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Abstract Hardware/software (HW/SW) partitioning is a crucial step in HW/SW
codesign that determines which components of the system are implemented on hard-
ware and which ones on software. It has been proved that the HW/SW partitioning
problem is NP-hard. In this paper, we present two approaches for HW/SW partition-
ing that aims to minimize the hardware cost while taking into account software and
communication constraints. The first is a heuristic approach that treats the HW/SW
partitioning problem as an extended 0–1 knapsack problem. In the second approach,
tabu search is used to further improve the solution obtained from the proposed heuris-
tic algorithm. Experimental results show that the proposed algorithms outperform a
recently reported work by up to 28 %.
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1 Introduction

Hardware/software (HW/SW) codesign techniques are often employed to realize
modern embedded systems that typically consist of hardware and software compo-
nents. HW/SW partitioning is a crucial step in codesign that has been shown to have a

J. Wu (�) · P. Wang
School of Computer Science and Software Engineering, Tianjin Polytechnic University,
300387 Tianjin, China
e-mail: asjgwu@gmail.com

J. Wu
e-mail: asjgwu@ntu.edu.sg

S.-K. Lam · T. Srikanthan
Centre for High Performance Embedded Systems, Nanyang Technological University,
639798 Singapore, Republic of Singapore

T. Srikanthan
e-mail: astsrikan@ntu.edu.sg

mailto:asjgwu@gmail.com
mailto:asjgwu@ntu.edu.sg
mailto:astsrikan@ntu.edu.sg


Efficient heuristic and tabu search for hardware/software partitioning 119

dominant effect on overall system performance [1]. The application to be partitioned
is generally given in the form of a task graph G = (V ,E), and the vertex set V indi-
cates the tasks that have to be mapped to either hardware or software components. The
edge set E represents communication between the components. HW/SW partitioning
aims to partition the vertex set in the task graph into two disjoint subsets to satisfy
certain constraints while addressing some salient factors such as communication cost
or inherent overhead introduced by the management of hardware resources [2].

Exact algorithms such as dynamic programming [3, 4], integer linear program-
ming [5, 6] and branch-and-bound [7] are generally utilized for HW/SW partitioning
when the problem size is small. As most formulations of the partitioning problem
are NP-hard, exact algorithms quickly become infeasible when the problem size in-
creases. Thus, approximate methods often provide a more natural and feasible ap-
proach for HW/SW partitioning with large problem sizes.

Traditional heuristics used in approximate algorithms include hardware-oriented
and software-oriented approaches [8]. The hardware-oriented approach begins with a
complete hardware solution and iteratively moves parts of the application to software
while fulfilling the performance constraints [9, 10]. The software-oriented approach
starts with a software program and iteratively moves application segments to hard-
ware in order to improve speed while satisfying time constraint [11–13]. General-
purpose heuristics for HW/SW partitioning include genetic algorithms (GA), sim-
ulated annealing (SA), tabu search (TS), and particle swarm optimization (PSO).
In [14], three heuristic search algorithms, GA, SA, and TS, are compared. The
three algorithms run on functional blocks for designs represented as directed acyclic
graphs, with the objective of minimizing processing time under various hardware
area constraints. In [15], the computing model of the embedded system is extended
so that the resource contentions are taken into account, and then a GA-based algo-
rithm is proposed on the extended model. In [16], a computing model is presented
for path-based HW/SW partitioning in which communication penalties between sys-
tem components is considered, followed by an efficient tabu search algorithm to re-
fine the approximate solutions. In addition, PSO technique is introduced in [17], and
some other heuristic algorithms are introduced in [18, 19] for HW/SW partitioning,
targeting reconfigurable embedded system [20].

It is worthwhile to point that HW/SW partitioning may have multiple objectives
such as minimizing power, execution time, hardware cost, communication overhead,
etc. As these objectives are often mutually dependent, a typical multiconstrained opti-
mization problem for HW/SW partitioning examines the design trade-offs of a given
application, and provides a reasonable partitioning solution that meets user require-
ments. HW/SW partitioning has been categorized into two types, and it has been
proved that, one of them is of NP-hard [21]. The latest discussion on this NP-hard
version is in our previous work [22], where we have shown that the HW/SW parti-
tioning problem can be reduced to a variation of knapsack problem.

In this paper, we initially propose a heuristic approach for HW/SW partitioning
based on the partitioning objectives, assumptions, and the system model utilized in
[21, 22]. The proposed heuristic strategy aims to produce an infeasible but approxi-
mate solution initially, without considering communication cost, and then adjusting
the approximate solution to be feasible by taking into account the communication
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cost. We then employ a customized tabu search approach to further refine the heuristic
solution. Extensive experimental results demonstrate the superiority of the proposed
algorithms in this paper over the latest approach in [22] in terms of solution quality.

This paper is organized as follows. Section 2 provides the formal description
of task graph for hardware/software partitioning, as well as some notations used
throughout the paper. In Sect. 3, we describe the details of the proposed heuristic
algorithm. In Sect. 4, we present the tabu search algorithm, which is used to refine
our heuristic algorithm. Section 5 shows the experimental results and compare the
proposed approaches with the existing method. Finally, Sect. 6 concludes the paper.

2 Problem definition and previous algorithms

The definition of the partitioning problem discussed in this paper is based on
the following notations. Given an undirected graph G = (V ,E), where V =
{v1, v2, . . . , vn}, and E indicates the set of edges. s(vi) (or simply si ) and h(vi)

(or hi ) denote the software and hardware cost of node vi , respectively, while c(i, j)

denotes the communication cost between vi and vj if they are in different contexts.
The partition function π induce a new graph Gπ = Gπ(V,EP ), where V = (Vh,Vs)

and an edge (Vh,Vs) ∈ EP exists if there are two adjacent vertices u, v ∈ V such that
u ∈ Vh and v ∈ Vs . The set EP corresponds to the set of cutting edges of G induced
by the partition.

In this paper, HP , SP , and CP represent the hardware cost, software cost, and
communication cost, respectively, under a given partition P . The partitioning prob-
lem is modeled as follows [22].

Problem P Given a graph G with the cost functions s, h, and c, and R ≥ 0, find a
HW/SW partition P with SP + CP ≤ R that minimizes HP .

In the n-dimensional space {0,1}n, let x = (x1, x2, . . . , xn). Here, x denotes a so-
lution of the problem P , i.e., a partition for the graph G with n nodes. xi = 1 (xi = 0)
indicates that the node vi is partitioned to software (hardware), 1 ≤ i ≤ n. C(x) in-
dicates the communication cost of the solution x. As a result, the problem P can
be formulated as the following minimization problem for given R. For more details,
see [22].

P

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

minimize
n∑

i=1

hi(1 − xi),

subject to
n∑

i=1

sixi + C(x) ≤ R,

xi ∈ {0,1}, i = 1,2, . . . , n.
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The problem P can be easily converted to the problem Q as follows:

Q

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

maximize
n∑

i=1

hixi,

subject to
n∑

i=1

sixi + C(x) ≤ R,

xi ∈ {0,1}, i = 1,2, . . . , n.

We now review knapsack problem that is closely related to the partitioning prob-
lem Q. Given a knapsack capacity K and a set of items S = {1,2, . . . , n}, where
each item has a weight wi and a benefit bi , the knapsack problem aims to find
a subset S′ ⊂ S, that maximizes the total profit

∑
i∈S′ bi under the constraint that∑

i∈S′ wi ≤ K , i.e., all the items fit in a knapsack of capacity K . Mathematically, it
can be described as follows:

K

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

maximize
n∑

i=1

bixi,

subject to
n∑

i=1

wixi ≤ K,

xi ∈ {0,1}, i = 1,2, . . . , n,

where xi is a binary variable which is assigned a value of 1 if item i is included in the
knapsack and 0 otherwise. This 0/1 property makes the knapsack problem NP-hard.

In [22], problem Q was regarded as an extended 0–1 knapsack problem and the
partitioning problem was transformed into a one-dimensional (1D) search problem.
Three algorithms were proposed for solving the partitioning problem by searching
the 1D search space. The approximate optimal solution for the partitioning problem
was selected from the feasible solutions of the corresponding knapsack algorithms.
The time complexity of algorithms in [22] is O(n logn+ d · (n+m)) for graphs with
n nodes and m edges, where d is the number of the fragments of the searched solution
spaces. For more details of these algorithms, see [22].

3 Proposed heuristic algorithm

Let hi , si and R of problem Q correspond to bi , wi , and K of the problem K, re-
spectively. Problem Q can now be regarded as an extension of the problem K with
an additional communication cost in the constraint. Hence, algorithms for solving the
knapsack problem can be applied to solve problem Q. In this section, a heuristic al-
gorithm based on 0–1 knapsack has been proposed to solve the HW/SW partitioning
problem.

A simple but effective algorithm for 0–1 knapsack problem is presented in [23]. It
first sorts the items according to their profit-to-weight ratios as follows:

b1

w1
≥ b2

w2
≥ · · · ≥ bn

wn

.
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The algorithm then packs items into the knapsack until the knapsack can no longer
accommodate any more item.

Let x = (0,0, . . . ,0) be the initial solution, which corresponds to all components
being assigned to hardware. Assigning the component to software is equivalent to
packing it into the knapsack. As mentioned in Sect. 2, hi and si indicate the hard-
ware cost and software cost of the component i, respectively. Thus, hi and si can
be regarded as the profit and the weight of item i respectively, in the correspond-
ing knapsack problem. In other words, the components to be assigned to software is
regarded as the items to be packed into the knapsack.

In the partitioned graph Gπ(V,EP ), where V = (Vh,Vs), assume the node vi

is in Vh. Then the communication cost corresponding to vi is
∑

k∈Vs
c(i, k). If vi

is moved to Vs , the corresponding communication cost becomes to
∑

j∈Vh
c(i, j),

resulting in the cost change ci calculated by

ci =
∑

j∈Vh

c(i, j) −
∑

k∈Vs

c(i, k).

It is clear that the problem Q is reduced to a standard knapsack problem if the
communication cost is not considered (i.e., C(x) = 0). This motivates us to solve the
problem Q using the heuristic solution of the corresponding knapsack problem. Our
main idea is generating an infeasible but approximate solution for Q initially, with-
out the consideration for communication cost, and then adjusting the approximate
solution to be feasible by considering the impact of the communication cost.

It is noteworthy that the proposed heuristic strategy in this paper is notably dif-
ferent from that presented in [22], where the communication cost is evaluated to be
a constant to form a standard knapsack problem in each iteration. The approximate
solution of the problem Q is selected from the heuristic solutions of a sequence of
knapsack problems.

Now we outline the heuristic approach as follows:

(1) Initially, we sort the components according to h1
s1

≥ h2
s2

≥ · · · ≥ hn

sn
. Then we as-

sign the component i to software, i.e., pack the item i into the knapsack with
capacity R, for i = 1,2, . . . , till

∑
i si ≥ R.

(2) As the current solution is infeasible, we now select the component with the min-
imum value of hi

si+ci
and then assign it to hardware. In other words, we move the

item out of the knapsack. After that, we update the system cost, i.e., hardware
cost, software cost, and communication cost. This work repeats till the solution
is refined to be feasible according to the limit of knapsack capacity R.

(3) After that, we further adjust the current solution by selecting the component with
the maximum value of hi

si+ci
and assigning it to software.

In step (1), the communication cost is not considered, and an infeasible solution
is obtained. In step (2), we evaluate the communication change ci for moving com-
ponent i to hardware, si + ci represents the capacity which would be released if the
component i is removed from the knapsack, and hi is the decreased amount of total
profit. Likewise, in step (3), we also evaluate ci for moving component i to software,
si + ci represents the capacity which would be consumed if component i is moved
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into knapsack, and hi is the increased amount of total profit. It is noteworthy that an
item to be removed from the knapsack should ideally minimize the loss of profit and
maximize the released capacity. On the other hand, an item to be moved into knap-
sack should ideally maximize the benefit and consume minimal knapsack capacity.
The following pseudocode shows the formal description of the HEUR (Algorithm 1).

Analysis We provide analysis for HEUR on a graph G = (V ,E) with n nodes and
m edges. The task number is consistent with the node number in this graph.

Theorem 1 The time complexity of HEUR is O(n logn+k · (n+m)), where n = |V |,
m = |E|, k is the number of the node movements between hardware and software
contexts in partitioning.

Proof The time complexity of HEUR is dominated by two loops: lines 13–20 and lines
22–31. Lines 5–10 can be implemented in O(n) time [23] because a sorting process
in line 3 is initially employed, which runs in O(n logn) time [24]. Lines 14–16 recal-
culate the communication change value (denoted as ci in HEUR) if a node has been
removed from knapsack. It will require O(m) time because only the edges associated
with the node which has been removed from knapsack needs to be reconsidered. Let
mi be the number of the edges associated with the node vi . From

∑n
i=1 mi = 2m,

we conclude that O(m) time is sufficient for this step. Line 17 searches for the min-
imum value in an unsorted sequence, and this step is bounded by O(n). Updating
S(x), H(x), C(x) (see Sect. 2) in line 18 takes O(1) time. Let k1 be the number of
the iterations of the loop from line 13 to line 19. Thus, the loop in lines 13–19 runs
in O(k1 · (n + m)). Similarly, the loop in lines 22–31 runs in O(k2 · (n + m)), where
k2 is the number of the iterations of the loop. Let k be max{k1, k2}. We conclude that
the time complexity of HEUR is O(n logn + k · (n + m)). �

4 Proposed tabu search approach

Tabu search is a well-known metaheuristic that has been successfully used for solving
difficult combinatorial optimization problems, whose applications range from graph
theory and matroid setting to general pure and mixed integer programming prob-
lems [25]. Tabu search starts from an initial solution and iteratively moves to a new
solution that is selected in a certain neighborhood of the current solution. At each
iteration, the move yielding the best solution in the neighborhood is selected, even
if this results in a worse solution [26]. Since tabu search relies on the principle that
intelligent search is based on learning, it employs a flexible memory that keeps track
of the search history. In order to avoid being trapped in cyclic search and to enable
searching beyond local optimum, tabu search introduces the notion of tabu list to
forbid recently visited solutions to be generated [27].

In this section, we describe the proposed tabu search strategy for refining the so-
lution obtained from our heuristic algorithm.

Solution representation At any iteration t of our tabu search, a partitioning solution
is denoted as xt = (xt

1, x
t
2, . . . , x

t
n), where xi = 1 (xi = 0) indicates the ith component

is assigned to software (hardware).
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Algorithm 1 HEUR
Input:

Communication graph G and the constraint R.
Output:

A partitioning solution x = (x1, x2, . . . , xn) and the total hardware cost.

1: begin
2: x := (0,0, . . . ,0); solution_value := 0 /* initializing */
3: Sort all tasks {vi}i≤n according to h1

s1
≥ h2

s2
≥ · · · ≥ hn

sn
;

4: i := 1; rec := R; /* rec means residual_capacity */
5: repeat /* the communication costs are not considered */
6: if si ≤ rec then /* task i fits in the unused capacity */
7: Pack task i into knapsack, and xi := 1, rec := rec − si ;
8: i := i + 1;
9: end if

10: until (rec ≤ 0) or (i > n) /* a greedy solution and the hardware cost is obtained */
11: if (S(x) + C(x) ≤ R) then solution_value := H(x);
12: else solution_value := 0;
13: repeat
14: for all i such that xi = 1 do /* task i is in knapsack */;
15: Evaluate communication change ci and hi

si+ci
for moving task i out of the

knapsack;
16: end for
17: Move task k with the minimum value of hk

sk+ck
out of the knapsack and

set xk to 0;
18: update S(x),C(x),H(x);
19: until (S(x) + C(x) ≤ R)

20: end if
21: rec′ := R − (S(x) + C(x));
22: repeat
23: for all i such that xi = 0 do /* task i is not in knapsack */
24: Evaluate communication change ci and hi

si+ci
for moving task i into the

knapsack;
25: end for
26: if sk + ck ≤ rec′ then
27: Move task k with the maximum value of hk

sk+ck
into the knapsack and set xk

to 1;
28: rec′ = rec′ − (sk + ck);
29: end if
30: update S(x),C(x),H(x);
31: until (rec′ ≤ 0) or (no more task to fit for the remaining capacity)
32: solution_value := H(x);
33: end
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Fig. 1 Generating a neighbor of
a feasible solution

Initial solution In this paper, we employ tabu search to refine HEUR proposed in
Sect. 3. In particular, the solution of the proposed heuristic algorithm will be used
as initial solution for tabu search. During the tabu process, the current solution
xcurrent becomes the new best solution xbest_so_far only if xcurrent is at least as good
as xbest_so_far in terms of the optimization objective for the given constraint.

Neighborhood structure Undoubtedly, the neighborhood structure has significant
impact on the quality of solution. A different rule could result in a different solution
of different quality [28]. In this work, the solution consists of a sequence of 1 s and 0 s.
Hence, the neighborhood of a feasible solution set is a feasible solution obtained from
flipping two different bits at random as shown in Fig. 1. This step flips the original
xi = 1 to xi = 0, and vice versa.

Move and tabu status At the beginning of this process, no move is in tabu search.
At any iteration, the algorithm executes the best non-tabu move to a feasible neigh-
bor of the current solution [28]. However, if a tabu move yields a better incumbent,
it will also be implemented. This is called aspiration criterion. In addition, if all the
neighbors are tabu, the oldest one in tabu list is implemented. Whenever a move is
performed, the reverse move is declared tabu for t t iterations (tabu_tenure), where t t

is randomly generated in an interval [α ∗ √
n,β ∗ √

n]. In the whole search process,
a neighbor xneib may enter the tabu list many times. Let us assume that the latest en-
trance for xneib is in the iteration iter_late(xneib) and the current search is at iteration
iter_curr. The tabu degree of xneib, denoted as Tdegree(xneib), is defined as

Tdegree(xneib) = iter_late(xneib) + tabu_tenure − iter_curr.

Tabu degree is updated for each neighbor in each iteration. A nonnegative tabu degree
implies that the neighbor is tabu-active, while a negative one implies that the neighbor
is not tabu-active. For more details, see the formal description of the algorithm TABU
(Algorithm 2).

Selection strategy for candidate solutions Let xneib = (x1, x2, . . . , xn), which is a
neighbor of a current solution xcurrent. We define our objective function dobj as

dobj(xneib) = H(xneib) − H(xcurrent).
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Algorithm 2 TABU
Input:

Communication graph G and the constraint R;
The initial partition xheur obtained from HEUR.

Output:
a refined partitioning solution xbest_so_far.

1: begin
2: Initialize tabu_tenure, move_frequence_list, set the iteration counter iter = 0 and

begin with tabu_list empty.
3: xcurrent := xheur, and xbest_so_ far := xheur;
4: repeat
5: Generate q neighbors of xcurrent;
6: Update the degrees and dobj of the q neighbors;
7: /* if a neighbor obtained from a tabu move is better than xbest_so_far, its tabu status will

be ignored. */
8: if all q neighbors are tabu-active then
9: xcurrent := the neighbor with the minimal tabu degree

10: else
11: xcurrent := the neighbor with the minimal dobj;
12: end if
13: if H(xlocal) < H(xbest_so_far) then
14: xbest_so_far := xcurrent;
15: end if
16: until Termination criterions are met;
17: end

Thus, the smaller the value of dobj(xneib), the better quality the neighbor xneib is.
Here, H(xneib) and H(xbest_so_far) denote the hardware cost under the partition xneib

and xbest_so_far respectively. The selection strategy, first conditioned by tabu status
explained above, employed an additional criterion based on the move frequency,
which is a long term memory that is used to record the number of times a com-
ponent c has been moved to hardware or software. This mechanism is used to
penalize moves with high frequent counts and favor moves with low frequent
counts.

Termination criterion If the iteration counter iter has reached the given maximum
iteration number M , or no_improvement (number of iterations incurred without any
improvement in the quality of solution) has reached the given threshhold N , the tabu
search would terminate.

In addition, when an infeasible solution outperforms the best-so-far solution, a lo-
cal search is performed by flipping one bit. This procedure is executed only once to
avoid long runtime. This serves as a mechanism to diversify the search and encour-
age the exploration of new regions in the search space. In algorithm TABU, xcurrent

indicates the current solution, and xbest_so_far indicates the best-so-far solution. For
more details of tabu search, see [25].



Efficient heuristic and tabu search for hardware/software partitioning 127

Table 1 Summary of the used benchmarks, cited from [22]

Name n m Size Description

crc32 25 34 152 32-bit cyclic redundancy
check. From the
Telecommunications
category of MiBench [29]

patricia 21 50 192 Routine to insert values
into Patricia tries, which
are used to store routing
tables. From the Network
category of MiBench [29]

dijkstra 26 71 265 Computes shortest paths
in a graph. From the
Network category of
MiBench [29]

clustering 150 333 1299 Image segmentation
algorithm in a medical
application

rc6 329 448 2002 RC6 cryptographic
algorithm

random1 1000 1000 5000 Random graph

random2 1000 2000 8000 Random graph

random3 1000 3000 11000 Random graph

random4 1500 1500 7500 Random graph

random5 1500 3000 12000 Random graph

random6 1500 4500 16500 Random graph

random7 2000 2000 10000 Random graph

random8 2000 4000 16000 Random graph

random9 2000 6000 22000 Random graph

It is worthwhile to point out that the solution refined by TABU definitely is better
than the initial solution provided by HEUR. This is because, the best-so-far solution
is updated only when TABU finds a better local solution according to the line 13 of
TABU.

5 Experimental results

In [22], three algorithms, named as Alg-new1, Alg-new2 and Alg-new3, are
proposed. We pick Alg-new3 to compare with the algorithms presented in this pa-
per, as it works best among the three algorithms. In this section, we utilize OLD to
indicate Alg-new3. As the proposed methods are based on heuristic rather than ex-
act ones, we have to empirically determine their performance and effectiveness. In
order to make a fair comparison, our implementations are based on the source codes
provided by the author of [22] and on the same benchmarks used in [22]. The char-
acteristics of the test cases are summarized in Table 1, whereby n and m indicate the
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Table 2 Parameter setting for
tabu search Parameters Description Values

S Neighborhood size 2000

α Tabu tenure factor 0.5

β Tabu tenure factor 1

M Maximum iteration number 2000

N Non-improvement threshhold 200

number of nodes and the number of edges in the communication graph, respectively.
Also, parameter setting of tabu search are given in Table 2.

In addition, we have adopted the same experimental setup as in [22], which is
summarized as follows:

• The formula size = 2n + 3m is utilized for the size evaluation of the given graph.
This is because each node is assigned two values (its hardware and software costs)
and each edge is assigned three numbers (the identities of its endpoints and its
communication cost).

• Where software costs were not available, they are generated as uniform random
numbers from the interval [1,100]. Where hardware costs were not available, they
are generated as random numbers from a normal distribution with expected value
κ · si and a given standard deviation, where si is the software cost of the given
node. As pointed out in [22], the value of κ only corresponds to the choice of units
for software and hardware costs, and thus it has no algorithmic implications.

• The communication costs were generated as uniform random numbers from the
interval [0,2 · ρ · smax], where smax is the highest software cost. Thus, communi-
cation costs have an expected value of ρ · smax, and ρ is the so-called communica-
tion to computation ratio (CCR). ρ was taken as 0.1, 1, and 10, corresponding to
computation-intensive case, intermediate (computation-and-communication inten-
sive) case, and communication-intensive case, respectively.

• R was randomly generated as a uniform random number (1) from the in-
terval [0, 1

2

∑
si] (corresponding to the strict real-time constraint), (2) from

[ 1
2

∑
si ,

∑
si] (corresponding to the loose real-time constraint). The two cases

are indicated as R = low and R = high, respectively.

We tested the proposed algorithms for different values of CCR and constraint R.
Figure 2 shows the quality of the solutions for different constraints and different

ratios of communication to computation. In the figure, d is the number of fragments
of searched solution space and it is set to dx [22]. Abscissa represents the size of
the problem while the vertical axis indicates the total hardware cost after partition-
ing. LOWB in the figure represents the lower bound on the solution quality, which is
calculated using the method proposed in [22]. Since the objective is to minimize hard-
ware costs, smaller values are preferred. Generally, the solutions found by the new
algorithms are better than or comparable to the solutions found by OLD, especially
when the heuristic solution was refined by tabu search.

Table 3 shows the improvements over OLD for each case on the used benchmarks.
It is evident that the improvements are significant when R is high, i.e., when the
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Fig. 2 Solution quality and lower bound, averaged over 30 instances for different constraints and different
ratios of communication to computation, where d = dx
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Table 3 Improvements over
OLD, averaged over 30 instances CCR R imp (%)

case 1 0.1 low 5.2

case 2 0.1 high 21.7

case 3 1.0 low 9.4

case 4 1.0 high 28.3

case 5 10.0 low 2.3

case 6 10.0 high 6.0

constraint R is relaxed. This is due to the fact that R is analogous to the knapsack
capacity. A larger knapsack will provide more opportunity for packing more items
into the knapsack, leading to better solutions. To highlight the impact of R in the
experimental results, we investigated the distribution of the improvement over the
algorithm OLD for a set of instances. Formally, we define improvement of algorithm
A over algorithm B as

(

1 − hardware_cost_of _A
hardware_cost_of _B

)

× 100 %.

Let imp be the improvement of a new algorithm over OLD [22] that is calcu-
lated by the formula above. For a given instance, imp > 0, imp = 0 and imp < 0
reflect that the performance of the new algorithm is better than, same as, and
worst than the old one, respectively. The imp values are collected from −50 %
to 50 %, without loss of generality. This corresponds to the distribution interval
[−50, . . . ,−10,−5,0,5,10, . . . ,50] with unit length of 5 in the X-axis shown in
Fig. 3. In our statistics,

• if imp = 0, we regard the improvement as 0 %.
• If imp < 0 and it is in the unit interval [a, b), where b ≤ 0, we regard the improve-

ment as a%.
• If imp > 0 and it is in the unit interval (a, b], where a ≥ 0, we regard the improve-

ment as b%.

For example, if −5 % ≤ imp < 0 %, we view the improvement as −5 %. Our empiri-
cal study is based on statistics from 100 random instances. Figure 3 shows that when
other parameters remained unchanged, for relatively large R, solutions with high
quality can be obtained. For example, in the case of CCR = 0.1, R = low, the corre-
sponding improvements are all under 25 %. But in the case of CCR = 0.1, R = high,
the corresponding distribution interval is [0,50]. It can be observed that the improve-
ment becomes significantly larger when CCR increases to 1 and 10. In summary, the
proposed algorithms can produce better solutions with improvement of 28 % on av-
erage (see Fig. 2d) and up to 50 % in certain cases, the numerical detail is in Table 4.

As shown in Table 4, tabu search can improve the solution quality in reasonable
runtime. In particular, tabu search can achieve high quality results in the order of
seconds even for relatively large graphs. Figure 4 shows the refinement of tabu search
over our heuristic algorithm. The dotted line represents the case where R = low, and
the solid line represents the case where R = high. The lines with the same color have
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Fig. 3 Distribution of improvements over OLD, 100 random instances on different cases with size = 5000
and d = dx

Table 4 Improvements over OLD and runtime for CCR = 1 and R = high, averaged over 100 instances

Benchmark Solution Runtime (ms)

Name imp (%) OLD HEUR TABU

crc32 26.95 0 0 748

patricia 12.15 0 0 998

dijkstra 10.54 0 0 1230

clustering 21.35 1 1 4881

rc6 50.69 1 1 7758

random1 54.19 7 11 18726

random2 58.05 8 23 41465

random3 19.46 9 28 48237

random4 59.95 16 30 48945

random5 14.38 17 44 62902

random6 21.09 19 45 95312

random7 19.54 27 49 103950

random8 13.86 27 58 197080

random9 13.87 32 80 260240

the same CCR. It can be observed that the improvement of tabu search over HEUR
increases significantly when R is relaxed.

It is worthwhile to point out that the solution quality of tabu search is heavily in-
fluenced by parameter setting. In this paper, we derived a good setting by evaluating
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Fig. 4 Refinements of TABU
over HEUR for different cases

tabu search in some relatively small graphs in our benchmarks. Figure 5 shows the
impact of parameter setting in tabu search on the solution quality. The X-axis shows
the different cases of CCR and R as described in Table 3. The Y -axis indicates the re-
sults of the refinements by tabu search over HEUR. We can observe that the proposed
algorithms work well in case 4, which matches the result as shown in Fig. 2d. Here,
Fig. 5a shows that the refinement produces better results for larger M . We pick 2000
as the final value of M , which gives a good trade-off between the solution quality
and the runtime. Similarly, we set S to 2000, instead of 3000, according to the refine-
ments shown in Fig. 5d. Figure 5b shows that the refinements lead to better results
for the case of α = 0.5 and β = 1. In addition, Fig. 5c shows that the best solution is
obtained when N = 200. Both of the subfigures demonstrate that our setting for α, β

and N , as shown in Table 2, achieves the best results.

6 Conclusions

We have presented a simple but very efficient heuristic algorithm to solve the HW/SW
partitioning problem, based on an extended 0–1 knapsack problem. The proposed
algorithm is capable of generating good approximate solutions in less than 80 ms
even for the largest problem set considered in this paper. We have also customized
a tabu search approach to refine the solution of the proposed heuristic algorithm.
Experimental results show that both the heuristic approach and the tabu search can
provide better solutions than a recently reported method in most of the cases consid-
ered (and comparable in the remaining ones). In particular, the improvement of the
proposed algorithms over the existing method increases notably for large CCR. This
demonstrates that the proposed algorithms can effectively reduce the hardware cost in
applications that have large communication overhead. Furthermore, the proposed ap-
proaches become more attractive when the constraints are relaxed. The contributions
in this paper are based on the same computing model used in [21, 22], whereby the
domination relationship between the components is not considered. Our future work
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Fig. 5 Refinement over HEUR, averaged over 30 instances with n = 329 and m = 448

will extend the computing model to take into account the domination relationship and
develop the corresponding algorithms for HW/SW partitioning.
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