
Real-Time Image Resizing Hardware Accelerator for Object Detection Algorithms

Gaurav Mishra#1, Yan Lin Aung*2, Meiqing Wu*3, Siew-Kei Lam*4, Thambipillai Srikanthan*5
#Electronics and Communication Engineering, Indian Institute of Information Technology (Allahabad), India

*CHiPES Research Centre, Nanyang Technological University, Singapore
1mishragaurav27@gmail.com, 2, 4, 5{layan, assklam, astsrikan}@ntu.edu.sg, 3wume0007@e.ntu.edu.sg

Abstract—This paper describes motivation and hardware
architecture for resizing input image frames from the camera
in order to support real-time scale-invariant object
recognition. Conventional implementation of object detection
algorithms such as histogram of oriented gradients (HOG)
based feature extraction, face detection using Haar classifiers
often perform image resizing during the object recognition
process. Our investigation reveals that this incurs significant
performance overhead due to frequent memory accesses that
are required for image resizing. This has motivated our
approach to perform online resizing – simultaneously resizing
of the input image when it is loaded into frame buffer memory
– prior to the object recognition process. We propose a
hardware architecture to accelerate image resizing and
describe a hybrid processor-accelerator platform to generate
different sizes of an image in real-time for object recognition.

Keywords- Image processing; Image resize; FPGA; Haar
classifier; HOG feature

I. INTRODUCTION

Innovative ideas in computer vision have made
significant contribution in various application domains. Be
it automotive [1], assembly line production, smart rooms [2]
and other consumer electronic devices. In automotive
domain, smart cars of today warn the drivers of sudden
lane-departing event. The medical imaging equipment
using vision-based techniques reduce human errors and
offer better health care [3].

A majority of such algorithms rely on scale space theory
of signals in which the input signal is convolved with
Gaussian kernels of varying width [4]. A scale space
provides in-depth analysis of an unknown external signal.
The developed algorithm then searches and extracts useful
features at different scales of the image making the overall
feature set more robust for further processing. To reduce the
execution time, one possibility is to use pre-downscaled
version of an image, but then it will affect the accuracy of
the algorithm. Many vision processing algorithms extract
useful features from a given image for tracking or pattern
matching by doing scale space analysis of 2D signal.

However, a subset of computer vision algorithms only
require downscaled versions of the image instead of the
complete scale space. Two well-known vision algorithms
are Haar features based classifier for face detection [5] and
feature vectors defined using HOG for detecting pedestrians
[6]. Both algorithms are compute-intensive and operate
iteratively on the downscaled versions of an image. Prior
research work proposes implementation of complete
algorithm as dedicated hardware in FPGA to achieve

real-time performance. While those approaches provide the
highest possible performance, flexibility and software
programmability aspects are often compromised. With the
advent of SoC FPGA, which features integrated Cortex-A9
dual-core processor from ARM operating from 800 MHz to
1 GHz and reconfigurable logic on the same silicon, we
propose a hybrid solution with which only a carefully
selected part of the algorithm is implemented in hardware
while the rest remains as software; hence well-maintaining
the software programmability and achieving real-time
performance.

In order to emphasize on the flexibility of overall
architecture level design on hybrid embedded platforms,
which consists of a processor and reconfigurable logic, we
propose a new approach in this paper. The rest of this paper
is organized as follows: we review related work in Section
II followed by Section III, which sheds light on savings of
processor clock cycles offered by the bespoke design.
Section IV describes the overall system-level design and
Section V provides conclusions and future work.

II. RELATED WORK

This section describes evolution of the various
architecture-level designs and their needs in particular, as
thought of, in present scenario.

A. HOG Feature Set and Haar Classifiers

The purpose of feature vector in image processing and
computer vision is to define a set of properties to represent
an image. Such features include corners, edges, blobs,
texture information etc. They can be defined globally or in
a local neighborhood using block and cell based
approaches. Image pyramid [7] accentuates the features
present in an image and thus facilitates fast and accurate
post-processing. However, the pyramid creation process is
highly computation- and memory-intensive. Till recently,
object detection algorithms (e.g. HOG and Haar classifiers)
attempt to provide alternate methods using trained
parameter values to generate robust feature sets thus
avoiding the need to create an image pyramid.

The work in [6] formulates an alternative feature set by
constructing histograms of oriented gradients so as to get
better performance compared to that of image pyramid
approach. Oriented histograms as feature vectors outdo the
various edge and gradient descriptors. This also reduces
the computational complexity. Similarly, Haar based
classifiers as proposed in [5] are used for face detection
instead of the image pyramid approach without degrading
the detection ratio while reducing the computational

complexity drastically. However, it is noteworthy to
mention that former uses SVM, while the later uses
AdaBoost to obtain trained parameters for detecting a
certain object class and avoid the pyramid creation process.
This approach has been adopted in many computer vision
applications to detect specific class of objects like
pedestrians, automobiles, airplanes, animals etc.

B. Existing Hardware for Object Detection

A significant amount of prior work related to the
aforementioned object detection algorithms focuses on
dedicated hardware design of the complete algorithm. The
work in [8] suggests a deeply pipelined and parallel design
implemented on FPGA. Apparently numerous
implementations of using HOG for pedestrian detection
and feature extraction [8, 9, 10, 11], and Haar classifiers
for face detection [12, 13, 14, 15], have been proposed.
However, most of them suggest dedicated architectures and
fail to embrace software programmability and flexibility of
conventional processor. While the dedicated architectures
could achieve the highest possible performance, one major
drawback is that any change in the algorithm may often
necessitate redesign of the dedicated hardware.

 The survey undertaken in [16] compares the prevalent
role played by FPGAs and SIMD processors in image
processing tasks, highlighting the usefulness of a single
hybrid platform comprising FPGA and processor. The
leading FPGA vendors – Xilinx and Altera now provide
SoC FPGA featuring integrated on-chip dual-core
Cortex-A9 processor from ARM. This has motivated us to
make use of the available on-chip resources thus exploiting
both software and hardware programmability.

C. Real-Time Image Resizing

Both of the above-discussed algorithms meant for
object detection or face detection utilize the rescaling of the
input image frame in order to remain scale-invariant. This
avoids the image convolution with several Gaussian
kernels. The feature window then searches for the
corresponding object in all scales of the image. The
previous work in this domain includes ideas for
implementing various resizing and rotation techniques [17]
and other modifications like adaptive interpolation [18]
and extended linear interpolation [19] to provide smooth
and efficient rescaling operations.

However, the face/object detection algorithms provide
sufficient hit rate by using simple interpolation methods,
for example, nearest neighbor for Haar classifier and bi-
linear interpolation for HOG. We focus to implement
image resizing for real-time input image frames (streaming
video) by creating all scaled versions of the image in
parallel. We envisaged the frame buffer based
implementation with which the input image from the
camera is first loaded into external memory and object
detection algorithms processed the image stored in the
memory subsequently. We consider image resizing
operation incorporating bi-linear interpolation in our
proposed design.

1) Bi-Linear Interpolation: This is the default
interpolation scheme used in ‘cvResize()’ function of
OpenCV library to resize an image for a particular scale
factor. For the object detection approach using trained
parameter values, this scheme meets the accuracy
requirement with simplicity. The effects pointed out in [19]
do not significantly affect the hit rate of the algorithm.

Figure 1. Bi-linear Interpolation

To calculate the value of an interpolated pixel, input pixel
values in consecutive rows from the image are required.
The two consecutive rows, so used, must be separated by
certain number of rows, which is equivalent to the factor
by which the dimensions of destination image differs from
the source. If ‘src’ is the source image array, ‘dst’ is the
destination array, ‘W’ corresponds to the width of the
source image, ‘H’ is the height of the source image and the
image data is scanned progressively using the ‘index’
pointer. Fig. 2 represents the pseudo code for the
interpolation process as shown in Fig. 1.

1 ImageResize(src, dst, W, H)
2
3 w = dstImg_width
4 h = dstImg_height
5
6 factor = W/w
7 pixel = 0
8
9 for i = 1 to h
10 for j = 1 to w
11 do
12 x = FLOOR(factor * j)
13 y = FLOOR(factor * i)
14 x_diff = (factor * j) – x
15 y_diff = (factor * i) – y
16 index = y * W + x
17
18 A = src[index]
19 B = src[index + 1]
20 C = src[index + W]
21 D = src[index + W + 1]
22
23 val = A(1-x_diff)(1-y_diff)+
24 B(x_diff)(1-y_diff)+
25 C(y_diff)(1-x_diff)+
26 D(x_diff)(y_diff)
27 dst[pixel++] = FLOOR(val)
28 end
29 end

Figure 2. Pseudo Code for Bi-Linear Interpolation

III. ANALYSIS OF PROCESSOR-BASED SOFTWARE

IMPLEMENTATION

 We implemented OpenCV-equivalent people detect
application in ANSI-C and used the open-source face
detection application based on Haar classifiers from [14].
Both applications are not limited to the input image size.
For testing purpose, we used 320×240 resolution images.
The feature window used is of size 24×24 for Haar and
64×128 for HOG. Thus, an initial scale value of 1.02 for
Haar and 1.05 for HOG create 12 resized images for the
given resolution. The HOG operation uses the default bi-
linear interpolation method whereas the Haar operation
uses the nearest neighbor scheme to rescale the input
image. We then executed the C source code for both object
detection algorithms on two different platforms: Intel
Core-i7 with 8GB RAM and ARM Cortex-A9 with 1GB
RAM. We used ‘rdtsc’ assembly instruction, which
accesses time-stamp counter, for the Intel platform and
counter register in the performance monitoring unit of
ARM platform to measure the number of clock cycles
required by the image resize operation and object detection
operation in the same resized image. The ‘Resize’ and the
‘Detect’ in Fig. 3 and 4 represent the cycle counts
respectively.

A. Hardware Platforms

1) Intel Core-i7 with 8GB RAM

 Figure 3. Processor Cycle Counts for Intel Platform

2) ARM Cortex-A9 with 1GB RAM

Figure 4. Processor Cycle Counts for ARM Cortex-A9 Platform

From the plots shown in the Fig. 3 and 4, it is inferred

that CPU cycle counts required for the resize operation

varies linearly with that required by the post-detection
process. In fact the cycle count for the resize operation is
one order higher in case of ARM platform than that in Intel
platform. A total of 4470581 CPU cycles can be saved in
Intel and 15323326 cycles in ARM processor if the resizing
operation is performed prior to detection by using a
hardware accelerator.

IV. SYSTEM ARCHITECTURE FOR HYBRID PLATFORM

Fig. 5 instills the proposed system-level architecture. It
illustrates the overall design flow using a hard processing
system (HPS), which includes the ARM-A9 processor
along with the memory controller module, and a
programmable hardware accelerator.

Figure 5. System-Level Architecture

The user operations of FPGA module present on the

programmable logic (PL) side allows the configuration of
registers in addition with the control of the data flow from
the FPGA module to the main memory. The overall
dataflow can be summarized sequentially in terms of the
involved modules as: video feed, controller, scale
computation unit (SCU), main memory. Using a C code, the
user maps the addresses in the main memory according to
the size of different scales of the image and configures the
control registers such as image size, the window size, total
number of possible scales and the preferred initial scale to
begin with. The memory control master interface (MCMI)
will interact with the multi-port memory controller
(MPMC). This will enable the flow of interpolated pixel
values simultaneously from different SCUs. The hardware
fills the memory mapped addresses with interpolated pixel
values for different scales. The following sub-sections
describes the proposed image resizing hardware accelerator
on the PL.

A. Controller

The controller is responsible for configuring the
register in each SCU with the corresponding factor values
and also handles the flow of input pixel data according to
the requirements of each SCU. The complete block on the
PL side utilizes the values present in following registers:

1

1000

1000000

1E+09

1 3 5 7 9 11C
P

U
 C

yl
es

 (
lo

g
sc

al
e)

Decreasing Image Size

Detect_HOG

Resize_HOG

Detect_Haar

Resize_Haar

1

1000

1000000

1E+09

1 3 5 7 9 11C
P

U
 C

yl
es

 (
lo

g
sc

al
e)

Decreasing Image Size

Detect_HOG

Resize_HOG

Detect_Haar

Resize_Haar

1) Scale: to store the initial scale value
2) No_of_Scales: to store the total number of possible

scales for given resolution of the video feed
3) Image_Width: to store the width of a frame
4) Image_Height: to store the height of a frame
5) Win_Width: to store the width of the feature

window, which is to be used
6) Win_Height: to store the height of the feature

window, which is to be used.
We anticipate an initial latency of one row for the very first
video frame from the input feed. Henceforth with a
pipelined design, one can generate the required
interpolated pixel of the scaled image simultaneously for
every pixel value read from the input side.

B. Calculate Factors

The controller provides the value present in the
configuration registers stated above in Section A. Using the
initial scale, this block iteratively calculates the different
scale values required until the final resized image becomes
comparable to the dimensions of the feature window under
consideration. For example, with image resolution
320×240, initial scale 1.05 and 64×128 feature window the
last resized image to store will be of 178×134 resolution. It
should be noted that the maximum time taken by this block
to generate all the required scaling factors would be always
less than or equal to the total number of columns of the
input video frame. The fact helps in calculating the scale
factors while the reading of the first row of the initial frame
is in progress. Once the computation is complete the
controller configures all the ‘Factor_val’ register of the
SCUs.

C. Scale Computation Unit

Figure 6. Scale Computation Unit

A single SCU provides the interpolated pixels for a

particular scale of the given input image. Depending on
the total number of scale factors required by the algorithm
several of these SCUs are used in parallel. The number of
SCUs generated can be parameterized, according to the
number of scales before the synthesis process. Also two

input (I/P) row buffers and one output (O/P) buffer are used
by a single SCU for computation process. The row buffers
are modulo-n counters with ‘n’ as the frame width. Fig. 6
shows the control and the data lines coming to a single
SCU. The overall functioning of the module can be divided
into the following three sections.

1) CMP: As evident from the overview of bi-linear
interpolation approach, an interpolated pixel is calculated
using the pixel values from two rows separated by
corresponding ‘factor’ number of rows. Thus a SCU is
active only when the two input rows are separated with
certain distance, in the I/P frame. This task is accomplished
using the ‘Row Counter’ (row_ctr) block, which is using
the ‘hsync’ signal, from the I/P device, as trigger. ‘CMP’
is a comparator block to check if the row counter has the
same value as the factor value. This check helps to ensure
the correct flow of data into the I/P row buffers. A positive
signal from this block enables computation for O/P data
and calculation of the next factor multiple, to be used to
detect following I/P row. In Fig. 7, rows in red color match
the criteria to get accepted by a SCU.

Figure 7. I/P Row Selection

2) Switch Row: This block decides the primary row,

out of the two I/P row buffers. This hierarchy of the rows,
in a given iteration, is important as the I/P pixel values are
scanned in a certain fashion as defined by the interpolation
algorithm. In order to reduce the memory usage we
annotate implicitly one of the row buffers as primary while
the other as secondary. Whenever a high signal is received
from the CMP block the row considered primary, in the
previous iteration, is now to be considered as secondary
and vice-versa for the secondary row. The I/P pixel data is
always fed into the primary row buffer and computation of
the corresponding interpolated O/P row buffer begins
utilising the, already filled, secondary I/P row buffer. For
example, in Fig. 7 ‘Row 1’ is secondary and ‘Row 1 *
Factor’ is primary; then for the next iteration ‘Row 1 *
Factor’ becomes secondary and ‘Row 2 * Factor’ becomes
primary.

3) Compute: This module consists of a a fixed-point
unit block with a proposed precision of 8 decimal digits to
satisfy the required accuracy. The ‘Round’ block is
hardware description of the rounding operation used for
calculating integers from decimal numbers. Both of these
blocks utilize the pixel values from the two I/P row buffers.

We utilize two counters in each of row buffers in order to
read the pixel values serially. A register ‘column counter’
(col_ctr) is meant to store the number of pixel values read
from the buffers.

Figure 8. Single Pixel Calculation

The values ‘x_diff’ and ‘y_diff’ are computed as shown in
Fig. 8 and then used to calculate the interpolated pixel
value as in Line 23 of Fig. 2.

D. Store the Output

 With all the SCUs working in parallel a lot of output
data has to be handled in the design. This is managed using
the MPMC. This controller provides multiple parallel ports
for data communication with the main memory. Each data
port is categorized according to the priority level. In
proposed system design the MCMI on PL side handles the
data from different SCUs and passes it to MPMC. With
multiple output ports to the main memory the controller
can write simultaneously to the different memory mapped
regions. In this way different resized version of the input
frame will be created at once.

V. CONCLUSIONS AND FUTURE WORK

 We have proposed the complete system-level design
required for the current emerging hybrid platforms. The
disadvantages of creating the dedicated hardware
architectures for complex algorithms are now apparent.
Also the complete reliance on software-only
implementation of object detection algorithms does not
lead to a satisfactory solution. This is in accordance with
the processor clock cycle counts, which we have obtained
in our experiment on two processor-based platforms. With
hardware accelerators to resize the image in real-time,
along with software application to manage the control and
dataflow, we are able to improve the execution time of
object detection algorithms. Our future work includes
implementation of the proposed architecture using a HDL
language and later using HLS tools. Our eventual aim is to
evaluate performance-area trade-offs while meeting the
real-time constraints.

REFERENCES
[1] G. Zhibo, L. Huajun, W. Qiong, and Y. Jingyu, "A Fast Algorithm

of Face Detection for Driver Monitoring," in Intelligent Systems
Design and Applications, 2006. ISDA '06. Sixth International
Conference on, 2006, vol. 2, pp. 267-271.

[2] Z. Zhang, G. Potamianos, M. Liu, and T. Huang, "Robust Multi-
View Multi-Camera Face Detection inside Smart Rooms Using
Spatio-Temporal Dynamic Programming," in Automatic Face and
Gesture Recognition, 2006. FGR 2006. 7th International
Conference on, 2006, pp. 407-412.

[3] V. Ayala-Ramirez, R. E. Sanchez-Yanez, and F. J. Montecillo-
Puente, "On the Application of Robotic Vision Methods to
Biomedical Image Analysis," in IV Latin American Congress on
Biomedical Engineering 2007, Bioengineering Solutions for Latin
America Health, vol. 18, C. Müller-Karger, S. Wong, and A. Cruz,
Eds.: Springer Berlin Heidelberg, 2008, pp. 1160-1162.

[4] A. P. Witkin, "Scale-space filtering: A new approach to multi-scale
description," in Acoustics, Speech, and Signal Processing, IEEE
International Conference on ICASSP '84., 1984, vol. 9, pp. 150-153.

[5] P. Viola and M. Jones, "Rapid object detection using a boosted
cascade of simple features," in Computer Vision and Pattern
Recognition, 2001. CVPR 2001. Proceedings of the 2001 IEEE
Computer Society Conference on, 2001, vol. 1, pp. I-511-I-518
vol.511.

[6] N. Dalal and B. Triggs, "Histograms of oriented gradients for human
detection," in Computer Vision and Pattern Recognition, 2005.
CVPR 2005. IEEE Computer Society Conference on, 2005, vol. 1,
pp. 886-893 vol. 881.

[7] C. H. Anderson, J. R. Bergen, P. J. Burt, and J. M. Ogden. (1984).
Pyramid Methods in Image Processing. [Online].

[8] K. Negi, K. Dohi, Y. Shibata, and K. Oguri, "Deep pipelined one-
chip FPGA implementation of a real-time image-based human
detection algorithm," in Field-Programmable Technology (FPT),
2011 International Conference on, 2011, pp. 1-8.

[9] C. Tam Phuong, D. Guang, and D. Mulligan, "Implementation of
real-time pedestrian detection on FPGA," in Image and Vision
Computing New Zealand, 2008. IVCNZ 2008. 23rd International
Conference, 2008, pp. 1-6.

[10] R. Kadota, H. Sugano, M. Hiromoto, H. Ochi, R. Miyamoto, and Y.
Nakamura, "Hardware Architecture for HOG Feature Extraction,"
in Intelligent Information Hiding and Multimedia Signal
Processing, 2009. IIH-MSP '09. Fifth International Conference on,
2009, pp. 1330-1333.

[11] K. Mizuno, Y. Terachi, K. Takagi, S. Izumi, H. Kawaguchi, and M.
Yoshimoto, "Architectural Study of HOG Feature Extraction
Processor for Real-Time Object Detection," in Signal Processing
Systems (SiPS), 2012 IEEE Workshop on, 2012, pp. 197-202.

[12] T. Theocharides, N. Vijaykrishnan, and M. J. Irwin, "A parallel
architecture for hardware face detection," in Emerging VLSI
Technologies and Architectures, 2006. IEEE Computer Society
Annual Symposium on, 2006, vol. 00, p. 2 pp.

[13] L. Hung-Chih, M. Savvides, and C. Tsuhan, "Proposed FPGA
Hardware Architecture for High Frame Rate (≫100 fps)
Face Detection Using Feature Cascade Classifiers," in Biometrics:
Theory, Applications, and Systems, 2007. BTAS 2007. First IEEE
International Conference on, 2007, pp. 1-6.

[14] M. Hiromoto, H. Sugano, and R. Miyamoto, "Partially Parallel
Architecture for AdaBoost-Based Detection With Haar-Like
Features," Circuits and Systems for Video Technology, IEEE
Transactions on, vol. 19, pp. 41-52, 2009.

[15] J. Cho, S. Mirzaei, J. Oberg, and R. Kastner, "Fpga-based face
detection system using Haar classifiers," in Proceedings of the
ACM/SIGDA international symposium on Field programmable gate
arrays, Monterey, California, USA, 2009, pp. 103-112.

[16] C. Kyrkou. Image Processing on FPGAs - A Survey. [Online].

[17] R. D. Turney and C. H. Dick. Real Time Image Rotation and
Resizing, Algorithms and Implementations. [Online].

[18] X. Jianping, Z. Xuecheng, L. Zhenglin, and G. Xu, "Adaptive
Interpolation Algorithm for Real-time Image Resizing," in
Innovative Computing, Information and Control, 2006. ICICIC '06.
First International Conference on, 2006, vol. 2, pp. 221-224.

[19] L. Chung-chi, S. Ming-hwa, C. Huann-Keng, T. Wen-kai, and W.
Zeng-chuan, "Real-time FPGA architecture of extended linear
convolution for digital image scaling," in ICECE Technology, 2008.
FPT 2008. International Conference on, 2008, pp. 381-384.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.7
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

