul, M., Vemuri, R., Govindarajan, S., and Ouaiss, I. 1999. An Automated Temporal Partitioning and
Loop Fission Approach for FPGA based Reconfigurable Synthesis of DSP Applications. In Design
Automation Conference, 616-622.

Lam, S.K., Krishnan, B.N., and Srikanthan T., 2006. Efficient Management of Custom Instructions for
Run-Time Reconfigurable Instruction Set Processors. IEEE International Conference on Field
Programmable Technology, 261-264.

Lam, S.K., Huang, F., Srikanthan, T., and Wu, J. 2008. Run-Time Management of Custom Instructions on
a Partially Reconfigurable Architecture. IEEE International Conference on Electronic Design.

Lam, S.K., and Srikanthan, T. 2009. Rapid Design of Area-Efficient Custom Instructions for
Reconfigurable Embedded Processing. In Journal of Systems Architecture, Vol. 55, No. 1, 1-14.

Lam, S.K., Deng, Y., Hu, J., Zhou, X., and Srikanthan, T. 2010. Hierarchical Loop Partitioning for Rapid
Generation of Runtime Configurations. In 6th International Symposium on Applied Reconfigurable
Computing, 282-293.

Lam, S.K., Srikanthan, T., and Clarke, C.T. 2011. Architecture-Aware Technique for Mapping Area-Time
Efficient Custom Instructions onto FPGAs. IEEE Transactions on Computers. Vol. 60, No. 5, 680-692.

Lam, S.K., Srikanthan, T., and Clarke, C.T. 2012. Exploiting FPGA-Aware Merging of Custom
Instructions for Runtime Reconfiguration. In 7th International Workshop on Reconfigurable
Communication-centric Systems-on-Chip.

Li T., Wu J., Lam S.K. and Srikanthan T. 2010. Selecting Profitable Custom Instructions for
Reconfigurable Processors, Journal of Systems Architecture, Vol. 56, No. 8, 340-351.

Li Y., Callahan T., Darnell E., Harr R., KurkureU. and Stockwood J.. 2000. Hardware-Software Co-Design
of Embedded Reconfigurable Architectures. In Design Automation Conference, 507-512.

Mattson, D., and Christensson, M. 2004. Evaluation of Synthesizable CPU Cores. M.S. thesis, Chalmers
University of Technology, Gothenburg, Sweden.

Mehdipour, F., Noori, H., Zamani, M.S., Murakami, K., Sedighi, M., and Inoue, K. 2006. An Integrated
Temporal Partitioning and Mapping Framework for Handling Custom Instructions on a
Reconfigurable Functional Unit. In Asia-Pacific Computer Systems Architecture Conference, 219-230.

Prakash, A., Lam, S.K., Clarke, C.T., and Srikanthan, T. 2013. FPGA-Aware Techniques for Rapid
Generation of Profitable Custom Instructions, In Microprocessors and Microsystems, Vol. 37, No. 3, pp.
259–269

Stretch Inc. S6000 Family Software Configurable Processors. Online:
http://www.stretchinc.com/products/s6000.php

Trimaran: An Infrastructure for Research in Instruction-Level Parallelism, Online:
http://www.trimaran.org

Ye, A.G., and Rose, J. 2006. Using Bus-Based Connections to Improve Field-Programmable Gate-Array
Density for Implementing Datapath Circuits. IEEE Transactions on Very Large Scale Integration
Systems. Vol. 14, No. 5, May 2006, 462-473.

