
Hardware-Software Codesign of EKF-based Motor Control for

Domain-Specific Reconfigurable Platform

Yan Lin Aung, Siew-Kei Lam, Thambipillai Srikanthan
CHiPES Research Centre, School of Computer Engineering

 Nanyang Technological University
Singapore

{layan, assklam, astsrikan}@ntu.edu.sg

Abstract—This paper presents hardware-software codesign of
Extended Kalman Filter (EKF) based motor control for a
domain-specific reconfigurable platform, which consists of a
processor for automotive applications and an FPGA for
application-specific customization. Considering the existing
MISRA C compliant software harnessing dedicated on-chip
peripherals, we employ a codesign methodology aiming to
enable product differentiation through modest hardware
accelerator implementation in the reconfigurable logic thus
meeting the application constraints under tight time-to-market
pressure. A key step in the design methodology for reducing
the effort of hardware customization lies in platform-aware
hardware-software partitioning, which takes into accounts
communication overhead between the various computing
elements. We show that our approach can effectively identify a
suitable candidate for hardware acceleration embracing
domain-specific characteristics and existing
standard-compliant software.

Keywords-Extended Kalman Filter, Kalman gain, codesign,
domain-specific reconfigurable platform

I. INTRODUCTION

The advent of SoC FPGAs from Xilinx and Altera which
incorporates ARM-based processor system and
reconfigurable logic is paving the way towards incorporating
reconfigurability on all future integrated circuits. Application
processors, for example ARM Cortex-A9 in SoC FPGAs, are
well-suited for a wide range of computing platforms from
low-cost handsets to smartphones, digital TV and set-top
boxes to enterprise networking and server solutions. We
expect that domain-specific processors such as TriCoreTM
family of processors from Infineon Technologies [1], which
are designed for unique application areas (e.g. automotive,
industrial), will eventually ride on the wave of integrating
reconfigurability to increase product differentiation. Domain-
specific processor-based systems typically operate at lower
clock frequency (e.g. 180 MHz for Infineon TC1797
TriCoreTM processor) compared to application processor
counterparts (e.g. 800 MHz – 2 GHz for ARM Cortex-A9)
and feature specialized peripherals (e.g. Timer Arrays
providing a set of timer, compare and capture
functionalities). Moreover, a sizable amount of software
optimized for the platform by leveraging the peripherals
exists and typically the software must be compliant to
standards set out for specified application domain (e.g.
MISRA C standard for automotive industry). The codesign

methodology that takes advantage of reconfigurability in
domain-specific platforms must take into account the above-
mentioned constraints, in particular lower operating clock
frequency, specialized peripherals and existing certified
standard-compliant software.

We chose the EKF based motor control as it becomes
pertinent in emerging electric vehicle applications. While it
is possible and tempting to use the existing hardware
platform with SoC FPGA on-board (e.g. ZedBoard from [2]),
the efforts require to create a prototype motor control
platform with necessary hardware and software is enormous.
On the other hand, there is no processor-based system with
on-chip reconfigurability available for automotive
applications. This has led us to design a prototype platform
consisting of 32-bit AUDO family TC1797 TriCoreTM
processor from Infineon Technologies [3], Spartan-6 LX25
FPGA from Xilinx, motor driver, current sensors and
brushless DC (BLDC) motor. We then employ a simplified
hardware-software co-design methodology for maximizing
the productivity of application development on the prototype
platform. Our approach places high emphasis on the use of
existing standard-compliant software and communication-
centric hardware-software partitioning that aids in reducing
the hardware implementation efforts for meeting the
application constraints.

The rest of this paper is organized as follows. Section II
provides related work. Section III describes the hardware
prototype for EKF-based motor control. We then present a
codesign methodology for domain-specific reconfigurable
platform, discuss algorithm development, verification and
profiling study for EKF followed by constraint-aware
hardware-software partitioning in Section V, hardware
implementation of Kalman gain in Section VI.

II. RELATED WORK

Significant amount of research work highlighted the
benefits of using FPGAs in a variety of application domains:
automotive, industrial, medical, aerospace, consumer, etc.
FPGAs are of prime interest for implementing digital control
systems in automotive and industrial applications [4, 5, 6, 7].
At the same time, domain-specific processors with
specialized peripherals and a large amount of existing
standard compliant software continue to dominate embedded
products. With emerging research in future electric vehicles,
control techniques for brushless/permanent magnet
synchronous motors have become increasingly popular.

Among those techniques, the Extended Kalman Filter is
well-known for its inherent robustness in random noise
environment. As conventional solutions based on DSPs
failed to meet performance requirement of sensorless
applications, Idkhajine et al. proposed fully hardware
FPGA-based sensorless controller for synchronous machine
using EKF [8]. However, with significant increase in
adoption of FPGAs with microprocessor cores [9] and
introduction of SoC FPGAs, a hybrid approach that
harnesses flexibility and software programmability of
microprocessors, hardware customization and
programmability of reconfigurable logic for performance
will be a preferred solution in future. Hence, there is a need
for high productivity design methodologies for domain-
specific reconfigurable platforms that is able to recommend
hardware-software solutions to meet the functional and non-
functional constraints of application.

III. HARDWARE PROTOTYPE FOR EKF-BASED MOTOR

CONTROL

Our hardware prototype consists of 1) Infineon TC1797
TriBoard, 2) motor driver board from Infineon’s FOC kit, 3)
Xilinx Spartan-6 LX25 FPGA board, 4) BL3056 BLDC
motor and 5) power regulation and voltage-level shifting
circuitries as shown in Fig. 1. To facilitate the terminal
voltage and phase current measurement inputs as required by
the Kalman filter algorithm, the prototype platform relies on
the motor driver board for , ,as bs csV V V measurements and
utilizes the current sensors from LEM for , ,as bs csI I I
measurements. The 32-bit interface has been established
between the TC1797 TriCoreTM processor and FPGA module
through the external bus unit. The FPGA is memory-mapped
to the processor’s address space. Infineon Technologies
provide MISRA C compliant software for the
HybridPACKTM 2 power module designed for full hybrid
electrical vehicle applications [10]. The software runs on

TriCoreTM processor and leverages specialized on-chip
peripherals. For example, it uses 23 Local Timer Cells
(LTCs) in General Purpose Timer Array (GPTATM)
peripheral to generate three phase glitch-less pulse width
modulation (PWM) signals, two independent ADCs for
phase voltage and current measurements. The software
implements complete field oriented control (FOC) together
with an outer proportional-integral (PI) speed control loop.
The FOC itself consists of two PI controllers, several
transformations (e.g. Park, Clarke and reverse Park
transforms) and space vector modulation scheme. The speed
measurement input for the outer PI control loop is derived
from rotor position-sensing hall sensors placed inside the
motor during manufacturing.

The purpose of Extended Kalman Filter is to estimate
position of the rotor and provide the estimated speed to the
PI control loop in the absence of hall sensors. It is evident in
this case that a large amount of existing MISRA C compliant
code prohibits re-implementation of similar functionalities in
FPGA as dedicated hardware or processor-accelerator
system. Hence, we access the possibility of incorporating
Extended Kalman Filter into the current system as merely
software only implementation, in-part or complete hardware
acceleration of the EKF algorithm till it fits into the existing
motor control system using the codesign methodology as
described in subsequent sections.

IV. CODESIGN METHODOLOGY FOR DOMAIN-SPECIFIC

RECONFIGURABLE PLATFORMS

An overview of the proposed design methodology is
shown in Fig. 2. Based on a given specification, algorithm
development and verification is first undertaken, possibly in
a target independent manner with the aid of suitable high-
level design tools (e.g. Matlab). Platform-aware software
implementation is performed next in which designers
maximize the use of existing software to fulfill functional
requirements of the application. Application profiling and
runtime analysis is then relied upon to evaluate whether the
software only solution meets the application constraints and
to identify the application bottlenecks. Hardware-software

Figure 2. Proposed Codesign Methodology for Domain-Specific
Reconfigurable Platforms

Figure 1. Hardware Platform Prototype

partitioning is then carried out iteratively. It aims to
determine a set of minimal hardware candidates so as to
meet the application constraints. The target platform
characteristics such as communication latencies must be
taken into account during the partitioning process. The
partitioning process also requires area-time measures of the
hardware implementation, which is based on either
hand-crafted designs or auto-generated using high-level
synthesis tools. We employ the above-mentioned
methodology during the codesign of EKF-based motor
control algorithm and details of the steps are discussed in the
following sections.

A. Algorithm Development and Verification

Firstly, we carried out modeling and simulation of the
EKF algorithm for motor control in Matlab environment.
The Extended Kalman Filter estimates rotor position ()r

and speed ()r of the BLDC motor using terminal

voltages (, ,)as bs csV V V across three phases and current

measurements (, ,)as bs csI I I of the motor. The EKF algorithm
relies on state space representation of three-phase BLDC
motor model in [11] and consists of two major steps: 1) time
update and 2) measurement update. In time update step, the
prediction of state vector at sampling time k from the input
vector ()u k and the state vector at previous sampling time

(1)x k is first obtained by performing:

 1 1 1()k k k k k kx I A T x B T u x A x B u T

where T is the sampling interval, A and B are the state
and input matrices respectively. Then, the error covariance is
estimated as shown in Eq. (2), where Q is the system noise

co-variance and f is the gradient matrix obtained by (3).

 1
T

k k k kP f P f Q

 1 1k k k k

k

d x d x A x B u T
f

dx dx

In measurement update step, the Kalman filter gain is then
computed as in Eq. (4), where C is the output matrix and R
is the measurement noise covariance.

 1T T
k k kK P C C P C R

The state vector estimation is performed in Eq. (5) and Eq.
(6).

 k k k k kx x K y C x

 1 1 1 1()k k k k k k k k kx x A x B u T K y C x A x B u T
Finally, the error covariance matrix can be calculated as
shown in Eq. (7).
 k k kP I K C P
Simulation is in Matlab Simulink environment to ensure the
correctness of EKF algorithm (simulation results are not
provided here for space reasons).Once verified, the C code,
which is functionally equivalent to the EKF Matlab code, is
developed.

B. Application Profiling and Runtime Analysis

Application profiling of the EKF C code is then carried
out for TC1797 TriCoreTM processor from two different
perspectives of the algorithm.

1) Profiling the Computation Steps of EKF Algorithm
The EKF algorithm can further be broken down into four

distinct computation steps, namely 1) error covariance
estimation, 2) Kalman gain computation, 3) measurement
update, and 4) error covariance update. The computation
steps of EKF algorithm is profiled for TC1797 TriCoreTM
processor running at 180 MHz, which is the maximum
operating frequency. Each iteration of EKF algorithm
requires 68 μs. The breakdown of computation time
requirements for the EKF computation steps are shown in
Fig. 3. It can be observed that the Kalman gain computation
takes up 41% of the total computation time.

Figure 3. Dependence Flow Graph of EKF Algorithm

2) Profiling the Matrix Operations of EKF Algorithm
Several matrix operations are involved in the EKF

computation. Hence, profiling study is undertaken for
matrix multiplication, inversion, addition, transpose,
subtraction and transfer operation. The profiling study
reveals that matrix multiplication needs to be executed 9
times in each iteration of EKF algorithm and occupies
74% of the total computation time.

3) Run-Time Analysis
The HybridPACKTM 2 software allows users to specify

the PWM frequency between 8-20 kHz at compile-time.
The PWM frequency of 10 kHz is commonly used for
control of permanent magnet motors. The control
algorithm is synchronized with the generated PWM. An
interrupt event is raised at the rising edge and falling edge
of PWM period. The former event initiates conversion of
terminal voltages across three phases of the motor. User
customized code can be implemented during this rising
edge interrupt. The falling-edge interrupt starts conversion
of the motor phase currents and DC link voltage. This
interrupt handles the motor control step which comprises
of reading the motor electrical position and phase currents,
field oriented control (FOC) and PWM duty cycle
calculation.

The EKF algorithm can be incorporated into the
HybridPACKTM 2 software during the rising-edge
interrupt since the falling-edge counterpart is occupied by
the motor control code. The EKF algorithm must complete
computation in 50 μs for the 10 kHz PWM frequency.
Since profiling study mentioned earlier indicated that the
C implementation of EKF algorithm requires 68 μs,
computational capability of FPGA has to be exploited in
this case to speed up the Kalman filter computation.

V. PLATFORM-AWARE HARDWARE-SOFTWARE

PARTITIONING

The purpose of hardware-software partitioning is to
identify a minimal set of hardware candidates that can
meet the performance constraints. From the analysis on
profiling results, we identified two possibilities to
accelerate the EKF algorithm: a) floating point matrix
multiplication or b) Kalman gain computation in FPGA.

A. Hardware Acceleration of Matrix Multiplication in
FPGA

Since matrix multiplication contributes 74% of the
total computation time, the possibility of hardware
acceleration of matrix multiplication in FPGA is first
analyzed. A 5×5 floating-point matrix multiplication can
be realized in FPGA to cater for 9 such operations
involved in the EKF algorithm. In this approach, the C
code on the TriCoreTM processor writes 50 single precision
floating-point data to FPGA. The matrix multiplication
module in FPGA performs the computation and the
TriCoreTM processor reads back the 25 results. 50 32-bit
data transfer from the TriCoreTM processor to FPGA
requires 5.55 μs (i.e. 50×10×11.11ns) as the external bus
unit (EBU) operates at 90 MHz and 10 clock cycles are

required for one 32-bit write operation. To read back the
25 data from FPGA, the TriCoreTM processor requires 5 μs
(i.e. 25×18×11.11ns). One 32-bit read transaction requires
18 clock cycles in this case. If the computation time for
matrix multiplication can be overlapped with the data
transfer time from the TriCoreTM processor to FPGA
during data write and read operations, a total of 10.55 μs is
required to complete 5×5 matrix multiplication. Therefore,
the EKF algorithm requires 94.95 μs for nine matrix
multiplications assuming that a single 5×5 matrix
multiplier is utilized for the multiplication of matrices with
smaller dimension. As the EKF algorithm must complete
computation in 50 μs, an FPGA based hardware
accelerator for floating-point multiplication will lead to
timing constraint violation.

B. Hardware Acceleration of Kalman Gain
Computation in FPGA

Next, we consider mapping of the Kalman gain
computation in FPGA. In this approach, the TriCoreTM
processor first sends 15 single precision floating-point data
to FPGA. The Kalman gain computation does not require
all the 15 input data to be available before it begins
processing in order to maximize overlapping of the
computation time with the data transfer time. This results
in only 8 clock cycles for the Kalman gain computation
which does not overlap with the data transfer. The Kalman
Gain computation produces 15 single precision floating-
point data which are then read by the TriCoreTM processor.
Hence, the total time required for Kalman gain
computation on FPGA is 4.90 μs. Since the C code
Kalman gain computation requires 28.02 μs, the FPGA
hardware accelerator can accelerate the Kalman gain
computation execution time by 5.72×. The EKF algorithm
requires 44.89 μs with FPGA hardware acceleration of the
Kalman gain computation, which meets the 50 μs timing
constraint.

VI. HARDWARE IMPLEMENTATION OF KALMAN GAIN

COMPUTATION

We have identified the Kalman gain computation as a
suitable candidate for hardware acceleration in FPGA.
Hence, we propose an optimized FPGA implementation
for Kalman gain computation that takes advantage of the
restricted data transfer bandwidth between the TriCoreTM
processor and FPGA by overlapping the computation time
with the data transfer time. This results in hardware
acceleration of Kalman gain computation that will incur
minimal computation overhead. The proposed
implementation for Kalman gain computation, which is
seven-stage pipelined architecture, is shown in Fig. 4. The
implementation requires 15 single precision floating-point
inputs and produces 15 single precision floating-point
outputs. Each of the inputs is supplied to the pipelined
architecture one at a time and is processed immediately in
the pipeline stages. It can be observed that the architecture
requires a floating-point adder, a floating-point multiply-
accumulator, a floating-point matrix multiplier and a
floating-point multiplier. The inverse matrix operation in

P (5x3 matrix)

Floating-Point
Adder

R

Floating-Point
MAC

Floating-Point
Matrix Multiplier

Floating-Point
Multiplier

Compute D

D = 1/DET

K (5x3 matrix)

Pipeline
Stage 1

Pipeline
Stage 2

Pipeline
Stage 3

Pipeline
Stage 4

Pipeline
Stage 5

Pipeline
Stage 6

Pipeline
Stage 7

Figure 4. Seven-Stage Pipeline Implementation of Kalman Gain

Computation

(4) is further decomposed as computing determinant and
taking the reciprocal. Our analysis on the input dataset
from the motor model in Matlab shows that D can be set to
a constant value. Therefore, the current implementation
does not require the module to compute D.

The Kalman gain computation does not require all the
15 input data to be available before it begins processing.
This results in only 8 clock cycles for the Kalman gain
computation, which does not overlap with the data
transfer. The Kalman Gain computation produces 15
single precision floating-point data which are then read by
the TriCoreTM processor. Hence, the total number of clock
cycles for Kalman gain computation on FPGA is 38.

A. Implementation Results

Table I shows the FPGA implementation results of the
various modules in the proposed Kalman gain
computation. The target FPGA device is Spartan-6
XC6SLX25 from Xilinx. It can be observed that the
Kalman computation gain implementation utilizes less
than 50% of the FPGA resources. In addition, the Kalman
computation gain implementation can be clocked at about
20 MHz. Hence, this implementation enables the write
cycle of TC1797 EBU to execute up to 20 MHz. Higher
clock frequency can be achieved by further pipelining the
modules.

TABLE I. IMPLEMENTATION RESULTS

Module
LUTs Registers freq.

(MHz) Total Usage Total Usage
Floating-Point Adder 526 3% 0 0% 20
Single Pipeline Stage
of Floating-Point
Multiply-Accumulator

687 4% 32 0% 20

Single Pipeline Stage
of Floating-Point
Matrix Multiplier

5186 34% 1505 5% 33

Floating-Point
Multiplier

162 1% 0 0% 34

VII. CONCLUSION

We present hardware-software codesign of Extended
Kalman Filter based motor control for a domain specific
reconfigurable platform. Although it is possible to
implement the entire motor control loop in reconfigurable
hardware, we show that the codesign methodology must
take into account a significant amount of existing and
certified motor control software that leverages on-chip
features dedicated for automotive applications in order to
meet the ever-shrinking time-to-market window. In
addition to application analysis and profiling, which often
guide the codesign strategies, our study also highlights that
the communication latencies between the processor and
hardware accelerator is crucial due to its impact on
performance and must be given high emphasis during the
hardware-software partitioning process.

REFERENCES
[1] "32-bit TriCoreTM Microcontrollers," 2013. Available:

http://www.infineon.com/TriCore.

[2] (2013). ZedBoard - A low-cost development board for the Xilinx
Zynq-7000 All Programmable SoC. [Online]. Available:
http://www.zedboard.org/.

[3] TC1797 32-bit Single-Chip Microcontroller Data Sheet V1.2 2009-
09. [Online].

[4] E. Monmasson, I. Bahri, L. Idkhajine, A. Maalouf, and W. M.
Naouar, "Recent advancements in FPGA-based controllers for AC
drives applications," in Optimization of Electrical and Electronic
Equipment (OPTIM), 2012 13th International Conference on,
2012, pp. 8-15.

[5] E. Monmasson and M. N. Cirstea, "FPGA Design Methodology for
Industrial Control Systems — A Review," Industrial Electronics,
IEEE Transactions on, vol. 54, pp. 1824-1842, 2007.

[6] E. Monmasson, L. Idkhajine, M. N. Cirstea, I. Bahri, A. Tisan, and
M. W. Naouar, "FPGAs in Industrial Control Applications,"
Industrial Informatics, IEEE Transactions on, vol. 7, pp. 224-243,
2011.

[7] J. J. Rodriguez-Andina, M. J. Moure, and M. D. Valdes, "Features,
Design Tools, and Application Domains of FPGAs," Industrial
Electronics, IEEE Transactions on, vol. 54, pp. 1810-1823, 2007.

[8] L. Idkhajine, E. Monmasson, and A. Maalouf, "FPGA-based
Sensorless controller for Synchronous Machine using an Extended
Kalman Filter," in Power Electronics and Applications, 2009. EPE
'09. 13th European Conference on, 2009, pp. 1-10.

[9] M. Santarini, "Xilinx Customer Innovation: 85,000 to 2.5 Billion
Transistors and Beyond," Xcell, pp. 8-15, 2010.

[10] (2013). Evaluation Kit for Applications with HybridPACKTM 2
Module. [Online].

[11] R. Krishnan, Permanent magnet synchronous and brushless DC
motor drives. Boca Raton: CRC Press/Taylor & Francis, 2010.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.7
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

