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Abstract—The problem of reconfiguring two-dimensional VLSI
arrays with faults is to find a maximum logical array without
faults. The existing algorithms only consider faults associated
with processing elements, and all switches and links are assumed
to be fault-free. But switch faults may often occur in the network-
on-chips with high density. In this paper, two novel approaches
are proposed to tackle the reconfiguration problem of degradable
VLSI arrays with switch faults. The first approach, called CRRR,
extends the well-known existing algorithm with simple pre-
processing and row bypass scheme. The second one, called RCCR,
employs a novel row and column rerouting scheme to maximize
the size of the logical array. Simulation results show that the
proposed two approaches can effectively generate the logical
arrays on the given host array with switch faults, and RCCR
performs more favorably with the increasing number of the
switch faults. To the best of our knowledge, this paper is the
first work to tackle the reconfiguration problem of degradable
VLSI arrays in the presence of switch faults.

Index Terms—Fault-tolerance, Degradable VLSI array, Recon-
figuration algorithms, NP-complete.

I. INTRODUCTION

Mesh-connected processor arrays have been extensively
investigated and widely employed for high-speed implementa-
tion of many signal and image processing due to its simplicity
and performance benefits. These high-performance processor
arrays normally consist of components such as processing
elements (PEs), switches, links, etc. With the advances of very
large scale integration (VLSI) technologies, mesh-connected
processor arrays can now be built on a single chip to form
many-core systems. The regular and modular characteristics
of these many-core systems can be exploited to shorten
verification time, hence alleviating time-to-market pressures.

As the density of VLSI arrays increases, the probability
of occurrence of defects in the arrays during fabrication also
increases. In addition, post deployment defects can also occur
due to harsh environments. Thus, it is nearly impossible to
guarantee that all components are fault-free throughout their
product lifetime. This has led to the significance of fault
tolerant techniques to maintain reliability of VLSI arrays in
order to increase their product lifetime. In particular, the
regular and modular structure of mesh-connected architecture
lends itself well for efficient fault-tolerant realizations.

Fault-tolerance has been studied from several perspectives
on a number of parallel architectures. For example, distributed

memory architectures often use spare hardware or identify
a healthy subarray from a host array with faults [1]. Some
of these ideas have been adopted for fault tolerant VLSI
arrays. In particular, efficient reconfiguration strategies for
degradable VLSI arrays [2], such as redundancy approach and
degradation approach have been extensively studied in the past
two decades.

In redundancy approach, additional components called spare
PEs are incorporated during chip fabrication. These spare PEs
can be reconfigured to replace faulty PEs. Various techniques
based on the redundancy approach have been described in [3],
[4], [5], [6]. The limitation of this approach stems from the fact
that there must be sufficient spare elements that can replace all
the faulty components. If the system contains excessive faulty
elements such that the spare elements cannot replace all the
faulty ones, the system is no longer reconfigurable and has to
be discarded.

The degradation approach does not rely on spare PEs to
replace faulty ones, and all PEs in the system are treated
uniformly. Instead, the degradation approach aims to utilize
as many fault-free PEs as possible to reconstruct a fault-free
subarray for the target system [7]. Kuo and Chen [8] studied
the reconfiguration problems for reconfigurable mesh array
under the three switching and routing constraints, namely, 1)
row and column bypass, 2) row bypass and column rerouting,
and 3) row and column rerouting. They have shown that
most reconfiguration problems under these constraints are NP-
complete. Moreover, it becomes very difficult if rerouting in
both row and column directions are considered simultaneously.
The first constraint, i.e., row and column bypass, is well
studied in the reconfiguration of memory arrays [9]. Low et
al. proposed a optimal algorithm of linear time in [10] called
Greedy Column Rerouting (GCR), to find a maximal sized
target array that contains the selected rows under the row
bypass and column rerouting scheme for a given m×n mesh-
connected host array. This optimal algorithm was employed in
[11] and generated an approximate target array by performing
row exclusion and compensation, resulting in an efficient
reconfiguration algorithm under the row and column rerouting
constraint. Jigang et al. have simplified the row-selection
scheme for the rows to be excluded in [12] and proposed
partial rerouting scheme in [13] to accelerate the reconfigu-



ration of the target array. In addition, [14] proposed an upper
bound of target array size to further reduce the execution
time of GCR. Fukushi et al. utilized heuristic approach in
[15] and genetic approach in [16] to construct the maximum
target array (MTA) for the small host arrays. A more efficient
algorithm based on an integrated row and column rerouting
strategy was reported in [17] to further increase the harvest.
A preprocessing and partial rerouting technique was proposed
in [18] to reduce the reconfiguration time. Following GCR,
an algorithm that focuses on optimizing power efficiency was
proposed in [19] under the second constraint. This algorithm,
denoted as LDP, employs a heuristic strategy and dynamic
programming to reduce power dissipation by minimizing the
interconnection length in logical columns of the MTA with-
out harvest penalty. LDP was later simplified by reducing
the number of the operations during reconfiguration [20]. A
reconfiguration algorithm that combines GCR and LDP was
proposed in [21] for constructing low temperature subarray.
Different tracks and switches have also been proposed to
increase the harvest on reconfigurable mesh-connected arrays
[22], [23], [24], [25].

In the literature, faults in VLSI arrays are usually associated
only with processing elements (PEs), i.e. all switches and links
in an array are assumed to be fault-free. However in practice,
switches and link faults can also occur during fabrication
or after deployment due to harsh conditions. When switch
fault is taken into consideration, the reconfiguration problem
becomes more complex. In this paper, two novel techniques are
proposed to tackle the reconfiguration problem of VLSI arrays
with switch faults. To the best of our knowledge, our work is
the first to take into account switch faults in reconfiguration of
VLSI array. In particular, this research is the first contribution
towards constructing a healthy logical array on a given m×n
mesh-connected processors array which include PE faults and
switch faults.

The rest of the paper is organized as follows: In section 2,
we provide notations that are used throughout the paper. In
section 3, we present our algorithms for reconfiguring VLSI
arrays with PE and switch faults. In section 4, we present the
experimental results to show the benefits of our algorithms.
Finally, we conclude our work in section 5.

II. PRELIMINARIES AND RELATED WORKS

A VLSI array is fault-tolerant if it continues to work (pos-
sibly in degraded form) when at least one of its components
fails [1]. Let’s denote the original processor array obtained
after manufacturing as host array H , which contains some
defective components.

In this paper, we use the same architecture and assumptions
in [10-21], with the exception of those related to switches and
interconnects. Figure 1 illustrates the architecture of a 4 × 4
host array with different switch states and rerouting schemes.
Neighboring PEs are connected to each other by a four-port
switch. There are two kinds of links that exist in the host array:
row rerouting channel (thin line) and column rerouting channel
(bold line). A switch is called a row rerouting switch if it is

located on row rerouting channel, while a column rerouting
switch is located on column rerouting channel. In Fig. 1,
circles that appear filled or empty, can be used as indicators
of column switches or row switches. An m × n host array
indicates a host array with m rows and n columns, whose size
is defined as m·n. Each PE in H can be represented by e(i, j),
where i is its row index and j is its column index. There are
m × (n − 1) Row Switches (RS) and (m − 1) × n Column
Switches (CS) in an m × n host array. Each row (column)
switch in H can be represented by rs(i, j) (cs(i, j)), where i
is its row index and j is its column index.
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Fig. 1: Architecture and routing schemes of a 4 × 4 array
linked by 4-port switches.

A PE is defective if it is incapable of processing data or it is
unable to read (write) information from (to) its neighbors [1].
When a row (column) switch fault occur, the row (column)
rerouting channel is broken and does not allow data through
it. Let ρ and σ be the fault densities of PEs and switches
(including row switches and column switches) in the host array
respectively, where 0 < ρ < 1 and 0 < σ < 1. A degradable
subarray of the host array, which contains only fault-free PE
after reconfiguration, is called a target array or logical array.
The rows (columns) in host array are called physical rows
(columns). The rows (columns) in logical array are called
logical rows (columns). In a logical array, PEs belonging to
a logical column (row) may come from different physical
columns (rows). An r × s target array is constructed from an
m× n defective host array with r logical rows and s logical
columns (r ≤ m, s ≤ n), whose size is defined as r · s.

Typical switching and routing schemes include the row (col-
umn) bypass scheme and the row (column) rerouting scheme.
The Row Bypass Scheme assumes that a faulty PE allows
communication between its neighbors. For example, in Fig.
1, if e(i, j + 1) is faulty, then e(i, j) can communicate with
e(i, j + 2) directly and data will bypass e(i, j + 1) through
row switches. Alternatively, the Column Rerouting Scheme
assumes that e(i, j) can connect directly to e(i + 1, j′) with
external column switches, where |j′ − j| ≤ d, and d is
called compensation distance, which is limited to 1 [10-21].
The Column Bypass Scheme and Row Rerouting Scheme are
similarly defined. In practice, it is important to keep the



compensation distance small in order to reduce the overhead
of the switching mechanisms. As such, in this paper we also
limit d to one.
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Fig. 2: Possible link-ways in target array.

As shown in Fig. 2, there are 6 possible types of inter-
connects for a target array. They can be categorized into two
classes based on the kind of switch used. Note that (a), (b) and
(c) are only used for row rerouting, while (d), (e) and (f) are
only used for column rerouting. From Fig. 1 and Fig. 2, it can
be seen that if a row switch rs(i, j) is faulty, where 1 ≤ i ≤ m
and 1 ≤ j < n, then e(i, j) and e(i, j + 1) cannot be utilized
for row rerouting. This is due to the fact that e(i, j) cannot be
connected to any PEs on its right via rs(i, j), while no PEs can
be connected to the left of e(i, j + 1). Similarly, if a column
switch cs(i, j) is faulty, both e(i, j) and e(i+1, j) cannot be
used for column routing, where 1 ≤ i < m, 1 ≤ j ≤ n.

In this paper, faults composed of PE faults and switch
faults. As proved in [8], constructing a r · s sized subarray
from an m × n host array with only PEs faults is NP-Hard.
When considering switch faults, this reconfiguration problem
becomes more complex. This is because the switches faults
affect the connectivity of circuits and cannot be bypassed.
Therefore, our goal is to find solutions for the following
problem, which is NP-hard and more complex than the existing
solutions that do not consider switch faults.

Problem P: Given an m × n host array H with faults
(including PE faults and switch faults), positive integers r and
c, find an m′×n′ fault-free logical array T under the constraint
of row and column rerouting such that m′ ≥ r and n′ ≥ c.

III. PROPOSED ALGORITHMS

As problem P is NP-hard, we focus on generating approx-
imate solutions in polynomial time. For PE faults only, both
GCR [12] and LDP [14] can reconstruct a maximum target
array (MTA) with selected rows under row bypass and column
routing scheme in linear time. The proposed algorithms in this
paper also employ GCR as a sub-algorithm. The following
briefly describes the GCR algorithm. For a given m× n host
array H, let R1, R2, · · · , Rm be the rows. To simplify the
description of GCR and without loss of generality, we also
assume that the MTA produced by GCR contains the same
selected rows. Let col(u) and col(v) be the physical column
index of PE u and v respectively. All operations of GCR are

carried out on adjacent sets of a fault-free PE u in row i, where
1 ≤ i < m. Based on the limitation of compensation distance,
the adjacent set Adj(u) of PE u is defined as follows:
Adj(u) = {v : v ∈ Ri+1, v is fault-free and |col(u) −

col(v)| ≤ 1}.
GCR constructs the target array in a left-to-right manner.

It begins by selecting the leftmost fault-free element, say u
of the first row R1 for inclusion into a logical column. Next,
the leftmost element in Adj(u), say v, is connected to u. This
process is repeated until a logical column is fully constructed.
In each iteration, GCR produces the current leftmost logical
column. In the next iteration, GCR attempts to construct a
new logical column by selecting the leftmost PE in R1 that
has not been examined and the entire process described above
is repeated. GCR finally terminates when all PEs in R1 have
been examined. Upon completion, there are k logical columns
in the logical array L, denoted as L1, L2, · · · , Lk. Further
details about GCR can be found in [11].

In this section, we propose two novel algorithms to resolve
problem P , namely 1) Column Routing and Row Releasing
(CRRR), 2) Row Connecting and Column Routing (RCCR).
Row Bypass and Column rerouting scheme are utilized in the
first approach, while the second approach employs the Row
and Column rerouting scheme.

A. Column Rerouting and Row Releasing 
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Fig. 3: Column Routing and Row Releasing .

In CRRR, we first employ a column switch preprocessing
procedure to remove redundant PEs due to faulty column
switches on the host array H . For each faulty column switch,
the healthy PEs which are directly connected to it will be
assigned as faulty PEs. The host array H after column switch
preprocessing, is denoted as HC . Next, we employ GCR



to reconstruct a maximum target array (MTA) from HC . In
this process, the connectivity of each logical column in MTA
can be guaranteed, as PEs that are adjacent to faulty column
switches cannot be utilized to form any logical column (since
they are assumed to be faulty). However, GCR does not take
into consideration faulty row switches. Therefore, the MTA
still contains faulty row switches. In order to overcome this
problem, the rows in the MTA that contain row switch faults
are removed (released) and the healthy PEs on released rows
allow data to be bypassed. As a result of this, a target array
without PE faults and switch faults can be generated.

Figure 3 describes the various steps of CRRR for a given
host array. Fig. 3(a) shows the original 5× 5 host array with
PE faults and switch faults. Each box signifies a PE, and
black boxes represent faulty PEs. Circle with a cross refers
to a faulty switch. CRRR first identifies the healthy PEs with
column switch faults. Fig. 3(b) shows the host array HC after
column switch preprocessing, whereby 2 redundant PEs (boxes
with diagonal strips) are identified. GCR is then employed to
construct a MTA from HC . Fig. 3(c) reveals a 5×3 target array
generated by GCR that still consists of row switch faults. By
releasing the rows with switch faults, a 3×3 healthy subarray
is obtained in Fig. 3(d). Detailed description of CRRR is shown
in Algorithm 1.

Algorithm 1 CRRR
Input:
Mesh-connected m× n sized Host array H with faults;
m× (n− 1) sized Row Switch array RS with faults;
(m− 1)× n sized Column Switch array CS with faults.
Output:
r × s sized Target subarray T ← {T1, T2, . . . Ts}.
Steps

1: for all faulty column switch cs(i, j) ∈ CS do
2: /* identify redundant PEs due to RS faults on H*/
3: if (e(i, j) is fault-free) then
4: e(i, j)← faulty;
5: end if
6: if (e(i+ 1, j) is fault-free) then
7: e(i+ 1, j)← faulty;
8: end if
9: end for

10: k← 0; /* k is the number of logical columns */
11: r← m; /* r is the number of logical rows */
12: /*s is final number of logical columns of T */
13: s← GREEDY COLUMN ROUTING(H,m, n, T, k);
14: for i← 1 to m do
15: if exist faulty row switch in Ri then
16: release all PEs in row i of T ;
17: r← r − 1; /* decrease the number of logical rows by 1.*/
18: end if
19: end for
20: return T ; ◃ Return the final r × s logical array

The algorithm CRRR consists of three procedures, namely

column switch preprocessing, GCR and row releasing. The
preprocessing process takes O(1) running time as only two
neighboring PEs of the faulty switch need to be updated. The
time complexity of GCR is O(N) [11], where N represents
the number of PEs in host array. According to [17], the process
of row releasing also takes O(1) running time. Hence, the time
required by CRRR is bounded by O(N).

B. Row Connecting and Column Rerouting (RCCR)

In this subsection, we propose a heuristic algorithm for
reconfiguration problem P under row and column rerouting
constraints. In contrast to the CRRR technique where healthy
PEs in rows with switch faults are discarded, the proposed
technique in this subsection enables row rerouting. Row and
column rerouting provides more flexibility in the reconfigura-
tion as healthy PEs in rows with switch faults can be utilized
to construct logical rows, which may lead to notable increase
in the size of target array. We named the proposed technique
for row and column rerouting as Row Connecting and Column
Routing (RCCR).

In RCCR, we first identify the logical rows. For a given host
array H , only row switch faults are taken into consideration
initially and PE faults are ignored. The adjacent PEs of each
row switch rs(i, j) fault in H , namely e(i, j) and e(i, j + 1),
are set to faulty in the first step. 
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Fig. 4: Row Connecting and Column Routing.

Figure 4 shows the steps for RCCR that is based on the
example host array in Fig. 3(a). Fig. 4(a) illustrates the array
faults after row switch preprocessing, denoted as HR, where
faulty PEs consist of only those that are adjacent to row switch
faults. Boxes with backslashes represent the healthy PEs that
are adjacent to row switch faults, which will not be considered
in row rerouting. An algorithm namely Greedy Row Rerouting
(GRR) was developed to construct maximum logical rows in



HR. GRR works in the same manner as GCR except that it
construct logical rows in a top-to-down manner. Let row(u)
and row(v) denote the physical row index of PE u and v,
respectively. The right adjacent setsAdjR(u) of each fault-free
PE u in column Cj , 1 ≤ j < n, can be defined as follows:
AdjR(u) = {v : v ∈ Cj+1, v is fault-free, and |row(u) −

row(v)| ≤ 1}.
In HR, GRR begins by selecting the uppermost fault-free

PE u of the first column to be included in the logical row
R1. Next, the uppermost successor PE v in AdjR(u) will be
selected for inclusion into the logical row R1. This process
to construct R1 is repeated until a PE in the last column
is chosen. In each step, GRR attempts to connect current
PE u to its uppermost successor in AdjR(u) that has not
been examined. GRR terminates when all PEs in the first
column have been examined. Upon termination, r logical rows
are generated, denoted as R1, R2, · · · , Rr. Fig. 4(b) shows 4
logical rows constructed from HR using GRR. As GRR only
considers faulty PEs that are adjacent to row switch faults,
some faulty PEs in the original host array may exist in the
logical rows. For example in Fig. 4(c), a faulty PE (i.e. e(2, 1))
is located within logical row R2. Let’s denote the logical rows
that are constructed by GRR on HR as connected rows.

After generating connected rows, we mark the connected
rows on original array H and perform column switch pre-
processing as described in III-A. Fig. 4(c) shows the host
array HC after this preprocessing. Next, column rerouting is
performed. In order to construct logical columns, an attempt
is made to connect the connected rows. This process is more
complex than GCR as a fault-free PE (excluding those adjacent
to column switch faults) in connected row Ri, 1 ≤ i < r,
may not be able to connect directly to a fault-free PE in next
connected row Ri+1.

Let’s define the successor succ(u) of a fault-free PE u ∈ Ri,
1 ≤ i < r, taking into account the compensation distance, as:
succ(u) = {v : v is fault-free, v ∈ Ri+1, and |col(v) −

col(u)| < (row(v)− row(u))}.
We devised a procedure called Column Rerouting on Con-

nected Rows, denoted as CRCR, to optimally solve this prob-
lem in linear time by employing a greedy algorithm. CRCR
constructs the logical column from top-to-down in the left-
to-right manner. The fault-free PEs from the connected rows
in HC are routed to form logical columns. CRCR begins by
selecting the leftmost PE u of the first connected row Rl,
which is located within the first row or is able to connect to
a PE in the first row (the second condition is necessary for
the target array to obtain external inputs), for inclusion into a
logical column. Next, the leftmost successor v in succ(u) will
be included in the logical column C1. In each step, CRCR
attempts to connect the current element v to leftmost fault-
free PE w in succ(v) that has not been examined previously.
If CRCR fails in doing so, no logical column that contains v
can be formed. When this happens, CRCR backtracks to the
previous PE u, which was connected to v, and attempts to
connect u to its leftmost successor (excluding v) in succ(u)
that has not been examined and removes v from C1. This

process is repeated until either i) a PE in the last connected
row Rr is connected to the previous one and it is able to
connect to a PE in the last physical row (the second condition
is necessary so that the target array can produce an external
output), or ii) CRCR backtracks to u in R1. Termination under
condition i) results in the construction of a logical column that
passes through each of the connected rows. In termination
under condition ii), no logical column that begins with u can
be formed. In the next iteration, CRCR attempts to construct
a new logical column by selecting the leftmost fault-free PE in
Rl that has not been examined and the entire process described
above is repeated. CRCR terminates when all PEs in Rl

have been examined. Finally, s logical columns are generated,
denoted as C1, C2, · · · , Cs. Fig. 4(d) shows the resulting 4×3
target array. Detailed description of the algorithm RCCR is
shown in Algorithm 2.

RCCR is composed of row switch preprocessing, GRR,
column switch preprocessing and CRCR. Step 1 and 3 can be
achieved concurrently and are bounded by O(1) as pointed out
in section III-A. GRR works in the same way as GCR, which
is bounded by O(N). The procedure CRCR is applied on the
selected rows, and the unused healthy PEs are automatically
bypassed during column rerouting. In CRCR, the leftmost
unexamined PE in succ(u) will be selected as a healthy PE
u in selected rows. Noting that Adj(u) in GCR can be found
in O(N), we conclude that the time complexity of CRCR is
also bounded by O(N). From the above analysis, it can be
concluded that the time complexity of RCCR is O(2N).

C. Optimality of proposed algorithm

Theorem 1. Row Connecting and Column Rerouting
(RCCR) algorithm produces target array with maximum num-
ber of logical rows for Problem P .

Proof. We developed a procedure Greedy Row Rerouting
(GRR) to construct the connected rows on the host array
HR after row switch preprocessing. In HR, we ignore all
the PE faults and only deal with the faults caused by faulty
row switches. The number of PEs that can be used in row
connecting is maximum. As the selection of the uppermost
element for inclusion into a logical row at each step of the
algorithm is based on a greedy approach, this maximizes
the opportunity for the remaining fault-free elements to form
logical rows. Similarly, if rerouting is performed in column
direction first, we can generate a target array with maximum
logical columns. We can therefore prove the above theorem
based on the same reasoning described in [11] for proving the
optimality of GCR algorithm,

IV. EXPERIMENTAL RESULTS

The algorithms CRRR and RCCR were implemented in C
and executed on a 1.6 GHz Intel Core 2 Duo CPU with 2 GB
RAM. In these experiments, we have used the same assump-
tions in [10-21], i.e., the faults of random host arrays were
generated by a uniform random generator. Both algorithms
are tested and compared with each other on the same input
instances. In our simulations, random PE faults and switch



Algorithm 2 RCCR
Input:
Mesh-connected m× n sized Host array H with faults;
m× (n− 1) sized Row Switch array RS with faults;
(m− 1)× n sized Column Switch array CS with faults.
Output:
r connected rows R← (R1, R2, . . . Rr)

T

s logical columns C ← (C1, C2, . . . Cs)
r × s sized Target sub-array T .

1: procedure CRCR(HC ,m, n,R,C, r, s)
2: for i← 1 to r do
3: Ei ← set of fault-free PE in Ri of HC ; ◃

Assume the PEs in Ei are arranged in increasing column
numbers.

4: end for
5: for i← 1 to r − 1 do
6: for each PE u ∈ Ei do
7: succ(u) ← {v : v ∈ Ei+1, rol(v) >

row(u), |col(u)− col(v)| ≤ (rol(v)− row(u))}; ◃
Assume the PEs in succ(u) are arranged in increasing
column numbers.

8: end for
9: end for

10: all PEs in E ← unmarked;
11: while there are unmarked PEs in E1 do
12: cur ← leftmost unmarked PE in E1 and be able

to connect to first row;
13: mark cur;
14: repeat
15: if (there are unmarked PEs in succ(cur)) then
16: w ← leftmost unmarked PE in succ(cur);
17: prev(w)← cur; ◃ w is connected to cur.
18: cur ← w;
19: mark w;
20: else if cur not in E1 then
21: cur ← priv(cur);
22: end if
23: until (cur ∈ Er and cur can connect to last row)

or (cur ∈ E1)
24: if (cur ∈ Er and cur can connect to last row) then
25: s← s+ 1; ◃ increase number of logical

columns by 1.
26: repeat
27: add cur to Cs;
28: cur ← priv(cur);
29: until (cur ∈ E1)
30: end if
31: end while
32: end procedure
Begin

1: /* Performing column switch preprocessing on H ignored PEs faults.*/
2: for all faulty row switch rs(i, j) ∈ RS do
3: if (e(i, j) is fault-free) then
4: e(i, j)← faulty;
5: end if

Algorithm 2 RCCR (continued)

6: if (e(i, j + 1) is fault-free) then
7: e(i, j + 1)← faulty;
8: end if
9: end for
10: HR ← the H after row switch preprocessing;
11: /* Generate connected rows R from HR by GRR.*/
12: GREEDY ROW ROUTING(HR,m, n,R, r);
13: perform column switch preprocessing on H .
14: HC ← the H after column switch preprocessing.
15: mark the connected rows on HC .
16: s← 0; /* s is number of logical columns of C */
17: /* Column Rerouting on the connected rows from HC*/
18: CRCR(HC ,m, n,R,C, r, s);
19: End

faults with uniform distribution are placed on the host array
H . Data collected for host arrays with different fault densities
are averaged over 20 random instances, with the decimal points
rounded off to the nearest integer in all cases.

Let harvest indicates the size of the final target array
generated by the proposed algorithms. This can be used to
compare the performance of the proposed algorithms. The
improvement (imp) of RCCR over CRRR in terms of harvest
is evaluated by the following formula:

imp = (
harvest of RCCR

harvest of CRRR
− 1)× 100%

In our empirical study, we have used realistic fault densities
of both PEs and switches that ranges from 0.0% to 1%.
Without loss of generality, our analysis is based on 128× 128
host arrays.

Fig. 5 shows the performance of CRRR and RCCR on 128×
128 host array with different PE faults and switch faults. It is
evident that for both CRRR and RCCR, the switch faults has a
higher impact on the harvest when compared to PE faults. For
a 128× 128 host array with 0.0% PE faults, CRRR produces
14228, 8358 and 4086 healthy PEs in the target array when
the switch faults are 0.1%, 0.5% and 1.0% respectively. The
variation in the harvest are marginal when the host array has
0.0% switch faults. In particular, for 128 × 128 host array
with 0.0% switch faults, CRRR produces harvests of 16140,
15936 and 15699 when the PE fault density is 0.1%, 0.5% and
1.0% respectively. The same can be observed for RCCR. It
can also be observed that the harvests are gradually degraded
with the increased in PE faults for both CRRR and RCCR.
However, compared to switch faults, the decrease in harvest
caused by PE faults is rather slow. This is evident in Fig.
5 where the degradation of harvest due to increasing switch
faults for a fixed PE fault density is significant. This indicates
that switch faults have greater impact in the reconfiguration
on host array as compared to PE faults. This is due to the
fact that the switch faults affect the connectively of host array
and cause the adjacent healthy PEs to be redundant and hence,
they cannot be included in the target array. On the other hand,
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Fig. 5: Comparison in harvest for CRRR and RCCR, on 128× 128 host arrays with different PE and switch faults.

PE faults can be bypassed.
Fig. 6 shows that the harvest improvement of RCCR over

CRRR gradually decreases with increasing PE fault density. It
is evident that larger number of switch defects in host array
leads to higher number of unusable PEs in rerouting. Hence,
the harvest will decrease with increasing switch fault rate. For
instance, imp is about 52.6% in the case of 0.1% PE faults
and 0.5% switch faults. With the same switch fault density
(i.e. 0.5%), imp decrease to about 43.8% and 36.3% when PE
faults are 0.5% and 1.0% respectively. This is due to the fact
that the number of fault-free PEs in released rows becomes
less with increasing PE faults.
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Fig. 6: Improvements of RCCR over CRRR in terms of
harvest, on 128×128 host arrays with different PE and switch
faults.

Figure 6 clearly shows that RCCR outperforms CRRR.
Moreover, the improvements over CRRR increase with in-
creasing density of switch faults. This is due to the fact that
the harvest of CRRR is significantly reduced with the increase
of switch faults density. In Fig. 5, for 128×128 host array with
0.5 percent PE faults, both RCCR and CRRR can achieve the

same harvest (i.e., 15936) when no switch failure occur. For
the switch faults densities of 0.1%, 0.5% and 1%, the harvests
of CRRR are 14012, 8012 and 4013, respectively. However
for RCCR, the decrease in harvest are not as significant (i.e.
14616, 11525 and 10666). As shown in Fig. 6, when the
switch fault density is below 0.1 percent, RCCR generates
only slightly more harvest than CRRR, and the improvements
over CRRR is no more than 5%. However, for switch fault
density above 0.1 percent, the improvement (imp) in harvest
becomes increasingly significant with the increase in switch
fault density. For switch fault density of 0.5 percent, the imp
over CRRR is about 43.8%. When the switch fault density
increases to 1 percent, the harvest of RCCR is about 165.8%
more than that of CRRR. Hence, it is evident that the RCCR
performs more favorably than CRRR, especially when the
switch faults are increased. This reason for this is as follows:
CRRR constructs the target array in the column direction only,
and the rows with switch faults are simply removed from the
target array. On the other hand, RCCR constructs the target
array on the connected rows, where healthy PEs in rows that
contains switch faults can be utilized to maximize the size of
the target array.

Table 1 reveals the runtime of the reconfiguration algorithms
CRRR and RCCR in milliseconds (ms). The runtime consists
of all operations that are required to perform the reconfigu-
ration. Experimental results indicates that the running time
of RCCR is nearly twice of that required by CRRR. This
is consistent with the complexity analysis. While CRRR can
compute faster than RCCR, the execution time for RCCR
is still acceptable. For a 128 × 128 host array with 1% PE
faults and 0.5% switch faults, RCCR only requires about 42.2
milliseconds. In addition, RCCR can produce greater harvest
than CRRR. In particular, RCCR is able to produce a target
array with maximum number of logical rows in linear time
for the reconfiguration problem P . For the case of host array
with 1% switch faults and 0.1% PE faults, imp could reach
175.8 percent (as shown in Fig. 6). Finally, the improvement



TABLE I: Running time comparisons between CRRR and
RCCR on 128× 128 host arrays with different PE and switch
faults.

Host Array Algorithm Running Time (ms)
PE Fault CRRR Switch Fault (%)

(%) RCCR 0.0 0.1 0.5 1.0

0.0 CRRR 21.4 22.8 20.3 19.6
RCCR 43.8 41.5 42.8 44.5

0.1 CRRR 21.2 20.3 22.0 20.3
RCCR 41.5 41.4 42.9 41.3

0.5 CRRR 20.3 21.8 20.9 21.8
RCCR 43.8 39.1 41.4 40.7

1.0 CRRR 21.3 19.5 22 18.8
RCCR 42.2 42.2 42.2 42.2

becomes more significant when the number of switch faults
increase.

V. CONCLUSION

In this paper, we have introduced the problem of reconfigur-
ing two dimensional degradable VLSI arrays in the presence
of PE faults and switch faults. Two algorithms, CRRR and
RCCR were proposed to tackle the reconfiguration problem of
VLSI arrays with PE and switch faults. We demonstrated that
RCCR performs more favorably than CRRR, especially for the
case of the host array with large number of switch faults. We
have shown that RCCR is able to produce an optimal solution
in linear time. Experimental results indicate that switch faults
have greater impact on the size of the target array as compared
to PE faults. This is due to the fact that the switch faults affect
the connectivity of host array by causing the adjacent healthy
PEs to be redundant and thus, they cannot be included in the
target array. These results clearly demonstrate the importance
of considering switch faults for efficient reconfiguration of
VLSI arrays.
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